
SEIBERG-WITTEN THEORY ON FOUR-MANIFOLDS

LECTURES BY FRANCESCO LIN
NOTES BY JACKSON VAN DYKE

1. The intersection form and motivation

Throughout, X will be a closed oriented smooth four-manifold. The intersection
form is a bilinear pairing

(1) QX : H2 (X,Z) /Tors⊗H2 (X,Z) /Tors = Zb2(X) → Z

which maps (α, β) 7→ (α ^ β) [X] since (α ^ β) ∈ H4 whereas [X] ∈ H4. We can
also think about this in the following slightly different way:

Theorem 1. Suppose α, α′ ∈ H2, and suppose we have some surface Σ representing
the Poincaré dual of α, PD [α] ∈ H2 and some surface Σ′ representing the Poincaré
dual of α′, PD [α′] ∈ H2. Then

(2) Q (α, α′) = # (Σ ∩ Σ′)

Example 1. We consider some preliminary examples:

(1) Consider S4, then we have H2 = 0, so QX = 0
(2) Consider S2 × S2 then H2 = Z⊕ Z, so

(3) QX =

(
0 1
1 0

)
(3) Consider CP2, then we have H2 = Z =

[
CP2

]
, so QX = [1].

(4) Now reverse the orientation to get CP2. We still have H2 = Z, but now
QX = [−1].

We now consider some preliminary properties of the intersection form

Theorem 2. (1) QX is unimodular, that is, it has determinant ±1.1

(2) Take X, X ′ then we remove a copy of D4 from both, and glue them together
to get X#X. This is called the connected sum. We have the following:

(4) QX#X′ = QX ⊕QX′

Example 2. If X = CP2#CP2, then we get the following intersection form:

(5) QX =

(
1 0
0 −1

)
Remark 1. The operation of taking ·#CP2 is what an algebraic geometer would
call blowing up as in fig. 1.

All errors introduced are my own.
1 This can be shown using Poincaré duality.
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Figure 1. The blowing up procedure.

Theorem 3 (Freedman). Let X, X ′ be smooth, and simply-connected. Then X is
homeomorphic to X ′ iff QX ∼= QX′ .

The proof of this theorem is very challenging.

1.1. Invariants coming from the intersection form. Consider the following
three invariants: the rank of QX , which is b2 (X), the signature of QX⊗R, which is
the number of positive eigenvalues minus the number of negative eigenvalues, and
the parity. This is even if QX (α, α) ∈ 2Z for all α, and otherwise QX is odd.

Example 3. So far we haven’t seen very many exciting intersection forms. As an
example, we offer the following:

(6) E8 =



2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 1 0 0 0
0 0 0 1 2 1 0 1
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 0
0 0 0 0 1 0 0 2


This is positive definite, even, and unimodular, with σ (Q) = 8.

Remark 2. We don’t typically see such positive definite things in low-dimensional
topology.

Theorem 4 (Donaldson). If X is smooth and the intersection form is positive
definite, then the intersection form is diagonal.

We will prove this later.

Corollary 1 (Donaldson-Freedman-Serre). Suppose X, X ′ are smooth and sim-
ply connected. Then X and X ′ are homeomorphic iff they have the same rank,
signature, and parity.

Our generic goal here is to construct infinitely many smooth 4-manifolds which
are homeomorphic but not diffeomorphic. To show these are homeomorphic we
will use the above theorem, and to show they are not diffeomorphic we will use
Seiberg-Witten (SW) theory.

Example 4. Consider the K3 surface:

(7)
{
x4

0 + x4
1 + x4

2 + x4
3 = 0

}
⊂ CP3
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Figure 2. The intersection of the solution sets of two degree 3 polynomials.

This is simply connected, that is π1 = 0, and has the following intersection form:

(8) QK3 = −2E8 ⊕ 3

(
0 1
1 0

)
This is even, has rank 22, and signature −16. This can be understood as an elliptic

fibration, that is, there is a nice map: K3 CP1 = S2π such that the generic

fiber is T 2. We will soon see that this is actually E (2).

Example 5. We can consider the even simpler example E (1). This is

(9) CP2#9CP2 → CP1

with a torus as its generic fiber. Explicitly, we can choose two degree 3 polynomials
p0 and p1 and look at their solution set as in fig. 2. We know that

(10) |{p0 = 0} ∩ {p1 = 0}| = 9

Now pick any t = [x0, x1] ∈ CP1, and we can look at the set {x0p0 + x1p1 = 0} =
{pt = 0}. In particular, for each x ∈ CP2 \{9 points }, there is exactly one t ∈ CP1

such that x ∈ {pt = 0}, so this yields a map

(11)
CP2 \ {9pts} CP1

x t s.t. x ∈ {pt = 0}

Note that {pt = 0} us a torus, because pt has degree 3. Now we can blow up the
nine points, and we get a well defined map

(12) CP2#9CP2 → CP1

so we do indeed have a fibration.

Such a torus fibration with some singular fibers might be drawn as in fig. 3.

Example 6. Let’s say we have two E (1) fibrations as in fig. 3. Then take a regular
fiber and a neighborhood D2 × T 2 for both fibrations, take the complements, and
glue them. Since E (1) \

(
D2 × T 2

)
are over D2, we have that the following is over

S2:

(13) E (1) \
(
D2 × T 2

)
∪ϕ E (1) \

(
D2 × T 2

)
This is called the fiber sum. Now we can define E (n) as the fiber sum of n copies
of E (1).
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Figure 3. Fibration for E (1).

Figure 4. Torus fibration with multiple fiber.

We now consider the Hopf fibration S3 → S2 where we regard

(14) S3 =
{

(z0, z1) ∈ C2 | |z0|2 + |z1|2 = 1
}

This is given by the S1 action λ · (z0, z1) = (λz0, λz1). Then we can compose:

(15) S3 × S1 S3 S2
πS3

to get a torus fibration with no singularities.
Alternatively we can consider the more complicated action pm : S3 → S2 given

by

(16) λ · (z0, z1) := (λz0, λ
mz1)

so there is a point with nontrivial stabilizer of order m. As before, we take the
product:

(17) S3 × S1 S3 S2pm

This is still a torus fibration, only now it has a singular fiber at some point which
is a multiple fiber. So the log transform E (n)p = E (n) fiber sum {pm}, so we get
fibers as in fig. 4. This changes the topology drastically.

Theorem 5. For fixed n, E (n)p are all homeomorphic, but not diffeomorphic under
some mild assumptions.

2. Forms and connections

The goal of this section, is to see why dimension 4 is special in differential
geometry. There are two main ingredients to this:
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(1) 2-forms are special on 4-manifolds
(2) 2-forms represent curvature

Let Xn be any smooth manifold. Then we have the de Rham complex:

(18) 0→ Ω0 (X)→ Ω1 (X)→ Ω2 (X)→ · · · → Ωn (X)→ 0

such that d2 = 0. In particular we can take homology, and de Rham’s theorem tells
us that the homology of such a complex is isomorphic to

(19)
⊕
i

Hi (X,R)

Of course a class can be represented by many actual forms. Hodge theory then
tells us that if our manifold comes with a Riemannian metric g, then we can find
canonical representatives for cohomology classes. The key input here comes from
linear algebra. So consider some n dimensional vector space (V, 〈·〉 , orientation),
then there is a hodge star, which is a map:

(20)
? : ΛkV Λn−kV

e1 ∧ · · · ∧ ek ek+1 ∧ · · · ∧ en
such that e1∧e2 · · ·∧ek∧· · ·∧en defines the right orientation. Intrinsically ? sends
the volume form of a k-subspace to the volume form of the orthogonal subspace.

Example 7. Take V = R3, then

?e1 = e2 ∧ e3 ?e2 = e3 ∧ e1 ?e3 = e1 ∧ e2(21)

Exercise 1. Check that ?2 : ΛkV → ΛkV which is (−1)
(n+1)/k

.

Now if we have any (Xn, g, oriented), then we have

(22) ? : Ωk (X)→ Ωn−k (X)

Now we can write the point-wise inner product in terms of ?

(23) 〈α, β〉 = α ∧ ?β
In particular, the L2 norm of a form is

(24) ‖α‖2L2 =

∫
X

α ∧ ?α

Now recall the differential:

(25) d : Ωk (X)→ Ωk+1 (X)

then the adjoint of d with respect to L2-inner product is

(26) d∗ = (−1)
n(k+1)+1

? d ?

That is, we have:

(27) 〈dα, β〉L2 = 〈α, d∗β〉L2

for every α ∈ Ωk−1 and β ∈ Ωk. This is effectively all we need on a formal level.

Exercise 2. Show this. Hint:

(28) 0 =

∫
d (β ∧ ?α)
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We say α is closed if dα = 0, and α is exact if α = dξ for some ξ. We also say β
is co-closed if d∗β = 0 and β is co-exact if β = d∗η for some η.

Theorem 6 (Hodge). There is an L2-orthogonal decomposition into the exact,
co-exact, and harmonic forms:

(29) Ωk = d
(
Ωk−1

)
⊕ d∗

(
Ωk+1

)
⊕Hk

where

(30) Hk := ker (d+ d∗)

Note that Hk provides canonical representatives for Hk (X,R). It is not hard to
see that everything is orthogonal, The hard part is to see that they span. The idea
behind it is that the operator d + d∗ is a very nice operator. In particular, if we
take (d+ d∗)

2
= dd∗+ d∗d = ∆ this is called the Hodge Laplacian. It is called this

because in local coordinates,

(31) ∆ = − ∂2

∂x2
1

− · · · − ∂2

∂x2
n

+ lower order terms

Here we would have to use tools from elliptic PDEs.
Another way to think about the representative is as the minimizer of 〈α〉L2 within

the cohomology class.
On a four-manifold, we notice that ?Ω2 = Ω2 and ?2 = 1. This means we can

decompose into the positive and negative eigenspaces Ω2 = Ω+ ⊕ Ω− since

Ω+ = Span 〈 dx1 dx2 + dx3 dx4 , dx1 dx3 + dx4 dx2 , dx1 dx4 + dx2 dx3 〉 .
We are familiar with this behaviour in dimension 4. For example the alternating
group An is simple iff n ≥ 5 or n = 4. Similarly the adjoint representation of so (n)
is irreducible for n 6= 4, since

(32) so (4) ∼= so (3)⊕ so (3)

We can also decompose H2 into self dual harmonic 2-forms and anti-self-dual
harmonic 2-forms:

(33) H2 = H+ ⊕H−

Then in this context we have QX on H2 (X.Z) /Tors, and the nice thing is that
QX ⊗ R on H2 (X,R) will just be

(34) Qx (α, β) =

∫
α ∧ β

If d ∈ H+, then

(35) QX (α, α) =

∫
α ∧ α =

∫
α ∧ ?α = ‖α‖2L2 > 0

which implies QX is positive definite on H+, and similarly QX is negative definite
on H−. This implies that σ (X) = dimH+ − dimH−

Exercise 3. Consider some X4, then we have the complex:

(36) 0 Ω0 (X) Ω1 (X) Ω+ (X) 0d d+

Show d+ = πΩ+ ◦d has homology R, H1 (X;R), H+ (X). [Hint: What is the adjoint
of h+?]
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Figure 5. Parallel transport.

2.1. Connections on bundles. First consider a complex vector bundle:

(37)
E

X

Then a connection takes sections of your bundle, and gives you a 1-form:

(38) ∇ : Ω0 (E)→ Ω1 (E)

In particular, it must satisfy the following properties:

(1) ∇fXs = f∇Xs
(2) ∇Xfs = df (s)⊗ s+ f∇Xs

We write ∇Xs to denote ∇s evaluated at X. In fig. 5 we can see how the parallel
transport process maintains that ∇s = 0 along the path, and in doing so maintains
that a given vector stays parallel in an infinitesimal sense.

Remark 3. If ∇ is a connection, then any other connection is of the form ∇ + a
where a ∈ Ω1 (End (E)).

A natural object associated with a connection is the curvature. The curvature
of a connection ∇ is an object F∇ ∈ Ω2 (End (E)) defined by

(39) F∇ (X,Y ) = ∇X∇Y s−∇Y∇Xs−∇[Y,X]s

where X and Y are vector fields. This is meant to measure how far parallel trans-
ports are from being commutative.

Remark 4. If E is a unitary bundle (that is it has a hermitian metric) then we can
consider connections preserving the metric, meaning parallel transport preserves
length. These hermitian connections are in affine space over Ω1 (u (E))

(40) F∇ ∈ Ω2 (u (E))

As it turns out, we can use the curvature to recover the global invariants of
E → X. This is called Chern-Weil theory. In particular, the Chern classes
ci ∈ H2i (X,Z). Pick some connection ∇ on E, then take the curvature F∇ ∈
Ω2 (End (E)). Now fix a local basis of E, and F∇ is a two-form with values in
matrices, which is the same as a matrix of 2-forms. This is well defined up to con-
jugation. Now pick a degree k polynomial p : gl (n;C) → C which is conjugation
invariant, and then we can evaluate it on this matrix of two-forms. This gives us
that p (F∇) is a well defined element of Ω2k (X,C).
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Theorem 7. p (F∇) is closed, so in particular, it defines a cohomology class. In
addition, this class [p (F∇)] ∈ H2k (X,C) is independent of ∇. In particular, if we
pick p to be

(41) p (X) = i (2π)
−k

tr
(
ΛkX

)
then you get the Chern classes ck (E).

This is quite general, but we will effectively just use the case that L → X is a
vector bundle and i/2πF∇ is a closed 2-form representing c1 (L).

3. Spinors and Dirac operators

Recall we have this Hodge laplacian ∆ = (d+ d∗)
2
. This was the negative sum

of second derivatives along with some lower terms. Let’s attempt to write this
without lower order terms:

(42) ∆ = − ∂2

∂x2
1

− · · · − ∂2

∂x2
n

=

(
a1

∂

∂x1
+ a2

∂

∂x2
+ · · ·+ an

∂

∂xn

)2

where we are naively attempting to rewrite this as the square of something. We
can of course write this is

(43) a2
1

∂2

∂x2
1

+ (a1a2 + a2a1)
∂

∂x1

∂

∂x2
+ · · ·

which leads to

a2
1 = −1 aiaj + ajai = 0(44)

for i 6= j. These are the relations which define the Clifford algebra.

Example 8. For n = 1, a2
1 = −1 is the only condition, so we need C.

Example 9. For n = 2, we require a2
1 = a2

2 = −1 and a1a2 + a2a1 = 0 so we need
the quaternions H.

Exercise 4. Show that for n = 3 we need H⊕H.

Consider an inner product space (V, 〈〉). Then the Clifford algebra is

(45) Cl (V, 〈〉) = T (V ) / {v ⊗ v = −〈v, v〉}

where we recall the tensor algebra

(46) T (V ) =
⊕

V ⊗n

Note that this implies

(47) v ⊗ w + w ⊗ v = −2 〈v, w〉

Remark 5. Cl (V, 〈〉) is very closely related to Λ∗V which was just

(48) Λ∗V = T (V ) / {v ⊗ v = 0}

We can think of the Clifford algebra as some sort of alternative operation on the
exterior algebra.
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The Clifford algebra has the following natural filtration f

(49) R ⊆ R⊕ V ⊆ R⊕ V ⊕ (V ⊕ V )

which allows us to consider the associated graded algebra:

(50) Grf (Cl (V, 〈〉)) = Λ∗V

We can think of Cl (V, 〈〉) as a new product structure on Λ∗V where

(51) v · (v1 ∧ · · · ∧ vk) = v ∧ v1 ∧ · · · ∧ vk − iv (v1 ∧ · · · ∧ vk)

where the second term, a contraction, is new. This is called the Clifford multipli-
cation. The first term is in Λk+1V and the second is in Λk−1V .

Remark 6. Cl (V, 〈〉) is a Z/2Z graded algebra, so it makes sense to say even or
odd. This is what physicists call super-symmetry.

Definition 1. A Clifford module S is a module over a Clifford algebra. That is, a
vector space with an action ρ of Cl (V, 〈〉) on S.

Remark 7. By the universal property, to check that S is a Clifford module, we just
need to check

ρ (v) · (ρ (v) · s) = −〈v, v〉 · s(52)

for all vectors. We don’t need to check for everything in the Clifford algebra, which
is huge. For a vector of length one, this means it somehow squares to −1. So this
is somehow related to how many complex structured we have. That is, if S is a
module over a Clifford algebra, then there are many compatible almost-complex
structures.

All we’ve really done is linear algebra2 So now let’s globalize to a Riemannian
manifold (M, g). So if we have a bundle (TM, g) → M , this gives us a bundle of
Clifford algebras Cl (TM)→M .

Definition 2. A Clifford bundle is a hermitian bundle

(53)
S

M

equipped with a connection ∇, where S is a bundle of Clifford modules with an
action ρ of Cl (TpM) on Sp along with the following compatibility:

(1) The Clifford action of each vector v ∈ TmM on Sm (the fiber at m) is
skew-adjoint, that is, (v · s1, s2) + (s1, v · s2) = 0

(2) ∇SX (ρ (Y ) · s) = ρ (∇XY ) s+ ρ (Y ) · ∇SXs

Example 10. We know Cl acts on the exterior algebra, so it is a module over it,
so let’s globalize this. This gives us that Cl (TM, ρ) acts on Λ∗TM ⊗ C.

Definition 3. So if S is a Clifford bundle, then the Dirac operator is the compo-
sition:

(54) Γ (S) Γ (T ∗M ⊗ S) Γ (TM ⊗ S) Γ (S)∇S # ρ

where Γ (S) denotes the sections of our bundle.

2 That is, differential geometry over a point.
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Locally, the Dirac operator looks like

(55) DS =
∑

ρ (ei)∇SeiS

Exercise 5. Check that D2 looks like a Laplacian, that is, the first order term is
the negative sum of second derivatives.

Example 11. The Dirac operator of Cl (TM, ρ) acting on Λ∗T ∗M is just d + d∗.
Λ∗T ∗M splits as Ωeven ⊕ Ωodd and d+ d∗ respects this splitting. We should think
of this operator as moving between these two parts.

Example 12. Now we can pick more interesting Clifford modules. Consider n = 2.
We have seen that Cl

(
R2
)

= H. We can just take S = H where this acts on itself.
Now write H = C⊕ jC, so we have

ρ (e1) =

(
0 −1
1 0

)
= σ2 ρ (e2) =

(
0 −i
−i 0

)
= σ3 ρ (e1e2) =

(
i 0
0 −i

)
= σ1

(56)

These are the famous Pauli matrices, which form a basis for the traceless skew-
hermitian matrices su (2).

Example 13. Let’s consider X = R2. Then the Dirac operator is:

(57) D = e1∇e1 + e2∇e2 =

(
0 − ∂

∂xi
− i ∂

∂x2
∂
∂x1
− i ∂

∂x2
0

)
=

(
0 −2∂̄

2∂ 0

)
We have our trivial bundle H → R2, and this splits as C ⊕ jC → R2, and the D
respects this decomposition. In particular, D sends one component to the other.
The two objects in this decomposition are what are called the half-spinor bundles.

Example 14. We are after all interested in 4-manifolds, so we consider such an
example now. Consider the Clifford algebra Cl

(
R4, 〈〉

)
which acts on some S, where

rankC S = 4. So if we pick a basis e0, e1, e2, e3, in order to specify D we only need
to specify how it acts on this basis. We specify:

ρ (e0) =

(
0 −I2
I2 0

)
ρ (ei) =

(
0 −σ∗i
σi 0

)
(58)

where σ∗i is the hermitian adjoint, so we transpose and conjugate.

Definition 4. A spinc structure C on X4 is a Clifford bundle S → X4 for which
Cl (TX) acts on S via ρ is the one we just saw.

It is not obvious, but they do exist.
In general, S → X splits as S+ ⊕ S− → X, and the Dirac operator splits as

(59) Γ (S+) Γ (S−)

D+

D−

D+ and D− are L2 adjoint to each other.

Theorem 8. D+ is first order, elliptic,3 and self adjoint.

3 This is nice from the point of view of analysis. In this context it just means D+s = 0 implies
s ∈ C∞, and dim kerD+ dim cokerD+ are both finite.
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Once we know these are finite, we can define the index of the operator, which is

(60) indD+ := dim kerD+ − dim cokerD+ ∈ Z

By the Atiyah-Singer index theorem, we can compute this index in topological
terms:

(61) indD+ =
1

8

(
c21
(
S+
)
− σ (X)

)
Exercise 6. (1) What is the index of

(62) d+ d∗ : Ωeven → Ωodd

(2) Find a natural operator on forms with index σ (X).

Fact 1. If (S, ρ) is a spinc structure, then (S ⊗ L, ρ⊗ idL) is also a spinc structure.

4. Seiberg-Witten equations

Recall that a spinc structure s is S = S+ ⊕ S− → X where rankC S = 4 is
Hermitian, and

(
X4, g

)
is a Riemannian metric.

An action of Cl (TX, g) acting on S is a Clifford module structure. If we pick an
orthonormal basis e0, e1, e2, e3 then

ρ (e0) =

(
0 −I2
I2 0

)
ρ (ei) =

(
0 −σ∗i
σi 0

)
(63)

Associated to s are two kinds of objects

(1) Φ ∈ Γ (S+), called a spinor
(2) A = ∇A, which is a spinc connection, which is a connection making S → X

into a Clifford bundle. That is,

(64) ∇AX (ρ (Y ) · Φ) = ρ (∇XY ) · Φ + ρ (Y ) ·
(
∇AXΦ

)
where ∇X is the Levi-Civita connection.

Suppose A and A′ are spinc connections. Recall that these are unitary, so they
preserve the metric on S, so their difference A−A′ = ã ∈ Ω1 (U (n)). Indeed even a
stronger statement is true because they actually preserve the Clifford multiplication,
so we get

(65) A−A′ = a⊗ idS

where a ∈ Ω1 (iR), so they are diagonal. This is somehow a much simpler ob-
ject. Often times it is convenient to study the connection induced by A on the
determinant line bundle detS+ = Λ2S+ which we will call At.

(66) A−A′ = a⊗ idS ; At −At′ = 2a

so we end up just working with 1-forms.

4.1. The equations. Consider pairs (A,Φ). We will consider the space C (X, s)
of all such pairs. This is an affine space over Ω1 (iR) × Γ (S+). There are two
Seiberg-Witten (SW) equations. The first one is:

(67) D+
AΦ = 0
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For the second one, we need a nice observation. For the metric, we have the action
of T ∗X on S using the Clifford multiplication. We can extend this to forms Λ∗T ∗X,
and the formula is just

(68) ρ (α ∧ β) =
1

2

(
ρ (α) ρ (β) + (−1)

|α|+|β|
ρ (β) ρ (α)

)
Exercise 7. Show that ρ sends the self dual forms to su (S+):

(69) ρ : Ω+ → su
(
S+
)
⊆ End (S)

So End (S) is all matrices, and then if we have a self-dual form, we get something
of the form

(70) ρ
(
ω+
)

=

(
A 0
0 0

)
where A is traceless and skew-hermitian.

If we have Φ ∈ Γ (S+), we can take the traceless part (ΦΦ∗)0 ∈ isu (2). If we
have a basis such that

(71) Φ =

(
α
β

)
then

(72) ΦΦ∗ =

(
α
β

)(
α β

)
=

(
|α|2 αβ

αβ |β|2
)

(73) (ΦΦ∗)0 =

(|α|2 + |β|2
)
/2 αβ

αβ
(
|β|2 − |α|2

)
Now we have ρ−1 ((ΦΦ∗)0) ∈ iΩ+ and the second Seiberg-Witten equation is as
follows:

(74)
1

2
F+
At = ρ−1 ((ΦΦ∗)0)

All together, we pick ω ∈ iΩ2 (X), and then the SW equations are

(75) Fω (A,Φ) = 0

(76)

{
D+
AΦ = 0 ∈ Γ (S−)

1
2ρ
(
F+
At − 4ω+

)
= (ΦΦ∗)0 ∈ isu (S+)

These equations have a lot of symmetries. The gauge group is

(77) G (X, s) =
{
u : X → S1

}
which acts on C (X, s).

(78) u · (A,Φ) =
(
A− u−1du, u · Φ

)
where A is the pullback connection, and u−1du is in iΩ1.

Exercise 8. If Fω (A,Φ) = 0, then Fω (u · (A,Φ)) = 0.
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The moduli space of solutions is

(79) Mω,g (X, s) = {(A,Φ) | Fω (A,Φ) = 0} /G (X, s)

under good circumstances, this is a smooth manifold.
This action of G on C is very nice. In particular, if we have a configuration there

are only two possible stabilizers. That is, if Φ is not identically zero at some point,
then the stabilizer of any configuration of the point A,Φ is trivial:

(80) Stab (A,Φ) = {1}
These are called irreducible configurations. On the other hand, if Φ ≡ 0, then

(81) Stab (A, 0) = S1

which is constant u : X → S1. These are called reducible points. The action is not
free here, so it is somehow not a good point.

We now consider some properties of this moduli space.

Fact 2. Mω,g (X, s) is compact.

Remark 8. This is what makes SW theory somehow global, because we don’t have
to do any extra work to get compactness. This is somehow a miracle. If we change
signs in these equations, this compactness fails miserably.

The following is a key formula in SW theory:

Theorem 9 (Weitzenböck formula).

(82) D−AD
+
AΦ = ∇∗A∇AΦ +

1

2
ρX
(
F+
At

)
Φ +

1

4
sΦ

where s is the scalar curvature of X.

So when are there reducible solutions (A, 0) to the SW equations? Well of course
when the spinor is zero, we have that

(83) Fω,g (A, 0) ⇐⇒ F+
At = 4ω+( identity on iΩ+

Suppose I have k closed and self-dual, then this is also coclosed, so it is harmonic,
k ∈ H+. Then we can calculate∫

X

4ω ∧ k =

∫
4ω+ ∧ k = 4

∫
F+
At ∧ k =

∫
FAt∧ = 5

(
2π

i
c1
(
S+
)
u [k]

)
[X]

which means if b+2 ≥ 1, then we have a nontrivial fiber constraint on ω for the
existence of reducible solutions. Recall b+2 = dimH+, the number of positive
eigenvalues in QX .

Fact 3. For ω outside of a codimension b+2 subspace Fw,g (A,Φ) has no reducible
solutions.

Fact 4. For generic ω as above, Mω,g (X, s) is a smooth manifold of dimension

(84) d =
1

4

(
c21
(
S+
)

[X]− 2χ− 36
)

Proof.

(85) 2 indCD
+
A + ind

(
d∗ + d+ : Ω1 → Ω0 ⊕ Ω+

)
�

4By SW equations
5By Chern-Weil theory
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Figure 6. The reducible solutions, and ω0, ω1 on either side of them.

5. SW invariants

Suppose we are in the simplest case in which d = 0. Then Mωg (X, s) is a 0
dimensional compact manifold, so it has a finite number of points, all of which are
oriented. Then the SW invariant is

(86) SWωg (X, s) = #Mωg (X, s)

counted with sign.

Fact 5. If b+2 (X) ≥ 2, then SWωg (X, s) is independent of (ω, g).

As in fig. 6 we can find a path from any irreducible ω1 to irreducible ω2 without
touching a reducible ω.

Since SW (X) is a well-defined invariant, we have that spinc (X), the collection
of spinc structures, is an affine space over H2 (X,Z).

Now we want to compute the SW invariant in explicit examples using the un-
derlying geometry.

5.1. Positive scalar curvature. Recall the following formula from theorem 9:

(87) D−AD
+
AΦ = ∇+

A∇AΦ +
1

2
ρX
(
F+
A+

)
Φ +

s

4
Φ

we now consider some Clifford bundle
(
S, 〈〉 ,∇S

)
→ X, and D the Dirac operator.

Then we have the following:

Fact 6.

(88) D2s = ∇∗∇s+Ks

where ∇∗ is the adjoint of ∇ : Ω0 (S)→ Ω1 (S), and K is the curvature form.

Remark 9. The interpretation here is that the curvature controls the difference
between Ds = 0 (harmonic spinors) and ∇s = 0 (parallel spinors).

Proof. Fix a frame with e1, · · · , en such that ∇eiej = 0 at p. Then

(89) Ds =
∑
i

ei∇eis
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so we have

D2s =
∑
i,j

ej∇Sej
(
ei∇Seis

)
(90)

=
∑
i,j

ej

(
����∇ejeis+ ei∇Sej∇

S
eis
)

(91)

=
∑
i

e2
i∇Sei∇

S
eis+

∑
i 6=j

eiej∇Sei∇
S
ejs(92)

= −
∑
∇Sei∇

S
eis+

∑
i<j

eiej

(
∇Sei∇

S
ej −∇

S
ej∇

S
ei

)
s(93)

= ∇∗∇s+Ks(94)

�

Suppose (X, g) has s > 0. Pick (A,Φ) a solution to the unperturbed equations.
We know D+

AΦ = 0 from the first SW equation, which implies

(95) 0 = D−AD
+
AΦ = ∇∗A∇AΦ +

1

2
ρ
(
F+
At

)
Φ +

5

4
Φ

so now take the inner product with Φ to get

0 = 〈∇∗A∇AΦ,Φ〉L2 +

〈
1

2
ρ
(
F+
At

)
Φ,Φ

〉
L2

+

〈
5

4
Φ,Φ

〉
L2

(96)

= ‖∇AΦ‖2L2 +
1

4
‖Φ‖4L4 +

1

4

∫
S |Φ|2 ≥ 0(97)

where we have used:

Exercise 9. Show that since 1
2ρ
(
F+
At

)
= (ΦΦ+)0, we have that

〈
1
2ρ
(
F+
At

)
Φ,Φ

〉
L2 =

1
4 ‖Φ‖

4
L4 .

This means Φ = 0, so every solution is reducible, so SW ≡ 0 for positive scalar
curvature, modulo adding a tiny ω as perturbation.

Remark 10. In general, scalar curvature somehow gives bounds for solutions to the
SW equations.

5.2. Kähler surfaces. A Kähler surface is a complex manifold (X, g) with a com-
patible symplectic form. For example projective surfaces are Kähler. It is somehow
the case that on a Kähler manifold, gauge theoretic objects correspond to holomor-
phic objects.

Let X be a compact smooth 4-manifold. An exceptional sphere in X is an
embedded 2-sphere with self-intersection number S ·S = −1. If (X, J) is a complex
surface, then a submanifold S ⊂ X is called an exceptional divisor if it is an
exceptional sphere and a holomorphic curve. A complex surface (X,J) is called
minimal if it does not contain any exceptional divisor.6

Definition 5. A minimal Kähler surface is said to be of general type iff the canon-
ical class K = −c1 (TX, J) satisfies K ·K > 0 and K · ω > 0.

6 We can also define an exceptional symplectic sphere, which is a submanifold of X which is

an exceptional sphere, and a symplectic manifold. Then a symplectic 4-manifold is minimal if it
does not contain any exceptional symplectic spheres. This is somewhat unnecessary here because

Kähler manifolds are of course both complex and symplectic.
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Theorem 10. If X is Kähler and b+2 ≥ 2, then the SW invariants (evaluated in the
canonical spinc structure) are SW (X, kX) = 1. In addition, if we pick X minimal
of general type, then SW (X, s) = 0 for s 6= ±kX .

In general, for (X,J), we have that J2 = −1 and J being orthogonal leads to a
spinc structure.

Remark 11. From the principal bundle viewpoint, this is because there exists a
natural embedding U (n)→ spinc (2n).

Example 15. Any surface {xn0 + . . .+ xn3 = 0} ⊆ CP3 for n ≥ 5 is such an exam-
ple.

Both SW equations have a very natural description on a Kähler manifold. There
are two main ingredients here. First is the spinor bundle, and the second is that
self-duality also interacts well with the Kähler structure. We can write this very
explicitly:

(98) Ωn ⊗ C =
⊕
p+q=n

Ωp,q

where we have:

zi = xi + iyi dzj = dxj + idyj dzi = dxj + idyj(99)

For example, on a 4-manifold which is Kähler, we have

(100) Ω2 ⊗ C = Ω2,0 ⊕ Ω1,1 ⊕ Ω0,2

where

Ω2,0 = Span {dz1 ∧ dz2}(101)

Ω1,1 = Span {dz1 ∧ dz1, dz1 ∧ dz2, dz2 ∧ sz1, dz2 ∧ dz2}(102)

Ω0,2 = Span {dz1 ∧ dz2}(103)

Now the second ingredient is that the self-duality interacts well with the Kähler
structure:

(104) Ω2 ⊗ C = Ω+ ⊗ C⊕ Ω− ⊗ C
where

(105) Ω+ = Span {dx1 ∧ dy1 + dx2 ∧ dy2, · · · }
and these are both two dimensional.

Lemma 1.

(106) Ω+ ⊗ C = Ω2,0 ⊕ Ω0ω ⊕ Ω0,2

(107) Ω− = Ω1,1
0

is pointwise orthogonal to ω.

Note that here we have:

(108) ω = dx1 ∧ dy1 + dx2 ∧ dy2 =
i

2
(dz1 ∧ dz1 ∧ dz̄2) ∈ Ω1,1

We can see holomorphic objects coming out of this directly. This leads to imag-
inary valued self dual forms, for example

(
F+
At

)
. We can write them directly as

ifω + µ− µ, where f ∈ C∞ and µ ∈ Ω0,2.
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Fact 7. A connection At on a line bundle has F 0,2
At = 0 iff it determines a holo-

morphic structure on the line bundle.

Then you can just ask an algebraic geometer.
For any line bundle L0 we have

S+ = Ω0,1 (L0) S− = Ω0,0 (L0)⊕ Ω0,2 (L0)(109)

and then DA = ∂
∗
A + ∂A. This shows that the solutions to the Dirac equation

become some sort of holomorphic sections of your line bundle.

5.3. General symplectic manifolds. We now consider arbitrary symplectic 4-
manifolds.

Theorem 11. Let X be a symplectic manifold such that b+2 ≥ 2. Then SW (X, kX) =
1 where kX is the canonical spinc structure. We also get constraints on the classes
for which SWX (s) 6= 0.

To see what the constraints are explicitly, see [1].

Exercise 10. We know the symplectic form is locally dx1 ∧ dx2 + dx3 ∧ dx4. Show
there is a compatible metric7 such that ω is self-dual.

The key idea here is that we have the SW equations

(110)

{
1
2ρ
(
F+
At − 4ω+

)
= (ΦΦ∗)

D+
AΦ = 0

Now pick a large perturbation of the form FAt
0

+ itω for some At0. And for t� 0,
then there is exactly one solution to the SW equations.

6. Gluing and Floer homology

6.1. Initial constructions. Recall we wanted to compute the SW invariants of
these elliptic surfaces E (n)p,q, where the picture was as in fig. 3. This involved
gluing spaces together, and then studying how the topology is changed by this
process. We will now study this more closely.

Let X be such that b+2 ≥ 2. For s a spinc structure, we have defined SW (X, s) ∈
Z. For h ∈ H2 (X,R), we can define

(111) m (X,h) =
∑

s∈spinc(X)

SW (X, s) e〈c1(S),h〉 ∈ R

We can also view it as a function on H2, where we are pairing a class in cohomology
with a class in homology. There are only finitely many nonzero SW, so this sum
is well defined. In our case H2 has no torsion, so we aren’t losing any information
when we take this sum.

Example 16. Let X be the K3 surface E (2). In this case

(112) SW (X, s) =

{
1 s = kx (c1 = 0)

0 o/w

Then taking the above sum, we get

(113) m (e (2) , h) ≡ 1

7 In the sense that ω (·, ·) = g (·, J)
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Figure 7. Splitting X into two submanifolds X1 and X2 each
with Y as their boundary.

Figure 8. Subtracting T 2×D2 from E (n) and E (m) to get Ê (N)

and Ê (m).

Theorem 12. For n ≥ 2, (p, q) = 1, we have an explicit formula for the SW
invariants:

(114) m
(
E (n)p,q , h

)
= 2n−1 sinh (F · h)

n

sinh (F · h/p) sinh (F · h/q)
where F is the class of the fiber.

Note that the multiplication F · h is the intersection product.
Consider some 4-manifold X, then split this up with some 3-manifold Y as in

fig. 7. The general picture here is that we would like to assign some vector space
(HM (Y ) , 〈〉) to Y . Then since X1 has Y as its boundary, we want to associate
some element ψXi ∈ HM (Y ) to Xi such that m (X1 ∪Y X2, h) = 〈ψX1 , ψX2〉. This
is of course just a heuristic, we will need to somehow decorate these things with
cycles.

In general, the reduced Floer homology HM (Y ) does this under favorable con-
ditions.

Example 17. To obtain E (n+m), since this is the fiber sum E (n) #E (m) we
cut out a copy of T 2×D2, and we get a manifold with boundary as in fig. 8. where

(115) Ê (n) = E (n) \ T 2 ×D2

(116) Ê (m) = E (m) \ T 2 ×D2

so these both have ∂ = T 3.

We will first define this reduced Floer homology group for S3, and see the fol-
lowing theorem:

Theorem 13. HM
(
S3
)

= 0

Corollary 2. If X = X1#X2 with b+2 ≥ 1, then SW (X, s) ≡ 0.
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Figure 9. (Left) Some manifold with boundary T3. We have a
nontrivial loop η inside of T 3, and a 2-chain νi such that ∂νi = η.
(Right) Two submanifolds with shared boundary.

Figure 10. Potential glueings of four manifolds with the same boundary.

In the case of T 3, we need to do something a bit more complicated. We want to
form

(117) HM
(
T 3,Γη

)
where Γη is some collection of local coefficients. Just choose any nontrivial [η] ∈
H1 (T,R), then the key computation is that HM

(
T 3,Γη

)
= R, and 〈〉 is just the

product .
Now suppose we have some manifold with T3 as the boundary. Then inside of

T 3, we have this nontrivial loop η, and then inside Xi, we have a two-chain νi
such that ∂νi = η as in fig. 9. Something like this defines an element in the Floer
homology of the boundary. We will denote this ϕxi,νi ∈ HM

(
T 3,Γη

)
.

Theorem 14. m (X1 ∪Y X2, ν1 ∪ ν2) = ψX1,ν1 · ψX2,ν2

6.2. Excision principle. If we have four manifolds X1, X2, X3, X4, all with the
same boundary as in fig. 10, then these pairs give us:

m (X1 ∪X2, ν1 ∪ ν2) = ψX1,ν1ψX2,ν2 m (X3 ∪X4, ν3 ∪ ν4) = ψX3,ν3ψX4,ν4(118)

m (X1 ∪X4, ν1 ∪ ν4) = ψX1,ν1ψX4,ν4 m (X3 ∪X2, ν3 ∪ ν2) = ψX3,ν3ψX2,ν2(119)

which implies

(120) m (X1 ∪X2, ν1 ∪ ν2)m (X3 ∪X4, ν3 ∪ ν4) = m (X1 ∪X4, ν1 ∪ ν4)

·m (X3 ∪X2, ν3 ∪ ν2)
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;

Figure 11. Adding a neck between the two submanifolds, and
then stretching this out according to some parameter t.

As an example of this, we can consider X1 to be Ê (n), X2 to be T 2 ×D2, X3

to be Ê (m), and X4 to be T 2 ×D2 as well as in fig. 8. Then we get

(121) m (E (2) , h)
2

= m (E (4) , h) ·m
(
T 2 × S2, h

)
This second multiple is where the sinh comes from since T 2 × S2 has b+2 = 1.

The heuristic for Floer homology, is that we slice up the manifold, and then add a
neck as in fig. 11. So we change the metric, but the SW invariant does not change.
Now if we send this to infinity, we can understand these two individiaul pieces
separateely. So Floer homology arises from studying the SW equations without
perturbation:

(122)

{
D+
AΦ = 0

1
2ρ
(
F+
At

)
= (ΦΦ∗)0

on the cylinder R×Y . This product must be in this order to get proper orientation.
At this point, we can see a “correspondence” between configurations (A,Φ) on

R × Y , and paths of configurations (B (t) ,Φ (t)) on Y . A spinc structure on a
3-manifold Y , is a rank 2 hermitian bundle S → Y equipped with a clifford multi-
plication which sends ρ : TY → su (2), ρ (ei) = σi.

Recall on a 4-manifold we have these two bundles S+ and S−, now on R× Y , if
we pick a spinc structure we have this S+ ⊕ S− → R× Y , and now multiplication
by ρ

(
∂
∂t

)
: S+ ∼−→ S− is an identification, so S+ ' S−. Now we write B as a spinc

connection, and Ψ is a spinor. Suppose we have a time dependent configuration
B (t), Ψ (t) on Y , then from this we can get a 4-dimensional configuration A,Φ just
by

∇A =
∂

∂t
+∇B Φ|t×Y = Ψ (t)(123)

Now with a connection of this form we have that

(124) FAt = dt ∧
(
d

dt
Bt
)

+ FBt

Then we have

(125) ?4 FAt = ?3

(
d

dt
Bt
)

+ dt ∧ ?FBt

and

(126) F+
At =

1

2
(FAt + ?FAt)

Warning 1. There are two different ts in use here, and two different ?s in play
here, which is why we have to be careful with orientation and write R× Y , rather
than the other way around.
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Now we can write down the SW equations in terms of B and Φ for a 3-manifold.

(127)

{
d
dtΨ +DBΦ = 0
d
dtB

t = − ? FBt − 2ρ−1 ((ΨΨ∗)0)

where DB is the three-dimensional Dirac operator. Said somewhat differently:

Fact 8. The three-dimensional SW equations are of the form

(128)
d

dt
(B (t) ,Ψ (t)) = − gradL (B (t) ,Ψ (t))

In particular, for fixed B0,

(129) L (B,Ψ) = −1

8

∫ (
Bt −Bt0

)
∧
(
FBt + FBt

0

)
+

1

2

∫
〈DBΨ,Φ〉 dVol

which is called the Chern-Simons-Dirac functional.

Remark 12. DB in dimension 3 behaves somewhat like the Dirac operator in di-
mension 1: On R3, B is the trivial connection

(130) DB =

(
i ∂
∂x3

− ∂
∂x1
− i ∂

∂x2
∂
∂x1
− i ∂

∂x2
−i ∂

∂x3

)
This is very similar in spirit to the Dirac operator in dimension 1, which is just
−i∂θ : C∞

(
S1,C

)
	. This is first order, elliptic, and self-adjoint. It also admits an

L2 orthonormal basis of eigen-functions
{
einθ

}
n∈Z. The spectrum is discrete, real

(since it is self-adjoint), and infinite in both directions.8

Now define

(131) C (Y, s) = {(B,Ψ) |Bspinc connection ,Ψ spinor on Y }

(132) G (Y, s) =
{
u : Y → S1

}
with action

(133) u · (B,Ψ) =
(
B − u−1 du , u ·Ψ

)
and stabilizers

(134) Stab (B,Ψ) =

{
0 Ψ 6≡ 0

S1 o/w

If we take G0 ⊂ G (Y, s) to be

(135) G0 := {u (y0) = 1}
then G0 acts on C (Y, s) freely. Then this functional acts as:

(136) L :M = C (Y, s) /G0 (Y, s)→ R/
(
2π2Z

)
Note that M is an infinite dimensional smooth manifold, with an action of S1, so
now Floer theory in this contexts is some sort of S1 equivariant homology theory by
applying ideas of S1-equivariant Morse homology. We will see this in more detail
in the next section.

This action is R valued, but then becomes circle valued as a result of the follow-
ing:

8 From an analysis point of view, this is the difference between Morse homology and Floer
homology, since in Morse homology we need things to be bounded below.
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Figure 12. Example of what the critical set might look like.

Exercise 11. Show:

(137) L (u · (B,Ψ))− L (B,Ψ) = 2π2 ([i] ^ c1 (s)) [Y ]

where u : Y → S1 = k (Z, 1), which means [u] ∈ H1 (Y,Z).

So we have seen that critical points will correspond to gradL (B,Ψ) = 0. In fact
we have the following:

Fact 9. The critical set:

(138) {(B,Ψ) | gradL (B,Ψ) = 0} /G

is compact.

All reducible solutions are of the form (B, 0). The first of the two SW equations
in 3-dimensions is always satisfied by this, and the second equation reduces to
FBt = 0, that is, Bt must be flat. In particular, if there exists such a solution,
we know the curvature represents the Chern class, so this tells us that c1 (s) =
[i/ (2π)FBt ] = 0 ∈ H2 (X,C) which implies c1 is torsion. In other words, reducible
solutions only exist for torsion spinc structures. In the other direction we have the
following:

Exercise 12. Suppose c1 (s) is torsion, then show

(139) {FBt = 0} /G (Y, s) = H1 (Y,R) /2πiH1 (Y,Z)

This is the torus of flat connections. This is b1 (Y )-dimensional. The picture of the
critical set is something like fig. 12.

7. Properties of monopole Floer homology

7.1. S1-equivariant homology. Suppose we have a space with an S1-action, like
some finite CW-complex.

Example 18. Consider S2 with the S1 action obtained by rotating around its axis.

Example 19. S1 acts on S3 via the Hopf fibration. This is a free action.

In general the action might not be free, but up to homotopy equivalence we
can always make it free with the Borel construction. First we take the universal
fibration

(140)
ES1

BS2
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which means ES1 is contractible, and the S1 action on it is free. Then take

(141)
S1 S3 S5 · · ·

pt CP1 CP2 · · ·

then in the limit we get S∞ mapping down to CP∞, which is contractible with free
S1-action.

Define the homotopy quotient by:

(142) X//S1 = X × ES1/S1

Then the Borel S1 equivariant cohomology is

(143) H∗S1 (X) := H∗
(
X//S1

)
This is functorial in the sense that if we have such an S1 action on both X and Y ,
then we have that f : X → Y gives us

(144) f∗ : H∗S1 (Y )→ H∗S1 (X)

As a special case, if we have X → pt, we get a map

(145) H∗S1 (pt)→ H∗S1 (X)

but we also have that

(146) H∗S1 (pt) = H∗
(
BS1

)
H∗ (CP∞) = Z [u]

where deg u = 2. All together, this means that there is a natural map Z [u] →
H∗S1 (X). That is, H∗S1 (X) is a module over Z [u].

Theorem 15 (Localization). u−1H∗S1 (X,K) ∼= H∗
(
XS1

;K
)
⊗K[u] K

[
u−1, u

]
for

some field K, where XS1

is the fixed point set of the S1 action on X.

Exercise 13. Compute the cohomology for the two examples above.

7.2. Formal properties of monopole Floer homology. Consider some closed,
oriented, connected manifold Y 3. Associate three objects to this.

(147) HM∗ (Y ) ȞM∗ ĤM∗
i∗ ∂∗

p∗

The first is HM bar, the middle is HM-to, and the third is HM-from.9 These are
modules over F [i], where deg u = −2, and

(148) ȞM∗ (Y ) =
⊕

s∈spinx(Y )

ȞM (Y, s)

We have the following dualities:

ȞM∗ (Y ) ∼= ĤM
∗

(−Y )(149)

ĤM∗ (Y ) ∼= ȞM
∗

(−Y )(150)

HM∗ (Y ) ∼= HM
∗

(−Y )(151)

where −Y is the manifold with opposite orientation.

9 These correspond to HF∞, HF+, and HF− respectively.
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Figure 13. W is bringing Y0 to Y1 in the sense that it has these
as its boundary.

As for gradings, each ȞM∗ (Y, s) is relatively graded over Z/2d (s)Z where d (s) ∈
N.

As a special case, let Y be a homology sphere, so H∗ (Y ) ∼= H∗
(
S3
)
, this means

there is only one potential spinc structure, and d of this structure is actually 0.
Then the relative grading in ȞM

(
S3
)

lifts to a canonical absolute Z-grading. So we
can talk about the actual grading of an element whenever we consider a homology
sphere.

Example 20. As a basic example we can just consider Y = S3.

HM
(
S3
)

= F
[
u−1, u

]
(152)

ȞM
(
S3
)

= F
[
u−1, u

]
/F [u](153)

ĤM (Y ) = F [u](154)

Example 21. If Y is a homology sphere, then

(155) HM (Y ) = F
[
u−1, u

]
up to grading shift. The group ȞM∗ (Y, s) vanishes in degree low enough, and the
map i∗ is an isomorphism in degree high enough.

We now consider the functoriality of this construction. If we have the situation
in fig. 13, then this induces a map

(156) ȞM (W ) : ȞM∗ (Y0)→ ȞM∗ (Y1)

This decomposes via the spinc structures as

(157) ȞM (W ) =
⊕

sW∈spinc(W )

ȞM (W, sW )

Fact 10. If we are again in the situation of fig. 13, then for for Y0 and Y1 homology
spheres, b1 (W ) = 0, and b+2 (W ) = 0, then the map

(158) HM (W, sW ) : HM (Y0)→ HM (Y1)

is an isomorphism of degree
(
b2 (W )− c21 (s)

)
/4.

Proof. This follows from L2-hodge theorem. �

Corollary 3. For Y0 and Y1 homology spheres, b+2 = 0 (negative definite) we get
the inequality:

(159) h (Y0) ≥ h (Y1) +
1

8

(
rkQW − inf

c
|QW (c, c)|

)
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where we are taking the infimum over characteristic classes c, that is, c is c1 of
some spinc structure.

Proof. By doing surgery, we can assume b1 (W ) = 0, without changing Q. Then
we have the following commutative diagram:

(160)

HM (Y0) HM (Y1)

ȞM (Y0) ȞM (Y1)

·i∗

HM(W,sW )

i∗

ȞM(W,sW )

and this diagram commutes. �

Theorem 16 (Elkies). rkQW ≥ infc |QW (c, c)| where we range over characteristic
c. Furthermore, we have equality iff QW = [−1]

n
.

This is a theorem from number theory. This gives us the following:

Corollary 4 (Donaldson). Suppose X is closed, and Qx < 0, then Qx = [−1]
n

.

Proof. Remove two balls from X, and think of this as a cobordism from S3 to itself.
Then since h

(
S3
)

= 0, by Elkies theorem, the intersection form is standard. �

8. S1-equivariant Morse (and Floer) homology

We now actually define the monopole Floer homology. Let M be the configura-
tion space

(161) C (Y, s) = {(B,Ψ)} /G0

equipped with an additional S1-action, where S1 = G/G0. Then we have the Chern-
Simons-Dirac functional f : M → R/

(
2π2Z

)
. The goal of this section is to compute

some kind of S1-equivariant homology.

8.1. Usual Morse homology. Consider some smooth finite-dimensional manifold
X, and take some Morse function f : X → R, then with some additional data,
we can define a Morse complex C∗ (X, f), which gives us the Morse homology
H∗ (X,F), which is the same as singular homology.

Now we want to provide a Morse-theoretic framework for S1-equivariant homol-
ogy. The way we deal with this, is by using some-sort of blow-up construction.
We can basically just think of this as polar-coordinates. Suppose M is finite-
dimensional and we have this S1-action. Assume that the stabilizer of a point is
either {0}, or S1. The {0} case is irreducible, and an S1-stabilizer is reducible.

Example 22. Consider C with multiplication by S1. The origin is a fixed point,
and everything else is free. Indeed, C = R≥0 × S1/ {0} × S1, and then blowing up
is just

(162) C Cσ = R≥0 × S2
π

to get a manifold with boundary. Then in Cσ, the S1-action is free, and Cσ/S1 =
R≥0. See fig. 14 to visualize this example.
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Figure 14. The blow-up projects under π.

Figure 15. The fixed points MS1

and ν (p) for p ∈M .

Example 23. Consider the space Cn = R≥0×S2n−1/ {0}×S2n−1, then the blowup
is

(163) (Cn)
σ

= R≥0 × S2n−1 → Cn = R≥0 × S2n−1/ {0} × S2n−1

and (Cn)
σ
/S1 = R≥0 × CPn−1.

Example 24. In general, for (M, g) with an S1-action, we can suppose S1 acts

isometrically, then MS1

is the fixed point set of S1 as in fig. 15. then S1 acts on
ν (p), so ν (p) has a natural almost complex structure, now we blow-up fiber-wise,
and then

(164) M Mσ
π

where S1 acts freely on Mσ. π is a diffeomorphism from Mσ \ ∂Mσ →M \MS1

.

Fact 11. Consider f : M → R with an action of S1. Then grad f |M\MS1 pulls

back to a vector field Mσ \ ∂Mσ, which extends naturally to a vector field on Mσ,
(grad f)

σ
. Note that this is not the gradient of a function on σ.

Example 25. Consider f : Cn → R with an S1-action, then f (z) = 〈z, Lz〉 /2
for L some hermitian matrix. In this case grad f (z) = Lz, In polar coordinates
(r, ϕ) ∈ R≥0 × S2n−1. Then for r > 0,

(165) grad f (r, ϕ) = (Λ (ϕ) r, Lϕ− Λ (ϕ)ϕ)

where Λ (ϕ) = 〈ϕ,Lϕ〉. This tells us that this formula defines an extension to r = 0,
the boundary of Mσ. We can think of this heuristically in fig. 16.

Remark 13. Critical points of (grad f)
σ
:

(1) π−1 ( irreducible critical points of (grad f))
(2) (reducible critical point, eigenvector of L),

We know Lϕ = Λ (ϕ)ϕ, so if you assume L has simple spectrum λ0 < · · · < λn,
each of them corresponds to a critical point in (Mσ) /S1.
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Figure 16. This is a “fake picture” of what is going on when we
extend grad f .

Figure 17. The gradient flow grad fσ, and the corresponding crit-
ical points of various indices. The upper point on the boundary is
boundary-stable, and of index 1. The bottom point on the bound-
ary is boundary-unstable, and also of index 1. Then the bottom
critical point on the right is irreducible and of index 0, and the
top critical point is irreducible of index 2. Then the middle critical
point on the far right is of index 1.

8.2. Properties of (grad f)
σ
.

Fact 12. (1) grad fσ is tangent to ∂Mσ as in fig. 17.
(2) The flow is not Morse-Smale
(3) A 1-parameter family could break in 3-components.

8.3. Calculations. Now we have a manifold with boundary, so we can calculate
three different things: homology of the boundary, homology of the space itself, and
the homology of the space relative to the boundary.

Take irreducible C0
k , boundary-stable Csk, and boundary-unstable Cuk . The

boundary maps are as follows. We have ∂0
0 : C0

k → C0
k−1, which counts trajec-

tories in 0-dimensional moduli spaces. Then we have ∂0
s , ∂u0 , ∂us , and lastly we

have ∂
s

s, ∂
s

u, ∂
u

s , and ∂
u

u which count on the boundary. These are moduli spaces in

∂Mσ/S1. In general, all of them drop the index by 1, except for ∂
s

u, and ∂
u

s which
drops the index by 2.

(166) Čk = C0
k ⊕ Csk

then the boundary is defined by

(167) ∂̌ =

(
∂0

0 ∂u0 ∂
s

u

∂0
s ∂

s

s + ∂us ∂
s

u

)
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Figure 18. The critical points a, b, c, and d for the case D2.

Fact 13.
(
X̌, ∂̌

)
is a chain complex whose homology computes the homology of the

underlying space H∗ (X).

To check this is a complex, we have to check
(
∂̌
)2

= 0, so we just have to write

this out to get terms of the form ∂0
0∂

0
0 + ∂u0 ∂

s

u∂
0
s . The idea is to look at ends of

1-dimensional moduli spaces.
Let’s compute D2 as in fig. 18. In index 3, we have F 〈a〉, for index 2 we get

F 〈b〉, and in index 0 we get F 〈d〉. Then computing homology, we get 0 in all degrees
except 0, where we get F.

Then

Ck = Cs ⊕ Cu Ĉ = C0 ⊕ Cu(168)

and then we define ∂ and ∂̂ analogously.

8.4. Definition of monopole Floer homology.

(169) C (Y, s) Cσ (Y, s) =
{

(B, r,Ψ) | r ∈ R≥0, ‖Ψ‖L2 = 1
}

Note that G acts freely on Cσ. Note that gradL extends to (gradL)
σ
. Since

the action is free, Cσ (Y, s) /G is an infinite-dimensional manifold with boundary,
equipped with the vector field (gradL)

σ
. So now formally, we can just apply the

construction of Morse-homology, to get

HM (Y, s) ȞM (Y, s) ĤM (Y, s)(170)

which are more or less obtained as before, by taking the homology of the boundary,
of the space, and of the space relative to the boundary.

9. Pseudo-holomorphic curves

Definition 6. Pseudo-holomorphic curves

So if we have a pseudo-holomorphic curve u : Σ → (M,ω), then we can define
the energy

(171) E (u)−
∫
|du|2

So u is J-holomorphic iff u minimizes E (u) within its homotopy class.
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For (A,Φ), we define

(172) E (A,Φ) =
1

4

∫
|FAt |2 +

∫
|∇AΦ|+ 1

2

∫ (
|Φ|2 +

s

2

)2

Then (A,Φ) solves the SW-equations iff it minimizes E (A,Φ).

10. Triangulation conjecture

Recall that we start with some configuration space C (T, s) = {(B,Ψ)} with an
action of the gauge group G, then we blow up the configuration space to get

(173) C (T, s) = {(B,Ψ)} Cσ
{

(B, r, ψ) | r ∈ R≥0, ‖ψ‖L2 = 1
}

π

If we take the gradient of the Chern-Simons-Dirac functional:

(174) gradL (B,Ψ) =

(
1

2
∗ FBt + ρ−1 (ΨΨ∗0) , DBΨ

)
we can explicitly extend this as:
(175)

(gradL)
σ

(B, r, ψ) =

(
1

2
∗ FBt + r2ρ−1 (ψψ∗0) ,Λ (B,ψ) r,DBψ − Λ (B,ψ)ψ

)
We have the following types of critical points of (gradL)

σ
:

(1) Irreducible critical points of gradL
(2) Reducibles (B, 0, ψ) with (B, 0) a criticalm points of gradL and ψ is a unit

eigenvector of DB/S
1.

Generically DB has a simple spectrum, so we have eigenvalues · · · < λ−1 < 0 <
λ0 < λ1 < λ2 < · · · where λi corresponds to one critical points ci. Then we have
the following facts:

Fact 14. (1) ci is stable iff λi > 0
(2) Two consecutive critical points λi and λi+1 differ in grading by 2.

Example 26. Consider Č
(
S3
)
. We know that positive scalar curvature implies

there are no irreducible solutions, and since b1 (Y ) = 0, we have exactly one re-
ducible solution. Since grading differs by 2, there’s no room for a differential here.

Example 27. Consider Č of the Poincaré homology sphere. Again we have positive
scalar curvature, so there are no irreducible solutions, and H1 (Y ) = 0. So this is
basically the same as the previous example.

Example 28. We can also calculate Č (Σ (2, 3, 7)). There is just one reducible
solution, only now there are also two irreducible solutions, and each comes with a
trajectory F⊕ F→ F, so we have a nontrivial differential.

Theorem 17 (Manolescu). The triangulation conjecture is false in higher dimen-
sions, that is, for n ≥ 5, there exists a topological manifold Mn not homeomorphic
to a simplicial complex.

As it turns out, this is equivalent to a problem in low dimensional topology.
Consider the homology cobordism group

(176) Θ3
H =

{
Y oriented, ZHS3

}
/ ∼

where two Y0 ∼ Y1 both ZHS3 iff yi ↪→ W as in fig. 13. This is an equivalence in
H∗ (·,Z).
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Remark 14. Θn
H = 0 for n 6= 3 (in the PL category).

As it turns out, Θ3
H 6= 0. There is a homomorphism

(177) µ : Θ3
H → Z/2Z

Theorem 18 (Rokhlin). Suppose X4 is a smooth spin, then 16 divides the signature
σ (X).

Remark 15. For X spin, QX is even, so for algebraic reasons we know that 8 divides
σ (X). The cool thing is then that since we insist the space is smooth, we can boost
this to be a 16.

Suppose we have that Y is a ZHS3. Then it is a classical result that any such
Y bounds some W which is also spin. Then define

(178) µ (Y ) =
σ (W )

8
∈ Z/2Z

This is well defined, since if we have some other W ′, we can glue them together along
Y , and we get a closed spin manifold, so 16 divides the signature Σ (W \W ′) =
σ (W )− σ (W ′), so its divisibility is indeed well defined.

Example 29. S3 is the boundary of B4, so µ
(
S3
)

= 0. For the Poincaré homology

sphere, we get that this is the boundary of PEp . Then T ∗S2 gives us the E8 Dynkin
diagram, so we get µ of Poincaré to be 1.

Theorem 19 (Galeski-Stern-Matumoto). The triangulation conjecture is false iff
µ does not split, that is, there are no elements [Y ] ∈ Θ3

H with order 2, and µ = 1.

So this is the fact that Manolescu showed:

Theorem 20 (Manolescu). There exists a β : Θ3
H → Z, which is not a homomor-

phism, such that

(1) β ([−Y ]) = −β ([Y ])
(2) β ([Y ]) = µ ([Y ]) (mod 2)

This implies the triangulation conjecture is false because of the following. Sup-
pose the homomorphism splits. Then we have an element Y or order 2, so 2 [Y ] = 0,
which is the same as [Y ] = − [Y ]. Then we get β ([Y ]) = β (− [Y ]), but this is an
integer, so we must have that β (Y ) = 0, which means µ (Y ) = 0.

Recall in monopole Floer homoloy we get this invariant h (Y ) ∈ Z called the
Froyshov invariant. This gives us a map h : Θ3

H → Z, but this doesn’t have the
second property from theorem 20. To see this, we can simply check the example
Σ (2, 3, 7) from before.

So we need to exploit an extra symmetry of the Seiberg-Witten equations in the
presence of spin structures. This extra symmetry is:

(179) Pin (2) = S1 ∪ J S1 ⊆ H

This is like a Hopf link as in fig. 19
Returning to theorem 18, we have a spinc structure S = S+

∑
S− → X4, where

both S± have complex rank 2. Then the Dirac operator D+
A : Γ (S+)→ Γ (S−) has

index

(180) indDAt = dim ker−dim coker =
1

8

(
c21
(
S+
)
− σ (X)

)
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Figure 19. Hopf link of S1 and J S1.

We have an action of J on S± where J 2 = − idS± , and J is complex antilinear.
Then this implies S± are rankH = 1 quaternionic vector bundles.

There is a distinguished connection A0, the spin connection so that

(181) D+
A0

(ΨJ ) = (DAΨ)J
is quaternionic linear. This is because

(182) Spin (3) = SU (2)

{(
a −b
b a | |a|2 + |b|2 = 1

)}
acts on C2 = H, where we have identified (z, w) with z + Jw. Then we have that
SU (2) and J both act on H and commute.

This means kerA+
A0

is a quaternionic vector space (if X is spin), and similarly

for the cokernel where cokerA+
A0

= kerD−A .
Then in 2Z, we get

(183) indDAt =
1

8

(
c1
(
S+
)2 − σ (X)

)
= −1

8
σ (X)

and S+ is congruent to its conjugate, which means 16 divides σ (X) as desired.
In the case of a three manifold, Y with a spin structure, S → Y , we have an

action of J on S, and we get J 2 = − idS , and J is complex antilinear. For B0 the
spin connection, we get that DB0

: Γ (S)→ Γ (S) is quaternionic linear.
Now for (B,Ψ) ∈ C (Y, s), we have

(184) J (B,Ψ) =
(
B,ΨJ

)
where B = B0 + b, and B = B0 − b. Then we have

(185) J 2 (B,Ψ) = (B,−Ψ) ∼ (B,Ψ)

are gauge equivalent. This means the function L is invariant under the Pin (2)
action on C (Y, s) since we have this extra J .

So now we might try to do some sort of Pin (2) equivariant Floer homology. We
can formally define this to be a module over

(186) MPin(2) (pt) = F [V,Q] /Q3 = H∗ (B Pin (2))

where deg V = −4, and degQ = −1. Note that this contains F [Q] /Q3, which is
H∗
(
RP2

)
, so this is where RP2 comes into this picture.

In the spinc case, DB has simple spectrum, so λi corresponds to critical points,
which is the unit sphere eigenspace modulo S1. In our case, DB0 has simepl (in
the quaternionic sense) spectrum, so an eigenvalue λi corresponds to S3/S1 = S2

where J acts on this, so we get RP2.
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