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1. Linear symplectic geometry

Definition 1. A linear symplectic form on a finite dimensional1 vector space V is
a bilinear form ω : V × V → R such that

(1) ω is skew-symmetric:

(1) ω (u, v) = −ω (v, u)

(2) ω is non-degenerate

(2) ∀v ∈ V, ω (u, v) = 0 =⇒ u = 0

A vector space (V, ω) is called a symplectic vector space.

Remark 1. The non-degenerate condition is equivalent to the map:

(3)
V V ∗

w (w̃ : v 7→ ω (u, v))

ω̃

being an isomorphism.

Example 1. The space R2n admits a standard symplectic form

(4) ωstd =

(
0 I
−I 0

)
In the standard basis {e1, · · · , e2n}. This can be written as a 2-form:

(5) ωstd =

n∑
k=1

dek ∧ dek+n

Example 2. Two vector spaces (V1, ω1) and (V2, ω2) are symplectomorphic if there
exists a linear isomorphism T : V1 → V2 such that T ∗ω2 = ω1. Here

(6) (T ∗ω2) (u, v) = ω2 (Tu, Tv)

Theorem 1. Any symplectic vector space (V, ω) admits a symplectic basis

(7) {x1, · · · , xn, y1, · · · , yn}
such that

ω (xj , yk) = δjk ω (xi, xj) = 0(8)

All error introduced are my own.
1We focus on finite dimensional symplectic geometry. One can of course do infinite dimensional

symplectic geometry, only this can look a bit different.
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Proof. This is somehow like the Gram-Schmidt process. Pick x1 ∈ V nonzero.
Since this is non-degenerate, there must be some y1 ∈ V such that ω (x1, y1) 6= 0.
Now rescale y1 to get ω (x1, y1) = 1. Now let V1 = Span (x1, y1). Then take the
symplectic complement:

(9) V ω1 = {u ∈ V | ∀v ∈ V1, ω (u, v) = 0}
Then the claim is the following:

Claim 1.1. V = V1 ⊕ V ω1
Warning 1. This is not true in general.

Let u ∈ V and write a = ω (u, x1) and b = ω (u, y1). Then

(10) u = (bx1 − ay1)︸ ︷︷ ︸
∈V1

+ (u− bx1 + ay1)︸ ︷︷ ︸
∈V ω

1

Now suppose u ∈ V1 ∩ V ω1 which implies u = ax1 + by1 which implies 0 =
ω (u, x1) = −b and 0 = ω (u, y1) = a which means u = 0. Together this implies the
claimed decomposition.

Now we can see that ω restricts to V ω1 as a symplectic form, so repeat this process
for V ω1 . Since V is finite dimensional, this will eventually stop. �

Corollary 1. If (V, ω) is a symplectic vector space, then there exists n such that
dim (V ) = 2n. Furthermore, (V, ω) is symplectomorphic to

(
R2n, ωstd

)
via

xk 7→ ek yk 7→ en+k(11)

2. Symplectic manifolds

Definition 2. Let M be a smooth manifold. Then a symplectic form on M is a
2-form ω ∈ Ω2 (M) such that

(1) ω is non-degenerate, that is, ωp : TpM × TpM → R is non-degenerate for
all p ∈M .

(2) ω is closed ( dω = 0)

Remark 2. (1) Nondegeneracy gives a bundle isomorphism

(12) ω̃ : TM → T ∗M

The point is that even though this is always an isomorphism (for example
by choosing a Riemannian metric) with a symplectic manifold, ω̃ gives a
differently flavored identification.

(2) Each tangent space is a symplectic vector space, so since these have to be
even dimensional, so does the manifold.

(3) Nondegeneracy is also equivalent to ω∧n being a volume form. Therefore a
symplectic manifold always comes with an orientation.

(4) Because ω is closed it defines a de Rham cohomology class ω ∈ H2 (M ;R).
Because we’re orientable and nondegenerate, we get that if M is closed
(compact, boundaryless) then [ω] 6= 0. This means there is no exact sym-
plectic form for closed M . However if M is noncompact, ω can be exact,
and this is a nice thing to study. In fact we can explicitly write:

(13) ωstd = −d
(

n∑
k=1

ek+ndek

)



AN INTRODUCTION TO SYMPLECTIC GEOMETRY. 3

Example 3. R2n is of course still a symplectic manifold.

Example 4. Consider the two-sphere:

(14) S2 =
{
p ∈ R3 ‖p‖ = 1

}
Now we can write the tangent space explicitly as:

(15) TS2 =
{
p1v ∈ R3 | ‖p‖ = 1, p · v = 0

}
and define

(16) ωp (u, v) = p · (u× v)

where × is just the cross-product in R3. Then this is in fact a symplectic form. To
see this is nondegenerate, we can notice that ωp (u, u× p) = 1. ω is closed because
S2 is two-dimensional and dω ∈ Ω3

(
S2
)
.

Note that the 2-sphere is the only symplectic sphere. That is, S2n admits no
symplectic form for n > 1. This is because the second cohomology is zero for all
such S2n.

Example 5. If Σg is a compact orientable surface of genus g, and ω is any area
form, it is certainly non-degenerate, and for the same reason as for the sphere, it is
closed.

Example 6. If Q is a smooth n-dimensional manifold, consider local coordinates
(q1, · · · , qn, p1, · · · , pn) for T ∗Q. We have a 1-form

(17) λ =

n∑
k=1

pkdqk

and therefore a 2-form ω = −dλ. If we think of α ∈ Ω1 (Q) as a map α : Q→ T ∗Q,
then λ is characterized by α∗λ = α. This is often called the tautological 1-form.
(T ∗Q,ω) is symplectic.

Example 7. We can always take products of symplectic manifolds. If (M,ωM )
and (N,ωN ) are symplectic, then (M ×N,−ωM × ωN ) is symplectic. Note that
ωM × ωN is also a symplectic form, but having the sign is better because of the
relationship with symplectomorphisms.

Definition 3. Two symplectic manifolds (M,ωM ) and (N,ωN ) are symplectomor-
phic if there exists a diffeomorphism ϕ : M → N such that ϕ∗ωN = ωM .

Theorem 2 (Darboux). Every point p ∈ M in a symplectic manifold (M,ω) has
a neighborhood U such that (I, ω|U ) is symplectomorphic to

(
R2n, ωstd

)
.

Remark 3. In Riemannian geometry, the analogous result certainly does not hold.
Riemannian geometry has local invariants like curvature (and maybe some global
invariants too) but the point is that symplectic manifolds have only global invari-
ants.

3. Hamiltonian vector fields

Recall gradient vector fields in Riemannian geometry. Let H : M → R be
a function. Then a metric g induces an isomorphism g̃ : TM → T ∗M and g̃ :
Γ (TM) → Γ (T ∗M) and then grad (H) = g̃−1 (dH). We then have an analogous
construction defined by

(18) XH = ω̃−1 (dH)
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Basic concepts 99

Hamiltonian flows

We now extend the concepts introduced in Chapter 1 to general symplectic
manifolds. For any smooth function H : M → R, the vector field XH : M → TM
determined by the identity

ι(XH)ω = dH

is called the Hamiltonian vector field associated to the Hamiltonian func-
tion H. If M is closed, the vector field XH generates a smooth 1-parameter
group of diffeomorphisms φtH ∈ Diff(M) satisfying

d

dt
φtH = XH ◦ φtH , φ0

H = id.

This is called the Hamiltonian flow associated to H. The identity

dH(XH) = (ι(XH)ω)(XH) = ω(XH , XH) = 0

shows that the vector field XH is tangent to the level sets H = const of H.

Example 3.1.7 As a simple example, take H : S2 → R to be the height function
x3 on the 2-sphere in Exercise 3.1.4. The level sets are circles at constant height,
and the Hamiltonian flow φtH rotates each circle at constant speed. In fact, in
cylindrical polar coordinates, XH is simply the vector field ∂/∂θ. Thus φtH is the
rotation of the sphere about its vertical axis through the angle t. (See Fig. 3.2.)
This flow is considered again at the beginning of Chapter 5 as an example of a
circle action. 2

H = x
3

Fig. 3.2. Rotating the sphere.

As in Section 1.1, a smooth function F ∈ C∞(M) is constant along the orbits
of the flow of H if and only if the Poisson bracket

{F,H} = ω(XF , XH) = dF (XH)

vanishes. Because ω is closed, the Poisson bracket defines a Lie algebra structure
on the space of smooth functions on M . The easiest way to prove this is to use
Lemma 1.1.18 together with Darboux’s theorem which is discussed in Section 3.2
below. Alternatively, one can use the following exercise.

Figure 1. Hamiltonian flow on S2 where H is the height function.

Just as gradH is orthogonal to level surfaces of H, XH is always tangent to level
surfaces. Just like the gradient flow we have a Hamiltonian flow. The one-parameter
semigroup of diffeomorphisms generated by XH , ϕHt is called the Hamiltonian flow
of H.

Example 8. Let’s consider
(
R2, dx ∧ dy

)
and the Hamiltonian H (x, y) = x2 + y2.

Then this yields XH = (2y,−2x) and then ϕHt rotates counter-clockwise about the
origin by t radians.

Example 9. On
(
S2, dθ ∧ dz

)
define H (θ, z) = z to be the height. Then Xh =

∂/∂θ, so we have ϕHt (θ, z) = (θ + t, z) as in fig. 1

4. Almost-complex structures

Definition 4. Let M be a smooth manifold, then an almost-complex structure on
M is a bundle endomorphism J : TM → TM such that J2 = − id. The pair (M,J)
is called an almost-complex manifold.

Remark 4. A proper complex manifold has holomorphic coordinate charts.

Let J (M) denote the space of all almost complex structures on M . If (M,ω)
is symplectic, we say that J ∈ J (M) is tamed by ω if ω (v, Jv) > 0 for all p ∈ M
and v ∈ TpM . This is like saying complex lines are positively oriented with respect
to the symplectic form.
J ∈ J (M) is called compatible with ω if it is tamed by ω and J gives a sym-

plectomorphism on each tangent space, that is, for all p ∈ M and all u, v ∈ TpM ,
we have ωp (Ju, Jv) = ωp (u, v). We write J (M,ω) for the space of ω-compatible
almost complex structures.

Theorem 3. J (M,ω) is nonempty and contractible for any symplectic manifold
(M,ω).

We won’t go through it here, but the proof establishes a one-to-one correspon-
dence between Riemannian metrics M and compatible almost complex structure.
That is for every Riemannian metric, we get a unique J ∈ J (M,ω), then the space
of Riemannian metrics is convex and contractible, so this is done.

Recall that a complex manifold M of complex dimension n is a smooth manifold
equipped with an atlas such that the local coordinate neighborhoods are identified
with Cn. So it must be even dimensional, and the transition functions for overlaps
are holomorphic functions.

Claim 3.1. If M is a complex manifold, then in charts, we get

(19) J0 =

(
0 −I
I 0

)
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for coordinates (x1, · · · , xn, y1, · · · , yn), so these local almost complex structures
paste together to make a global almost complex structure.

The converse is not true, and if J ∈ J (M) induces a complex structure then it’s
called integrable.

A Kähler manifold is a triple (M,J, ω) where (M,ω) is symplectic, and J is a
compatible almost complex structure. ω is called a Kähler form, and the Kähler
metric is

(20) g (u, v) = ω (u, Jv)

So Kähler manifolds always have a Riemannian structure.

Example 10. Our standard example
(
R2n, J0, ωstd

)
is a Kähler manifold.

Example 11. Complex projective spaces CPn are Kähler. The Kähler form ωFS

is called the Fubini-Study form. If ϕ : Cn+1 \ {0} → S2n+1 which maps z 7→ z/ |z|,
then wFS is the unique 2-form on CPn whose pullback under the projection

(21) Cn+1 \ {0} → CPn

is ϕ∗ (ωstd|S2n+1).

Proposition 1. A complex submanifold of a Kähler manifold is Kähler. The
Kähler form of this submanifold is just the restriction.

Corollary 2. Smooth complex projective varieties2 are Kähler.

Example 12. Any K3 surface is Kähler since it is a smooth complex projective
variety.

2 These are smooth manifolds arising as a zero-set of some homogeneous polynomials.


	1. Linear symplectic geometry
	2. Symplectic manifolds
	3. Hamiltonian vector fields
	4. Almost-complex structures

