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Pseudo-holomorphic curves were introduced by Gromov in 1985, and have be-
come perhaps the central tool in symplectic topology/geometry.

1. Introduction to symplectic geometry

Definition 1. A symplectic form on a manifold M2n is a closed 2-form ω which,
when viewed as a pairing ω : TM ⊗ TM → R, is non-degenerate (i.e. the induced
map TM → TM∨ is an isomorphism.) and skew-symmetric.

Example 1. R2n with standard basis {x1, · · · , xn, y1, · · · , yn} is a symplectic man-
ifold with the symplectic form

(1) ωstd :=

n∑
i=1

dsi ∧ dyi

Theorem 1 (Darboux). For any symplectic manifold M and point p ∈ M , there
exists a function f : U → M , (diffeomorphic onto its image), where U ⊆ R2n is
open, p ∈ f (u), and f∗ (ωM ) = ωstd.

Define the symplectomorphisms Diff0 (M,ω) to consist of the diffeomorphisms
preserving the symplectic form. Of course this is contained inside Diff0 (M,ωn),
which are volume preserving. Explicitly, the symplectomorphisms consist of the
identity component of

(2) {f : M →M | f∗ω = ω}0 ⊆ {f : M →M | f∗ (ωn) = ωn}

Theorem 2 (Gromov). With respect to the C0-topology, the inclusion of sym-
plectomorphisms inside the volume preserving diffeomorphisms is either closed or
dense.

If we have that this inclusion is closed, is somehow considered to be the rigidity
regime, and similarly, this inclusion being dense is somehow considered to be the
flexibility regime.

A symplectic embedding f : (U, ωn)→ (V, ωV ) is a map (diffeomorphism onto its
image) such that f∗ωV = ωU . We introduce the following notation:

B2n (r) <
{

(x1, · · · , xn, y1, · · · , yn) ∈ R2n |
∑

x2
i + y2

i ≤ r2
}

(3)

B2 (R)× R2n−2 <
{

(x1, · · · , xn, y1, · · · , yn) |x2
1 + y2

1 ≤ R2
}

(4)
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Figure 1. If we have a symplectic embedding of a sphere inside
a cylinder, then the radius of the cylinder must be larger than the
radius of the sphere by fig. 1.

Theorem 3. If there exists a symplectic embedding:

(5) B2n (r) ↪→ B2 (R)× R2n−2

as in fig. 1, then r ≤ R.

Eliashberg, Conley-Zehnder, and Gromov all independently showed this. Gro-
mov’s proof is the one that uses holomorphic curves, so we will focus more on
this.

1.1. Pseudo-holomorphic curves. To prove theorem 3 we introduce the follow-
ing notions:

Definition 2. An almost complex structure (acs) on M2n is an endomorphism
J : TM → TM such that J2 = − id.

Equivalently this is putting the structure of a C vector space on TM , and then
J is just multiplication by i.

Warning 1. Such an (M,J) is NOT in general locally isomorphic to Cn.

An acs J is said to be tamed by ω iff ω (v, Jv) > 0, for all v ∈ TM \ {0}. J is
said to be compatible with ω iff (v, w) 7→ ω (v, Jw) is a Riemannian metric, that
is, it is symmetric and positive definite.

Lemma 1. Compatible implies tame.

Often times compatibility is more convenient, so people just work with this
assumption instead.

Lemma 2. On a symplectic vector space (V, ω), the spaces of compatible (resp.
tame) J are contractible.

A pseudo-holomorphic curve is a holomorphic map

(6) u : (C, j)→ (M,J)

where (C, j) is a Riemann surface and du : TC → u∗TM is C-linear.
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Figure 2. Foliation by holomorphic CP1.

Proof of theorem 3. WLOG, im (f) is contained in a compact subset of B2 (R) ×
R2n−2. To see this, just restrict f to B2n (r − ε), where r − ε ≤ R for all ε > 0,
then r ≤ R. Since im (f) is compact, it gives an embedding

(7) f : B2n (r) ↪→ B2 (R)×
(
R2n−2/NZ2n−2

)
for large N <∞. We now write R2n−2/NZ2n−2 = T 2n−2, and further embed:

(8) B2 (R)×
(
R2n−2/NZ2n−2

)
↪→ S2 × T 2n−2

where S2 is the sphere of the same area as B2 (R). All together, we have a symplectic
embedding:

(9) f : B2n (r) ↪→
(
S2 × T 2n−2, ωS2 + ωT 2n−2

)
and want to show r ≤ R.

Now equip S2×T 2n−2 with a product acs J = JS2⊕JT 2n−2 , so it is biholomorphic
to CP2 ×

(
Cn−1/Z2n−2

)
as a complex manifold. Now consider the space

(10) M0,1

(
S2 × T 2n−2, J

)
:=
{
u : CP1 → S2 × T 2n−2 | du is C linear

}
/ ∼

where we have defined the relation:

(11) u ∼ u ◦ ϕ |ϕ ⇐⇒ CP1 → CP1, ϕ (0) = 0

So we are effectively quotienting out by the PGL2 C action on such maps, as long
as they fix a point.

So if we have a map

(12) u : CP1 → CP×
(
Cn−1/Z2n−2

)
this splits as:

u1 : CP1 → CP1 u2 : CP1 → Cn−1/Z2n−2(13)

We always get a lift as follows:

(14)

CP1 Cn−1/Z2n−2

Cn−1

lift

since π1

(
CP1

)
= 0. Therefore by Liouville’s theorem, u2 is constant.

We have a foliation by holomorphic CP1 as in fig. 2.
Now we have that

(15) Md
0,1

(
S2 × T 2n−2

)
⊆M0,1

(
S2 × T 2n−2

)
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Figure 3. Holomorphic curves with respect to J0 and J1.

is the set of curves u with u∗
[
CP1

]
= d

[
S2
]
× pt. In particular, we focus on

M1
0,1

(
S2 × T 2n−2

)
, which is just the total space S2 × T 2n−2. Moreover, this map

is simply the evaluation map sending a curve with a marked point to the image of
the marked point.

In fig. 3, we can see the holomorphic curves with respect to

(16) J0 = JCP1 ⊕ JCn−1/Z2n−2

along with the holomorphic curves with respect to J1, which is some compatible
acs on S2 × T 2n−2 which agrees with f∗Jstd over im (f).

It is a classical result that the space of ω-compatible almost-complex structures is
nonempty and contractible. Therefore we can choose a path of complex structures
{Jt}t∈[0,1] between J0 and J1. Now the collection of t ∈ [0, 1], such that 1-pointed

genus 0, curve in S2 × T 2n−2 with respect to Jt in class
[
S2
]
× pt projects as

(17)

M1
0,1

(
S2 × T 2, {Jt}

)
[0, 1]

π

Now we know π−1 (0) = S2×T 2n−2, but we don’t know much more besides this.
To continue, we need to appeal to some big non-trivial results about moduli spaces
of holomorphic curves:

(1) Gromov compactness: π is proper (i.e. π−1 of compact is compact)
(2) For generic choice of J1 and {Jt}t, the total spaceM1

0,1

(
S2 × T 2n−2, {Jt}

)
is a manifold with boundary π−1 (−) ∪ π−1 (1). Schematically, we have
something like in fig. 4. To show this, we need transversality and non-
linear Fredholm theory.

Now consider the evaluation map

(18) ev :M1
0,1

(
S2 × T 2n−2, {Jt}

)
→ S2 × T 2n−2
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Figure 4. Schematic of the space which is projected onto the
interval [0, 1].

Figure 5. The curve v (Σ) on B2n (r).

We know ev∗
[
π−1 (0)

]
=
[
S2 × T 2n−2

]
, but we have this cobordism, so actually

ev∗
[
π−1 (1)

]
= ev∗

[
π−1 (0)

]
. In particular, this implies that

(19) ev :M1
0,1

(
S2 × T 2n−2, J1

)
→ D2 × T 2n−2

is surjective.
Consider a holomorphic curve u : CP1 → S2 × T 2n−2 which passes through

f (0) where f is our embedding. We have therefore actually produced a curve
v : Σ→ B2n (r) passing through the origin, where Σ is as in the following diagram:

(20)

Σ := u−1
(
f
(
B2n (r)

))
CP1

B2n (r) S2 × T 2n−2

v u

f

where v is proper, since it is the pullback of the proper map u. The picture here is
as in fig. 5. Now we have the following inequalities:

Area (v (Σ)) =

∫
Σ

v∗ω(21)

≤
∫
CP1

u∗ω(22)

=
〈
u∗
[
CP1

]
, [ω]

〉
(23)

= Area
(
S2
)

= Area
(
B2 (R)

)
= πR2(24)

Now the last ingredient is the following:
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Proposition 1 (Monotonocity). If v : Σ→ B2n (r) ⊆ Cn is a proper, non-constant,
holomorphic (with respect to Jstd) map covering the origin, then

(25)

∫
Σ

v∗ω ≥ πr2

Sketch proof 1 of proposition 1. Observe a holomorphic curve in Cn is a minimal
surface, (actually this is true only under the assumption that this is a minimal
embedding rather than holomorphic.) �

Proof 2 of proposition 1. We have our standard form:

(26) ωstd :=
∑
i

dxi ∧ dyi = dλstd

which has a standard primitive:

(27) λstd =
∑
i

1

2
(xi dyi − yi dxi )

now define

(28) F (t) :=
1

t2

∫
V −1(B2n(t))

v∗ω =
1

t2
[
Area

(
v (Σ) ∩ B2n (t)

)]
Now it is enough to just prove F is increasing, since

(29) lim
t→0+

F (t) = π ( order of vanishing of v at 0)

To see this we can calculate:

(30) F (t) =
1

t2

∫
v∗ (dλ) =

1

t2

∫
v−1(∂ B2n(t))

v∗λstd

where we have used Stokes theorem. Now we use coordinates

(31)
Rs × S2n−1

m R2n \ 0

(s,m) es/2m

In these coordinates, λstd = esαstd where

(32) αstd := λstd|unit S2n−1

Then we can pick up this calculation from above:

(33) F (t) =
1

t2

∫
v∗
(
t2αstd

)
=

∫
V −1(∂ B2n(t))

v∗ (αstd)

Now we can use Stokes theorem again to get:

(34) F (t1)− F (t2) =

∫
v−1(B2n(t1)\B2n(t2))

v∗ (dαstd)

Finally we can calculate that dαstd is ≥ 0 on complex lines, so the RHS is nonneg-
ative since v is holomorphic. �

The result clearly follows from proposition 1. �



GEOMETRY AND ALGEBRA OF PSEUDO-HOLOMORPHIC CURVES 7

2. Non-linear Fredholm theory for moduli of pseudo-holomorphic
curves

Let (X, J) be an almost complex manifold, and let (C, j) be a closed Riemann
surface. E.g. CP1 or T 2. More generally, we will allow for C to have nodes (locally
{xy = 0}) but to keep the discussion simple, we won’t talk much about this. Then
we have the associated moduli space:

(35) M (C,X) := {u : C → C | duC-linear, u ∈ C∞}

We can always write:

(36) du =
1

2
( du + J ◦ du ◦ j) +

1

2
( du − J ◦ du ◦ j) = ( du )

0,1︸ ︷︷ ︸
C-antilinear

+ ( du )
1,0︸ ︷︷ ︸

C-linear

Our equation ( du )
0,1

= 0 is elliptic. Elliptic regularity just means u ∈ C2 implies
u ∈ C∞.

Now consider the k, p maps:

(37) W k,p = {f distribution on Rn | ∀ |α| ≤ k,Dαf ∈ Lp}

We can think of this as the completion of C∞c (Rn) with respect to

(38) ‖f‖k,p :=
∑
|α|≤k

‖Dαf‖p

How do we generalize this to W k,p (C,X)? We can think of this two ways:

(1) Well we can embed X ⊆ RN , and then

(39) W k,p (C,X) ⊆W k,p
(
C,RN

)
is the set of maps f which almost everywhere land in C.

(2) (This second definition only makes sense when W k,p ⊆ C0.) We can view
W k,p (C,X) ⊆ C0 (C,X) as the set of functions f : C → X which are
locally of class W k,p with respect to the smooth atlases on C and X.

(40)

C X

R2 U V R2n

f

ϕ

ψ−1fϕ

ψ

Then ψ−1fϕ ∈W k,p.

We now assume W k,p (C,X) is a smooth Banach manifold. The charts are, for
u ∈ C∞ (C,X),

(41)

W k,p (C, u∗TX) W k,p (C,X)

ξ expu ξ

Note that W k,p (C, u∗TX) is well defined since the pullback u∗ is a smooth bundle.
This is really true for any map exp : TX → X whose derivative at the zero section
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Figure 6. The three intersection points pictured comprise the

moduli space: M (C,X) =
{
u : C → X | (du)

0,1
= 0
}

is id. If we wanted to check if the transition maps between two of these are smooth,
we would just write down the following:

(42)

W k,p (C, u∗TX) W k,p (C,X) W k,p (C, v∗TX)

ξ expu ξ

expv η η

exp−1
v ◦ expu:u∗TX→v∗TX

Similarly, there is a bundle E →W k,p (C,X) where

(43) E =
⋃

u∈Wk,p(C,X)

W k−1,p
(
C,HomC (TC, u∗TX)

)
Note that HomC (TC, u∗TX) denotes the C anti-linear maps TC → u∗TX. The

sections of E → W k,p (C,X) map u 7→ ( du )
0,1

= ∂ (u). The section measures how
much these maps fail to be holomorphic. The picture to have in mind is as in fig. 6.

The conclusion of this discussion, is that if D∂ is surjective at some point p ∈
M (C,X), that is, some holomorphic map u : C → X, then M (C,X) is a smooth
(Banach) manifold near p.

At u : C → X,

(44) Du∂ : W k,p (C, u∗TX)→W k−1,p
(
C,HomC (TC, u∗TX)

)
measures the failure of expu ξ to be C-linear for small ξ.

Definition 3. Suppose we have two Banach spaces X and Y . Then an operator
A : X → Y is called Fredholm iff kerA is finite dimensional, imA is closed and
cokerA is finite dimensional.

Theorem 4. Any elliptic operator of order d on a compact manifold M is Fredholm
from W k,p to W k−d,p, in particular Du∂.

In other words we can strike out the word Banach above, and write that if D∂ is
surjective at some point p ∈ M (C,X), then M (C,X) is a smooth manifold near
p.



GEOMETRY AND ALGEBRA OF PSEUDO-HOLOMORPHIC CURVES 9

We define the index of the operator to be

(45) ind (A) := dim (kerA)− dim (cokerA)

There ar emany ways to calculate, such as the Atiyah-Singer index theorem, but
on Riemann surfaces we don’t need such a poweful statemt. We simply offer the
result:

(46) ind
(
Di∂

)
= (1− g) dimX + 〈2c1 (TX) , u∗ [C]〉

So this gives the dimension of the moduli space of curves.

2.1. Generic transversality. We now introduce a new space J of almost complex
structures on X. For example, we might take this to consist of the almost complex
structures on X of class W k,p, so this would be some Banach manifold.

We can just cross everything from before with J to get:

(47)
E × J

W k,p (C,X)× J

where the sections just map (u, J) 7→
(
∂Ju, J

)
.

Before, the zero set was just M (C,X), and now the zero set is

(48) M (C,X,J ) := {J ∈ J , u : C → X |u is J holomorphic }

Now we simply have π :M (C,X,J ) → J , where π−1 ({J}) =M (C,X, J). Now
it’s much easier for the derivative to be surjective, since we have enlarged the base.
Now M (C,X,J ) is a Banach manifold at (u, J) iff the following is surjective:

(49) W k,p (C, u∗TX)⊕ TJJ →W k−1,p
(
C,HomC (TC, u∗TX)

)
Explicit calculation can show that this is surjective if u is somewhere injective on
every component of C.

Theorem 5 (Sard-Smale). The regular values of π are of second Baire category.
That is, a countable intersection of open dense subsets. In particular, it is dense.

Of course the whole total space being smooth doesn’t mean every fiber is smooth,
but the complement of the nonregular points is at least dense.

3. Topologies on moduli spaces and compactness

We can impose many regularity conditions on the maps in M (C,X), and simi-
larly, we can put many different topologies on this. A very strong topology is the
C∞ topology where all derivatives would have to converge, on the other hand, the
C0 topology is very weak. However, regularity tells us that these topologies are the
same.

Sketch proof. Suppose ui converges to u in C0. The derivatives might however
exhibit bad behaviour. Luckily, elliptic estimates imply that ‖ui‖Ck is bounded.
Given this boundedness, Arzelá-Ascoli implies that there is a subsequence uik which
is C∞ convergent to something, but it’s already C0 convergent to u, so it must be C∞
convergent to u, which means the whole sequence has to converge to u in C∞. �
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Figure 7. Several examples of nodal Riemann surfaces. This is a
classical Riemann surface, only now we allow for nodes. Note that
the spheres colored gray are the regions where we insist on map u
be non-constant for reasons related to stability.

Let’s talk about a moduli space without a fixed domain. Define Mg (X) to
consist of the pairs (C, u) such that C is a nodal Riemann surface of genus g, and
u : C → C holomorphic such that {ϕ : C → C |u ◦ ϕ = u} is finite. When this is
the case, u is said to be stable..

Example 2. Nodal Riemann surfaces of genus 1 of course consist of the smooth
Riemann surfaces of genus 1, but also when we attach additional copies of Riemann
spheres as in fig. 7.

Consider some map from a surface with many nodes. By taking a resolution
where we remove a node, and then glue a cylinder to the circular boundaries this
creates, we can therefore get an induced map on a surface with fewer nodes. This
motivates the following. A neighborhood of u : C → X inMg (X) consists of maps
u′ : C ′ → X where C ′ is a ε-small resolution of C, with ε-close acs, and u′ is ε-close
to u in C0.

Why is this stability condition from above required for this moduli space to make
sense? To see this, we consider the example in fig. 7. Consider some curve u defined
on the top left surface. Now consider the bottom left surface. If we don’t insist on
stability, and allow for the map to be constant on the attached Riemann sphere,
then if we take the curve u, and just extend it to be a constant on the sphere, we
get a curve u′ defined on the bottom left surface such that u and u′ are actually
regarded as different curves. But now, for any such unstable map, we can always
just take a resolution to get the stabilization, so our moduli space isn’t Hausdorff.
However, as long as we insist on stability we have the following:

Lemma 3. Mg (X) is Hausdorff

This topology is called the Gromov topology. In fact, we have:

Theorem 6 (Gromov). Mg (X) is compact.

4. Symplectomorphism group of S2 × S2, Reeb orbits on S3

We now consider

(50) Symp
(
S2 × S2, ω0 ⊕ ω0

)
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That is, the symplectomorphisms of this space with two factors having the same
area. We will use holomorphic curves to determine homotopy type of this group.
We will first work to understand holomorphic curves with respect to the acs Jsplit =
J0⊕J0. So we want maps in classes (1, 0) and (0, 1) in H2

(
S2 × S2

)
= Z⊕Z, with

domain CP1, that is, with genus 0. The only such maps are S2× pt and pt×S2 in
S2 × S2. This gives us the foliation in section 4.

Let’s think about transversality for a holomorphic immersion u : C → X. So we
have our linearized operatorD : W k,p (C, u∗TX)→W k−1,p

(
C,HomC (TC, u∗TX)

)
which always fits into the following sequence with exact columns:

(51)

0 0

W k,p (C, TC) W k−1,p
(
C,HomC (TC, TC)

)
W k,p (C, u∗TX) W k−1,p

(
C,HomC (TC, u∗TX)

)
W k,p (C, u∗TX/TC) W k−1,p

(
C,HomC (TC, u∗TX/TC)

)
0 0

DT

D

DN

where the rows are short exact sequences, and we are just taking the quotient.
Then we get the following exact sequence:

0→ kerDT → kerD → kerDN → cokerDT → cokerD → cokerDN → 0

Note that kerD is the tangent space toM (C,X), and kerDN is the tangent space
of holomorphic maps to X in the same topological type of C.

We should think of DT as controlling deformations of holomorphic structure on
C

(52) kerDT = H0 (C, TC)

since this consists of the infinitesimal automorphisms of C and

(53) cokerDT = H1 (C, TC)

are the infinitesimal deformations of acs on C.
Let u : C → X be one of these curves pt× S2 or D2 × pt. Then

(54) DN : W k,p (C, u∗TX/TC)→W k−1,p
(
C,HomC (TC, u∗TX/TC)

)
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is the Cauchy-Riemann operator on this bundle. But u∗TX/TC = OCP1 is just the
trivial bundle for C = CP1, so

kerDN = H0
(
CP1,O

)
= C cokerDN = H1

(
CP1,O

)
= 0(55)

The coker vanishing means the moduli spaces are transverse.
We now consider an arbitrary compatible J on S2 × S2. Suppose we have u :

CP2 →
(
S2 × S2, J

)
, in the class (1, 0) or (0, 1). Since we’re on S2 × S2, the map

π2

(
S2, S2

) ∼−→ H2

(
S2 × S2

)
is an isomorphism, Therefore

(56) u∗
(
T
(
S2 × S2

))
= TS2 ⊕ C

as complex vector bundles.
If u is a self transverse immersion, u : CP1 # S2×S2, then the number of double

points satisfies

(57) c1 (Nu) + 2# (double points) =
(
u∗
[
CP1

])
∩
(
u∗
[
CP1

])
Since u is an immersion, u∗

(
T
(
S2 × S2

))
= TS2 ⊕Nu. Now we have:

c1
(
TS2 ⊕Nu

)
= c1

(
TS2

)
+ c1 (Nu) = c1

(
u∗
(
T
(
S2 × S2

)))
(58)

= c1
(
TS2

)
+ c1 (C)(59)

so c1 (Nu) = c1 (C), and since complex line bundles over S2 are classified by the
first Chern class, we get Nu ∼= C. This all means that u is an embedding.

For general J-holomorphic u : CP1 → S2 × S2 in class (1, 0) or (0, 1), u is an
embedding (and immersed). Hence, kerDN = C and cokerDN = 0, as previously.
In particular, u is transverse.

Recall M1,0
0,0 consists of the genus 0 J-holomorphic curves in S2 × S2 in class

(1, 0) ∈ H2

(
S2 × S2

)
. Since u is transverse we have that M1,0

0,0

(
S2 × S2, J

)
and

M0,1
0,0

(
S2 × S2, J

)
are cut-out transversely for every compatible acs J . This is a

miracle that happens only in dimension 4.
For any J , there exists a path Jt from J = J0 to J1 = Jsplit. Then we look at

the parameterized moduli space

(60)
M1,0

0,0

(
S2 × S2, {Jt}t∈[0,1]

)
[0, 1]

π

where π is proper by Gromov compactness.
Define the energy to be the value given by

(61)

∫
ω

: H2

(
S2 × S2

)
→ R

Since the two factors have the same area, (1, 0) and (0, 1) have the minimal positive
value of

∫
ω. Note that if u : C → C is J-holomorphic and non-constant, then

∈C u∗ω > 0, which is precisely the definition of J being tamed by ω.
In addition to being proper, π is also a submersion. This is just the statement

that all fibers cut out transversely. But we know the fiber π−1 (Jsplit) = S2, which
means π−1 (J) = S2. Thus for any compatible J , the J-holomorphic curves in
classes (1, 0) and (0, 1) from a pair of t foliations. Even with respect to a strange
acs, such as in fig. 8, we get a foliation by these spheres. The spheres are disjoint
because of positivity of the intersection.
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Figure 8. For arbitrary acs J , we get this same well-behaved
foliation by spheres, only now it might exhibit nonstandard be-
haviour.

Finally, we consider the actual group of symplectomorphisms of S2 × S2. Con-
sider the classifying space:

(62) B Symp
(
S2 × S2, ω0 ⊕ ω0

) {
(V, ω) | ∃ (v, ω) ∼=

(
S2 × S2, ω0 ⊕ ω0

)}
Think of this as a set of submanifolds of R∞. So given a symplectic manifold, we
can always consider the collection of compatible almost complex structures, which
is contractible. So the forgetful map:
(63){

(V, ω, J) | ∃ (v, ω) ∼=
(
S2 × S2, ω0 ⊕ ω0

)
, J compatible

}
→ B Symp

(
S2 × S2, ω0 ⊕ ω0

)
has contractible fibers, so this is a homotopy equivalence.

Remark 1. These classes (1, 0) and (0, 1) are precisely the classes in H2 of minimal
positive energy and zero self intersection.

Given (V, ω, J) in the above set, we get two transverse foliations by J-holomorphic
copies of S2 in the classes (1, 0) and (0, 1).

Now consider the set

(64)
{

(V, ω, J, ω′) | (v, ω) ∼=
(
S2 × S2, ω0 ⊕ ω0

)
, J compatible, ω′ split wrtJ

}
This condition on ω′ is equivalent to ω′ being a sum of an area form of total area 1,
on leaf space of foliation i. Now we can again map this to the set of triples (V, ω, J),
and the fibers will again be contractible, so this is again a homotopy equivalence.
Now consider the following facts:

Fact 1.
Note J is compatible with ω′, because at each point we can decompose the tangent
space with respect to he foliations, and both J and ω′ are split with respect to this
decomposition.
ω and ω′ are cohomologous.

Together, using Moser’s theorem, these imply that (V, ω) and (V, ω′) are in fact
symplectomorphic.

Therefore this set is the same as:
(65){

(V, ω, J, ω′) | (V ′, ω′) ∼=
(
S2 × S2, ω0 ⊕ ω0

)
J compatible with ω, ω′ split wrt J

}



14 LECTURES BY PROFESSOR JOHN PARDON NOTES BY JACKSON VAN DYKE

Figure 9. Some star-shaped region in C2 which corresponds to a
contact form on S3.

now we can map this to the set
(66){

(V, ω′, J) | (V, ω′) ∼=
(
S2 × s2, ω0 ⊕ ω0

)
, Jcompatible with ω′, ω′ split wrt J

}
which is an equivalence. Finally, we can deformation retract this to

(67) {(V, ω′, J) | same conditions, except require leaves have same acs.}
and this is also an equivalence. But this is the same as

(68)
{

(V, ω′, J) | (V, ω′, J) ∼=
(
S2 × S2, ω0 ⊕ ω0, j0 ⊕ j0

)}
so we have:

(69) BAut
(
S2 × S2, ω0 ⊕ ω0, j0 ⊕ j0

)
= (SO (3)× SO (3)) o Z/2

By similar methods, we can show:

Theorem 7. Symp
(
CP2, ωstd

)
is homotopy equivalent to PU (3) ∼= PGL3 C.

Proposition 2. For any compatible J on CP2 and p, q ∈ CP2, there exists a unique
pseudo-holomorphic CP1 → CP2 of degree 1 through p, q

If we take some S3 ⊆ C2, this carries what is called a contact structure ξ ⊆ TS3,
where ξ := TS3 ∩ J

(
TS3

)
. For a 1-form α on S3 with kerα = ξ, we can define a

vector field Rα on S3 by α (Rα) = 1 and dα (Rα, ·) = 0.

Corollary 1. Any Reeb vector field Rα for the standard contact structure ξ on S3

has a closed orbit.

Proof. Consider CP2 with C2 inside it. Contact forms on S3 correspond to star-
shaped regions in C2 as in fig. 9. Then we perform a neck-stretch degeneration of
J along this hypersurface corresponding to α and holomorphic curves in the neck
region converge to cylinders over Reeb orbits. �

5. Examples of bubbling

Consider some maps un from a Riemann surface to X. Recall that, to this, we
can associate the energy

(70) E (un) =

∫
u∗nω =

∫
|dun|2
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Figure 10. The blowup of CP2.

The point is, the RHS is useful for analysis, but the middle is more easily com-
putable. In particular, if these maps are in the same homology class, then these
have the same energy. Bubbling occurs when energy concentrates around some
point. This is intuitively clear, because energy is really just area, so a large amount
of area is trapped in this sort of localized space. Gromov compactness tells us that
when un does not admit a convergent subsequence, then we have to have this sort of
bubbling phenomenon. We now consider some concrete example to illustrate how
this isn’t just some sort of analytic annoyance, but rather a geometric phenomenon.

Recall the blowup construction. In general, we can take any complex manifold
X of complex dimension 2 and x ∈ X, and define the blowup:

(71) BlxX = X̃ = X \ {x} ∪ P (TxX)

This is easy to write as a set, but we have to work a bit harder for the topology.
Consider C2 with the origin regarded as our point x. Then at the origin we put a
copy of P1 in here, so all of the lines which cross at the origin now cross this line
at different points. The picture to image here is as in fig. 10. Explicitly:

(72)
{

((x, y) , [X : Y ]) ∈ C2 × P1 |xY − yX = 0
}

= {(p, l) | p ∈ l}
then for a generic manifold we can just glue in this construction locally.

Now let X be the blowup of CP2 at (0, 0, 1). We know this projects to CP2.
Consider some line which comes close to the origin, but does not meet it. This is
shown in red in fig. 11. If the red line were to actually touch the boundary, it would
be exactly coinciding with one line through the origin, and only intersect all of the
other lines at a single point. Therefore we see that this intersection, as viewed in
the blowup, gets an extremely large “length” as viewed in the picture, or in proper
dimensions, a large area, and therefore energy. Explicitly, the domain gets closer
and closer to being two spheres joined at a point.

As another example, consider the curve given by y2 = x2 (x+ 1) as in fig. 12.
We intersect the curve with the red line, and as we approach the node, when we
lift to the blowup with the limiting behaviour on the right. So again we see this
bubbling phenomenon, since if the line were to actually pass through the node, it
would not have this energy accumulation.

The domain of this example approaches becoming three spheres joined as in
fig. 13.
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Figure 11. The red line comes close to the origin, but does not
touch it. The intersections between the red line, and the lines going
through the origin in CP2, are plotted in red in the blowup.

Figure 12. The elliptic curve y2 = x2 (x+ 1) is plotted, and then
we intersect the curve with the red line near, but not intersecting,
the node. We then lift this to the blowup on the right.
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Figure 13. The domain of the elliptic curve example approaches
having something like this as its domain.

6. Fukaya categories

So far we have regarded holomorphic-curves as geometric objects. Now we’re
going to forget some of these things and concern ourselves more over enumerative
questions.

6.1. Construction of classical Fukaya category. Fix a symplectic manifold
(X,ω), and assume it is exact. So ω = dλ for some 1-form λ. This forces X to
be noncompact.1 Now consider exact Lagrangians L. This means in addition to
ω|L = 0, we also have λ|L = df for some f .

Remark 2. One reason for ω to be exact, is to get control over the moduli spaces.
Suppose the manifold contains a bunch of holomorphic spheres. If this was the case,
then we could just glue in some extra sphere to any disk, and we would get a disk
of higher energy. Then we could do this for an n-fold cover of the sphere, and we
would get disks of arbitrary energy. But when it’s exact, we have no holomorphic
spheres.

Exactness also helps achieve transversality. It rules out bubbling holomorphic
spheres which are hard to make transverse.

Definition 4. The Fukaya category F (X,λ) has objects exact Lagrangians, and
morphism spaces are

(73) CF∗ (L,K) :=
⊕

p∈L∩K
Z/2Z

for any two exact Lagrangians L0 and L1.

Recall that the Floer complex CF∗ is equipped with a differential

(74) d : CF∗ (L,K)→ CF∗ (L,K)

where p maps to the count

(75) p 7→
∑
q

#M (D) q

where the disks D are as in the first disk in fig. 14. Note that M has dimension
ind (q) − ind (p) − 1, and #M is the count of elements in case dimM = 0. Also
note that M is the moduli space of disks up to reparameterization.

Now we want to define a sort of composition

(76) µ2 : CF∗ (L0, L1)⊗ CF∗ (L1, L2)→ CF∗ (L0, L2)

1 This is because ωn is a volume form, and ω = dλ, so ωn = 0 ∈ H2n (X).
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Figure 14. (Left) Disk with two punctures which are summed
over in the differential on the Floer complex. (Right) Disk with
three punctures which are summed over in the “composition” map
on the Floer complex.

Figure 15. The two disks which we might count in our attempt
at showing µ2 is associative.

where we explicitly map:

(77) p⊗ q 7→
∑
r

#M (D) r

where D denotes disk as in the right of fig. 14. Similarly, d is sometimes denoted
µ1.

But this isn’t quite associative. If we compose three morphisms:

(78) CF∗ (L0, L1)⊗ CF∗ (L1, L2)⊗ CF∗ (L2, L3)→ CF∗ (L0, L3)

we can send

(79) p⊗ q ⊗ r 7→
∑
s

#M (D) s

but there is now some ambiguity in what disk we are counting. We might choose
either one of the disks in fig. 15.

In order to relate these, we define another relation:

(80) µ3 : CF∗ (L0, L1)⊗ CF∗ (L1, L2)⊗ CF∗ (L2, L3)→ CF∗ (L0, L3)

which sends:

(81) p⊗ q ⊗ r 7→
∑
s

#M (D) s

where the disks D are as in fig. 16.
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Figure 16. µ3 sends p⊗ q ⊗ r to the count of disks of this sort.

Figure 17. The three potential degenerations of the disk with
three punctures, which give us the Leibniz rule for µ1 and µ2.

Fact 2. µ3 is a chain homotopy between µ2
(
µ2 (·, ·) , ·

)
and µ2

(
·, µ2 (·, ·)

)
6.2. Degeneration. These disks with marked points (or punctures) we have been
discussing have so-called degenerations. These motivate some structure relations
on CF. When we have two points on the boundary, we have that the disk can
degenerate to two disks intersecting at a point, with one marked point on each.
This gives us d2 = 0.

Now with three points, we get degenerations as in fig. 17.
This gives us

(82) µ2
(
µ1 (·) , ·

)
+ µ2

(
·, µ1 (·)

)
+ µ1

(
µ2 (·, ·)

)
= 0

which is exactly the statement hat µ2 is a chain map.

Exercise 1. Repeat this for the µ3 case.

This isn’t a category in the usual sense as we’ve seen it so far. In fact, it’s an
A∞ category, so we also have higher homotopies, which tells us there’s only one
way to compose morphisms. Generalizing the above, the Fukaya category has the
higher operations

(83) µk : CF (L0, L1)⊗ · · · ⊗ CF (Lk−1, Lk)→ CF (L0, Lk) [2− k]

of degree k ≥ 1 satisfying the A∞ relations, counting disks as in fig. 18.
The conditions that these µk must satisfy can be written explicitly as:

(84)

j∑
l=1

k−l∑
j=0

(−1)
∗
µj+1−l (pk, · · · , pj+l+1, µ

l (pj+l, · · · , pj+1) , pj , · · · , p1

)
= 0
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...

...

Figure 18. The type of disk counted by µk.

Figure 19. The associahedron for k = 3.

where ∗ = j+ deg (p1) + · · ·+ deg (pj), though this if of course not of interest to us
since we are working over Z/2Z. These can be understood as coming from summing
over contributions from trees which can also be viewed as degenerations of disks.
We consider the associahedron Rk,1 to a given k ∈ Z. This is the compactification
of the space of potential conformal structures with k + 1 marked points. The
top-dimensional facets correspond to nodal degenerations of a standard disk D to a
union of disks, where each component has at least 2 of the k-marked points, and the
higher codimension faces correspond to nodal degenerations with more components.
See fig. 19 for the example k = 3.

Remark 3. This is all sort of forced upon us. If we consider how to count disks
of some sort, then the conditions we will look for are exactly the conditions for an
A∞ category.

6.3. Wrapped Fukaya category. If our exact symplectic manifold (X,λ) is cylin-
drical at ∞, we can define the so-called wrapped Fukaya category W (X). Cylin-
drical just means that near infinity, X is isomorphic to (Rs≥0 × Y, esα) for some
contact form α on Y . Take the same objects as F (X), only now the morphisms
are define by flowing the first argument by the Reeb flow of α, which happens to
also be the Hamiltonian vector field of es. In other words,

(85) CW∗ (L,K) = HomW(X) (L,K) = CF∗ (ΦL,K)

where Φ is the flow of this vector field.

Example 3. Consider the cylinder X = R× S1 = T ∗S1 as in the left of fig. 20.

(86) HomW(T∗S1) (K,K) = HF∗ (L,K) = F2

[
t, t−1

]
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... ...

......

Figure 20. (Left) The cylinder with with two exact Lagrangians
K and L, one obtained by twisting the other at infinity. (Right)
The cylinder with an exact Lagrangian twisted in a finite sense.

Figure 21. Two geodesics both from p to q on Q.

Here we are effectively twisting for infinite time. If we were twisting a finite amount
it would look like the right in fig. 20.

Consider M (T ∗Q) where T ∗Q is exact, and cylindrical at ∞. If we choose
a Riemannian metric on Q, we get a contact form on S∗Q, whose Reeb flow is
the geodesic flow. This means that if we consider the wrapped Floer cochains,
CW∗

(
T ∗pQ,T

∗
qQ
)
, as vector spaces this is the same as F2 [geodesics p; q] as in

fig. 21.
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Figure 22. We can discretize this geodesic, so all of the adjacent
points are “close enough” to find a canonical path between them.

Theorem 8 (Abbondandolo-Schwarz).

HW∗
(
T ∗pQ,T

∗
qQ
)

= H−∗ (Ωp,qQ)(87)

= H−∗ ({γ : [0, 1]→ Q | γ (0) = p, γ (1) = q})(88)

Remark 4. Another description of the map Hom−∗ (Ωp,qQ) → HW∗
(
T ∗pQ,T

∗
qQ
)

is as follows. Suppose we have Q and two points p and q. If these points are
sufficiently close, there is a canonical shortest path, which corresponds to a cycle
since the differential can only decrease the length. Now decide to only care about
these short ones.

Now take any path from p to q, and discretize as in fig. 22. Each discrete point
and its adjacent neighbor has a relevant path, but the composition at large may
not be one we care about, so this isn’t really a category.

Now consider the category C whose objects are the fibers T ∗pQ and whose mor-
phisms are “freely generated” by the unique short geodesics between pairs of close
by points.

There is a tautological functor from C to W (T ∗Q).

Claim 8.1. HomC
(
T ∗pQ,T

∗
qQ
)

= C−∗ (Ωp,qQ)

Theorem 9 (Abouzaid). The objects T ∗qQ ∈ W (T ∗Q) generate W (T ∗Q)

6.4. Arnold’s conjecture.

Conjecture 1 (Arnold). For any exact compact Lagrangian L ⊆ T ∗Q, L is isotopic
to the zero section.

The picture here is as in and then the projection of L down to Q is a simple
homotopy equivalence This is trivial for Q = S1, and this is known for Q = S2 and
Q = RP2.

Theorem 10 (Fukaya-Seidel-Smith-Nadler-Zaslow-Abouzaid). L ⊆ T ∗Q compact
exact, then L→ Q is a simple homotopy equivalence.

We will prove a weaker version of this. First we need:
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*

Figure 23. We have some Lagrangian L in T ∗Q, and we want to
see what happens when we project this down to Q.

‘

Figure 24. We take an exact Lagrangian L in X, and a tubular
neighborhood surrounding it. Then we perturb L to get another
exact Lagrangians L′ in X.

Theorem 11 (Weinstein). A neighborhood of L is symplectomorphic to a neigh-
borhood of the zero section in T ∗L.

Proposition 3 (Floer). If L ⊆ X is exact, then HF∗ (L,L) = H∗ (L).

Proof. We have the Weinstein neighborhood theorem 11 which gives us a canonical
tubular neighborhood of such an L as in fig. 24. Now to compute this, we need
to perturb L slightly. Consider the Hamiltonian perturbation L′ of L given inside
T ∗L by the graph of df for some Morse function f : L→ R, as in fig. 24.

Now the intersections of L′ and L are the zeros of df , so they are also critical
points of f , so

(89) CF∗ (L′, L) = CM∗ (L, f)

as abelian groups, where CM∗ denotes the Morse complex. Moreover, for appro-
priate choice of acs J , the differentials are actually the same.

Exactness is necessary, because these disks of small energy are identified with
the Morse trajectories. We might also have big disks which goes out through the
entire manifold, and the exactness rules them out. This is because for a disk u,

(90) E (u) =

∫
D2

u∗ω =

∫
D2

u∗ (dλ) =

∫
∂D2

u∗λ = 0
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*

Figure 25. We have a range of n on the p axis, and
SuppH∗ (End E) on the q axis.

and the boundary is contained in L, where λ is just df , so this is 0. �

Now we return to the conjecture. We have the following hypotheses: Q is simply
connected, and Whitney class w2 = 0. L ⊆ T ∗Q is compact, exact, and has Maslov
class 0. Given L, we can associate a local system EL on Q whose fiber over q ∈ Q
is CW∗

(
T ∗qQ,L

)
, which we notice is finite dimensional, since L is compact.

The fact that the cotangent fibers T ∗qQ generate the Fukaya category means
there is an isomorphism

(91) HomLocSys/Q (EL, EL)
∼−→ HF∗ (L,L) = H∗ (L)

so we can tell what the endomorphism algebra of L is. This leads to a spectral
sequence

(92) Hp (Q,Hq (End (EL)))→ H∗ (L)

Since the thing the spectral sequence is converging to, H∗ (L), is defined in degree
0, · · · , n as in fig. 25, we conclude that H∗ (End EL) is concentrated in a single
degree, which implies that H∗EL is also concentrated in a single degree. Moreover
it is one-dimensional. So H∗ (L) = H∗Q ⊗ EndH∗EL. So if we just count ranks,
we see that H∗EL has to have rank 1

In general, one really has to use the geometry of the holomorphic curves in
proving the Arnold conjecture, which is fruitful in 4-dimensions, but not so much
in higher dimensions.
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