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1. OVERVIEW 4

Figure 1. The 5-wheel.

1. Overview

Lecture 1;
Wednesday January
22, 2020

Our goal is to understand the proof of the following theorem from [CGP1]:

Theorem 0.1. dimQH
4g−6 (Mg,Q) grows exponentially with g.

Remark 0.1. Mg has complex dimension 3g − 3.

This theorem defied previous expectations.

Conjecture 1 (Kontsevich [K1], Church-Farb-Putman [CFP2]). For fixed k > 0,
H4g−4−k (Mj ,Q) = 0 for g � 0.

The structure of the course is as follows.

• Constructing the moduli space
(1) Nodal curves and stable reduction theorem
(2) Deformation theory of nodal curves
(3) The Deligne-Mumford moduli space of stable curves (1969)

• Cohomology
(1) Mixed Hodge structure on the cohomology of a smooth variety (early 1970s)
(2) Dual complexes of normal crossings divisors (tropical geometry)
(3) Boundary complex of Mg (tropical moduli space)

• Cohomology of Mg

(1) Stable cohomology (Madsen-Weiss [MW])
(2) Virtual cohomological dimension of Mg (Harer [H2]) (Vanishing of H4g−5

(Church-Farb-Putman [CFP2], Morita-Sakasai-Suzuki))
(3) Euler characteristic of Mg (Harer-Zagier [HZ])

• Graph complexes (Kontsevich [K1])
(1) Feynman amplitudes and wheel classes. See fig. 1 for the 5-wheel.
(2) Grothendieck-Teichmüller Lie algebra
(3) Willwacher’s theorem [W]

• Mixed Tate motives (MTM) over Z
(1) Mixed Tate motives
(2) Brown’s theorem (conjecture of Deligne-Ihara): “Soulé elements (closely re-

lated to Drinfeld’s associators) generate a free Lie subalgebra.”
(3) Proof of exponential growth of H4g−6.



CHAPTER 1

Nodal curves and stable reduction theorem

Lecture 2; January
24, 2020

1. Nodal curves

We will work over C. We want to show that nodal curves, and families thereof, can be
written in a normal form in local coordinates. We will follow chapter X of [ACG].

Definition 1.1. A nodal curve is a complete curve such that every singular point has
a neighborhood isomorphic (analytically over C) to a neighborhood of 0 in (xy = 0) ⊂ C2.

Definition 1.2. A family of nodal curves over a base S is a flat proper surjective
morphism f : C → S such that every geometric fiber is a nodal curve.

Recall that a flat morphism is the agreed upon notion of a map for which the fibers
form a continuously varying family of schemes (or complex analytic spaces, varieties, etc.).
Properness is a relative notion of compactness; it ensures that if {ci} is a sequence of points
with no limit in C then {f(ci)} has no limit in S.

Proposition 1.1. Let π : X → S be a proper surjective morphism of C-analytic spaces.
This is a family of nodal curves if and only if at every point p ∈ X either π is smooth at p
with one-dimensional fiber, or there is a neighborhood of p that is isomorphic (over S) to a
neighborhood of (0, s) in (xy = F ) ⊆ C2 × S where s = π (p) and F ∈ mS ⊆ OS,s.

Lemma 1.2. Let f be holomorphic at 0 ∈ C2. Then (f = 0) has a node at 0 if and only if

(1.1) 0 = f =
∂f

∂x
=
pf

∂y

at 0, and the Hessian of f at 0 is non-singular.

This tells us that these nodes are the “simplest” possible singularities.

Proof. ( =⇒ ): This direction is immediate.
(⇐=): Suppose 0 = f = ∂xf = ∂yf at 0. Then

(1.2) f = a− x2 + 2bxy + cy2

where a, b, and c are holomorphic functions. The Hessian is

(1.3)

(
2a 2b
2b 2c

)
so being non-singular means exactly that

(1.4) b2 − ac 6= 0 .

5



2. STABILITY OF NODAL CURVES 6

After a generic linear change of coordinates, we can assume a 6= 0. We can then change
coordinates to

x1 = x+
b

a
y y1 = y .(1.5)

Then we can write

(1.6) f = a1x
2
1 + c1y

2
1

where a1 (0) , c1 (0) 6= 0. Choose square roots1.1 α and γ of a1 and c1. Now replace x1 and
y1 by x2 = αx1 and y2 = γy1 so that

(1.7) f = x2
2 + y2

2 .

Now for x3 = x2 + iy2 and y3 = x2 − iy2, we have f = x3y3. �

Proof of Proposition 1.1. Let π : X → S be proper and surjective. Consider x ∈
X. Then either π is smooth with 1-dimensional fiber at x (nothing to show) or x is a node
in π−1 (s), s = π (x). Locally near x, we have a locally closed embedding X ⊆ Cr × S
(working over S). Then we get a left exact sequence of tangent spaces:

(1.8) 0 TxXs TxX TsS

where dimTxXs = 2. Choose a linear projection Cr → C2 which is an isomorphism on
TxXs. Using this projection we get:

(1.9) TxX Cr × TsS C2 × TsS⊆

and the composition TxX → C2×TsS is injective. The implicit function theorem then tells
us that there is a neighborhood of x which embeds in C2 × S (over S). We should think of
this as a family of plane curves: each fiber has a single defining equation. More specifically
we have the following.

Fact 1 (Lemma 31.18.9 (Stacks project)). If Y → S is a smooth morphism and D ⊆ Y
is flat over S, codimension 1 in Y, then D is a Cartier divisor.

In particular, X ⊆ C2×S is locally defined by a single equation F = 0. Now consider ∂xF ,
∂yF , and the Hessian of F with respect to x and y. Then the proof of Lemma 1.2 shows

(1.10) F = x3y3 − f
where f is a function on S which vanishes at s. �

Lecture 3; January
27, 2020

2. Stability of nodal curves

The following is a corollary of Proposition 1.1.

Corollary 1.3. A family of nodal curves π : C → S is a local complete intersection (lci)
morphism.

This implies that there is a relative dualizing sheaf ωC/S which is locally free of rank 1.

1.1There is some subtly here since these are functions rather than scalars. Because a1 and c1 are
nonzero at 0, we can ensure that the image of a1 and c1 are, say, contained in an open half space. Now we

can choose a branch of log which is defined on this half space. Then multiply by 1/2 and exponentiate.

https://stacks.math.columbia.edu/tag/056P
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C C̃

←
ν

Figure 1. The normalization of a nodal curve. The nodal points of C each
have two preimages under the normalization ν.

2.1. Serre duality. The point here is that the duality properties that we already know
about for smooth curves extend naturally to nodal ones.

Let C be a nodal curve (over a point). There is a (natural) isomorphism H1 (C,ωC) ∼= C.
Then Serre duality tells us that for any coherent sheaf F on C,

(1.11) H1 (C,F)×Hom (F , ωC)→ H1 (C,ωC) ∼= C

is a perfect pairing, i.e.,

(1.12) H1 (C,F) ∼= Hom (F , ωC)
∨
.

In particular, if F is a vector bundle, then

(1.13) H1 (C,F) ∼= H0 (C,F∨ ⊗ ωC)
∨
.

We can form the normalization1.2 of a nodal curve as in fig. 1.

Suppose C is nodal with components C1, . . . , Cs and nodes x1, . . . , xr. Let C̃
ν−→ C be

the normalization. Write C̃i for the normalization of Ci and

(1.14) {pj , qj} = ν−1 (xj)

(for i ∈ {1, . . . , s} and j ∈ {1, . . . , r}).
A line bundle L on C has multi-degree deg (L) to be

deg (L) =
(
deg

(
L|C1

, . . . ,deg
(
L|Cs

)))
(1.15)

=
(

deg
(
ν∗L|C̃1

)
, . . . ,deg ν∗L|C̃s

)
.(1.16)

The following is a corollary to Serre duality.

Corollary 1.4. If C is connected, and deg (L) > deg (ωC) then H1 (C,L) = 0.

By deg (L) > deg (ωC) we mean deg
(
L|Ci

)
≥ deg

(
ωC |Ci

)
for all i and deg (L) 6= deg (ωC).

1.2Locally, the corresponding algebraic construction is taking the integral closure of the coordinate ring.
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Proof. First note

(1.17) H1 (C,L) ∼= H0
(
C,ωC ⊗ L−1

)
.

and deg
(
ωC ⊗ L−1

)
< 0.

On any connected component Ci such that deg
(
ωL ⊗ L−1

)∣∣
Ci
< 0 all sections vanish.

And all sections vanish on components that meet Ci, etc. �

Corollary 1.5. L is ample if and only if deg
(
L|Ci

)
> 0 for all i.

Proof. ( =⇒ ): This direction is clear. The restriction of ample L to any component
is still ample.

(⇐=): Suppose deg
(
L|Ci

)
> 0. It is enough to show that L⊗N is very ample for some

N . Choose N sufficiently large so that

(1.18) deg
(
L⊗N

∣∣
Ci

)
> deg

(
ωC |Ci

)
+ 2 .

Let S ⊆ C be the union of two distinct smooth points. Then we have a short exact sequence

(1.19) 0→ IS → OC → OS → 0

which we can tensor with L⊗N to get a sequence which is still exact, which gives us a long
exact sequence
(1.20)

0 H0
(
L⊗N (−s)

)
H0
(
L⊗N

)
H0
(
L⊗N

∣∣
S

)
H1
(
L⊗N (−s)

)
. . .

but H1 (L (−s)) = 0, so we have a surjection

(1.21) H0 (L)� H0 (L|S) .

This shows that sections of L⊗N separate the two points in S. Similar arguments show that
sections of high tensor powers of L separate arbitrary pairs of points and tangent vectors.
Therefore, high tensor powers of L are very ample, and so L is ample. �

3. Description of ωC

We now describe the canonical sheaf of a nodal curve in terms of meromorphic differ-
ential forms. See [L2, Chapter 6] or [HM, Chapter 3, Section A] for proofs and further
details.

Proposition 1.6. Let C be a nodal curve with nodes x1, . . . , xr, write (pi, qi) = ν−1 (xi).
Then

(1.22) ωC ∼= ν∗

(
ω′
C̃

(p1 + q1 + . . .+ pr + qr)
)

where ω′
C̃

(p1 + . . .+ qr) ⊆ ωC̃ (p1, . . . , qr) is the subsheaf where

(1.23) respi (ω) + resqi (ω) = 0 .

Remark 1.1 (Rosenlicht differentials). There is a related explicit description of ωX/S
for a family of nodal curves. Near a point where X/S ∼= (xf = F ) ⊆ C2 × S ωC/S is
generated by dx/x and dy/y which satisfy

(1.24)
dx

x
+
dy

y
= 0 .

Definition 1.3. A nodal curve is stable if ωC is ample.

Lecture 4; January
29, 2020
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Proposition 1.7. Let X → S be a family of nodal curves. Then

{s ∈ S : Xs is stable}
is Zariski open.

Proof. Let L be any line bundle on X. Then{
s ∈ S : L|Xs is ample

}
is Zariski-open. This is Theorem 1.2.17 of [L1]. �

Theorem 1.8. A nodal curve C is stable if and only if Aut (C) is finite.

Proof. Say C has components C1, . . . , Cs and nodes x1, . . . , xr. Write {pi, qi} =
ν−1 (xi) for the preimage of the nodes under the normalization ν. WriteQ = {p1, q1, . . . , pr, qr}.
Notice that Aut (C) is finite if and only if

{σ ∈ Aut (C) : σ acts by 1 on {C1, . . . , Cs}}
is finite.

Fix Ci. Note that Aut (Ci) is finite if and only if there are only finitely many automor-

phisms of C̃i that fix Q ∩ C̃i. This is the case exactly when

(1) g
(
C̃i

)
≥ 2;

(2) g
(
C̃i

)
= 1, and Q ∩ C̃i 6= ∅; or

(3) g
(
C̃i

)
= 0 and Q ∩ C̃i ≥ 3.

By direct computation, these are precisely the cases where

2g
(
C̃i

)
− 2 + #

(
Q ∩ C̃i

)
> 0.

The left hand side is deg
(
ωC |Ci

)
, by our description of the dualizing sheaf in terms of

meromorphic differentials.
So we have shown that Aut (C) is finite if and only if the degree of the dualizing sheaf

is positive on every component, which is equivalent to ωC being ample, i.e., to C being
stable. �

Definition 1.4. A graph G is a set X (G) together with an involution i : X (G) 	 and

a retraction r : X (G)→ X (G)
i
. The vertices V (G), half edges H (G), and edges E (G) are

defined as:

V (G) = X (G)
i

H (G) = X (G) \ V (G)

E (G) = H (G) /i .

We say r (h) is the vertex incident to h ∈ H (G).

The dual graph G (C) of a nodal curve C is as follows. The vertices {v1, . . . , vs} cor-
respond to the components C1, . . . , Cs; and the half-edges incident to vi are given by the
points of C̃i ∩Q. An edge is made from a pair of half-edges corresponding to a pair {pi, qi}.
The “genus function” assigns the genus of C̃i to the corresponding vertex vi. See fig. 2 for
examples.

We can read the stability off from the dual graph. Every vertex labelled with a 1 should
have at least one incident edge, and all unlabelled vertices should have valence at least 3.
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1

Figure 2. Two examples of genus 2 stable curves with their dual graphs
below them. Notice we can read their stability off from the graphs. All
unlabelled vertices have at least three incident edges, and the labelled one
has one incident edge.

q

1 1

Figure 3. An example of an unstable genus 2 curve with its dual graph
below it. Notice we can read the fact that it is unstable off of the graph.
All three unlabelled vertices of valence less than 3.

Recall that the arithmetic genus of a curve C is

pa (C) = 1− χ (OC) .

In particular, if C is connected then pa (C) = h1 (OC). Recall the Euler characteristic of a
graph G is

χ (G) = #V (G)−#E (G) .

Note if G is connected, then h1 (G) = 1−χ (G). Also note that C is connected if and only if
G (C) is connected. The dual graph also detects the arithmetic genus in the following sense.

Theorem 1.9. Let C be a nodal curve. Then

(1.25) pa (C) = 1− χ (G (C)) +
∑
v

g (v) .

Corollary 1.10. If C is connected then

(1.26) pa (C) =
∑
v

g (v) + h1 (G) .

Proof of Theorem 1.9. Proceed by induction on the number of nodes #E (G) =
#Csing. The base case is when E (G) = ∅, so the graph is just s vertices vi with genus
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g (vi). Then

(1.27) 1− χ (OC) = 1− s+
∑
i

g (vi)

as desired.
Now suppose C ′ is obtained from C by gluing two smooth points p, q to x. Write

π : C → C ′. Then we have an exact sequence of sheaves

(1.28) 0 OC′ π∗OC OX 0

which implies the Euler characteristic of the middle term is the sum of the Euler charac-
teristics of the other two terms. Now since π is proper and finite, χ (π∗OC) = χ (OC).
Altogether this gives us:

(1.29) χ (OC) = χ (π∗OC) = χ (OC′) + χ (OX) = χ (OC′) + 1 ,

and the theorem follows. �

Lecture 5; January
31, 2020

4. Stable reduction

There are two statements. The first is the nodal reduction theorem (which does not
involve stability) and the second is stabilization, which adds uniqueness. The reference is
[ACG] Chapter X, Section 4. Write

(1.30) ∆ = {z ∈ C : |z| < ε}
for a small disk. Write ∆× = ∆ \ {0} for the punctured disk, both viewed as having one
complex dimension.

Consider a flat proper surjective map π : X → ∆ such that π|∆× is a family of nodal
curves. Write X× for the complement of the fiber over 0. Let k > 0 be an integer. Consider
the map ϕk : ∆′ → ∆ from the disk to itself given by z 7→ zk. Note that ϕk is not a smooth
map. Now we can construct a base change

(1.31)

X×k := X× ×ϕk ∆′× X×

∆′× ∆×

π′ π

ϕk

.

Theorem 1.11 (Nodal reduction theorem). Let π : X → ∆ be a flat proper surjective
map such that π|∆× is a family of nodal curves. Then there exists an integer k > 0 such
that after a base change as above, the map π′ extends to a family of nodal curves over ∆.

Theorem 1.12 (Stable reduction). If π|∆× is stable, then this extension can be chosen
to be stable, and the fiber over 0 depends only on π|∆× up to isomorphism.

Remark 1.2. Uniqueness is related to separatedness for moduli of stable curves; exis-
tence and uniqueness is related to properness.

Remark 1.3. The intuition is as follows. Let Σ be a class of objects with a moduli space
(or stack) M, i.e., there is a universal family I → M of objects in Σ such that any family
X → S of objects in Σ is the pullback of the universal family under a unique morphism
S →M. In other words,

(1.32) Hom (−,M) ∼= {families of Σ objects over −} .
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Bl(x,0) C ×∆ C ×∆

Figure 4. The constant family π : C × ∆ → ∆ as well as the blowup
Bl(x,0) C ×∆→ ∆.

IfM is separated, i.e., Hausdorff, then for ∆× →M there exists at most one extension
∆→M. If M is proper, then each map ∆× →M extends uniquely to ∆→M. Roughly
speaking, when one has a large class of objects with a moduli space M′ such that maps
∆× →M′ extend in many different ways to ∆→M′ then one naturally looks for a stability
condition on the parametrized objects, so that the subspace M⊂M′ parametrizing stable
objects is open and proper.

The notion of stability for nodal curves is a prototypical example. Indeed, if we don’t
impose stability, given a family of nodal curves X× → ∆×, then it may extend in many
different ways to a nodal family X ′ → ∆ (and will always extend in many different ways,
after a totally ramified base chance ∆ → ∆, given by z 7→ zk). So the existence and
uniqueness of the special fiber in the theorem above is a special consequence of our specified
stability condition.

Example 1.1. Consider a smooth curve C = (f = 0) ⊆ P2. Then C ×∆× → ∆× is a
constant family which extends to C ×∆→ ∆. Now for any x ∈ C, C ×∆× also extends to
Bl(x,0) C ×∆. We can picture this as in fig. 4.

The upshot is that moduli of nodal curves are not separated/Hausdorff. Lecture 6; February
3, 2020

Interlude: Some motivating examples.
Degeneration of a smooth curve to a nodal curve. We should think of the total space as

being a surface. Consider the surface in fig. 5. This has two different rulings, as pictured
in fig. 5. As in fig. 5, we can project this surface to a line by taking the intersection with
parallel planes at different points of the line. Generically this gives us hyperbolas, but for
two special values we get the union of two lines from the two different rulings. In particular
this is given by the equation xy = t2 − t. The node is exactly the point of tangency. So
when we have a non-reduced curve, this is singular at every point on the curve.

Degeneration of a smooth curve to a non-reduced curve. Consider the surface defined
by the equation x3 + t (x+ y + 1) = 0. At t = 0 we just get a line with multiplicity 3. This
looks something like fig. 6.

Understanding the base change and its fibers. Again we consider a flat proper surjective
map π : X → ∆ such that π|∆× is a family of nodal curves. For simplicity assume that in
fact X = P1 ×∆. Consider the map ϕk : ∆′ → ∆ from the disk to itself given by z 7→ zk.
Note that ϕk is not a smooth map. In particular:

(1.33) ϕ−1
k (0) = Spec

(
C [ε] /εk

)
.
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Figure 5. The surface given by xy = t2 − t. Projection to the t-line has
fibers which generically look like hyperbolas, but when the plane is tangent
to the surface we get the union of two lines.

t
xy

Figure 6. The surface x3 +t (x+ y + 1) = 0. Projecting to the t-line gives
us smooth fibers which degenerate to a line with multiplicity 3 at t = 0.

Consider a base change for a family of curves

(1.34)

(
P1 ×∆

)
×ϕk ∆′ P1 ×∆

∆′ ∆

π′ π

ϕk

.

If we think of the preimage under ϕk ◦ π′ we have actually made things worse, since the
preimage of 0 is:

(1.35) (ϕk ◦ π)
−1

(0) ' P1 × Spec
(
C [ε] /εk

)
.

But in our construction we are replacing π by π′, not ϕk ◦ π′. The moral is that (at least
for specific k) this replacement makes things better.

Proof of the nodal reduction theorem.
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Proof of Theorem 1.11. We will operate under the simplifying assumption that
X× → ∆× is smooth. The first step is to resolve the singularities of X. This is easy
since dimX = 2. First we normalize to get something regular in codimension 1. Then we
blowup the finitely many singular points. Then repeat, i.e., normalize and then blowup the
finitely many singular points. It is a theorem (not especially difficult) that this process ter-

minates, giving us X ′
π′−→ ∆ where X ′ is smooth. However, the central fiber (π′)

−1
(0) = X ′0

might have arbitrary singularities. To deal with this, we first resolve the non-nodal singu-
larities of X ′red

0 . The process is again straightforward; the reduced curve X ′red
0 has finitely

many singular points. We blow up the singular points that are not nodes. The resulting
total space is still smooth, and we repeat, blowing up the finitely many singular points of
the reduced special fiber that are not nodes. It is again a theorem (and not particularly
difficult) that this process terminates. Hence we may assume that X ′ is smooth and X ′red

0

has only nodal singularities.
Locally near each node of X ′red

0 , the surface X ′ is isomorphic (over ∆) to z = xayb in
C2 ×∆, where x and y are the coordinates on C2 and z is the coordinate on ∆. Similarly,

near each smooth point of X ′
red
0 , the surface X ′ is isomorphic (over ∆) to z = xc. We can

then cover X ′
red
0 by finitely many open sets where we have such local charts, and set

(1.36) k = lcm {ab, c} .
The rough idea is that this choice of k will ensure that base change along ϕk : ∆→ ∆, given
by z 7→ zk, will unwind the multiplicities of the components of X ′0.

In fact, the base change

(1.37) X ′′ = ϕ∗kX
′

is not necessarily normal, but we claim that

Claim 1.1. (X ′′)
ν π′−→ ∆′ is a nodal family, where (X ′′)

ν → X ′′ is the normalization.

To prove the claim, we first consider π′ near a point where X ′ ∼= (z = xc). Write z = ζk

and k = ch so that

(1.38) xc − z = xc − ζch =
∏
ωc=1

(
x− ωζk

)
.

Note that this product gives rise to c different smooth and irreducible components, which
are disjoint in the general fiber but intersect in the special fiber. Normalizing pulls apart the
intersections in the special fiber, giving rise to the disjoint union qωc=1

(
x− ωζh

)
, which is

smooth over ∆.
It remains to consider π′ near a point where X ′ ∼=

(
z = xayb

)
. Write k = rsuv where

a = ru, b = su, and (r, s) = 1. Write ζ for the coordinate on ∆′. Then X ′′ is locally given
by

(1.39) 0 = xayb − ζk .
This need not be normal. Indeed, if u > 1 then xrys obviously satisfies a nontrivial monic
polynomial. Choose ω a primitive uth root of unity, so we have a factorization

(1.40)
(
xayb − ζk

)
=

u∏
i=1

(
xrys − ωiζrsv

)
.

We can again pass to the disjoint union of surfaces with local defining equations xry2−ωizrsv,
but this is only a partial normalization. Indeed, these surfaces are all isomorphic, but
ζvrs = xrys need not be normal. Then we claim the following.
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Claim 1.2. The normalization is locally isomorphic to the surface defined by ζv = αβ,
where ζ, α, β are coordinates on C3, with the normalization map given by x = αs, y = βr.

To check that this is the normalization we need to check that

(1) this surface is normal,
(2) the map is generically one-to-one, and
(3) the map is surjective.

To see that this surface normal, notice that ζv = αβ is the toric surface corresponding
to the cone spanned by (1, 0) and (v, 1) in R2, with respect to the standard lattice Z2. It is
well-known and easy to prove that toric varieties are normal (see [F, §2.1]). We now show
that the map is generically one-to-one. Given (α, β, ζ) and (α′, β′, ζ ′) so that

αs = (α′)
s

βr = (β′)
r

ζ = ζ ′ .(1.41)

This means α′ = σα for σ an sth root of unity, and similarly β′ = τβ for τ an rth root of
unity. But if α and β are nonzero, then αβ = α′β′ implies στ = 1, so σ = τ = 1, so

(1.42) (α, β, ζ) = (α′, β′, ζ ′) .

Since the points where α and β are nonzero form an open dense set we are done.
Now consider (x, y, ζ) such that xrys = ζvrs. Then we must find points (α, β, ζ) such

that αβ = ζv and x = αs, and y = βr. Choose α0, β0 such that αs0 = x and βr0 = y. The
point being that α0 · β0 = ξζv where ξrs = 1. Now write

(1.43) 1 = mr + ns

so the coordinates are

α = α0ξ
−mr β = β0ξ

−ns .(1.44)

�

Lecture 7; February
5, 2020

Now we claim that X ′ in the nodal reduction theorem can be chosen to be stable if
X|∆× is stable.

Theorem 1.13 (Stabilization theorem). Let X
π−→ ∆ be a family of nodal curves such

that π|∆× is stable. Then there is

(1.45)
X X ′

∆

ψ

such that

(1) ψ : X|∆× → X ′|∆× is an isomorphism;
(2) for each component Ci of the central fiber C = X0, ψ maps Ci either to a point,

or birationally onto its image; and
(3) X ′ is a family of stable curves.1.3

Moreover, X ′ → ∆ is unique.

Remark 1.4. The moral of the story is that

(1.46) X ′ = Proj∆

⊕
n≥0

π∗

(
ω⊗nX/∆

) .

1.3This means that X′ → ∆ is flat and proper, and its geometric fibers are stable nodal curves.
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Recall that when we take this big direct sum we get a sheaf of graded O∆-algebras, so it
makes sense to take relative Proj∆, provided that these graded O∆-algebras are finitely
generated. The minimal model program deals with finite generation of things like this.

Proof. Suppose C = X0 with components C1, . . . , Cs. Consider

(1.47)
{
Ci : ωC |Ci is not ample

}
=
{
Ci : deg

(
ωC |Ci

)
≤ 0
}
.

Call this set the set of unstable components. We continue with our simplifying assumption
that X|∆× is smooth and with connected fibers. Note that stability of the general fiber (in
the absence of marked points) implies that pa (C) ≥ 2. Then the set of unstable components
is:

(1.48)
{
Ci : ωC |Ci is not ample

}
=
{
Ci ∼= P1 : # {Ci ∩ Cl ((C \ Ci))} ≤ 2

}
.

Then we have the following observation from [ACG]. Each connected component in the
union of the unstable components is a chain of rational curves that intersects the union of
the stable components at one or two points, on either or both ends of the chain. Let C ′ be
the curve obtained by contracting all unstable chains. Note that pa (C ′) = pa (C).

Warning 1.1. Now we encounter a minor error in [ACG] (page 112, second sentence),
where it is claimed that C ′ is stable. The following is a counterexample to that claim.

Counterexample 1. Suppose C has the following dual graph:

(1.49) 2

with three unstable components (in red), that form two chains. After contracting both
unstable chains, we get C ′ with dual graph

(1.50) 2

which is not stable.

Nevertheless, the argument in [ACG] is easily salvaged. By iterating the procedure of
contracting chains of unstable rational curves, one eventually does obtain a map ϕ : C → C ′

such that

(i) ϕ|Ci is either constant or birational onto its image (and an isomorphism on Ci ∩
Csmooth).

(ii) pa (C ′) = pa (C), and
(iii) C ′ is stable.

Lecture 8; February
7, 2020

Now, given ϕ : C → C ′ as above, with C ′ stable, we follow the arguments in [ACG] to
construct

(1.51)
X X ′

∆

ϕ′

ϕ

π′

�

such that

(i) π′ : X ′ → ∆ is a family of stable nodal curves,
(ii) ϕ′ is an isomorphism over ∆×,

(iii) X ′0
∼= C ′, and

(iv) ϕ′|X0
= ϕ.
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Let L0 be ϕ∗ωC′ and d = deg (L0), i.e., d = (d1, . . . , ds), where di = deg
(
L0|Ci

)
. Note

all di ≥ 0. Choose di sections of π that meet Ci at distinct smooth points of C. (We can
find a section through an arbitrary smooth point of C, using Hensel’s lemma.) Let D be
the divisor on X given by the union of these sections. Then L = O (D) is a line bundle on
X, and

(1.52) deg
(
L|X0

)
= deg (L0) .

Then we make the following observations:

• L is relatively ample over ∆×,
• L|X0

is the pullback of an ample line bundle L′ on C ′.

Lemma 1.14. For any line bundle M ′ on C ′,

(1.53) Hi (C ′,M ′) = Hi (C,ϕ∗M ′)

(for i ∈ {0, 1}).

Proof. The pullback induces an isomorphism on H0, and

χ (M ′) = χ (OC′) + deg (M ′)

= χ (OC) + deg (ϕ∗M ′)

= χ (ϕ∗M ′) .

�

The consequences are as follows. For large n, H1 (X0, L
⊗n) = 0 (vanishing on C ′ by

ampleness and Lemma 1.14). This implies h0 (Xs, L
⊗n) is a constant function of s ∈ ∆.

Therefore π∗L
⊗n is locally free by Grauert’s theorem.1.4

Now we choose n sufficiently large such that L⊗n is very ample on fibers over ∆×, and
the restriction of L⊗n to C is the pullbacks of a very ample line bundle on C ′. Then π∗L

⊗n

induces ψ : X → ∆ × PN , and ψ|C agrees with ϕ : C → C ′. Take X ′ = im (ψ). Note that
X ′ → ∆ is flat by the Hilbert polynomial criterion, and hence is the required family of
stable nodal curves. �

Definition 1.5. An n-pointed nodal curve is a pair (X; p1, . . . , pn) such that X is a
nodal curve, and p1, . . . , pn are distinct smooth points of X.

Definition 1.6. We say (X; p1, . . . , pn) is stable if and only if ωX (p1 + . . .+ pn) is
ample.

Theorem 1.15. (X; p1, . . . , pn) is stable if and only if

(1.54) Aut (X; p1, . . . , pn) = {σ ∈ Aut (X) : σ (pi) = pi}
is finite.

Definition 1.7. A family of pointed nodal curves is a family of nodal curves π : X → S
with sections σ1, . . . , σn:

(1.55)

X

S

π
σ1...

σn

such that {σi (S)} are disjoint and contained in πsmooth.

1.4Recall this says that if the dimension of Hi is constant, the sheaf is coherent, and the morphism is
proper, the Riπ∗ is locally free. See Chapter III of [H4].
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p1

p2 p1 p2

Figure 7. The left curve is unstable. When we stabilize, we contract to
get a stable curve as on the right. Note that the marked points follow the
contraction.

Then there are generalizations of nodal reduction, stabilization, and stable reduction
for pointed curves as well. Note that, when we contract during the stabilization process,
the marked points follow the contraction. See fig. 7.

An argument similar to the construction of X ′ above shows that stabilization of nodal
curves behaves well in families, i.e., given a family of nodal curves C → S there is morphism
of families of nodal curves C → C′ over S such that C′ is a family of stable nodal curves
and the restriction to a fiber C is the stabilization map ϕ : C → C ′ obtained by contracting
chains of unstable rational curves, and then iterating.

Lecture 9; February
10, 2020



CHAPTER 2

Deformation theory

The reference for today’s material is [ACG, Chapter XI, section 2].

Definition 2.1. A deformation of a proper (connected) scheme X is a flat and proper

morphism X ϕ−→ S to a pointed scheme (S, s) together with an isomorphism Xs
∼−→ X.

An infinitesimal deformation is a deformation over S = SpecC [ε] /ε2.

Sometimes these infinitesimal deformations are referred to as first order deformations.
A morphism of deformations is a cartesian square

(2.1)

X X ′

(S, s) (S′, s′)

such that the induced map

(2.2) X Xs X ′s′ X∼ ∼

is the identity.

Theorem 2.1. If X is smooth then the isomorphism classes of infinitesimal deforma-
tions of X are in natural bijection with H1 (X,TX).

Proof. The first step is to find a natural map from the isomorphism classes of in-
finitesimal deformations to H1 (X,TX). Let X → S = SpecC [ε] /ε2 be an infinitesimal
deformation. Since X is smooth and smoothness is open in families, the morphism X → S
is smooth, and gives rise to the short exact sequence

(2.3) 0→ TX → TX → ϕ∗TS → 0 .

This induces a long exact sequence on cohomology:
(2.4)

0 H0 (X,TX) H0 (X,TX ) H0 (X,ϕ∗TS) H1 (X,TX) · · ·

C · dε

δ

so dε ∈ H0(X,ϕ∗TS) maps to some class δ (dε) ∈ H1 (X,TX). We claim that the map taking
an infinitesimal deformation X → S to δ (dε) gives the required bijection.

Let X → S be an infinitesimal deformation, X0
∼−→ X. Note that OX is locally free (of

rank 2) as an OX -module. Now we cover X by finitely many open Uα such that OX |Uα is

19
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free. Let zα1 , . . . , zαn be local coordinates on these Uαi ⊆ X, and let fαβ be the transition
functions, i.e., zα = fαβzβ . These functions satisfy

(2.5) fαβ (fβγ (zγ)) = fαγ (zγ) .

Now consider X as being glued from the Uα×S. In particular Uα×S is glued to Uβ×S
along (Uα ∩ Uβ)× S. So we have zα and εzα, and

(2.6) zα = fαβ (zβ) + εgαβ (zβ)︸ ︷︷ ︸
f̃αb(zβ)

,

i.e., we write f̃αβ for the new transition functions, and moreover, the new transition functions
agree with the old ones modulo ε. This is the gluing data describing the construction of X
from the charts Uα × S.

Remark 2.1. The geometric picture is that we start with some X, then we spread this
out into a higher-dimensional fibration. So assuming we’ve shrunk Uα sufficiently, it has no
interesting topology, and if we look at it inside of the fibers all at once, this is just a cylinder
Uα × S. So then the total space is glued out of these cylinders.

These transition functions satisfy the gluing condition

f̃α

(
f̃βγ (zγ)

)
= f̃αγ (zγ)(2.7)

= fαβ (fβγ)︸ ︷︷ ︸
fαγ

+fαβ (εgβγ) + εgαβ (fβγ) .(2.8)

The first term just comes from gluing on X, and the second term can be thought of as a
version of Leibniz’s rule:

(2.9)
∂fαβ
∂zβ

gβγ + gαβ = gαγ .

Another way of writing this is that:

(2.10) Θαβ = (gαiβi)

∂/∂zα1

...
∂/∂zαn

 ∈ H0
(
Uαβ , TX |Uαβ

)
is a cocycle, so it defines a class:

(2.11) [Θαβ ] ∈ H1 (X,TX)

which is the image of 1 in H1 (X,TX).
The point of this is that the deformation ϕ : X → S goes to the coboundary δ (∂/∂ε)

where we regard ∂/∂ε ∈ H0 (ϕ∗TS).
Moreover, we can reverse engineer the argument above, i.e., given a 1-cocycle with

coefficients in TX we can construct a deformation X → S. One also checks, by direct
computation with cocycles, that cohomologous cocycles give rise to isomorphic deformations,
and hence one gets a well-defined inverse to the map

(2.12) {isomorphism classes of deformations}� H1 (X,TX) .

�
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Lecture 10;
February 12, 2020

Let X → (B, b0) be a deformation. Recall that elements of TB,b0 (i.e., “tangent vec-
tors”) correspond to morphisms S → B that send the underlying point of S = SpecC[ε]/ε2

to b0. Pulling back X along such a tangent vector S → B gives an infinitesimal deformation
of the special fiber X = Xb0 . The natural bijection between isomorphism classes of infini-
tesimal deformations of X and H1(X,TX) therefore gives rise to the Kodaira-Spencer map
ρ : TB,b0 → H1 (X,TX). (We have constructed this map set-theoretically, but it is a linear
map of vector spaces.)

Let us now consider the case where X = C is a smooth and stable curve, i.e., a smooth
curve of genus g(C) ≥ 2. By Serre duality, we have a canonical isomorphism

(2.13) H1 (C, TC) ∼= H0 (C, T∨C ⊗ ωC)
∨ ∼= H0

(
C,ω⊗2

C

)∨
.

Note that sections of ω⊗2 are sometimes referred to as the quadratic differentials. Since
deg

(
ω⊗2
C

)
= 4g − 4 and g ≥ 2, Riemann-Roch tells us that

(2.14) h0
(
ω⊗2
C

)
= 3g − 3 .

Hence the space of infinitesimal deformations of C has dimension 3g − 3.
The ideal sheaf of a point p ∈ C is locally free,2.1, so we have a short exact sequence

(2.15) 0 Ip ∼= O (−p) OC Op 0 .

Tensoring with TC (p) gives us the short exact sequence

(2.16) 0→ TC → TC (p)→ TC (p)|p → 0 .

This induces a long exact sequence

(2.17) H0 (C, TC) H0 (C, TC (p)) H0 (p, TC (p)) H1 (C, TC) · · ·δ .

Note that H0(C, TC(p)) vanishes, since g(C) ≥ 2, and the vector space H0(p, TC(p)) is 1-
dimensional. Hence the choice of p gives rise to a 1-dimensional subspace δp ⊆ H1 (C, TC)
which is an infinitesimal deformation well-defined up to C×. These are called Schiffer
deformations.

An alternative construction is as follows. The complete linear series of quadratic differ-
entials gives a map

(2.18) C → P
(
H0
(
C,ω⊗2

C

)∨)
,

and p ∈ C maps the point δp in this projective space.

Fact 2 (Important fact). Schiffer deformations are integrable, i.e., they come from
deformations over a small disk ∆ = {z : |z| < b}.

The idea is as follows. Let p ∈ C be a point in our curve. Then let U be a neighborhood
of p with a local coordinate z : U

∼−→ ∆ which maps U isomorphically to the disk ∆. Then
define:

U ′ = {z ∈ U : |z| < b/3} U ′′ = {w ∈ U : |w| < 2b/3} .(2.19)

That is U ′ ⊂ U ′′ ⊂ U . Then we can think of C as being obtained by gluing

(2.20) C = (C \ U ′) ∪ U ′′ .

2.1This is using the fact that C is smooth and 1-dimensional. If instead p were a point on a smooth
surface, or a node on a singular curve, for example, then the ideal sheaf of p will have rank 1 everywhere

away from the point, but the fiber over p has rank 2.
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In particular, for t sufficiently small, consider the space Ct obtained by gluing C \U ′ to U ′′

along w = z + t/z.

Claim 2.1 ([ACG, XI, §2]). δp is the infinitesimal deformation associated to the family
{Ct}.

Moreover, if we choose multiple distinct points p1, . . . , ps ∈ C, then we get multiple
Schiffer deformations that are simultaneously integrable. Indeed, by choosing disjoint coor-
dinate patches at the points and performing the construction above on each patch, we can
simultaneously integrate all δpi to get

(2.21)
C

∆s

.

Note that

(2.22) f = f|ω⊗2
C | : C ⊗ P

(
H0
(
C,ω⊗2

)∨)
is nondegenerate, i.e., the image is not contained in a hyperplane, so the Schiffer deforma-
tions span H1 (C, TC). In particular, if we choose s = 3g − 3 general points p1, . . . , ps in
C, then representatives of {δp1 , . . . , δps} form a basis for H1 (C, TC). Hence the Kodaira-
Spencer map for ϕ : C → ∆s

(2.23) ρ : T∆s,0
∼−→ H1 (C, TC)

is an isomorphism.
The existence of such a family, over a smooth base, for which the Kodaira-Spencer

map is an isomorphism is a very special feature of the geometry and deformation theory
of curves. It is related to the existence of Kuranishi families and smoothness of moduli
spaces (stacks) of curves, as we will discuss in the coming lectures. The paper [V2] shows
that moduli spaces (stacks) of smooth projective surfaces with very ample canonical bundle
exhibit arbitrarily bad singularities, so the pleasantness of this situation for curves must not
be taken for granted.

Definition 2.2. A deformation

(2.24)
C

(B, b0)

ϕ

(Cb0
∼−→ C) is a Kuranishi family if for any deformation D ϕ−→ (E, e0) of C, and any

sufficiently small neighborhood U of e0, there is a unique morphism of deformations

(2.25) ϕ′|U → ϕ .

These can be thought of as local moduli spaces. We will study Kuranishi families not
only for smooth curves, but also for nodal curves. Lecture 11;

February 14, 2020
1. Deformations of nodal curves

Happy Valentine’s Day. Let C be a nodal curve.

Theorem 2.2. There is a natural bijection between isomorphism classes of infinitesimal
deformations of C and Ext1

(
Ω1
C ,OC

)
.
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Remark 2.2. If C is in fact smooth, then the sheaf of Kähler differentials Ω1
C is the

dualizing sheaf Ω1
C
∼= ωC . So

Ext1 (ωC ,OC) ∼= Ext1
(
ω⊗2
C , ωC

)
(2.26)

∼= H0
(
C,ω⊗2

C

)
(2.27)

∼= H1
(
C,
(
ω⊗2
C

)∨ ⊗ ωC)(2.28)

∼= H1 (C, TC)(2.29)

where the second and third isomorphisms come from (appropriate versions of) Serre du-
ality. So, in the special case where C is smooth, we recover our previous identification of
infinitesimal deformations with H1(C, TC).

Proof. Let S = SpecC [ε] /ε2 and let C → S be an infinitesimal deformation of C.
Then we get an exact sequence of sheaves on C:

(2.30) ϕ∗Ω1
S → Ω1

C → Ω1
C/S → 0 .

Now tensoring is right-exact, so we can tensor with OC to get:

(2.31) ϕ∗Ω1
S ⊗OC → Ω1

C ⊗OC → Ω1
C → 0 .

Claim 2.2.1. ϕ∗Ω1
S ⊗OC → Ω1

C ⊗OC is injective.

Proof. The sheaf ϕ∗Ω1
S ⊗ OC is trivial of rank 1, generated by dε ⊗ 1. At a smooth

point of C, C is locally S × C, and hence the image of dε ⊗ 1 is nonzero near this point.
Since the smooth points are open and dense in C, this is enough to prove the claimed
injectivity. �

The claim shows that (2.31) is short exact. Using the identification OC
∼=−→ ϕ∗Ω1

S ⊗OC
given by 1 7→ dε⊗ 1, we can then view Ω1

C ⊗OC as an extension of Ω1
C by OC . We thus get

a map from isomorphism classes of infinitesimal deformations of C to extension classes in
Ext1

(
Ω1
C ,OC

)
.

Claim 2.2.2. This assignment of extension classes to isomorphism classes of infinitesimal
deformations of C is injective.

Proof. Suppose C → S and C′ → S are infinitesimal deformations giving rise to the
same extension class. We must show that these infinitesimal deformations are isomorphic.

Since the induced extensions of Ω1
C by OC are isomorphic, we have a sheaf isomorphism

γ such that the following diagram commutes:

(2.32)

Ω1
C ⊗OC

OC Ω1
C

Ω1
C′ ⊗OC

γ∼= .

To prove the claim, we must show that there is an isomorphism β : OC
∼−→ OC′ (over S)

which restricts to the identity on OC . �
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Claim 2.2.2’. For each h ∈ OC , there is a unique β (h) ∈ OC′ such that

(2.33) β (h)|C = h|C
and

(2.34) dβ (h)|C = γ ( dh|C) .

Here, we write dβ (h)|C for the image of dβ (h) in Ω1
C ⊗OC .

Proof. First we show that uniqueness holds, even locally. If f |C = 0, then locally
f = εg. This implies df = g dε|C . If, in addition, df |C = 0 then f = 0. Local uniqueness
follows.

Given local uniqueness and the basic properties of sheaves, it is enough to prove the

existence of β (h) locally. First, extend h|C to some h̃ on C′. The difference between dh̃
∣∣∣
C

and γ ( dh|C) is of the form g dε. Set

(2.35) β (h) = h̃− εg .
This gives rise to a canonical set theoretic map

(2.36) β : OC → OC′ .
This is a priori only a map of sheaves of sets, but in fact it is a map of sheaves of rings, as
can be seen using the Leibniz rule. This proves claim 2.2.2’, which implies claim 2.2.2. �

Claim 2.2.3. The map from deformations to extensions is surjective.

Proof. Now we have the following local-to-global exact sequence for Ext:

(2.37) 0→ H1
(
C,Hom

(
Ω1
C ,OC

))
→ Ext1

(
Ω1
C ,OC

)
→ H0

(
C, Ext1

OC
(
Ω1
C ,OC

))
→ 0 .

Recall that the sheaf Ext encodes information about local extensions, i.e., the stalk of Ext1

at p classifies extensions of Ω1
C,p by OC,p. In particular, it vanishes at points where Ω1

C is

locally free, and hence is supported on Csing:

(2.38) H0
(
Ext1

(
Ω1
C ,OC

))
=

⊕
p∈Csing

Ext1
(
Ω1
C,p,OC,p

)
.

Lecture 12;
February 17, 2020The local-to-global exact sequence is a consequence of the local-global Ext spectral

sequence:

(2.39) Epq2 = Hp (Extq)⇒ Extp+q .

This is an example of a Grothendieck spectral sequence for the composition of two functors.
See Wikipedia page and this Stack Exchange post for a more detailed discussion and further
references.

The lefthand term in (2.37) is naturally identified with the set of isomorphism classes
of locally trivial extensions of Ω1

C by OC , as follows.
An extension OC → F → Ω1

C is locally trivial if there is an open cover {Uα} of C, such
that the extension splits on each Uα via isomorphisms

(2.40) F|Uα
ϕα−−→ OC ⊕ Ω1

C .

On Uα ∩ Uβ , we then have transition functions

(2.41) OC ⊕ Ω1 F (Uα ∩ Uβ) OC ⊕ Ω1
C

ϕ−1
α ϕβ

.

https://en.wikipedia.org/wiki/Grothendieck_spectral_sequence#Local-to-global_Ext_spectral_sequence
https://math.stackexchange.com/questions/2000611/local-global-ext-sequence
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The maps OC → OC and Ω1
C → Ω1

C induced by ϕβ ◦ ϕ−1
α are the identity, and the map

OC → Ω1
C is zero. Let fαβ be the induced map Ω1

C(Uα ∩ Uβ) → OC(Uα ∩ Uβ). Then
{fαβ} is a 1-cocycle for Hom

(
Ω1,O

)
. Different choices of trivialization give rise to co-

homologous cocycles. Conversely, a 1-cocycle for Hom
(
Ω1,O

)
gives rise to a locally triv-

ial extension, and cohomologous cocycles give rise to isomorphic extensions. In this way
H1
(
C,Hom

(
O1
C ,OC

))
classifies locally trivial extensions of Ω1

C by OC .

Let us now turn attention to extensions of Ω1
C byOC that are not locally trivial. Roughly

speaking, such extensions correspond geometrically to “smoothings of nodes”. Near a node
p ∈ Csing, the curve C is locally isomorphic to (xy = 0) ⊂ C2. The conormal exact sequence
for this inclusion is

(2.42) IC/I
2
C → Ω1

C2 ⊗OC → Ω1
C → 0 .

Note that IC/I
2
C is locally free of rank 1; it is the line bundle OC2(−C)|C .

Localizing the conormal exact sequence at p and deriving the functor Hom (−,OC,p)
gives us the long-exact sequence:

(2.43) Hom
(
Ω1

C2 ⊗OC,p,OC,p
)

Hom
(
(IC/I

2
C)p,OC,p

)
Ext1

(
Ω1
C,p,OC,p

)
0 .

η

The last term is 0 because

(2.44) Ext1
(

Ω1
C2

∣∣
C,p

,OC,p
)
' Ext1

(
O⊕2
C,p,OC,p

)
= 0 .

The image of η is

(2.45) mp Hom
(
(IC/I

2
C)p,OC,p

) ∼= mp

so we get a non-canonical isomorphism

(2.46) Ext1
(
O1
C,p,OC,p

) ∼= OC,p/mp ∼= C .

Carrying through the computations more carefully, we would get a canonical isomorphism

(2.47) Ext1
(
O1
C,p,OC,p

) ∼= TC̃,p1 ⊗ TC̃,q1
where {p1, q1} = ν−1 (p) ⊆ C̃. See [ACG, XI, §3].

Example 2.1. For C = (xy = 0) and a ∈ C, we have the deformation xy = aε. So we
get a Kodaira-Spencer class

(2.48) ρ (xy = aε) ∈ Ext1
(
O1
C,p,OC,p

)
.

A direct computation/diagram chase yields

(2.49) ρ (xy = aε) = aρ (xy = ε) , .

and ρ(xy = ε) 6= 0. Putting this together with the calculation showing Ext1 is 1-dimensional,
we see that all isomorphism classes of infinitesimal deformations are of this form.

This concludes the proof of claim 2.2.3, �

which completes the proof of Theorem 2.2. �

Proposition 2.3. H1
(
C,Hom

(
Ω1
C ,OC

)) ∼= H1
(
C̃, TC̃ (−p1 − q1 − . . .− pr − qr)

)
where

the pi, qi are the preimages of the node xi ∈ Csing = {x1, . . . , xr}. The RHS classifies

deformations of
(
C̃, p1, q1, . . . , pr, qr

)
.
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Proof. It is enough to show that

(2.50) Hom
(
Ω1
C ,OC

) ∼= TC̃ (−p1 − . . .− qr) .

The idea is that Ω1
C = IωC where I is the ideal sheaf of Csing. Locally near xj ,

(2.51) Iω ∼= IωC̃1
(−pj)⊕ IC̃2

(−qj)

and

(2.52) Ixj = ν∗I(pj∪qj) .

�

Theorem 2.4. Let C be a nodal curve. Then there is a deformation C → (∆s, 0) such
that the Kodaira-Spencer map ρ : T0 (∆s) → Ext1

(
Ω1
C ,OC

)
is an isomorphism. From our

short exact sequences we explicitly get that

s = 3g − 3 + dim Hom
(
Ω1
C ,OC

)
(2.53)

= 3g − 3 + h0
(
C̃, TC̃ (−p1 − . . .− qr)

)
(2.54)

= 3g − 3(2.55)

where the h0 vanishes since C is stable.

Proof. Glue Schiffer deformations at smooth points to the (xy = aε) deformations at
the nodes. �

Lecture 13;
February 19, 2020

2. Kuranishi families

We will follow [ACG, XI, §§4-6]. Recall the following definition.

Definition 2.3. A deformation X → (B, b0) of X is a Kuranishi family if for any other
deformation X ′ → (B′, b′0) and any sufficiently small neighborhood U of b′0, there is a unique
morphism of deformations:

(2.56)

X ′U X

(U, b′0) (B, b0)

.

By definition, a morphism of deformations is a cartesian square, so X ′U is the fiber
product of X and U over B, i.e., the deformation X ′U → (U, b′0) is just X → (B, b0) pulled
back along the map (U, b0) → (U ′, b′0). In this sense, a Kuranishi family is a moduli space
for deformations.

We can then make the following observations.

1. When a Kuranishi family exists, it is locally unique up to unique isomorphism,

i.e., if
X

(B, b0)

and
X ′

(B′, b′0)

are Kuranishi families, then for every sufficiently
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small neighborhood U of b0 there is a unique neighborhood U ′ of b′0 and a unique
isomorphism of deformations:

(2.57)

XU XU ′

(U, b0) (U ′, b′0)

'

'

.

2. The Kodaira Spencer map of any Kuranishi family

(2.58) ρ : TB,b0
∼=−→ {isomorphism classes of infinitesimal deformations of X}

is an isomorphism.
3. Suppose a Kuranishi family exists. Let X → (B, b0) be a deformation such that
B is smooth at b0, and such that the Kodaira Spencer map ρ is an isomorphism,
then X → (B, b0) is Kuranishi. This follows from the universal property and some
version of the implicit function theorem.

4. If X → (B, b0) is Kuranishi family for X and Aut (X) is finite, then Aut (X) acts
on XU → (U, b0) for a basis of neighborhoods U of b0.

Theorem 2.5. Let C be a nodal curve. Then a Kuranishi family for C exists if and
only if C is stable.

Remark 2.3. The analogous statement holds for nodal curves with marked points, but
we will just go through the construction for unmarked curves.

Corollary 2.6. The base of a Kuranishi family for a stable curve C of genus pa(C) = g
has local dimension 3g − 3.

Corollary 2.7. If C → (B, b0) is Kuranishi for a nodal curve C then there is a neighborhood
of b0 such that CU → (U, x) is Kuranishi for all x ∈ U .

The picture to have in mind here is that B/Aut(C) looks like an open patch in the
moduli space of curves.

One key technical input in the proof of Theorem 2.5 is the existence and projectivity
of the Hilbert scheme, which is is the moduli space of subschemes of PN with fixed Hilbert
polynomial. This is one small piece of the important foundational work of Grothendieck
[G]. See [FGI+], especially Part 2 (by Nitsure) and Part 3, §6 (by Fantechi) for further
reading.

Proof of Theorem 2.5. First choose N such that ω⊗NC is very ample for all stable

curves C of genus g, (e.g. N ≥ 3). Then notice that
∣∣ω⊗NC ∣∣ embeds C in PN ′ with Hilbert

polynomial p independent of C. Then we have open U ⊂ Hilb
(
PN ′ , p

)
parametrizing stable

curves embedded by
(
ω⊗NC

)
. Notice that the group PGL = PGLN ′+1 acts on U .

Fact 3. The stabilizer of a point x corresponding to the N -canonical embedding of a
stable curve C is canonically isomorphic to Aut (C).

Consider the PGL orbit through x. This is smooth of the same dimension as PGL.
Write G = Aut (C). Then G ⊆ PGL acts as Stab (C), and TX (PGL ·X) is G-invariant.
Let L ⊆ PK be a complementary G invariant linear space (where K is the dimension of the

projective space which Hilb
(
PN ′ , p

)
lives).
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The universal family of subschemes of PN ′ over U ∩ L is Kuranishi for C. The picture
is that Hilb might have some additional pieces (including higher-dimensional pieces) that
parameterize unstable curves, but we just want to intersect with U . The fact that this has
the Kuranishi property is deduced from the universal property of the Hilbert scheme. �

Lecture 14;
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A consequence of the above is the following. Let C be any stable curve. Then there is
an algebraic deformation C → (X,x) such that

(1) X is affine;
(2) C → X is Kuranishi at every point x′ ∈ X;
(3) G = Aut (C) acts on (C → X), and the induced map

(2.59) {g ∈ G : gx′ = x′} ∼−→ Aut (Cx′)

is an isomorphism
(4) any isomorphism Cx1

∼−→ Cx2
is induced by some g such that gx1 = x2.

Remark 2.4. X/G (at least set-theoretically) parameterizes

(2.60) {Cx : x ∈ X} / ∼= .

Lemma 2.8. Let X = SpecA be an affine variety (scheme of finite type over C) with the
action of a finite group G. Then the ring of invariants

(2.61) AG = {a ∈ A : ga = a for all g ∈ G}

is finitely generated and

(2.62) X/G = SpecAG .

Moreover, if X is normal then so is X/G.

We omit the proof, which is give in [ACG].

Definition 2.4. Write Mg for the collection of isomorphism classes of stable curves
of genus g. For each curve C, we can build a Kuranishi family XC , with the action of
GC = Aut (C), so we have a cover of this set by algebraic varieties:

(2.63) Mg =
⋃
C

XC/GC .

Claim 2.2. The “gluing” maps are holomorphic, so Mg is a complex analytic space.

Suppose

U = XC/GC U ′ = XC′/GC′ .(2.64)

The universal property of Kuranishi families implies that U ∩U ′ is open in both U and U ′.
Indeed, if we have a point in the intersection, then we lift it to x ∈ X and x′ ∈ X ′, and a
sufficiently small neighborhood of x′ is uniquely biholomorphic to a unique neighborhood
of x in X. It follows that the inclusion U ′ → U is holomorphic away from the branch locus
B′ of X ′ → U ′. Covering U by bounded domains, using the normality of U ′, and applying
Riemann Existence Theorem, it follows that the holomorphic inclusion U ′rB′ → U extends
to a holomorphic map U ′ → U , as required.

Modulo the definitions of orbifolds and Deligne-Mumford stacks, which are technical
and omitted, the construction above has the following consequences:
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Theorem 2.9. Mg is the coarse space of a smooth complex-analytic orbifold Mg that
represents the moduli functor for stable curves of genus g:

(2.65) Mg : Spaces→ Sets

which maps a space S to families of stable nodal curves over S up to isomorphism.

With more care, we can get the following:

Theorem 2.10. Mg is a smooth algebraic (Deligne-Mumford) stack with coarse space

Mg. Moreover, Mg is an irreducible projective algebraic variety.

The analogous statements also hold with marked points, i.e., for Mg,n and Mg,n.

We now briefly sketch a proof of the irreducibility of Mg,n over C, since this fact (and
especially Corollary 2.11, below), will be important for our approach to studying the top
weight cohomology of Mg. We begin by considering the case where there are no marked
points. From our study of deformation theory of stable curves, we know that the subspace
Mg parameterizing smooth curves is open and dense, so it is enough to show that this is
irreducible. Moreover, since Mg is smooth, it is enough to show that Mg connected. Now
Mg is the quotient of Teichmüller space (a contractible domain) by the mapping class group:

(2.66) Mg = Tg/Mod (Sg) .

In particular, as a quotient of a connected space, it is connected.
For the more general statement with marked points, we proceed by induction on the

number of marked points (using irreducibility of Mg as the base case. Consider the forgetful
mapMg,n →Mg,n−1 given by forgetting the nth marked point and stabilizing if necessary,
Then this map is the universal curve Cg,n−1 →Mg,n−1. Since it is a fiber bundle whose base
is irreducible, by the induction hypothesis, and whose fiber is irreducible, its total space is
irreducible. And therefore the coarse space Mg,n is irreducible as well.

Corollary 2.11. There is a stratification

(2.67) Mg =
∐
G

MG

where MG is the space of stable curves with dual graph G. In particular, each MG is
irreducible.

For example, let G be the following graph.

12

Then

(2.68) MG = M2,3 ×M1,1/Aut (G)

so it is the quotient of an irreducible space by a finite group, and hence irreducible. Fur-
thermore, MG ⊂MG′ if and only if G′ is obtained from G by (weighted) edge contractions.
Note that the codimension of MG is the number of edges:

(2.69) CodimMG = #E (G) .

So we have a combinatorial stratification of Mg into irreducible pieces indexed by dual
graphs of stable curves, with containments encoded by weighted edge contractions. This
will be essential input when we study the top weight cohomology of Mg. Lecture 15;

February 24, 2020
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3. Boundary complexes and weight filtrations

See [D2,D3,D4], [PS], and [V3,V4] for references.
Let X be an algebraic variety of dimension dimCX = n. We will study the singular

cohomology with coefficients in some ring H∗ (X,A). Most often we will consider A = Q
or C. The rational cohomology H∗(X,Q) carries a canonical increasing weight filtration
W•. By extending scalars, we also get a weight filtration on H∗(X,C) which carries, in
addition, a decreasing Hodge filtration F •. Together, these two filtrations form a mixed
Hodge structure, in the sense of Deligne.

We will focus primarily on the weight filtration from Deligne’s theory, listing some of
its essential properties that we will use repeatedly (in the spirit of Grothendieck’s “yoga of
weights”). Note that the proofs of these properties (which we omit) rely on properties of
the Hodge filtration.

The weight filtration on Hk(X,Q) is an increasing filtration

(2.70) 0 ⊆W0H
k (X,Q) ⊆W1H

k (X,Q) ⊆ . . . ⊆W2kH
k (X,Q) = Hk (X,Q) ,

whose associated graded pieces are

(2.71) GrWj Hk (X,Q) = WjH
k (X,Q) /Wj−1H

k (X,Q)

Note that GrWj H∗(X,Q) is sometimes informally referred to as “weight j cohomology” or
the “weight j part of cohomology,” even though it is a subquotient, not a subspace. We say
that Hk (X,Q) has weights in I ⊆ {0, . . . , 2k} if

(2.72) GrWj Hk (X,Q) = 0

for j 6∈ I.
The weight filtration satisfies the following properties:

• If X is compact, then Hk (X,Q) has weight in {0, . . . , k}.
• If X is smooth, then Hk (X,Q) has weights in {k, . . . , 2k}.
• For all k, Hk (X,Q) has weights in {0, . . . , 2n}.

The last condition is meaningful when k > n. A key special case is when X is smooth and
compact (e.g., smooth and projective). In this case GrWj Hk(X,Q) vanishes for j 6= k, and

we say that Hk (X,Q) has (pure) weight k.

Remark 2.5. There are similar filtrations on Hk (X,Q) and Hk
c (X,Q).

Important. All natural maps between cohomology groups of algebraic varieties strictly
respect weight filtrations.

Example 2.2. If f : X → Y is a morphism, then

(2.73) f∗WjH
k (Y,Q) ⊆WjH

k (X,Q) .

Moreover,

(2.74) f∗Hk (Y,Q) ∩WjH
k (X,Q) = f∗WjH

k (Y,Q) .

I.e., f∗ induces

(2.75) GrWj Hk (Y,Q)→ GrWj Hk (X,Q)

and

(2.76) rank f∗|Hk =
∑
j

rank f∗|GrWj Hk .
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Figure 1. A triple punctured curve C of geometric genus 1 with 1 node.

C

C̃

Figure 2. A compactification of our curve on top, and the normalization
on the bottom.

Example 2.3. Consider the nodal curve in fig. 1. Note that H1(C,Q) ∼= Q5 has a
basis given by the classes of the red, yellow, and blue curves. We consider also the dual
basis for H1(C,Q).

We consider the compactification i : C ↪→ C̄, obtained by adding three smooth points
(this makes C̄ unique), as shown in fig. 2. This has a basis for homology given by the classes
of the blue and red curves; the yellow curves are homologous to zero in C̄.

Dualizing to cohomology we get

(2.77) H1 (C,Q) /i∗H1
(
C̄,Q

)
= GrW2 H1 (C,Q)

Hence the dual basis elements corresponding to the yellow curves freely generate GrW2 H1(C,Q).

On the other hand, we can normalize to get ν : C̃ → C. See fig. 2. On C̃, the classes of
the yellow and red curves give a basis for H1. Passing to cohomology, we have

(2.78) ker
(
ν∗ : H1 (C,Q)→ H1

(
C̃,Q

))
= W0H

1 (C,Q) .

So, the dual basis element corresponding to the blue curve generates W0H
1(C,Q).

Dual basis elements corresponding to the red curves are generators of f∗H
1
(
C̃,Q

)
, and

these freely generate GrW1 H1(C,Q). .

Lecture 16;
February 26, 2020
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4. Poincaré duality

Let X be an irreducible variety of dimension dimCX = n. If X is smooth then Poincaré
duality tells us that the natural map

(2.79) Hk (X,Q)×H2n−k
c (X,Q)

^−→ H2n
c (X,Q)

∫
X−−→ Q

is a perfect pairing. The basic properties of the weight filtration (i.e., the facts that weights
are additive under tensor product, and that there are no nontrivial natural maps between
cohomology groups of different weights, as discussed below) ensure that this induces perfect
pairings

(2.80) GrWj Hk (X,Q)×GrW2n−j H
2n−k
c (X,Q)→ GrW2nH

2n
c (X,Q) = H2n

c (X,Q) .

For arbitrary X, the idea behind the weight filtration is that

(2.81) GrWj Hk (X,Q)

carries a (pure) Hodge structure of weight j. In other words,

GrWj Hk (X,C) = GrWj Hk (X,Q)⊗Q C(2.82)

=
⊕
p+q=j

Hp,q
(
GrWj Hk (X,C)

)
(2.83)

and Hp,q = Hq,p.

Important. All natural maps between cohomology groups of algebraic varieties respect
Hodge structures and the p, q decomposition but not necessarily cohomological degree. In
particular, there are no nontrivial maps between GrWj and GrWj′ for j 6= j′.

Example 2.4. Let X be an algebraic variety with Zariski closed subset V ⊂ X. Then
we have a long exact sequence

(2.84) · · · Hk (X,Q) Hk (V,Q) Hk+1
c (X \ V,Q) Hk+1 (X,Q) · · ·δ .

In particular, let X be X = C̃ from example 2.3. Take V to be the three points which were
initially punctures. For k = 0, we get:

(2.85) 0→ H0 (X,Q)→ H0 (V,Q)
δ−→W0H

1
c (X \ V,Q)→W0H

1 (X,Q) = 0 .

The first term is zero because X r V is not compact, and hence H0
c (X r V,Q) = 0. The

last term is zero because X is smooth and projective, and hence H1(X,Q) has weight 1.
Then

(2.86) W0H
1
C (X \ V,Q) ∼= H0 (V,Q) /H0 (X,Q) ∼= H̃0 (V,Q)

and applying Poincaré duality gives us

(2.87) GrW2 H1 (X \ V,Q) ∼= H̃0 (V,Q) .
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4.1. Mayer-Vietoris. Recall the Mayer-Vietoris sequence. Let X = U1 ∪ U2 for Ui
open. Then we get a long exact sequence
(2.88)

· · · → Hk (X,Q)→ Hk (U1,Q)⊕Hk (U2,Q)→ Hn (U1 ∩ U2,Q)
δ−→ Hn+1 (X,Q)→ · · · .

We will be especially interested in cases where U1, U2, and U1 ∩ U2 are open subvarieties
(or open tubular neighborhoods of closed subvarieties).

Now we have a Mayer-Vietoris spectral sequence. Assume

(2.89) X = U1 ∪ . . . ∪ Ur
for open Ui. This gives us a spectral sequence. The E0 page is.

(2.90) Ep,q0 =
⊕

I⊆{1,...,r}
|I=q+1|

(
Cp

(⋂
i∈I

Ui

)
,Q

)
.

On this direct sum there are two differentials. One increases p (this is just the ordinary
differential on cochains) and the other one is the combinatorial differential which increases
the number of open sets being intersected. Then the E1 page is given by:

(2.91) Ep,q1 =
⊕

I⊆{1,...,r}
|I|=q+1

(
Hp

(⋂
i∈I

Ui

)
,Q

)
.

If each Ui deformation retracts to a smooth projective variety, then the yoga of weights
implies the spectral sequence collapses at E2. This is because every differential on the E2

page and beyond is a map between Hodge structures of different weights, and hence must
be the zero map. Lecture 17;

February 28, 2020

5. Cohomology of simple normal crossing divisors

Let X be an algebraic variety with V ⊆ X a closed subvariety. This gives us a long
exact sequence (of MHS)

(2.92) GrWj

(
· · · → Hk (X,Q)→ Hk (V,Q)

δ−→ Hk+1
c (X \ V,Q)⊗Hk+1 (X,Q)→ · · ·

)
.

An important special case is X smooth and proper, and is a simple normal crossings divisor.

Definition 2.5. Let D ⊆ X be a divisor (subvariety of pure codimension 1). Then
D is a simple normal crossings divisor if each irreducible component of D is smooth, and
the components meet transversely. In other words, (X,D) is locally isomorphic to (Cn, H),
where H is a union of coordinate hyperplanes, near each point of D.

Counterexample 2. Two divisors which are not simple normal crossings divisors are
given in fig. 3.

Example 2.5. Let X ⊇ V be smooth and projective.

Proposition 2.12.

(2.93) GrWj Hk
c (X \ V,Q) =


0 j 6= k − 1, k

coker
(
Hk−1 (X,Q)→ Hk−1 (V,Q)

)
j = k − 1

ker
(
Hk (X,Q)→ Hk (V,Q)

)
j = k
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Figure 3. Two divisors D which are not simple normal crossings divisors.

Write D1, . . . , Dr for the smooth components of D. For I ⊆ {1, . . . , r} let

(2.94) DI =
⋂
i∈I

Di .

This is a smooth and proper subvariety of codimension |I| in X. Now we get a Mayer-
Vietoris spectral sequence, with

(2.95) Epq1 =
⊕
|I|=p+1

Hq (DI ,Q)⇒ Hp+q (D,Q) .

Note that the E1 page is supported in the non-negative orthant, and its jth row is a complex
of Hodge structures of weight j.

...

weight 2 0
⊕
i

H2 (Di,Q)
⊕
i0<i1

H2 (Di0 ∩Di1 ,Q) · · ·

weight 1 0
⊕
i

H1 (Di,Q)
⊕
i0<i1

H1 (Di0 ∩Di1 ,Q) . . .

weight 0 0
⊕
i

H0 (Di,Q)
⊕
i0<i1

H0 (Di0 ∩Di1 ,Q) · · ·

For each weight j, the corresponding row is

(2.96) 0→
r⊕
i=1

Hj (Dj ,Q)
d0−→

⊕
0<i1<i1≤r

Hj (Di0 ∩Di1 ,Q)
d1−→ · · · .

This spectral sequence collapses at E2, and gives

(2.97) GrWj Hi+j (D,Q) =
ker di

im di−1

The j = 0 row of this spectral sequence is already of considerable interest. We will
identify this row with the cellular chain complex of a dual complex ∆(D) that encodes the
combinatorics of the strata of D, as follows.

The dual complex ∆ (D) is the ∆-complex with vertices v1, . . . , vr corresponding to the
irreducible components D1, . . . , Dr, edges [vi, vj ] corresponding to the irreducible compo-
nents of Di∩Dj , 2-faces 〈vi, vj , vk〉 corresponding to irreducible components of Di∩Dj∩Dk,
and so on for higher dimensional faces. The inclusions of faces correspond to containments
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of closed strata, and vice versa, containments of faces correspond to inclusions of closed
strata. In other words, the correspondence between faces of ∆(D) and strata of D is order
reversing with respect to inclusions on both sides.

The j = 0 row of the spectral sequence discussed above is canonically isomorphic to the
cellular chain complex of ∆(D), and hence we have

(2.98) W0H
i (D,Q) ∼= Hi (∆ (D) ,Q) .

Then the pair sequence for (X,D) in weight 0 is

(2.99) W0H
i (X,Q)→W0H

i (D,Q)→W0H
i+1
c (X \D,Q)→W0H

i+1 (X,Q) .

When i = 0 the first term is Q and the last term is 0, so

(2.100) W0H
i+1
c (X \D,Q) = H̃i (∆ (D) ,Q) .

Applying Poincaré duality then gives

(2.101) GrW2nH
2n−∗ (X \D,Q) ∼= H̃∗−1 (∆ (D) ,Q)

where n = dimX.

Corollary 2.13. H∗ (∆ (D) ,Q) only depends on X \D.

Lecture 18; March
2, 2020

Example 2.6. One compactification ofX = Cn isX = Pn. TakeD to be the hyperplane

at ∞, then ∆ (D) = pt. Alternatively, X
′

=
(
P1
)n

is a compactification of X. Now

D′ = X
′ \X has n components, and dual complex the simplex ∆ (D′) = ∆(n−1). Notice, as

a sanity check, that these have the same rational (even integral) homology.

Example 2.7. Let X = (C×)
n
. Any compactification of Cn is a compactification of

this, so we can take the compactification X = Pn. Then D = X \ X has components
D0, . . . , Dn. This is a simple normal crossings divisor.

(2.102) ∆ (D) = ∂∆(n) ' Sn−1 .

As before, take a different compactification X
′

=
(
P1
)n

. Then

(2.103) D′ =
(
P1
)n \ (C×)n .

Now this has 2n irreducible components D0
i and D∞i for all i ∈ {1, . . . , n}. So the faces

of ∆ (D′) correspond to a subset I ⊆ {1, . . . , n} as well as a function I → {0,∞}. So the
number of k-faces is given by:

(2.104) 2k+1

(
n

k + 1

)
.

For n = 3, we can picture D′ as the cube given by the convex hull of {±1,±1,±1}. Then
∆ (D′) is the polar dual of the unit cube, i.e. the octahedron. In general, ∆ (D′) is the
boundary of the polar dual of the n-cube. This is sometimes called the hyper octahedron.
But notice that this always has the homotopy type of the sphere.

Proposition 2.14 ([D1]). The homotopy type of ∆ (D) depends only on X.

We will not give Danilov’s original proof. Instead we will provide a modern way of
thinking about this, as an application of toroidal weak factorization of birational maps.
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;

Figure 4. On the left we have ∆ (Di). Aftering blowing up, we get the
subdivided complex on the right.

Theorem 2.15 ([AKMW]). Let X and X
′

be two snc compactifications of X. Then

the birational map X 99K X
′

factors as

(2.105) X = X0 99K X1 99K X1 99K · · · 99K Xi = X
′

where Xi 99K Xi+1 is either

(1) the blowup along a smooth subvariety Zi+1 which only intersects the strata of
Di+1 = Xi+1 \Xi+1 transversely, or

(2) the inverse of such a blowup.

Example 2.8. Let X = Cn and take Xi = Pn, Xi+1 = Blp Pn for p ∈ Pn \ Cn. Then
D = H∞ and ∆ (D) = pt, so

(2.106) ∆ (Di+1) =
BlpH∞ E

• •

which is the mapping cone of a null-homotopic map, and so a homotopy equivalence.

Example 2.9. Let X = (C×)
n
, Xi = Pn, and

(2.107) Xi+1 = Bl(0:···:0:1) Pn .

So we start with ∆ (Di) = ∂∆(n−1) and then when we blowup at a point, we get a new
vertex corresponding to the exceptional divisor of that blowup. Then we get new edges
corresponding to linear subspaces which contain the point. So this corresponds to stellar
subdivision of the face which was blown up, to give us the complex in fig. 4.

In general, recall k-faces of ∆ (Di) correspond to codimension k + 1 strata. So blowing
up a 1-dimensional stratum of Di corresponds to stellar subdivision along the barycenter of
a codimension 1 face of ∆ (Di). The point being that we get a homeomorphic simplex.

Lecture 19; March
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Let D1, . . . , Dr be the irreducible components of a simple normal crossings divisor D.

Definition 2.6. A codimension j stratum is an irreducible component of

(2.108) Di1 ∩ · · · ∩Dij

for some {i1, . . . , ij} ⊆ {1, . . . , r}.

Remark 2.6. This agrees with the usual notion of a closed stratification.
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Sketch of proof of Proposition 2.14. Let D ⊆ X be a simple normal crossings
divisor. Let Z ⊆ D be a smooth irreducible subvariety transverse to the strata of D. Since
Z is irreducible, there is a smallest stratum YZ ⊆ D which contains Z. Write DZ ⊆ Z for
the intersection of Z with components of D that do not contain Z (or equivalently YZ).
This means DZ is simple normal crossings in Z.

By Theorem 2.15 it is sufficient to consider

(2.109) BlZ
(
X
)

= X
′ π−→ X .

Write D′ = π−1 (0) = X
′ \X. This is a simple normal crossings divisor.

If Z = YZ , then ∆ (D′) is the stellar subdivision of ∆ (D) along a face σYZ corresponding
to YZ .

Now assume Z ( YZ . Codimension j strata of D′ are either strict transforms of codi-
mension j strata of D, or new strata. These are the strata of the exceptional divisor.
These correspond to pairs (Y,W ) such that Y is a stratum of D, W is a stratum of Z, and

W ⊆ Y . The correspondence works as follows. Consider irreducible components D̃1, . . . , D̃r

and E = π−1 (Z). Then the D̃i are strict transforms of the D1, . . . , Dr. The new strata are

irreducible components of E ∩ D̃I . E is the projectivized normal bundle of Z in X. So a
stratum in E is the projectivized normal bundle of a stratum of Z in a stratum of X. So
now the correspondence sends a pair (Y,W ) to the projectivized normal bundle of W in Y .

Form the join of ∆ (DZ) with the face σYZ corresponding to YZ . Then we can map:

(2.110)

∆ (DZ) ? σYZ

∆ (D)

f

where vertices correspond to irreducible components of the intersection of Z with irreducible
components of D that do not contain YZ (but do intersect YZ). Then

(2.111) ∆ (D′) = cone (f) ,

and f is in fact null-homotopic as follows. Every maximal face in im (f) contains σYZ , so
choose a vertex v of σYZ , and im (f) is star-shaped around v. �

6. Normal crossings divisors

We now consider a mild generalization of simple normal crossings divisors that will be
essential for our applications.

Let X be a smooth irreducible variety of dimCX = n.

Definition 2.7. A divisor D ⊆ X has normal crossings if it is locally analytically
isomorphic to

(2.112) (x1 . . . xk = 0) ⊂ Cn ,

for some k.

Example 2.10. For X a smooth surface, a curve C ⊆ X is normal crossings if and only
if C is nodal.

The difference between normal crossings and simple normal crossings is that the irre-
ducible components of a normal crossings divisor are not required to be smooth.

Lecture 20; March
6, 2020
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Figure 5. The Whitney umbrella. This figure is from Wolfram Mathworld.

The normalization ν : D̃ → D of a normal crossings divisor D is a resolution of singu-
larities and has the following interpretation:

(2.113) D̃ = {(x, b) : x ∈ D, b branch of D s.t. x ∈ b} .

The point being that singularities of normal crossings divisors are easy to resolve: normaliza-
tion can be constructed locally analytically, and the normalization of a union of coordinate
hyperplanes is just the disjoint union of those hyperplanes. In particular, the preimage of
every stratum is smooth.

Example 2.11 (Whitney umbrella). Consider

(2.114) D =
(
x2y = z2

)
⊆ C3 .

See fig. 5. If we stay away from the y = 0 line we have two surfaces crossing transversely.
At the origin it is not normal crossings, but along the z axis, it is. So restrict to the divisor

(2.115) D ⊆ C3 \ (y = 0) .

In C3 \ (y = 0), D is normal crossings, but not simple normal crossings.
The normalization is

(2.116)

D̃ = A2
(x,u) \ (u = 0) D

(x, u)
(
x, u2, xu

)
π

.

This is well-defined, D̃ is normal, and it is finite (since u2 = y). This is also birational since
for x 6= 0 we have u = z/x.

Now define Z to be the singular locus of D:

(2.117) Z =
{

(0, y, 0) : y ∈ C×
}

= (0, 0)× C× .

Notice that

(2.118) π−1 (Z) =
{

(0, u) : u ∈ C×
}

so explicitly

(2.119) π : C×u → C×y .

http://mathworld.wolfram.com/WhitneyUmbrella.html
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Figure 6. A locally closed stratum given by pairwise intersection of the
planes minus the triple intersection.

The monodromy is the action

(2.120) π1 (Z, x)

� {branches of D at x}
for any point x ∈ Z.

Let D̃ → D be the normalization of a normal crossings divisor. Write Z ⊆ D for a
(closed) stratum, then write Z◦ for the locally closed stratum. For example, if we have
three planes meeting, we would take a pairwise intersection minus the triple intersection to
get Z◦ as in fig. 6.

Definition 2.8. The monodromy of a stratum Z◦ ⊆ D is the action of π1 (Z◦, z) on
the branches of Z◦ at z. The orbits correspond to irreducible components of ν−1 (Z◦).

Observe that if D has simple normal crossings, then the monodromy of every stratum
is trivial. This is not the case for normal crossings.

Example 2.12. Consider the boundary divisor Dg =Mg\Mg. This is normal crossings
as a stack/orbifold. The irreducible components and codimension 2 strata are as in fig. 7
for g = 2.

Let G be a stable dual graph. Then we get a locally closed stratum Z◦ = MG given
by:

(2.121) MG =
∏

v∈V (G)

Mg(v),n(v)/Aut (G) .

Given a curve C, this defines a class [C] ∈MG. Then given an identification ∆ (C)
∼−→ G

gives an identification with the branches of Dg at [C] with the nodes of C, which by definition
are the edges of G.

Now we want to describe the monodromy action on MG at the curve [C].

Proposition 2.16. The monodromy π1 (MG, [C])

�

E (G) has image equal to Im (Aut (G)).
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Irreducible components

Codimension 2 strata

Figure 7. The irreducible components and codimension 2 strata of D2.

Proof. The idea is to use the correspondence between quotients of π1 and covering
spaces. So consider the covering space (as stacks/orbifolds):

(2.122)
∏

v∈V (G)

Mg(v),n(v) →MG .

This gives rise to π1 � Aut (G)

�

E (G). �

Lecture 21; March
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6.1. Combinatorial topology. Now we will take some time to consider the combina-
torial topology of dual complexes. First we consider the notion of a ∆-complex. Roughly,
this is a space obtained by gluing standard simplices along inclusions of faces that respect
vertex ordering.2.2 We will also consider the notion of an augmented ∆-complex, which is a
∆-complex along with a continuous map to a discrete set.

Now we want to make this description both formal and combinatorial. So we need to
specify some sets, which are the sets of p-simplices, and then we need to specify the inclusions
of faces in a way which will respect vertex ordering. Let [p] = {0, . . . , p} for p ≥ −1. Now
define a category ∆inj as follows. The objects are {[p] : p ≥ 0}. The morphisms are given
by order preserving injections [p]→ [q].

Definition 2.9. A ∆-complex is a functor ∆op
inj → Sets.

In other words, a ∆-complex a sheaf of sets on ∆inj.
A ∆-complex Y has a geometric realization |Y |. This is

(2.123) |Y | = qp≥0 (Yp ×∆p) / ∼
where ∆p is the standard p-simplex, and the equivalence relation ∼ is as follows. Let y ∈ Yq,
θ : [p]→ [q], and a ∈ ∆p. Then we identify:

(2.124) (y, θ∗a) ∼ (θ∗y, a) .

The point is that the inclusion tells us which p-simplex is a p-face of a q-simplex correspond-
ing to a given inclusion θ. So this equivalence relation tells us that we should identify these
simplices with their image.

When we want to talk about augmented complexes, we do the same construction, only
we include the empty set as one of our objects, i.e. we consider ∆inj ∪ {[−1]}. There is a

2.2The point is that in order to have a good cellular homology theory (i.e. to define a differential map)

we need the simplices to be oriented.
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unique map from [−1] to any other object, so this is an initial object in the category. So
when we take op of the category, we exactly get a continuous map to the discrete set Y−1.

An augmented ∆-complex is determined by the sets Yp for ∂ ≥ −1, and then there are
the maps di : Yp → Yp−1 corresponding to the unique inclusion [p− 1] → [p] whose image
does not contain i. These satisfy the relation

(2.125) didj = dj−1di

for i < j. Conversely, given such sets and maps satisfying this relation, they can be extended
to a ∆-complex.

For D a simple normal crossings divisor, ∆ (D) is not quite a ∆-complex. It becomes a
∆-complex after ordering the irreducible components D1, . . . , Ds.

This leads to a natural generalization, which we will call a symmetric ∆-complex.2.3

Let I be the category with the same objects as ∆inj, i.e. {[p] : p ≥ −1}, but the morphisms
are now all injective maps.

Definition 2.10. A symmetric ∆-complex is a functor

(2.126) Y : Iop → Sets .

The same definition for the geometric realization works, only now we have many more arrows
[p]→ [q], so we are doing a lot more gluing.

As above, there is an analogous characterization of symmetric ∆-complexes. We have
sets Yp, the action of the symmetric group Sp+1

�

Yp, and di : Yp → Yp−1 satisfying the
same relation (2.125).

Remark 2.7. Note that an element of Yp should be thought of as a p-simplex of |Y |
together with an ordering of its vertices.

Then we get a functor from ∆-complexes to symmetric ∆-complexes sending Y 7→ Y ′.
Explicitly,

(2.127) Y ′p = Yp × Sp+1 .

Note however that not every symmetric ∆-complex occurs in this way.

Example 2.13 (Half-interval). Let Y−1, Y0, and Y1 each have one element, and every
other Yp is empty. The geometric realization |Y | is the interval mod S2, which looks like:

/S2 = .

So it is homeomorphic to the interval, has one vertex and one edge, and that edge has a
stabilizer. This is a symmetric ∆-complex but not a ∆-complex.

Lecture 22; March
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6.2. Dual complexes of normal crossings divisors. We now describe the dual
complex of a normal crossings divisor as a symmetric ∆-complex. Let D ⊆ X be a normal

crossings divisor. Write D̃ for the normalization:

(2.128) D̃ = {(z, b) : z ∈ D, b branch of D at z} .

Now define:

(2.129) D̃p = D̃ ×X . . .×X D̃ \ {(z0, . . . , zp) : zi = zj for some i 6= j} .

2.3The terminology is based on symmetric semi-simplicial sets.
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So we have removed all diagonals from the fiber product, and what is left has pure dimension

(2.130) dim D̃p = dimX − p− 1 .

Note that by definition we have D̃0 = D̃, D̃−1 = X. Then

(2.131) D̃1 = {(z; b0, b1) : z ∈ D, b0 6= b1branches of D at z}
and in general

(2.132) D̃p = {(z; b0, . . . , bp) : z ∈ D, b0, . . . , bp distinct branches of D at z} .
Note that this is smooth.

Now we will describe the dual complex ∆ (D) as a symmetric ∆-complex. Recall our
notation ∆ (D)p := ∆ (D) ([p]).

Then we define the dual complex by setting

∆(D)p :=
{

irreducible components of D̃p

}
.

An injection θ : [p] ↪→ [q] induces a forgetful map

(2.133) D̃q → D̃p .

Since D̃p is smooth, irreducible components do not intersect. It follows that each irreducible

component of D̃q maps into a unique irreducible component of D̃p, giving a well-defined map

(2.134) ∆ (D)q → ∆ (D)p .

Remark 2.8. If D is simple normal crossings with irreducible components D1, . . . , Ds.
Then this new ∆ (D) ∈ Sym∆-Cx is (canonically isomorphic to) the image of the old
∆ (D) ∈ ∆-Cx under the functor ∆-Cx→ Sym∆-Cx.

Proposition 2.17. Let X be smooth, X smooth and compact such that D = X \ X is a
normal crossings divisor. Then the homotopy type of |∆ (D)| only depends on X.

Proof. The proof is via toroidal weak factorization of birational maps, just as in the
simple normal crossings case, only now we are working with symmetric ∆-complexes instead
of ∆-complexes. �

Recall a stable tropical curve of genus g is the dual graph G of a stable algebraic curve
of genus g along with a length function ` : E (G)→ R>0. Write M trop

G for the isomorphism
classes of stable tropical curves of genus g. Then, set-theoretically, we have

(2.135) M trop
G =

∐
G

RE(G)
>0 /Aut (G) .

Now we need to understand the topology on M trop
g . Consider shrinking an edge as in fig. 8.

As the length goes to 0, this corresponds to smoothing the corresponding node. Note that if
the edge is a loop, corresponding to a self-intersection point of a component, then smoothing
the self-intersection increases the geometric genus of that component by 1. Similarly, if the
edge connects vertices corresponding to two distinct components of genus g1 and g2, then
smoothing the node gives rise to a single component of geometric genus g1+g2. The resulting
operations on the dual graph are called weighted edge contractions, as we now describe.

Recall that the dual graph G of a nodal curve comes with a weight function g : V (G)→
Z≥0 taking a vertex to the geometric genus of the corresponding irreducible component. If
e ∈ E(G) is an edge, then the ordinary edge contraction G′ = G/e is the underlying graph
of the weighted edge contraction. The weights change as follows:
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;

1

Figure 8. As we shrink the edge length to 0, the corresponding operation
on curves is smoothing the node. So it becomes a connected component of
genus 1, so we need to label the vertex.

• If e is a loop edge at v ∈ V (G) and v′ is the corresponding edge in G′, the
g (v′) = g (v) + 1.

• If e connected two vertices v1 and v2 and v′ is their image in G/e, then

(2.136) g (v′) = g (v1) + g (v2) .

Note that

(2.137) g (G′) = h1 (|G′|) +
∑

v′∈V (G′)

g (v′) = g (G) .

Lecture 23; March
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dual complex, we must study the geometry of(
D̃g

)
p

= {X, z0, . . . , zp : X stable curve, z0, . . . , zp distinct nodes of X}(2.138)

=
∐
G

MG/ ker (AutG→ AutE (G))(2.139)

where this is a disjoint union over isomorphism classes of stable graphs of genus g with p+1
edges, and

(2.140) Mg =
∏
v

Mgv,nv .

Then we have

(2.141) ∆ (Dg)p =

{
isomorphism classes of stable graphs of genus g

with p+ 1 ordered edges

}
.

A point in the relative interior of a p-face of |∆ (Dg)| corresponds to the isomorphism classes
of stable tropical curves G with

(2.142) #E (G) = p+ 1

and

(2.143)
∑

e∈E(G)

` (e) = 1 .

This means

(2.144) |∆ (Dg)| = ∆g

is the moduli space of stable tropical curves of genus g and volume 1.
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Corollary 2.18.

(2.145) H̃i−1 (∆g,Q) ∼= GrW6g−6H
6g−6−i (Mg,Q) .

We can use this in both directions. If we know somehow that the cohomology of Mg

vanishes in some degree, this means the rational homology of ∆g vanishes in the correspond-
ing degree. Similarly, if we can prove nonvanishing of rational homology of ∆g, we get a
corresponding nonvanishing statement for the cohomology ofMg. Moreover, if we can show
that the rational homology ∆g is large in some degree, this means the cohomology of Mg

is at least as large, in the corresponding degree.

6.3. Rational homology for symmetric ∆-complexes. We now begin a discussion
of rational cellular homology for symmetric ∆-complexes and its comparison to rational
singular homology. Consider

(2.146) Cp (Y ) =
(
QYp

)
Sp+1

.

These are the Sp+1 coinvariants of

(2.147) Sp+1
� QYp ⊗ sgn .

Recall that Yp is, roughly speaking, the set of pairs consisting of a p-simplex in Y together
with a total ordering of its vertices. Then QYp⊗sgn is freely generated by oriented simplices
in Y , together with a total ordering of the vertices that is compatible with the orientation.
Taking Sp+1-coinvariants identifies two such pairs whenever they correspond to the “same”
oriented p-face, in the colimit construction of the dual complex. In this way, it is one thinks
of Cp(Y ) as the group of cellular p-chains.

The point is that we want to think of acting by an even permutation as gluing two
simplices in an orientation preserving way, and acting by an odd permutation as orientation
reversing.

Note that

(2.148) di : Yp → Yp−1

induces

(2.149)
∑
i

(−1)
i
di∗ : QYp → QYp−1

which descends to

(2.150) d : Cp (Y )→ Cp−1 (Y )

and because of how the signs work, d2 = 0. So this is a chain complex, and if we take the
homology of this complex, we recover the rational, reduced, singular homology of |Y |.

Theorem 2.19.

(2.151)
ker d

im d
∼= H̃∗ (|Y | ,Q) .

Proof. The proof is the same as the proof that cellular homology agrees with singular
homology for ∆-complexes. For example, one can use the spectral sequence associated to
the filtration of |Y | by its p-skeletons. �

Next we will study H∗ (Mg,Q), C∗ (∆g), and H̃∗ (∆g).



CHAPTER 3

Cellular homology of a symmetric ∆-complex
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1. Cellular homology of a ∆-complex

We now give further details to explain the cellular homology of a symmetric ∆-complex,
and explain why it agrees with singular homology with rational coefficients.

We begin by reviewing the cellular homology of a ∆-complex.

1.1. Attaching a p-cell to a ∆-complex. Given Y , we attach a p-cell ∆(p) to Y to
get

(3.1) Y ′ = Y ∪∆(p)/
(
x ∼ f (x) : x ∈ ∂∆(p)

)
where f is the attaching map:

(3.2) f : ∂∆(p) = Sp−1 → Y .

Note that Y ′ = cone (f), and f f induces a map on homology:

(3.3) f∗ : H̃∗
(
Sp−1

)
→ H̃∗ (Y ) .

Recall H̃∗
(
Sp−1

) ∼= Z in degree p− 1.
To a pair (Y ′, Y ), we get a pair sequence:

(3.4) Hi+1 (Y ′, Y ) Hi (Y ) Hi (Y ′) Hi (Y ′, Y ) Hi−1 (Y )∂ .

We know

(3.5) Hi (Y ′, Y ) =

{
Z i = p

0 else

which implies that for i 6= p, p− 1 we have

(3.6) Hi (Y ′) ∼= Hi (Y ) .

For i = p and p− 1 we have a 5-term exact sequence:

(3.7) 0→ Hp (Y )→ Hp (Y ′)→ Z ∂−→ Hp−1 (Y )→ Hp−1 (Y ′)→ 0

where

(3.8) ∂ (1) = f∗
[
Sp−1

]
.

In other words,

(3.9) Hp−1 (Y ′) ∼= Hp−1 (Y ) / im (f∗)

and, with rational coefficients, there is an isomorphism:

(3.10) Hp (Y ′) ∼= Hp (Y )⊕ ker (f∗) .

45
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This tells us how to calculate the homology of a ∆-complex after adding a p-cell. This
means that if we have a finite or finite-dimensional ∆-complex, we can describe the ho-
mology by iterating this procedure. Roughly speaking, the spectral sequence associated
to the filtration by skeleta, which we now describe, is an efficient way of re-packaging the
information from all of these long exact sequences.

1.2. Filtration by skeleta. Let Y be a finite-dimensional ∆-complex, and A an
abelian group. Write Y (p) ⊆ Y for the union of all cells of dimension ≤ p. So we have
a filtration on Y

(3.11) Y (0) ⊆ Y (1) ⊆ · · · ⊆ Y (n) = Y .

From this we get a filtration on the singular chains, given by which chains are supported in
these subspaces:

(3.12) C∗

(
Y (0)

)
⊆ C∗

(
Y (1)

)
⊆ · · · ⊆ C∗

(
Y (n)

)
= C∗ (Y ) .

When we have a filtered complex, and when the filtration is finite, then we get a spectral
sequence which abuts to the associated graded of the homology of the total sequence. In
particular, we have

(3.13) Ep,q0 = Cp+q

(
Y (p), Y (p−1);A

)
= Cp+q

(
Y (p), A

)
/Cp+q

(
Y (p−1), A

)
.

The differential on this page is vertical, i.e. it is fixing p and decreasing q by 1. So the E1

page is just the relative homology. Then it is a general fact that this eventually converges
to:

(3.14) Ep,q1 = Hp+q

(
Y (p), Y (p−1);A

)
⇒ Ep,q∞ =

im
(
Hp+q

(
Y (p)

)
→ Hp+q (Y )

)
im
(
Hp+q

(
Y (p−1)

)
→ Hp+q (Y )

) .
Now note

(3.15) Hp+q

(
Y (p), Y (p−1);A

)
∼=

{
A⊕p−cells q = 0

0 else
.

So this is supported in the row q = 0, i.e. it collapses at E2. And this row is the cellular
chain complex with coefficients in A. So singular homology agrees with cellular homology
for ∆-complexes with arbitrary coefficients.

Remark 3.1. Note that we could have considered any filtration by closed subspaces.
We would still get a filtration on the singular chain complex, and the induced spectral
sequence has relative chains, for successive steps in the filtration of the space, on the E0-
page and relative homology for these pairs on the E1-page. The key place where we used
this particular filtration was when we noticed it was supported in the q = 0 row.

2. Cellular homology of a symmetric ∆-complex

2.1. Attaching a p-cell to a symmetric ∆-complex. Recall σ ∈ Yp is a p-cell,
along with an ordering of the vertices, i.e. it is identified with the standard p-simplex.
Recall Sp+1

�

Yp, so each element σ has a stabilizer Gσ ⊆ Sp+1. Attaching a p-cell now
gives us:

(3.16) Y ′ =
(
Y ∪∆(p)/Gσ

)
/
(
x ∼ f (x) : x ∈ ∂∆(p)/Gσ

)
where f is the attaching map

(3.17) f : Sp−1/Gσ → Y
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and

(3.18) Y ′ = cone (f) .

Example 3.1. Consider the boundary of the 3-simplex, and quotient by Z/4Z, i.e.
choose a permutation of our vertices:

(3.19) Y = ∂∆(3)/ (Z/4Z) .

Then Y (0) is a point, and Y (1) has two edges. One has no stabilizer, and one has a Z/2Z
stabilizer. So our 1-skeleton is

Then Y (2) is RP2.

As before, we get the pair sequence

(3.20) Hi (Y ;A)→ Hi (Y ′;A)→ Hi (Y ′, Y ;A)→ Hi−1 (Y ;A)→ Hi−1 (Y ;A) .

This relative homology is now

(3.21) Hi (Y ′, Y ;A) ∼= H̃i−1

(
Sp−1/Gσ;A

)
.

If A = Q then

(3.22) H̃i−1

(
Sp−1/Gσ;A

)
=

{
Q i = p,Gσ ⊂ Ap+1

0 else
.

If A = Z then it can be significantly more complicated.

Example 3.2. For p = 3, Gσ = Z/4Z, we have

(3.23) S2/Gσ ∼= RP2

and

(3.24) H1

(
S2/Gσ;Z

)
= Z/2Z .

This example highlights an important difference from ordinary ∆-complexes and more
general CW-complexes. In those classical constructions, adding p-cells can only add gener-
ators to Hp and relations to Hp−1. This example shows that, for symmetric ∆-complexes if
we attach a symmetric 3-cell, then we may alter H1.

2.2. Filtration by skeleta. As before, the filtration by p-skeleta induces a spectral
sequence, and the E1 page will be the relative homology. If we take Q coefficients, then the
same argument as before shows that Ep,q1 = 0 for q 6= 0. So the q = 0 row is what we would
call “cellular homology”. The chains are given by

(3.25) Cp (Y ) =
(
QYp ⊗ sgn

)
Sp+1

.

So this is Qα where α is the number of Sp+1 orbits in Yp, with stabilizer contained in Ap+1.
And in fact we have

(3.26) H∗ (C∗ (Y )) ∼= H∗ (|Y | ;Q) .

Lecture 25; April 3,
2020
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1 1 1

1

Figure 1. Top line: the curves in the codimension 1 strata. Middle line:
the curves in the codimension 2 strata. Bottom line: the curves in the
codimension 3 (and therefore dimension 0) strata. Collapsing an edge (and
increasing its label by 1) tells us that the curve corresponding to the old
graph is a degeneration of the curve corresponding to the new graph.

3. Dual complex of the boundary divisor of Mg

3.1. ∆2. We will describe ∆2, the dual complex of M2 \ M2. If we have a genus 2
curve, it can degenerate to a stable nodal curve in one of two ways, as in the top line of
fig. 1. So these are the curves in the codimension 1 strata of the boundary divisor. Then
these curves can further degenerate as indicated in fig. 1, and these are the curves in the
codimension 2 strata.

Note the upper left curve is reducible, so it cannot degenerate to an irreducible curve on
the right in the middle. In terms of the dual graphs, this is saying that we cannot contract

an edge of to get whereas the other graph on the middle line can be contracted

into this graph.
Note that the stable graphs with three edges (the bottom line of fig. 1) correspond to the

curves in the minimal strata, so these should be zero-dimensional. To see this geometrically,
note that both curves of this type are determined by three points of P1. But any three
distinct points can be taken to 0, 1, and ∞ by a linear change of coordinates. So they do
indeed sit in 0-dimensional strata.

The curves on the middle line of fig. 1 sit in one-dimensional strata. For the left example,
the j invariant gives us our single parameter, and the right example is determined by four
points in P1, which have a cross ratio which is our single parameter. The curves on the top
sit in two-dimensional strata. On the left we have two j invariants, and on the right we
have a choice of a single point, so in both cases we have a two-parameter family of curves
of these types.

Now we describe ∆2 as the space of graphs of these types. First, we have a 1-parameter
family given by the solid horizontal line in fig. 1. The graphs on this line have one vertex,
one loop of length t, and one of length 1− t. The left vertex corresponds to t = 0 where we

have but this only reaches t = 1/2, since we have quotiented out by the Z/2 action.

The vertical 1-parameter family has graphs with two vertices, an edge between them of
length t, and a self loop on one of the vertices of length 1− t. The bottom corresponds to
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1 1

1

1

Figure 2. The cells of ∆2. Points are labelled with the dual complex of
the corresponding curve.

t = 0, where we have still have and this time there is nothing to quotient out by (since

one edge has a self-loop and the other doesn’t) so we reach all the way to t = 1 where we
have since it has no self loop, and an edge of length 1.

Graphs such as sit in a triangle with Z/2 action. After quotienting we get the

piece which is glued to the two 1-cells in the only way possible. Similarly, graphs such as
sit in a triangle with an S3 action. After quotienting out by this we glue this to the

existing complex on the bottom.
Now it is clear that ∆2 ' pt is contractible. Therefore, by Corollary 2.18, we have

(3.27) Gr6
W H∗ (M2;Q) = 0 .

3.2. ∆3. The example of ∆2 captured many of the features of ∆g for general g. But
as we increase g, we will get much more interesting ∆g. ∆3 is already not contractible. We
will list the cells of ∆3 and use this to compute the rational homology. As it turns out, in
general, it is much easier to describe the rational homology than the homotopy type.

Example 3.3. First we write down all 3-valent graphs of genus 3. These are in fig. 3.
These all have six edges and 4 vertices.

Now consider all of the genus 3 graphs with 5 edges. Since these are all given by
collapsing an edge of a graph in fig. 3, there at most 30, but there are a lot of redundancies.
In particular, we get the graphs in fig. 4. Now we want to consider all of the genus 3 graphs
with 4 edges. There at most 40, but there are a lot of redundancies. These are pictured in
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Figure 3. The five graphs of genus 3 with valence 3. Notice they all have
six edges and four vertices.

1

1 1

Figure 4. Stable graphs of genus 3 with 5 edges.

1 1 1 1

2 1

1

1

1

1

Figure 5. Stable graphs of genus 3 with 4 edges.

fig. 5. If we collapse another edge to get graphs with 3 edges, we get the graphs in fig. 6.
Finally the graphs with 2 edges are in fig. 7, and there are only two graphs with 1 edge as
in fig. 8.
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1 1 1 1 1

1 1 1

1 1

1

1 1

Figure 6. Stable graphs of genus 3 with 3 edges.

2 1 1 1

1 1 1 1 1

Figure 7. Stable graphs of genus 3 with 2 edges.

2

2 1

Figure 8. Stable graphs of genus 3 with 1 edge.

Note that ∆3 is a five-dimensional complex with 41 cells. Many of these cells have
automorphisms that act by odd permutations on the corresponding edge sets, and this
dramatically simplifies the computation of rational homology. For instance, whenever a
graph has multiple edges (meaning two or more edges between the same pair of vertices),
there is an automorphism acting by a simple transposition on these edges, and hence the
corresponding cell does not contribute to the cellular chain complex for ∆g. Another useful
insight is that, to go from graph that does not have any loop edges or vertices of positive
weight to one that does, by a series of edge contractions, one has to pass through a graph
with multiple edges. This will lead to a direct sum decomposition of the cellular chain
complex of ∆g, with two summands generated, respectively, by graphs with and without
loop edges or vertices of positive weight.

Lecture 26; April 6,
2020

Proposition 3.1. The cellular chain complex C• (∆g) splits as a direct sum:

(3.28) C• (∆g) = C•
(
∆lw
g

)
⊕ C•

(
∆g,∆

lw
g

)
where ∆lw

g is the subcomplex of graphs with a loop edge or a vertex of positive weight, and

(3.29) C•
(
∆g,∆

lw
g

)
= C• (∆g) /C•

(
∆lw
g

)
.
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Proof. To see this, note that we have a short exact sequence

(3.30) 0→ C•
(
∆lw
g

)
→ C• (∆g)→ C•

(
∆g,∆

lw
g

)
→ 0 .

The splitting map σ takes C•(∆g,∆
lw
g ) to the subcomplex of C•(∆g) spanned by graphs

without loops or vertices of positive weight, in the obvious way. This is clearly a splitting at
the level of vector spaces. The fact that it is a map of complexes follows from the observation
that the only way to get a new vertex of positive weight by contracting an edge is to contract
a loop, and the only way to get a new loop by contracting an edge is by contracting an edge
between two vertices connected by multiple edges. The latter are zero in C•(∆g), and it
follows that σ is a map of complexes, as required. �

Looking at figs. 3, 4, 6 and 7 and fig. 8, one sees that, for g = 3, C•
(
∆g,∆

lw
g

)
is spanned

by

(3.31) K4 = .

Proposition 3.2. Aut (K4) acts by alternating permutations on the set of edges.

Proof. The action on vertices induces a canonical identification Aut (K4) = S4. Recall
that S4 is generated by transpositions, and then observe that each transposition of vertices
acts by a double transposition on the set of edges. �

So therefore the complex C•
(
∆g,∆

lw
g

)
is just Q in degree 5. The other summand in

C•(∆3) does not contribute to homology, as shown by the following proposition.

Proposition 3.3. ∆lw
g is contractible. In particular, C•

(
∆lw
g

)
is acyclic.

Proof. See [CGP2, Theorem 1.1]. �

Theorem 3.4. H̃• (∆3,Q) ∼= Q in degree 5, spanned by K4.

Combining with Corollary 2.18, we have the following.

Corollary 3.5. Gr12
W H∗ (M3,Q) ∼= Q in degree 6.

This was first proved (in a different way) by Looijenga in [L3]; it was the first explicit
example of unstable cohomology onMg. Supposedly Benson Farb calls this the dark matter,
because of relations between H∗ (Mg,Q) and mathematical physics, and since we know
(from Euler characteristic calculations) that there is so much more of it than what is in the
subring generated by stable cohomology.

3.3. Topology of ∆4. We begin by identifying a large contractible subcomplex of ∆4.
In the genus 3 case we considered the space of curves with loops and nonzero weights. This
is contained in a larger subcomplex:

(3.32) ∆lw
g ⊂ ∆br

g

where

(3.33) ∆br
g = {stable tropical curves with bridges} .

Proposition 3.6. ∆br
4 is contractible.

Proof. See [CGP2, Theorem 1.1]. �
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Figure 9. The three isomorphism classes of stable graphs of genus 4 with-
out loops, vertices of positive weight, or multiple edges. The first is the
1-skeleton of the square pyramid, the second is the 1-skeleton of the trian-
gular prism, and the third is the graph K3,3.

We already know that graphs with multiple edges do not contribute to the cellular chain
complex,3.1 so the next step is to list all isomorphism classes of stable graphs of genus 4
without loops, vertices of positive weight, or multiple edges. There are 3, depicted in fig. 9.

We claim that the class of each of these graphs is zero in C•(∆4). Let us start with the 1-
skeleton of the square pyramid. We can reflect this along the diagonal. This exchanges three
pairs of edges, i.e. it is an odd permutation, to the class of this graph is zero in the cellular
chain complex. Similarly, the 1-skeleton of the triangular prism has an automorphism
interchanging the top triangle with the bottom triangle, which exchanges three pairs of
edges. And transposing two non-adjacent vertices in K3,3 exchanges three pairs of edges as
well. This proves the claim. As a consequence, we have an isomorphism of chain complexes

(3.34) C• (∆4) ∼= C•
(
∆br

4

)
.

Since
(
∆br

4

)
is contractible, this complex is acyclic, and

(3.35) GrW18 H
∗ (M4;Q) = 0 .

We have shown that ∆3 has rational homology of S5. In fact ∆3 is homotopy equivalent
to S5 [ACP, Theorem 1.2]. We have also shown that ∆4 has rational homology of a point.
However, ∆4 is not contractible. In fact H5 (∆4;Z) has 3-torsion, and both H6 (∆4;Z) and
H7 (∆4;Z) have 2-torsion [ACP, Theorem 1.3]. One can see this using the spectral sequence
associated to the filtration by closed subspaces. Lecture 27; April 8,

2020Recall we had d (K4) = 0 because every edge is contained in a triangle. This gives us
an easy way to construct cellular cycles in ∆g. We just write down graphs where every edge
is contained in a triangle

Consider, for instance, K5:

(3.36) .

This is the 1-skeleton of the 4-simplex. As with K4, every edge is contained in a triangle,
so d (K5) = 0. We claim, however, that [K5] ∈ Im(d).

Toi see this, recall

(3.37) H̃9 (∆6;Q) ∼= Gr30
W H20 (M6;Q) .

Then we have Harer’s theorem

3.1In face, the closure of the locus of curves with bridges or multiple edges is contractible; see [ACP,

Theorem 6.1].
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Theorem 3.7 (Harer [H2]).

(3.38) vcd (Mg) = 4g − 5

where vcd is the virtual cohomological dimension.

In other words, for any local system E with rational coefficients,

(3.39) Hj (Mg, E) = 0

for g > 4g − 5 and there exists a local system E such that H4g−5 (Mg; E) 6= 0.
When g = 6, this implies

(3.40) Hj (M6;Q) = 0

for j > 19. So we have the following corollary.

Corollary 3.8. [K5] ∈ im (d), i.e. [K5] = 0 in H̃9 (∆6;Q).

Similarly, d (Kn) = 0 for n > 5, but [Kn] ∈ im (d).

Corollary 3.9. H̃j (∆g;Q) = 0 for j ≤ 2g − 2.

The following are open problems.

(1) Provide a combinatorial proof that H̃j (∆g;Q) = 0 for j ≤ 2g − 2.
(2) Provide a combinatorial proof that Kn ∈ im (d) for n > 4.

We now consider a different sequence of graphs of increasing genus that naturally gen-
eralize K4. Let Wg be the wheel graph of genus g, i.e., the 1-skeleton of a g-gonal prism.
So W3 = K4.

Next, consider the 4-wheel W4:

(3.41) .

Note that the automorphism group is

(3.42) Aut (W4) = D4 .

However, reflecting across a diagonal transposes three pairs of edges. Hence [W4] = 0 in
C• (∆4). Similarly, [Wg] = 0 in C• (∆4) whenever g is even. But when g is odd, the
automorphisms of Wg act by even permutations on the edge set.

Now consider W5:

(3.43) .

Again

(3.44) Aut (W5) = D5 .

The class [W5] is nonzero in C• (∆5), and d([W5]) = 0 because every edge is contained in a
triagnle, so it is natural to ask whether [W5] ∈ im (d).

So what are the stable graphs G such that [W5] appears with nonzero coefficient in
d([G])?

Any such edge must have an edge connecting a vertex of valence 4 to one of valence 3,
such that contracting it gives the central vertex of valence 5 in W5.



4. COHOMOLOGY OF MG 55

One possibility is:

(3.45) G =

This graph has exactly one vertex v of valence 4, which must be fixed by any automorphism.
Similarly, the top vertex is the unique 3-valent vertex whose star is contained in the star of
v. And there is a unique vertex adjacent to both vertices not adjacent to v. Each of these
must be fixed by any automorphism, and it follows that the unique nontrivial automorphism
is reflection across the vertical axis. This interchanges four pairs of edges, and hence [G] 6= 0
in C∗ (∆5).

The other possibility for a graph G′ such that W5 appears with nonzero coefficient in
d([G′]) is:

(3.46) G′ =

However, G′ has an automorphism obtained by interchanging the two vertices adjacent to
the 4-valent vertex that are not contained in a triangle. This acts by transposing three pairs
of edges, and hence [G′] = 0 in the cellular chain complex. This proves that G is the unique
graph such that W5 appears with nonzero coefficient in d([G]).

So, now we compute d([G]). Contracting one edge of G takes us back to W5, and
there are two other edges not contained in a triangle, but these are swapped by the unique
automorphism of G. Contracting either of these edges gives:

(3.47) G′′ =

One checks that any automorphism of G′′ must act by even permutations on the edges, so
[G′′] 6= 0 in C• (∆5).

With appropriate orientations, and checking signs carefully, one finds:

(3.48) d (G) = W5 + 2G′′ .

Moreover, there is no other graph H such that [G′′] appears with nonzero coefficient in
d([H]).

As a consequence, we conclude that W5 6∈ im (d), so

(3.49) 0 6= [W5] ∈ H̃9 (∆5;Q) = Gr24
W H14 (M5;Q) .

4. Cohomology of Mg

Lecture 28; April
10, 2020

Recall dimCMg = 3g − 3, so Hj (Mg;Q) = 0 for j > 6g − 6. We know from Harer’s
Theorem 3.7 that vcd (M) = 4g − 5, which implies Hj (Mg;Q) = 0 for j > 4g − 5.
Furthermore, the singular cohomology of Mg with rational coefficients vanishes in degree
equal to the virtual cohomological dimension, i.e. H4g−5(Mg;Q) = 0 [CFP1,MSS].
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We now discuss what is known about the cohomology of Mg in low degrees, and the
subring generated by low degree cohomology.

4.1. Low degree cohomology of Mg, stabilization, and the tautological ring.
See [V1] for a survey concerning the moduli space of curves and its tautological ring.

The relative cotangent bundle L of the map Mg,1 →Mg is

(3.50) L =
{

(C, p, v) : (C, p) ∈Mg,1, v ∈ T ∗pC
}

and fits into

(3.51) L→Mg,1
π−→Mg .

This is the relative dualizing bundle for this smooth map.
Define

(3.52) ψ := c1 (L)

to be the first Chern class.
4.1.1. Chern classes. See [MS] for a reference. There are a few different ways to think

about Chern classes. Let Pn be complex projective space. We have

(3.53) Pn ⊆ Pn+1 ⊆ · · ·

and we define

(3.54) P∞ =
⋃
n

Pn .

Theorem 3.10. The collection of isomorphism classes of line bundles on X is equivalent
to collection of maps X → P∞.

Theorem 3.11.

(3.55) H∗ (P∞) = Z [x]

where deg (x) = 2.

This doesn’t quite determine x. We also insist that

(3.56)

∫
P1

x = 1 .

So if L is a line bundle on X, then X
fL−→ P∞ (up to homotopy) gives us

ctop
1 (L) ∈ H2 (X;Z) ctop

1 (L) = f∗L (x)(3.57)

Alternatively, consider the following. Let ML be the moduli space (stack) of line bun-
dles. For X ∈ Sch a scheme, we map

(3.58) X 7→ {isomorphism classes of line bundles on X} .

Then we have the following.

Theorem 3.12. ML is an Artin stack, and the Chow ring is

(3.59) A∗ (ML) = Z [x] .
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Then this implies for L a line bundle on X ∈ Sch leads to f : X → ML, and we can
define

(3.60) c1 (L) := f∗LX .

If X is smooth and proper over C, then the algebraic and topological definitions of
Chern classes are compatible, via the cycle class map, i.e.,

(3.61)

A∗ (X) H2∗ (X)

c1 (L) ctop
1 (L)

.

4.2. κ-classes. In our setting, for L the relative cotangent bundle as in eq. (3.50):

(3.62) L→Mg,1
π−→Mg ,

we define

(3.63) ψ = c1 (L) ∈ H2 (Mg,1;Q) .

Then we define Mumford’s κ-classes as follows.

Definition 3.1 (κ-classes).

(3.64) κi = π∗
(
ψi+1

)
∈ H2i (Mg;Q) .

Remark 3.2. The map π∗ is the Gysin push-forward

(3.65) π∗ : H∗ (Mg+1;Q)→ H∗−1 (Mg;Q) .

See section 4.3 for further discussion of Gysin push-forward for oriented fiber bundles.

Definition 3.2 (tautological ring). The tautological ring R∗ (Mg) is the subring of
H∗ (Mg;Q) generated by {κi}.

Remark 3.3. This subring is especially important for Gromov-Witten theory. Im-
portant formulas in Gromov-Witten theory such as the ELSV formula [ELSV] and the
Pandharipande-Pixton relations [PP] are naturally expressed in terms of polynomials in
the κ-classes.

Theorem 3.13 (Faber-Looijenga). Ri (Mg) = 0 for i > g − 2 and

(3.66) Rg−2 (Mg) ∼= Q .

Conjecture 2 (Faber). The map

(3.67) Ri (Mg)×Rg−2−i (Mg)→ Rg−2 (Mj) ∼= Q
is perfect.

This has been computationally verified by Faber for g < 24; however, it is incompatible
with Pixton’s conjectural characterization of all relations among the κi.

Corollary 3.14.

(3.68) dimR∗ (Mg) <

g−2∑
n=1

p (n)

where p (n) is the partition number of n.
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Theorem 3.15 (Hardy-Ramanujan).

(3.69) p (n) ∼ 1

4
√

3n
exp

(
π

√
2n

3

)
The original proof is a prototypical application of the circle method; there is also an ele-
mentary proof due to Erdős.

As a consequence of the Hardy-Ramnujan estimate for p(n), we have

dimR∗ (Mg) < g · p (g)(3.70)

< c
√
g .(3.71)

We will see that

(3.72)
dimR∗ (Mg)

dimH∗ (Mg;Q)
→ 0

as g → ∞. So the tautological ring is, in this sense, a vanishingly small portion of the
cohomology ring of Mg.

Lecture 29; April
13, 2020

4.3. Gysin map. Recall definition 3.1, where the κ-classes were defined as the images
of the powers of

(3.73) ψ = c1 (L) ∈ H2 (Mg,1;Q)

under the map:

(3.74) π∗ : H∗ (Mg+1;Q)→ H∗−2 (Mg;Q) .

This map is the Gysin map associated to the orietented fiber bundle π. We should think of
π∗ as “integration along the fibers”.

The construction is as follows. Choose compatible triangulations ofMg andMg,1. See
[H6]. Then for each oriented k-face σ ⊆Mg, π

−1 (σ) is a (k + 2)-chain onMg,1. Moreover,
π−1 (∂σ) = ∂

(
π−1 (σ)

)
, which implies that π−1 is compatible with ∂, and

π−1 (k-cycle) = (k + 2) -cycle π−1 (k-boundary) = (k + 2) -boundary .(3.75)

So we have a “wrong way” map on homology:

(3.76) π∗ : Hk (Mg;Q)→ Hk+2 (Mg,1;Q)

called the Gysin pullback. Now dualizing we get a pullback on the duals:

(3.77) π∗ : Hk (Mg;Q)
∗ → Hk+2 (Mg,1;Q)

∗
.

Now we can define the Gysin pushforward as the adjoint (transpose) of the Gysin pullback:

(3.78) π∗ : Hk+2 (Mg,1;Q)→ Hk (Mg;Q) .

4.4. Stable cohomology of Mg. The following was conjectured by Mumford and
proved, decades later, by Madsen and Weiss.

Conjecture 3 (Mumford). deg κj = 2j and

(3.79) Hi (Mg;Q) ∼= Q [κ1, κ2, . . .]i

for g � i.
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This implies that

(3.80) dimHi (Mg;Q) =

{
0 i odd

p (i/2) i even

for g � i where p is the permutation number.
An early major step toward confirming Mumford’s conjecture was the following stabi-

lization theorem of Harer.

Theorem 3.16 (Harer [H3]). Hi (Mg;Q) ∼= Hi (Mg+1;Z) for g � i.

This was followed by a striking result of Tillmann, on the structure of the stable coho-
mology.

Theorem 3.17 (Tillmann [T]). The stable cohomology of Mg is the cohomology of an
infinite loop space.

The next steps are to understand which infinite loop space is appearing in this context
and to compute its cohomology.

Definition 3.3. The Grassmannian of affine k-planes in Rn is

(3.81) AG (k, n) := {affine k-planes in Rn} .

We write AG+ (k, n) for the 1-point compactification of AG (k, n).

Note that

(3.82) AG+ (k, n) ⊆ AG+ (k, n+ 1) ⊆ . . .
so we can define

(3.83) AG+ (k,∞) = lim−→
n

AG+ (k, n)

The following theorem was conjectured by Madsen-Tillmann [MT].

Theorem 3.18 (Madsen-Weiss [MW]). The stable cohomology ofMg is the cohomology
of the infinite loop space

(3.84) Ω∞
(
AG+ (2,∞)

)
= lim−→

n

Ωn
(
AG+ (2, n)

)
.

The cohomology ring of Ω∞
(
AG+ (2,∞)

)
is naturally identified with the polynomial

ring in the κ-classes, so this theorem of Madsen and Weiss confirms Mumford’s conjecture.
We will give a rough idea of the proof following [H5]. Write Sg for the compact oriented

surface of genus g.

Definition 3.4. Define the configuration space C (Sg,Rn) to be the collection of ori-
ented subsurfaces of Rn which are diffeomorphic to Sg.

Write E (Sg,Rn) for the collection of smooth embeddings of Sg in Rn.

Remark 3.4. Roughly speaking, the configuration space is something like a Hilbert
scheme.

Note that

(3.85) C (Sg,Rn) = E (Sg,Rn) /Diff+ (Sg)

where Diff+ (Sg) consists of the oriented diffeomorphisms.
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Then we have

(3.86) E (Sg,R∞) = lim−→
n

E (Sg,Rn)

and

(3.87) C (Sg,R∞) = lim−→
n

C (Sg,Rn) = E (Sg,R∞) /Diff+ (Sg) .

Proposition 3.19. E (Sg,R∞) is contractible.

Proposition 3.20. For g � 2, each connected component of Diff+ (Sg) is contractible.

As a consequence, we have that

(3.88) C (Sg,R∞) = BMod (Sg)

where Mod denotes the mapping class group. This implies that

(3.89) H∗ (C (Sg,R∞)) ∼= H∗ (Mod (Sg)) ∼= H∗ (Mg,Q)

where the second isomorphism comes from Teichmüller theory.
Indeed, we have a properly discontinuous action of Mod (Sg) on Teichmüller space, a

space of hyperbolic metrics on Sg. Teichmüller space is a contractible manifold of dimension
3g − 3, and the quotient is Mg. Lecture 30; April

15, 2020
Proposition 3.21. (1) E (Sg,R∞) is contractible, and

(2) each connected component of Diff+ (Sg) is contractible for g ≥ 2.

Then this means

(3.90) EMod (Sg) := E (Sg,R∞) /Diff+
0 (Sg) ,

where Diff+
0 denotes the connected component of the identity of Diff+, is contractible. It

also has a free action of the mapping class group:

(3.91) Mod (Sg) = Diff+ (Sg) /Diff+ 0 (Sg) .

I.e. EMod (Sg) is contractible with free Mod (Sg) action, and

(3.92) BMod (Sg) := C (Sg,R∞)

is the quotient.

4.5. Review of classifying spaces. Let G be a discrete group

Remark 3.5. There is a version for non-discrete groups as well, e.g. GLn has the infinite
Grassmanian of n-planes in R∞ as its classifying space. But we will focus on discrete groups.

Proposition 3.22. (1) There exists a contractible CW-complex EG with free G-action.
(2) The quotient BG = EG/G is well-defined up to homotopy.
(3) The singular cohomology of BG with coefficients in A is the same as the group

cohomology of G: H∗ (BG;A) ∼= H∗ (G;A).
(4) BG is a K (π, 1)-space for G, i.e.

(3.93) πi (BG) ∼=

{
G i = 1

1 i > 1
.
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Proof. (1) Consider the ∆-complex EG with n-faces given by (n+ 1)-tuples
(g0, . . . , gn) of elements of G, not necessarily distinct. Note that G acts freely
on EG by

(3.94) g · (g0, . . . , gn) = (gg0, . . . , ggn)

for g ∈ G. Observe that at the vertex g, there is a loop edge (g, g). Now we show
EG is contractible. To see this, consider the linear flow toward e in (e, g0, . . . , gn).
This is a homotopy from the inclusion (g0, . . . , gn) ↪→ EG to the constant map
(g0, . . . , gn) → (e). These glue together to make a homotopy from 1EG to the
constant map EG → (e). This is not a deformation retraction because e is not
fixed, it flows along the loop edge (e, e).

(2) Let (EG)′ be any other contractible space on which G acts freely. Consider the
quotients X = EG/G, X ′ = (EG)

′
/G. Then EG is the universal cover of X, and

(EG)
′

is the universal cover of X ′. This implies

(3.95) π1 (X,x) ∼= G ∼= π1 (X ′, x′) ,

for any choice of base points x and x′.
The homotopy lifting theorem, plus the isomorphism on fundamental groups

above, gives rise to a map from the 1-skeleton f : (X ′)(1) → X, taking x′ to x. We
then proceed by cellular approximation. Consider a 2-cell e2 ⊆ X ′. Then ∂e2 is
contractible in X ′, which implies f

(
∂e2
)

is contractible in X. Hence f extends to

(X ′)(1) ∪ e2. Similar arguments show that f extends to all of X ′, cell-by-cell.
(3) Since we know BG is independent (up to homotopy) of the choice of EG, we take

the particular model from (1). In this model, each n-face of BG is the image of a
unique n-face of EG of the form (e, g1, . . . , gn), and hence corresponds to a unique
n-tuple of elements of G. In this way, the cellular chain complex of BG computes
the group homology of G.

�

This is relevant for us because, as we have discussed, Mg is a K (π, 1) for Mod (Sg),
whose universal cover is Teichmüller space.

This implies

(3.96) H∗ (Mg;Q) ∼= H∗ (C (Sg,R∞) ;Q) .

Hence we can understand and study the cohomology of Mg from multiple perspectives.
Viewing Mg as an algebraic variety (or Deligne-Mumford stack) endows this ring with a
mixed Hodge structure and leads to many of the ideas we have discussed in this course.
Studying the same ring as the cohomology of C(Sg,R∞) brings techniques from stable ho-
motopy theory into play, and is especially fruitful if one considers g

Understanding the cohomology ofMg directly is much easier using tools from algebraic
geometry such as mixed hodge theory. But from this point of view, the cohomology agrees
with that of C (Sg,R∞), which can be understood better using stable homotopy theory.

4.6. Geometric relationship between C (Sg,R∞) and Ω∞AG+ (2,∞). These are
related by the scanning map. Fix Sg ⊆ Rn. Choose a small ε > 0. For each point x ∈ Rn,
intersect Sg with the ball Bε (x). For ε sufficiently small, each Bε (x) ∩ Sg is an “almost
flat” disk in Rn. Fix a homeomorphism Bε (x) ∼= Rn. So this gives us a map

(3.97) Rn → AG+ (2,Rn)
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which sends

(3.98) x 7→

{
pt at ∞ Bε (x) ∩ Sg = ∅
TySg o/w

where y is the barycenter of Bε (x)∩ Sg. The idea is that as we pull the ball away from the
surface, this barycenter moves towards infinity. Note that because Sg is compact, if we are
“far away”, we do map to the point at infinity. So this maps extends to

(3.99) Sn → AG+ (2,Rn)

where the point at infinity goes to the point at infinity.
In other words a point in C (Sg,Rn) gives us a map Sn → AG+ (2,Rn), which is a point

in Ωn AG+ (2,Rn). This gives us a map

(3.100) C (Sg,Rn)→ Ωn
(
AG+ (2,Rn)

)
.

Now passing to the limit, we get a map

(3.101) C (Sg,R∞)→ Ω∞
(
AG+ (2,R∞)

)
,

called the scanning map. This is well-defined up to homotopy. Then the theorem of Madsen-
Weiss is that the scanning map induces isomorphisms on Hi for i < 2g/3.

The rough idea is to let g →∞. Then show that

(3.102) C (S∞,R∞)→ Ω∞
(
AG+ (2,R∞)

)
is a weak equivalence.



CHAPTER 4

Kontsevich’s graph complex

Lecture 31; April
20, 2020

First we describe this graph complex K• as a Q vector space. We will then add a
differential and a compatible Lie bracket, so that it becomes a chain complex and, moreover,
a differential graded Lie algebra (dgla). In fact, the differential will be given as the bracket
with one particular element of the graph complex.

The generators of K• in degree n are isomorphism classes of pairs (G,ω) where G is
a graph with n edges, no loops, and no multiple edges; and ω is a total ordering of E (G).
The relations among these are given by:

(4.1) (G, σ (ω)) = sign (σ) (G,ω)

for σ ∈ Sn. Notationally we will write G = (G,ω).
The operation on K• we will focus on, is inserting a graph G1 at some vertex v of some

other graph G2. There are many ways of doing this. To specify such an insertion, we give
a map

(4.2) ϕ : StarG2 (v)→ V (G1) .

Here, StarG2
(v) is the set of edges containing v. Then the resulting graph is explicitly given

by the graph Gϕ with vertices:

(4.3) V (Gϕ) := V (G1)q V (G2) \ {v}
and edges in bijection with the disjoint union

(4.4) E (Gϕ) ∼= E (G1)q E (G2) ;

under this bijection, each edge (v, v′) ∈ StarG2
(v) corresponds with an edge (ϕ (v) , v′) in

StarGϕ(ϕ(v)).
Now we introduce a non-commutative binary operation on K• by setting

(4.5) G1 ◦G2 =
∑

v∈V (G2)

∑
ϕ : Star(v)→V (G1)

Gϕ

where Gϕ has edge ordering ω1 ∧ ω2, and extending linearly

Proposition 4.1. The operation

(4.6) [G1, G2] = G1 ◦G2 − (−1)
|E(G1)|·|E(G2)|

G2 ◦G1

is a graded Lie bracket:

(4.7) [ , ] : Ki ∧Kj → Ki+j .

Proof. We need to check:

(1) [ , ] is well-defined.
(2) [ , ] is graded skew-symmetric: if a ∈ Ki and B ∈ Kj , then

(4.8) [a, b] = − (−1)
i·j

[b, a] .

63
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(3) [ , ] satisfies the graded Jacobi identity: if a ∈ Ki, b ∈ Kj , c ∈ Kk,

(4.9) (−1)
ik

[a, [b, c]] + (−1)
ij

[b, [c, a]] + (−1)
jk

[c, [a, b]] = 0 .

(1) We need to show that

(4.10) [(G1, ω) , G2] = sign (σ) [(G, σ (ω)) , G2] .

This is true by inspection.
(2) Now we check skew-symmetry. For a ∈ Ki and b ∈ Kj ,

(4.11) [G1, G2] = G1 ◦G2 − (−1)
degG1 degG2 G2 ◦G1

and

(4.12) [G2, G1] = G2 ◦G1 − (−1)
degG2 degG1 G1 ◦G2

so then

(4.13) − (−1)
degG1 degG2 [G2, G1] = [G1, G2]

tautologically.
(3) To check the graded Jacobi identity, the key observation is that every term appears

twice with opposite signs.

Exercise 0.1. Complete the verification of the graded Jacobi identity.

�

Now we have the graded Q vector space K•, endowed with a graded Lie bracket [ , ].
We use the Lie bracket to define a differential

(4.14) d : Ki → Ki+1

by

(4.15) d := [ ,−] .

Proposition 4.2. The graph complex K• with this differential d is a differential graded Lie
algebra (dgla).

Remark 4.1. A nice way of thinking of dglas is that they are Lie algebra objects in the
category of chain complexes (in this case, of Q vector spaces).

Proof. We need to show:

(1) d2 = 0, and

(2) for a ∈ Ki, d [a, b] = [da, b] + (−1)
i
[a, db].

The key observation is that every term appears twice with opposite sign. �

Exercise 0.2. Complete the verification of the required properties, by checking that
the signs do cancel.

Corollary 4.3. [ , ] induces a bracket on H∗ (K•).

Lecture 32; April
22, 2020
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1. Genus

Observation 1. The genus of the graphs G1 and G2 are given by

g (G1) = #E (G1)−#V (G1) + 1, and(4.16)

g (G2) = #E (G2)−#V (G2) + 1.(4.17)

Then we have:

g (Gϕ) = #E (G1) + #E (G2)−#V (G1)−#V (G2) + 1 + 1(4.18)

= g (G1) + g (G2) .(4.19)

In other words, the bracket is additive on genus:

(4.20) [ , ] : K•g1 ×K
•
(g2) → K•(g1+g2) .

Since the differential is bracket with a graph of genus 0, it preserves genus. So the chain
complex K• splits as a direct sum

(4.21) K• =
⊕
g

K•(g)

where K•(g) is generated by graphs of genus g.

2. Stability

Claim 4.1. (1) If G is stable then dG is a sum of stable graphs.
(2) If G is unstable then dG is a sum of unstable graphs.

Proof. (1) If G is stable, then consider

(4.22) dG = [ , G] .

This contained unstable terms in the naive expansion. But such terms will appear
with the opposite orientation. E.g. the two ways we can insert to get

(4.23) G .

We can also get vertices of valence 2. For every edge of G, we can get a vertex of
valence 2 by inserting a fixed vertex of at either of the vertices adjacent to
that edge. As it turns out, the signs are set up exactly so that these cancel.

(2) If G is unstable, then it has a vertex w of weight 0 and valence less than 3. Consider

(4.24) dG = [ , G] .

By inspection, every graph that appears is unstable.
�

Corollary 4.4. The complex K• splits as a direct sum

(4.25) K• ∼=
⊕
g

(
K•st

(g) ⊕K
•unst
(g)

)
,

where K•st
(g) and K•unst

(g) are generated by stable and unstable graphs, respectively, of genus g.
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3. Relationship to ∆g

Recall C• (∆g) splits as:

(4.26) C•
(
∆lw
g

)
⊕ C•

(
∆g,∆

lw
g

)
where the second summand is generated by stable graphs with no loops or weights. Now
taking duals of everything, we get a corresponding splitting of cochain complexes:

(4.27) C• (∆g) ∼= C•
(
∆lw
g

)
⊕ C•

(
∆g,∆

lw
g

)
.

Observation 2. There is a canonical isomorphism K•st
(g)
∼= C•

(
∆g,∆

lw
g

)
.

Also recall that ∆lw
g is contractible, so C•

(
∆lw
g

)
is acyclic. A similar argument shows

that K•unst
(g) is acyclic for g ≥ 2.

This means

(4.28) H∗ (∆g;Q) ∼= H∗K•(g)

for g ≥ 2.
Recall we have some interesting classes in H• (∆g;Q).

Example 4.1. Let g = 3. Then the three wheel:

(4.29) K4 = .

is in the kernel of the differential on C• (∆g) because every edge is contained in a triangle.
This lives in top degree C5(∆3), where the incoming differential is:

(4.30) d : 0→ C5 (∆3) 3
[ ]

.

In particular, [K4] is not in the image of d.

Alternatively, a cycle is nontrivial in homology if and only if there exists a cocycle which
pairs nontrivially with it. In this example. the cochain [K4] is itself a cocycle, which gives
another way of seeing that the cycle [K4] is nonzero in homology.

Claim 4.2. The class

(4.31)

[ ]
∈ H∗ (∆5;Q)

is nonzero.

In this case, the claim is not immediate from degree considerations. We seek a cocycle

in C∗ (∆5;Q) that pairs nontrivially with

[ ]
.

However,

[ ]
is not a cocycle itself, as was the case for [K4].

Lecture 33; April
27, 2020

As it turns out,

(4.32) d


 = 5


 .
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Next, one computes that:
(4.33)

d


 = + · · · = 2


+ · · · .

Moreover, each of the elided terms, which come from other ways of splitting the vertex of
valence 4 (which is unique mod automorphisms), is a graph with an automorphism that acts
by an odd permutation on the edge set. Hence all of the remaining terms are zero in K•.
As a consequence, we have:

(4.34) − 5

2




is a cocycle. Since [W5] appears with nonzero coefficient in this cocycle, we see that the
cycle [W5] is nonzero in homology.

Theorem 4.5. Write Wg for the g-wheel. Then [Wg] 6= 0 in H̃2g−1 (∆g;Q) for g odd.

Note that this implies there is a graph cocycle σ ∈ K2g
(g) such that σ (Wg) 6= 0. Finding

one with rational coefficients is an open problem. However, by the universal coefficients
theorem, to prove existence of such a cocycle it is enough to find such a cocycle in K2g

(g)⊗R
or ⊗C.

Proof sketch.

Idea 1 (Drinfeld, Kontsevich, Willwacher). Associate an integral on a configuration
space to each graph with g + 1 vertices and 2g edges.

Consider

(4.35) C =
{
z0, . . . , zg ∈ Cg+1 : Im (zi) > 0, zi 6= zj

}
/R>0,R

where R>0 acts is by scaling, and R acts by translation. This is a noncompact manifold of
dimension 2g.

Now we define

σ (G,ω) =

∫
C

∧
(vj ,vk)∈E(G)

1

i

d log (zj − zk)

zj − zk
(4.36)

=

∫
C

∧
(vj ,vk)∈E(G)

1

i

dzj − dzk
zj − zk (zj − zk)

(4.37)

=

∫
C

∧
(vj ,vk)∈E(G)

1

i

dzj − dzk
|zj − zk|

.(4.38)

Note that we wedge these 1-forms in the order given by the ordering ω. Then we have three
facts about this.

(1) This is obviously a graph cochain because of the properties of ∧.
(2) We also have dσ = 0. This follows from an application of Stokes theorem, and the

vanishing lemma of Kontsevich [K2, Lemma 6.4].
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(3) Finally, tricks from analytic number theory allow one to compute the integral and
conclude that:

(4.39) σ (Wg) ∈ πZ ·Q× · ζ (g)

where ζ is the Riemann ζ function. Since ζ is nonzero at positive integers, σ (Wg)
is nonzero, as required.

�

As a consequence, we have

(4.40) H̃2g−1(∆g;Q) 6= 0

for g odd. So

(4.41) H4g−6 (Mg;Q) 6= 0

for g odd and g ≥ 3. This is was not expected.

Conjecture 4 (Kontsevich [K1], Church-Farb-Putman [CFP2]).

(4.42)
⊕
g

H4g−4−k (Mg;Q)

is finite-dimensional for g � k.

Equivalently, the conjecture says that

(4.43) H4g−4−k (Mg;Q) = 0

for g � k, which we have shown to be false for all odd g.
We still want to discuss that stronger result that

(4.44) H4g−6 (Mg;Q) 6= 0

for g 6= 2, 4, 6; and that the dimension of H4g−6(Mg;Q) grows exponentially with g.
Lecture 34; April
29, 2020

Now we provide some motivation for the construction of

(4.45) σ : K2g
(g) → R

from (4.36),(4.37), and (4.38). Integrals associated to finite graphs have been studied for
decades under the guise of Feynman integrals. Roughly speaking, the idea from physics
is that we have unobserved particles which collide interact in all possible ways. Each in-
teraction is encoded in a (labeled) graph. The edges represent paths of particles through
space time, and the vertices are collisions or interactions. If we send two particles into a
chamber, then the theory tells us that a detector at the other side will register each possible
observation with a certain predictable probability:

(4.46) ? .

So now we compute the outcome by considering every possible way for particles to combine
in question zone, and hope it coincides with the observed phenomenon.

Each graph contributes a probability to each possible observed phenomenon. Feynman
expressed this contribution as an integral. In the early 2000s, people realized that these
Feynman integrals were related to algebraic geometry and number theory.

A basic object which comes up in the related algebraic geometry is the graph hypersur-
face XG, defined to be the following vanishing locus:

(4.47) XG = V (ψG)
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where ψG is the polynomial given by:

(4.48) ψG =
∑

spanning trees T

(∏
e∈T

xe

)
.

Digression 1 (Spanning trees). Recall that a tree is a connected graph of genus 0. A
spanning tree of a graph G is a tree that contains all vertices of G.

For instance, for

(4.49) G =

a spanning tree is given by:

(4.50) T = .

The number of edges in any spanning tree T is:

(4.51) #E (T ) = #V (G)− 1 .

How many spanning trees of are there of Kn? For n = 3, we clearly have 3. For n = 4,
we have

(
6
3

)
= 20 subgraphs with 3 edges, but they are not all spanning trees. We need to

subtract the loops, of which there are 4. So we get 16.

Exercise 3.1. Show that Kn has nn−2 spanning trees.

Fact 4. Choosing a base vertex v ∈ V (G) induces an abelian group structure on the
set of spanning trees. The isomorphism class of the group is independent of the choice of
base vertex, and this group is called the Jacobian of G, written Jac (G).

In fact, one can improve on the result stated in the exercise above as follows. The
Jacobian group of the complete graph Kn is:

(4.52) Jac (Kn) ∼= (Z/nZ)
n−2

.

This relates to algebraic geometry as follows. Write X for a semistable family of nodal
curves. Let G denote the dual graph of the central fiber. The general fiber Xη is a smooth
compact curve of genus g. This has Jacobian Jac (Xη) which is an abelian variety of di-
mension g. The Néron model given us a flat family of group schemes characterized by a
universal property. Then the Jacobian of the graph G is the component group of the special
fiber of the Néron model.

Now

(4.53) XG = V (ψG) ⊆ P#E(G)−1

and the degree is given by the genus

(4.54) deg (XG) = g (G) .

Now we observe that the Feynman integral (amplitude) of G is a “period” on a space related
to XG.

Digression 2 (Periods). Let X be a variety defined over Z (or Q). Now consider XC.
Now we can take integrals of closed algebraic differential forms with coefficients in Q over
singular cycle classes in H∗ (X,Z).
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Example 4.2. Let X be an elliptic curve, uniformized by the complex plane:

(4.55) X = C/ 〈1, τ〉 .

Then τ is a period, since we could take the algebraic differential form dz, and integrate over
the loop in X that is the image of the interval [0, τ ].

Conjecture 5 (Kontsevich). #XG (Fq) is a polynomial in q.

Note that one can recover

(4.56) dimQH
∗ (XC,Q)

from #XG (Fq) for q = pn, by the Weil conjectures (proved by Grothendieck and Deligne).
Having #X (Fq) be polynomial in q essentially means that the motive of X is of Tate

type, i.e., the space X is built inductively out of affine spaces. For instance Pn = Ant· · ·tA0

is of Tate type, as is every toric variety.
This conjecture was verified for graphs with up to 12 edges by Stanley and Stembridge

[S1,S2]. But it was shown to be false in general by Belkale-Brosnan [BB].
There is a well-known phenomenon that on varieties of Tate type, periods are often

multiple zeta values. And the integrals used to build a graph cocycle σ witnessing the
nontriviality of the cycle [Wg] are periods. In this context, it is somewhat less surprising
that σ (Wg) involves ζ (g).

This ζ-value (and multipole ζ values) appears as a period on X when H∗ (X,Q) includes
nontrivial extensions of Tate motives, i.e., multiple pieces of the weight filtration involve
shifts of the Hodge structure of affine space, and the weight filtration is not split, i.e., the
mixed Hodge structure does not decompose as a direct sum of Hodge structures of different
weights. We should therefore expect that there is some nontrivial extension of Tate motives
related to top weight cohomology of Mg. However, already for g = 3, we see that this
extension does not live in the cohomology of Mg, since H6(M3;Q) ∼= Q. Lecture 35; May 1,

2020
Theorem 4.6 (Willwacher [W]). The Lie subalgebra

(4.57)
∏
g

H2g
(
K•(g)

)
⊆
∏
g

H∗
(
K•(g)

)
is isomorphic to the Grothendieck Teichmüller Lie algebra GRT.

GRT is the Lie algebra associated to the pro-unipotent completion of

(4.58) π1

(
P1 \ {0, 1,∞}

)
= π1 (M0,4) ,

and is conjecturally closely related to the pro-unipotent completion of Gal
(
Q/Q

)
.

This group acts on M0,4, so it acts on

(4.59) πét
1 (M0,4)

so it acts on the group ring

(4.60) C
[
πét

1 (M0,4)
]

and this is expected to be faithful.

Theorem 4.7 (Hain [H1]). Let X be a variety. Q
[
πét

1 (X)
]

carries a canonical/functorial
mixed Hodge structure.
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Grothendieck proposed that there should be a category of motives, i.e., a geometrically
defined abelian category generated by classes of algebraic varieties that satisfies a universal
property with respect to Weil cohomology theories and explains the intricate airthmetic
and geometric relations among various algebraically defined cohomology theories. Then
this category of motives should come with a map to Galois representations and a map to
Hodge structures. The generalized Hodge conjecture says that the functor from motives to
Hodge structures should be fully faithful. Similarly, there should be a category of mixed
motives intimately related to mixed Hodge structures, and one might look for mixed motives
in the mixed Hodge structure on Q

[
πét

1 (X)
]
, for an algebraic variety X.

One of Grothendieck’s programs is to study the motives which appear in

(4.61) Q
[
πét

1 (Mg,n)
]
,

Theorem 4.8 (Brown [B]). The mixed Hodge structure on π1 (M0,4) generates the
category of mixed Tate motives over Z.

Recall we defined graph cocycles σg ∈ K2g
(g) via Feynman integrals. These cocycles

satisfy:

(4.62) 〈σg, [Wg]〉 6= 0

for g odd. Along with Theorem 4.8, the work of Brown and Willwacher shows that

(4.63) {σ3, σ5, σ7, σ9, . . .}

generate a free Lie subalgebra of GRT.
This is one half of the following conjecture.

Conjecture 6 (Deligne-Drinfeld-Ihara).

(4.64) Lie (σ3, σ5, σ7, σ9, . . .) ∼= GRT .

The consequence for us is that we have many new cohomology classes in

(4.65) H2g−1 (∆g;Q) ∼= H4g−6 (Mg;Q)
∨
,

coming from nontrivial Lie words in the generators σ3, σ5, . . . of this free Lie algebra.

Example 4.3. For instance,

(4.66) [σ3, σ5] =⇒ H4g−6 (Mg;Q) 6= 0

and

(4.67) [σ3, σ9] , [σ5, σ7] =⇒ dimH4g−6 (M12,Q) ≥ 2 ,

Lecture 36; May 4,
2020

As a consequence of the freeness of the Lie algebra generated by {σ3, σ5, . . .}, we imme-
diately get nonvanishing of H4g−6(Mg;Q) for even g ≥ 8.

Corollary 4.9. H4g−6 (Mg,Q) 6= 0 for g 6= 2, 4, 6.

Proof. For g odd we have [σg] 6= 0. For g even, g ≥ 9,

(4.68) [σ2, σg−3] 6= 0 ∈ H2g−1 (∆g;Q) .

�
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Now we show that

(4.69) dimH4g−6 (Mg,Q)

grows exponentially with g. It is enough to show that

(4.70) dimQ Lie 〈σ3, σ5, . . .〉g
grows exponentially with g.

For V any graded vector space, we have a Poincaré series

(4.71) fV (t) =
∑
n

dimVnt
n .

For

(4.72) V = 〈σ3, σ5, . . .〉
we get

fV (t) =
t3

1− t2
(4.73)

= t3 + t5 + t7 + . . . .(4.74)

We are interested in

(4.75) fLie(V ) =
∑

Ant
n ,

so we will estimate the integers An.

Digression 3 (Universal enveloping algebra). For any Lie algebra L, the universal
enveloping algebra is the universal unital associative algebra U (L) such that there is a
linear map

(4.76) L
ϕ−→ U (L)

which satisfies:

(4.77) ϕ ([x, y]) = ϕ (x)ϕ (y)− ϕ (y)ϕ (x) .

It is universal in the sense that for any unital associative algebra A′ and

(4.78) ϕ′ : L→ A′ ,

such that ϕ also satisfies (4.77), there is a unique map of unital associative algebras

(4.79) U (L)
ψ−→ A′

such that

(4.80) ϕ′ = ψ ◦ ϕ .

We will estimate the integers An by playing with two different descriptions of the uni-
versal enveloping algebra of the free Lie algebra U(Lie(V )).

Observation 3. (1) The universal property implies that

(4.81) U (Lie (V )) =
⊕
n≥0

V ⊗n .

(2) Poincaré-Birkhoff-Witt theorem: If {x1, x2, . . .} is an ordered basis for L, then

(4.82)
{
xb11 x

b2
2 . . . : n ≥ 0, bi ≥ 0

}
is a basis for U (L).
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This means that as a graded vector space,

(4.83) U (L) ∼= Sym• L .

In our situation, this means

(4.84) U (Lie (V )) = Sym• (Lie (V )) .

First we have

(4.85) fV (t) =
t3

1− t2
.

If we write An = dim Lie (V )n, we can write:

fU(Lie(V )) =
1

1− fV (t)
(4.86)

=
∏
n≥0

1

(1− tn)
An

.(4.87)

Now apply

(4.88) t
d

dt
log

to both sides to get

(4.89)
t3
(
3− t2

)
(1− t2) (1− t2 − t3)

=
∑
d≥0

dAd
td

1− td
.

Now the order of growth of the coefficients is controlled by the norm of the smallest pole.
The LHS has a unique smallest pole at:

(4.90) α ∼ 0.75488 . . . .

This means for

(4.91) β0 =
1

α
= 1.32 . . .

we can write

(4.92) p (t) =
∑
n

ant
n

where an → βn0 . Now we can perform Möbius inversion on

(4.93) an =
∑
d|n

d ·Ad

to get

(4.94) An =
1

n

∑
d|n

µ
(n
d

)
ad .

Now |µ(N)| ≤ N , and it follows that the d = n term dominates in the expression above,
and An grows faster than βn for any β < β0.
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