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1. Classical knot theory

1.1. Preliminaries. A knot can be regarded either as an embedding K ↪→ S3

or K ↪→ R3. We will deal only with piecewise linear such embeddings.

Example 1. We consider the preliminary example of the right-handed trefoil
seen in fig. 1

We are just interested in such things modulo isotopy, so such a picture does
indeed specify a knot.

There is a particular type of knot called a torus knot, which lies on the surface of
an unknotted torus in R3. This is characterized by two integers p, q ∈ Z such that1

(p, q) = 1. In particular, it wraps p times around its axis of rotational symmetry
and q times around the interior of the torus as in fig. 2. Note that the torus knot
is trivial iff either p or q is ±1. If we consider the intersection of the solution sets
of the following:

xp + yq = 0 |x|+ |y| = 1(1)

in C2, we get the same knot.
We leave the following as an exercise:

All errors introduced are my own.
1 If we do not have this relatively prime condition, then this is a Torus link with more than

one component.

1
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Figure 1. Right-handed trefoil knot.

Figure 2. The p, q-torus knot.

Figure 3. The pretzel knot P (3,−4,−3).

Proposition 1. For all p, q ∈ Z such that p, q ≥ 1 and (p, q) = 1, we have
Tp,q = Tq,p.

Another type of knot is the Pretzel knot. This is characterized by three integers,
where these give the signed number of twists as in fig. 3.
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Figure 4. The left trefoil knot.

We can also consider an oriented link by giving each component an orientation.
Given any knot, we can reverse all crossings by switching unders and overs. This
gives us the mirror knot.

Example 2. Taking the mirror of the right-handed trefoil knot gives us the
left-handed trefoil knot as in fig. 4.

An alternating projection of a knot is a projection such that if you follow the
knot, the crossings alternate over and under. An alternating knot is a knot which
admits an alternating projection.

Example 3. The trefoil knots we saw above are both alternating knots. In fact,
the trefoil knot is a torus knot, the pretzel knot P (−1,−1,−1), and an alternating
knot.

Remark 1. Alternating knots are somehow very well-behaved.

Exercise 1. Which pretzel knots are torus knots? Which pretzel knots are
alternating knots?

1.2. Recognizing the unknot. We might wonder what aspect of a knot can
detect if the knot is itself the unknot. In order to consider this, we introduce the
concept of a Redemeister move. These can be seen in fig. 5.

Theorem 1. If two projections represent the same knot, then one can be ob-
tained from the other using the Redemeister moves.

Knot Floer homology is an invariant of a knot. This is the categorification
of the Alexander polynomial which we will meet later. There is also Khovanov
homology which is the categorification of the Jones polynomial.

Conjecture 1. If K is a nontrivial knot, then the corresponding Jones poly-
nomial is nontrivial.

Theorem 2. Khovanov homology recognizes the unknot.

Theorem 3. Knot Floer homology recognizes the unknot.

Theorem 4. The fundamental group of the complement of a knot K recognizes
when it is the unknot.
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=

Figure 5. The Redemeister moves R1, R2, and R3.

Warning 1. Typically in our analysis of a knot, we consider a projection of the
knot and analyse it this way. We have to be a bit careful sometimes, because if we
are studying invariants, we need to assure that we are actually studying invariants
of the knot rather than invariants of the particular projection.

Consider some nontrivial knot, then how many reversals of intersections are
needed to obtain the unknot? This is easy to calculate for the simple examples
we’ve seen. The unknotting number of a knot is the smallest number of reversals
of crossings which will yield the unknot.

Example 4. The unknotting number of the trefoil is 1.

Exercise 2. Show that the unknotting number of Tp,q is bounded below by
(p− 1) (q − 1) /2.

In fact this unknotting number is equal to (p− 1) (q − 1) /2. The proof uses
4-manifold invariants.

1.3. Dehn surgery. Consider some knot K ↪→ S3. Now take S3 \nd (K) and
glue the following:

(2) S3 \ nd (K) ∪φ
(
S1 ×D2

)
for φ ∈ SL (2,Z) determined by two integers giving a winding number through the
hole of the torus, and one around the axis of rotational symmetry. Now since we
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Figure 6. The black graphs for the figure eight knot and right-
handed trefoil.

have T 2 = ∂
(
S3 \ nd (K)

)
we have

(3) i : T 2 → S3 \ nd (K)

The first homologies here are Z ⊕ Z and Z. This whole operation is called p/q
surgery, and yields S3

p/q (K) which has first homology Z/pZ. Note that 1/n surgery

yields the homology 3-sphere.

Theorem 5. As long as K is not the unknot, for any r = p/q ∈ Q, S3
p/q (K) 6=

S3
p/q (U) where U is the unknot.

2. Kauffman states

For a given projection of a knot, we have n crossings, and n+ 2 regions. Now
we choose a marked edge, and decide that the adjacent regions are special, leaving
us with n crossings and n regions. Now a Kauffman corner is a choice of a crossing,
and a region.

Definition 1. Let K be a knot with a projection having n crossings. Then
a Kauffman state is a choice of n corners: S = {c1, · · · , cn} such that each region
gets exactly 1 corner, except the marked regions, and each crossing gets exactly 1
corner.

We always have a finite amount, and for a knot we always have an odd number.

2.1. Black and white graphs. The black graph (resp. white graph) is con-
structed as follows. Color each region of the projection of some knot either black
and white such that no adjacent pair of regions share a color.2 Then the vertices
of the graph are given by the black (resp. white) regions, and the edges are given
by the crossings. This can be pictured in fig. 6.

Now we define some conventions to assign certain numbers to crossings. We
can see these choices in fig. 7. As it turns out, the full contribution of these gradings
for a given state is always an integer. This is clearly true for the Maslov grading,
but is also true for the Alexander grading. Now to every corner c we will associate

2 We can see that this is always possible by drawing an arc from any region out to infinity,
and then counting the number of edges it crossed. We then assign a color to the region according

to parity.
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Figure 7. On the top we have the right-handed or positive cross-
ing and the associated Maslov grading M , and Alexander grading
A. On the bottom we have the same for the left-handed or negative
crossing.

Figure 8. The unknot with a twist, as to allow for a nonempty
set of Kauffman states.

Figure 9. The three Kauffman states for the trefoil knot.

the term tA(c) (−1)
M(C)

, so we get

(4) S = (c1, · · · , cn)→
n∏
i=1

tA(ci) (−1)
M(ci)

2.2. The Alexander polynomial. Now to get the actual Alexander polyno-
mial we take the following sum:

(5) A (D, e) =
∑

S∈Kauffman states

(−1)
M(S)

tA(S)

Example 5. Consider the unknot drawn as in fig. 8 This makes it clear thatfigurefigure
the Alexander polynomial is just 1.

Example 6. Consider the trefoil knot. This has three different Kauffman
states illustrated in fig. 9. The contributions of these states in terms of gradings
are plotted in fig. 10 All together the Alexander polynomial is:

(6) t− 1 +
1

t

Theorem 6. The Alexander polynomial is an invariant for any knot K.

Proof. We have to show that it is invariant under the Redemeister moves,
and is independent of the marked edge. We leave it as an exercise to show that
the contributions on both sides of the Redemeister moves cancel. To see it is
independent of the marked edge, we consider a corner locally, and pull the edge
down and around S3 until it comes back up the other side, so we can effectively
move the marking over crossings. �
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Figure 10. The plotted gradings are plotted for the three Kauff-
man states of the trefoil knot.

Theorem 7.

(7) AK+
−AK− = AK0

(
t1/2 − t−1/2

)
3. Heegaard Floer homology

3.1. Heegaard diagrams. Consider a surface Σg of genus g. A complete
set of attaching circles for Σg is a collection of g pairwise disjoint, homologically
linearly independent simple, closed curves. Such a collection of circles specifies
some handlebody Uγ which has Σg as its boundary. That is, the attaching circles
bound disjoint embedded disks in Uγ .

Now suppose Y is a closed, oriented 3-dimensional manifold. Then a Heegaard
splitting of Y is a decomposition of Y as the union of two handlebodies glued along
their boundary.

Example 7. The simplest example is cutting S3 into two balls of genus 0. We
could alternatively cut out a tubular neighborhood of the unknot to get a Heegaard
decomposition of genus 1.

We can encode the information of a Heegaard splitting as combinatorial data

using a Heegaard diagram H =
(

Σ, ~α, ~β
)

, where

~α = {α1, · · · , αg} ~β = {β1, · · · , βg}(8)

are two complete sets of attaching circles for Σ. We will typically consider pointed
Heegaard diagrams, where we take a marked point w disjoint from the αi and βi.
We can also consider the Heegaard diagram of Y from a slightly different point of
view. Equip Y with a self-indexing Morse function f and gradient-like vector field
v. Then Σ can be taken to be f−1 (3/2), ~α can be taken to be the locus of points

that flow out of the index one critical points under c, and ~β can be taken to be the
locus of points that flow into the index two critical points.

From the attaching circles we can form the tori:

Tα = α1 × · · · × αg Tβ = β1 × · · · × βg(9)

Said more concretely, Tα (resp. Tβ) consists of g-tuples in Σg, where each point is
on some αi (resp. βi) no two points lie on the same αi (resp. βi). Recall the d-fold
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Figure 11. Handle sliding α1 over α2.

symmetric product is defined as:

(10) Symd (Σ) =

d︷ ︸︸ ︷
Σ× · · · × Σ

Sd

Now define the subspace Vw ⊂ Symg (Σ) to consist of the g-tuples in Symg (Σ)
which include the marked point w. Then the intersection points Tα and Tβ are the
Heegaard states S (H). Explicitly, Heegaard states of type σ correspond to points
in the product:

(11)
(
α1 ∩ βσ(1)

)
× · · · ×

(
αg ∩ βσ(g)

)
A complex structure on Σ naturally induces a complex structure on the g-fold sym-
metric product Symg (Σ). We can even give this a Kähler structure so Tα and
Tβ are Lagrangian, and now variants of the Heegaard Floer homology of Y corre-
spond to variants of the Lagrangian Floer homology of Tα and Tβ in Symg (Σ). See
[?auroux_fukaya] for an approachable introduction to Lagrangian Floer homology.

A given surface might have many different Heegaard diagrams, so how do we
know when two diagrams correspond to the same surface? We have the following
Heegaard moves:

(1) Isotope αi or βi
(2) Handle slide: Given that some α′i, αi, αj bound a pair of pants in Σ disjoint

from all other αk, then we replace αi with α′i. This can be visualized in
fig. 11.

(3) Stabilization: Given Σ, {αi} , {βi}, we can always just take

(12)
(
Σ#T 2, {α1, · · · , αg, αg+1} , {β1, · · · , βg, βg+1}

)
This corresponds to adding extra handles as in fig. 12.

Theorem 8. Any two Heegaard diagrams which are equivalent under these
three moves represent the same surface.
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Figure 12. Visualizing the Heegaard stabilization move as adding
an extra handle.

Example 8. The genus 1 Heegaard decomposition of S3 from above gives us
a diagram (Σ1, {α1} , {β1}), where α1 and β1 meet transversely at a unique point.
Note that S1 × S2 corresponds to (Σ1, {α1} , {α1}).

Example 9. The lens space L (p, q) has a Heegaard diagram (Σ1, α, β) where
α and β intersect at p points.

3.2. The chain complex. Equip Symg (Σ) with compatible almost complex
and symplectic structures. For two Heegaard states x and 4y, we can consider the
pseudo-holomorphic disks in Symg (Σ), and in particular we can organize these into
homotopy classes of maps u : D→ Symg (Σ) mapping the unit disk into Symg (Σ),
which map −i to x, i to y, and for all z = x+ iy ∈ ∂D,

(13) u (x+ iy) ∈

{
Tα x ≥ 0

Tβ x ≤ 0

We write π2 (x, y) for these homotopy classes.
Denote the Grassmannian of Lagrangian n-planes in

(
R2n, ωstd

)
by LGr (n).

It is well known that U (n) acts transitively on LGr (n), which means LGr (n) '
U (n) /O (n). From this it follows that π1 (LGr (n)) ' Z. Explicitly we can take
the square of the determinant to get a map U (n) /O (n) → S1 which induces an
isomorphism on the fundamental groups. Then we define the Maslov index of a
loop in LGr (n) to be the winding number of its image under this map.

Now we define the map nw : π2 (x, y)→ Z, by taking the algebraic intersection
number of a generic u representing a class φ ∈ π2 (x, y) with Vw. Note that this is
well-defined since we took w to be disjoint from the αi and βi. The moduli-space of
pseudo-holomorphic disks representing φ will be writtenM (φ). This has a natural
R action given by automorphisms of D preserving ±i.

Take ĈF to be the vector space generated by S (H) over F equipped with the
differential:

(14) ∂̂ (x) =
∑
y∈S

∑
{φ∈π2(x,y) |nw(φ)=0,µ(φ)=1}

#

(
M (φ)

R

)
y

where µ (φ) is the Maslov index. There is a refinement of this theory, where we
take CF− (H) to instead be a module over the polynomial algebra F [U ], and define
the differential to be:

(15) ∂− (x) =
∑
y∈S

∑
{φ∈π2(x,y) |µ(φ)=1}

#

(
M (φ)

R

)
Unw(φ)y
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Figure 13. Doubly-pointed Heegaard diagram for the left-
handed trefoil knot.

As it turns out, by the main theorem of [?oz_sz_three_manifolds] these are both
invariants of the underlying closed, oriented three-manifold Y , represented by H.

4. Knot Floer homology

The so-called knot Floer homology, is a slight extension of the Heegaard Floer
homology developed in the previous section.

4.1. Getting a knot projection from a Heegaard diagram and vice
versa. Consider a knot K ↪→ Y embedded in a 3-manifold. Suppose we have a

Heegaard diagram
(

Σ, ~α, ~β,w, z
)

with two base-points. We specify the knot as

follows. Connect w and z in Σ by an arc which is disjoint from all of the αi. Then
connect w and z in Σ by an arc which is disjoint from all of the βi, and connect
the arcs. This can be oriented by taking ∂a = z − w = −∂b.

We now go in the opposite direction. Consider a knot K ↪→ Y . Take some
decorated projection of the knot, so we have some marked edge, and singularize3

the projection. Now take a regular neighborhood of the resulting graph to get a
handlebody. That is we just sort of thicken the knot without concerning ourselves
over the crossings. Now the marked edge of the projection gives us two distinguished
regions in the complement of the projection, one of which is the infinite region. For
each of the bounded regions, we associate an α circle, and to each crossing, we
associate a β circle. We choose a final β circle transverse to the marking on the
distinguished edge. Now place basepoints w and z on either side of this final β-
circle. An example of this whole construction can be seen in fig. 13.

It is not obvious that we will always get g α and β-circles. To see this, first
notice that the planar graph resulting from singularizing the knot projection is
certainly connected, so it has Euler characteristic χ (K) = 2 = V − E + F , where
V is the number of crossings, F is the number of connected components, and E is
the number of edges. We also know E = 2V for this graph, so 2 = F − V . By
construction, we have that the genus of the surface will be g = F − 1, and the
number of α curves will also be g = F − 1, so we have 2 = g + 1 − V , so we have
V = g− 1 crossings, and therefore g− 1 β-circles, so along with the additional one
we added, we get g in total.

4.2. The chain complex of a 3-manifold. Now that we know how to asso-

ciate a Heegaard diagram with every knot, we can form the chain complex ĈFK (H)
generated by the Heegaard states over F. The differential is given by:

3This just means we forget the crossings.



BORDERED KNOT INVARIANTS 11

(16) ∂̂K (x) =
∑
y∈S

∑
{φ∈π2(x,y) |nw(φ)=0=nz(φ),µ(φ)=1}

#

(
M (φ)

R

)
y

4.3. Grading. We will equip this complex with a bigrading. That is, we want
functions M and A which map S (H) → Z. These will only be defined up to an
additive constant, so we will actually define these functions on pairs of states, and
show that this is really just the difference of the values for the individual states.

Lemma 1. For any pair (x, y) of intersection points of a Heegaard diagram of
S3, there exist some φ ∈ π2 (x, y).

Define the following:

A (x, y) = nz (φ)− nw (φ)(17)

M (x, y) = µ (φ)− 2nw (φ)(18)

where φ ∈ π2 (x, y).

Fact 1. These are well defined.

Fact 2. There exists A : Tα ∩ Tβ → Z such that A (x)−A (y) = A (x, y). and
M : Tα ∩ Tβ → Z such that M (x)−M (y) = M (x, y).

Fact 3. There is only one lift of this function such that the Euler characteristic
is the Alexander polynomial.

4.4. Other variants of knot Floer homology. We will use a filtration to

build the complex CFK, which is a variant of ĈFK from above.

Definition 2. Suppose we have a chain complex (C∗, ∂). A filtration is a
function F : C∗ → Z such that F (∂x) ≤ F (x).

A filtration can be thought of as an increasing sequence of subcomplexes, such
that the union is the full complex.

Take the generators c ∈ CF with A (c) ≤ i.
We want to extend A to chains. A chain is a sum of u powers times generators:

(19) c =
∑
i

umixi

Then we have:

A (umixi) = A (xi)−mi A

(∑
i

umixi

)
= max

i
A (umixi)(20)

Theorem 9. A (∂x) ≤ A (x)

This means

(21) Fi = {c ∈ CF |A (c) ≤ i}

is indeed a filtration.
Now define:

(22) CFK :=
⊕

x∈Tα∩Tβ

F [u, v]x/ {uv = 0}
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Figure 14. An example of a Seifert surface for a knot K.

so this is a freely generated by the intersection points over F [U, V ] /UV . This is
equipped with the following differential:

(23) ∂x =
∑
y

∑
φ∈π2(x,y),µ(φ)=1

M (φ)

R
unz(φ)vnw(φ)y

Note that we get the following reductions:

(24) grF =
⊕
i∈Z
Fi/Fi−1 = ĈFK

(25) H∗

(⊕
i∈Z
Fi/Fi−1

)
= ĤFK

5. Properties of knot Floer homology

5.1. The Alexander polynomial. Recall the Alexander polynomial associ-
ated to a knot K. There is also something called the Poincaré polynomial. This

encodes all of the information of the bigraded vector space ĤFK (K). For a knot
K we define:

(26) PK (q, t) =
∑
d,s

dim ĤFKd (K, s) qdts

Then we have the following theorem:

Theorem 10. Let K be an alternating knot. Then the knot Floer homology of
K is determined by its Alexander polynomial ∆K (t) and its signature σ (K), by the
following formula:

(27) PK (q, t) = qσ/2∆K (qt)

5.2. Seifert genus. The Seifert genus is a classical knot invariant. This is
another way to measure how complicated a knot is. First we have to introduce
a Seifert surface. We want an embedded oriented surface with the knot as the
boundary as in fig. 14.

Example 10. The unknot clearly admits a Seifert surface, in particular the
disk.

Example 11. The trefoil also admits a Seifert surface seen in fig. 15.
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Figure 15. The trefoil knot admits a Seifert surface by taking
two disks, and attaching one band for each crossing.

Figure 16. The support of H∗,∗ (K).

In the previous example we effectively just took the black graph of the knot,
and used this to explicitly construct a Seifert surface. For any generic knot this
technique will certainly yield a surface with the knot as its boundary, but it won’t
always be oriented. However we actually have the following:

Theorem 11. Every knot admits a Seifert surface.

Sketch of proof. This is shown using Seifert’s algorithm. Loosely speaking,
we take the projection, and resolve each crossing in an oriented fashion. Now we
have a union of oriented circles, which we fill with a disks, then we replace these
altered crossings with some bands. �

There is obviously some ambiguity in the choice of Seifert surface, and we can
of course arbitrarily increase the genus of a given Seifert surface by adding holes
without altering the boundary, or the fact that it’s oriented. Therefore we define:

Definition 3. The Seifert genus is the minimal genus of a Seifert surface of a
given knot.

Theorem 12. A knot as Seifert genus 0 iff it is the unknot.

As it turns out, knot Floer homology can actually compute this Seifert genus.
The support of H∗,∗ (K) can be seen in fig. 16 where we write

(28) d = max {i |Hi,∗ (K) 6= 0}

Theorem 13. d = g (K)

Corollary 1. If K 6= U , H∗,∗ (K) 6= H∗,∗ (U)

Theorem 14. A knot is fibered iff the total rank of the homology on the line
at d is 1.

Suppose K is alternating. Then we have seen that degAK = g (Σ) ≥ g (K) for
a Seifert surface Σ, and by one of the definitions of AK , degAK ≤ g (K). We have
the classical result:

Theorem 15. An alternating knot is fibered iff the leading coefficients of the
Alexander polynomial is ±1.
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Figure 17. Black and white coloring of a crossing.

Figure 18. The simplified clock transform of a Kauffman state.

Exercise 3. (1) For an alternating projection, we can choose a black-
white coloring at every crossing as in fig. 17.

(2) Given a Kauffman state S,

M (S) = A (S) +
#positive crossings−#black regions + 1

2
(29)

A (S) = M (S)− σ (K)

2
(30)

(3) For an alternating knot,

(31) σ (K) = #Black regions−#Pos− 1

This exercise gives us the Knot Floer homology for an alternating knot.
(4) This part deals with a simplified version of the Kauffman clock transform.

This transform can be visualized in fig. 18. Prove the following:

Theorem 16. Any two Kauffman states can be connected by a clock
transform.

Proposition 2. The number of positive crossings does not depend on the ori-
entation of the knot.

Remark 2. The signature of a knot was originally defined to be the signature
of A+AT where A is the Seifert form.

Proposition 3. The Alexander polynomial of an alternating knot is also al-
ternating.

So we have seen the unknotting number and the Seifert genus as invariants of
a knot, but there is also the smooth 4-ball genus g4 (K). Given a knot K, g4 (K) is
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Figure 19. The connected sum of the right and left-handed trefoil.

Figure 20. The Conway knot and Kinoshita-Terasaka knot.

the minimal genus of a smoothly embedded surface in D4 with K as the boundary.
There is a topological version of this, where we require a locally flat embedding.

There is a special case of this. A knot K is called smoothly sliced if g4 (K) = 0.

Exercise 4. (1) Show that

(32) g4 (K) ≤ u (K)

(2) Consider the right- and left-handed trefoil, and consider their connected
sum as in fig. 19. Prove that g4 = 0.

(3) Show that the unknotting number of the connected sum of the two trefoil
knots has unknotting number 2.

(4) The Conway knot and Kinoshita-Terasaka knots are in fig. 20. The Con-
way knot has g = 3, and the Kinoshita-Terasaka knot has g = 2. Show
that g4 = 0 for the Kinoshita-Terasaka knot. There is a conjecture:

Conjecture 2. g4 6= 0

(5) Suppose we want to study 4-manifolds. So if a compact smooth 4-manifold
is homeomorphic to S4, is it diffeomorphic? That is, is there an exotic S4?
The smooth Poincaré conjecture suggests no. There is an idea that goes
as follows. Consider some Σ4 which is potentially exotic. Look at S4, and
consider a generic point. Then view S3 as a neighborhood of this point.
Consider some knot K in a neighborhood in both of these manifolds, and
ask what the g4 is for the knot in S4. Then consider the analogous gΣ in
Σ4. If we find any such knot for which these numbers are different, then
Σ must be exotic. So the hope is to find a Σ and a knot K for which
g4 6= gΣ.
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Figure 21. An upper diagram for some knot K.

Figure 22. Examples of upper Kauffman states.

Show that gΣ (K) ≤ g4 (K).

As it turns out, we always have the inequality |S (K) /2| ≤ g4, but we actually
have that this is bounded by gΣ as well. Similarly

|τ | ≤ g4 |τ | ≤ gΣ(33)

The fact that knot Floer homology detects the Seifert genus leads to the fol-
lowing:

Corollary 2. ĤFK (K) has dimension one iff K is the unknot.

6. Bordered knot Floer homology

In the previous section we met an invariant CFK (K) of a knot K. We now
meet a way to calculate this, using bordered techniques. The generic idea, will be to
slice the knot projection up into a finite number of pieces, where each slice crosses
the projection 2n times. Then we can associate a special sort of algebra to these
2n crossings, and then associate some sort of (bi)module over this algebra to each
slice. Then we can pair these objects with each other, and sort of scan through the
knot to calculate CFK (K).

6.1. Upper Kauffman states. An upper diagram is some slice of the knot
as in fig. 21. The bridge number n is the number of “arcs” above the line cutting
the knot. Equivalently, there are 2n intersection points of the knot with this line.4

A local state will be the collection of n integers x1, · · · , xn which satisfy 1 ≤
x1 < · · · < xn ≤ 2n− 1. Then an upper Kauffman state is a collection of k corners
(c1, · · · , ck) and a local state x1, · · · , xn such that every region either has a unique
corner, or a unique marking on its boundary. Some examples are shown in figs. 22
and 23

Note that if we are willing to take these local markings as the marked edges
for the loops below the cut, then these are actually honest Kauffman states.

4 Since there are finite intersection points, we can set this up so that the line only goes
through edges and not crossings or the “top” of a loop, so the generic upper diagram does indeed

have 2n intersections.
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Figure 23. The three local states corresponding to n = 2.

Figure 24. rxy for n = 2.

6.2. Construction of the algebra C (n). We want to associate some sort of
bimodule to each slice of our knot projection. In order to do this, we first need to
define the algebra C (n) over which our bimodules will be generated. C (n) will be
the quotient of a larger algebra C0 (n) which we now define.

The object C0 (n) will be a graded algebra over F (U1, · · · , U2n). The basic
idempotent elements Ix of C0 (n) will correspond to local states x, and will generate
an idempotent ring I (n) ⊂ C0 (n) given by the relations:

(34) Ix · Iy =

{
Ix x = y

0 x 6= y

The unital element will be

(35) 1 =
∑

x∈ local states

Ix

This algebra C0 (n) is almost a polynomial ring. In particular, we have the
following identification of F [U1, · · · , U2n]-modules:

(36) IxC0 (n) Iy ∼= F [U1, · · · , U2n]

We will also define a multiplication:

(37) (IxC0 (n) Iy) ∗ (IyC0 (n) Iz)→ IxC0 (n) Iz

Given a local state x, we define the weight-vector vx ∈ Z2n, by

(38) vxi = # {xj ∈ x |xj ≥ i}

Then for two states x, y we define the minimal relative weight rx,y ∈ (1/2Z)
2n

by

(39) rxyi = |vxi − v
y
i |

This ith component of this minimal relative weight returns the number of crossings
of the ith strand between x and y.

Example 12. Take n = 4. In this case v (x, y) ∈ Z4 As we can see in fig. 24,
we get rxy = (0, 1, 1, 0).

Now recall the identification of IxC0 (n) Iy with the polynomial ring over U1, · · · , U2n.
Write this identification as:

(40) a (x, y, ·) : F [U1, · · · , U2n]→ IxC0 (n) Iy
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For any monomial p ∈ F [U1, · · · , U2n] we can write p = U t11 · · ·U
t2n
2n for some

t1, · · · , t2n. Now a grading is specified by the weight :

(41) w (a (x, y, p)) = rxy + (t1, · · · , t2n)

We now define the multiplication mentioned above by the relations:

(42)

{
a (x, y, p1) ∗ a (s, r, p2) = 0 y 6= s

a (x, y, p1) ∗ a (s, r, p2) = a (x, r, p3) y = s

where p3 is such that w is additive. We can write this out explicitly as follows.
Consider three states x, y, and z. Then we will write p3 such that

(43) a (x, y, p1) ∗ a (y, z, p2) = a (x, r, p3)

If we define ti = wxyi + wyzi − wxzi for i ∈ {1, · · · , 2n}, then we can write p3 as

(44) p3 = U t11 · · ·U
t2n
2n p1p2

Example 13. a (x, x, 1) gives us the idempotent Ix. Also, a (x, y, 1) a (u, r, 1) =
a (x, y, U2).

Example 14. Let’s consider x = {1, 2} and look at C (n). Then a (x, x, U4) = 0.
We also have

(45) a (x, x, U1U2U3) = a (x, y, 1) a (y, y, U1)︸ ︷︷ ︸
=0

a (y, x, 1) = 0

Now what are the generators of C0 (n) over the idempotent ring I (n)? Equiv-
alently, what do we need besides the elements Ix to generate C0 (n) over F? First
we can define the elements:

(46) Ui :=
∑
x

a (x, x, Ui)

Now let x be some state containing j − 1 and not j. Then we form a new state by
define y = (x ∪ j) \ {j − 1}. So we have a dot in j instead of j− 1. Then we define:

(47) Ri :=
∑

x | j−1∈x,j 6∈x

a (x, y, 1)

Note that we have:

(48) IxRj =

{
a (x, y, 1) j − 1 ∈ x, j 6∈ x
0 otherwise

Similarly we define

(49) Lj :=
∑

y | j∈y,j−16∈y

a (y, x, 1)

Remark 3. Lj and Rj correspond to shifting left and right respectively.

Warning 2. It is not always the case that acting L and R gives us U . For
example a (x, x, 1)Ui is not LiRi and not RiLi.

Now we want to show C0 (n) is itself graded by w:

Proposition 4. The grading, w, on IxC0 (n) Iy, descends to C0 (n) itself.
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Proof. We just have to show:

(50) w (a (x, y, 1) ∗ a (y, z, 1)) = w (a (x, y, 1)) + w (a (y, z, 1))

but the definition of p3 was rigged for this to be the case. �

In light of this proposition, we will now write the multiplication ∗ without the
symbol.

Proposition 5. The algebra C0 (n) is generated over F by Li, Ri, Ui, and Ix.

Now we still need to define C (n) itself. As promised we will quotient out by an
ideal. In particular, we generate a two-sided ideal J by the following:

Li+1Li RiRi+1(51)

and if {x1, · · · , xk} ∩ {j − 1, j} = ∅, then

(52) IxUj

Then, finally,

(53) C (n) := C0 (n) /J

We can write this different ways. For example, we want a (x, x, ui) to be in the
ideal whenever i 6∈ x and i− 1 6∈ x is equivalent to the third condition above.

The interpretation here is that the elements of C (n) should not be able to move
coordinates in the idempotent states by more than one unit.

Example 15. For n = 1, we have

I (1) = F C (1) = F [u1, u2] / {u1 · u2 = 0}(54)

In the end we will get a chain complex over C (1). We can view this as a chain
complex over F by the forgetful map bringing u1 and u2 to 0 in F. This gives us the
simplest version of knot Floer homology. We could alternatively map C (1) to F [u1]
by mapping u2 7→ 0. This gives a filtrated complex, by allowing for differentials that
decrease the Alexander grading and not the Maslov grading. The total homology
is an invariant, but it is the same for every knot, in particular it gives F. We do
however get an interesting integer valued invariant called τ (K).

Exercise 5. Take n = 3, and x = {2, 3, 5} and y = {1, 3, 5}. Now take
IxJIy ⊆ IxC0Iy. Let’s view IxC0Iy as a polynomial algebra F [u1, · · · , u2n]. So
there is a new object

(55) Jx,y ⊆ F [u1, · · · , u2n]

Show that this is an ideal inside the polynomial algebra in the usual sense, and find
generators of this ideal.

Exercise 6. Suppose we have the two local states in fig. 25 Show that a (x, y, u3u4) ∈
J .
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Figure 25. Two local states of the upper diagram of a knot.

6.3. D-structure associated with an upper diagram. For any slice of
a knot at time t, we can consider the upper diagram as in the preceding subsec-
tion. We can then consider all of the possible upper Kauffman states of this upper
diagram. Write DFK for the F-vector space generated by the upper Kauffman
states. We will turn this into a curved D-structure5 by defining a structure map
δ1 : DFK → C (n) ⊗ DFK. Explicitly this will be defined by counting pseudo-
holomorphic disks:

(56) δx =
∑
y

∑
B∈π2(x,y),µ(B)=1

#

(
MB (x,y)

R

)
· c (B)⊗ y

6.4. DA-bimodule associated with a crossing. See appendix B for the
definition of a DA-bimodule.

6.5. A-structure associated with a lower diagram. See appendix A for
the definition of an A-structure.

Appendix A. D-structures and A∞ modules

Let A denote a dg algebra6

A (right) A∞-module over A is a Z-graded F-module M together with degree
0, F-linear maps

(57) mj+1 : M ⊗A⊗j →M

for j ∈ N such that for each i, x ∈M , and a1, · · · , ai ∈ A,

(58) 0 =

i−1∑
j=0

mi−j (mj+1 (x, a1, · · · , an) , aj+1, · · · , ai)

+

i∑
j=1

i−j+1∑
k=1

mi−j+1 (x, a1, · · · , ak−1, µj (ak, · · · , ak+j) , ak+j+1, · · · , ai)

These relations are known as the A∞ relations, and can be understood as
follows. Consider trees which have k inputs and a single output, where the furthest
left input is privileged. Then each tree T represents a map m (T ) : A⊗k → A. The
operation of a vertex of valence n is labelled by mn. An example is shown in fig. 26.

A type D-structure over A is a graded vector space X, equipped with the map

(59) δ1 : X → A⊗X

5See appendix A for the definition of a (curved) D-structure.
6 That is, a graded vector space equipped with a differential and associative multiplication

compatible by the Leibniz rule.
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Figure 26. The sum of the operations associated to these trees
vanishes; for example, the tree on the top right contributes
m3 (x, a,m2 (b, c)).

satisfying the structure equation:

(60) (µ2 ⊗ idX) ◦
(
δ1 ⊗ idX

)
◦ δ1 + (µ1 ⊗ idX) ◦ δ1 = 0

Now we can iterate this map to get

(61) δj : X → A⊗j ⊗X

defined inductively by

(62) δj :=
(
idA⊗(j−1) ⊗δ1

)
◦ δj−1

Appendix B. DA-bimodules

cleanclean

Definition 4. Let A and B be A∞-algebras over F. Then a type DA bimodule
ANB overA and B consists of a graded (F,F)-bimodule N and degree 0, (F,F)-linear
maps

(63) δ1
1+j : N ⊗B⊗j → A⊗N

which satisfy the following compatibility condition. Let δ1 =
∑
j δ

1
j , and define

(64) δi : N ⊗ T ∗ (B)→ A⊗i ⊗N

by δ0 = id, and

(65) δi+1 =
(
idA⊗i ⊗δ1

)
◦
(
δi ⊗ idT∗B

)
◦ (idN ⊗∆)

where ∆ : T ∗ (B)→ T ∗ (B)⊗ T ∗ (B) is the canonical comultiplication. Now define

(66) δN : N ⊗ T ∗ (B)→ T ∗ (A)⊗N

by

(67) δN =

∞∑
i=0

δi

Then we must have:

(68) δN ◦
(

idN ⊗D
B)

+
(
D
A ⊗ idN

)
◦ δN = 0

We will write the category of such bimodules as A- Mod-B.
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This should be thought of as something which is simultaneously a D-structure
and an A∞-algebra.

Appendix C. Box tensor product

cleanclean
There is a natural pairing between A∞ modules M and D-structures X over

A. In particular, we can equip the vector space M ⊗X with the endomorphism

(69) D (p⊗ x) =

∞∑
j=0

(mj+1 ⊗ idX) ◦ δj (x)

Note that this might not be a finite sum. The module M is said to be algebraically
bounded if mj = 0 for j sufficiently large.

combine these def-
initions
combine these def-
initions

Definition 5. For A an A∞-algebra, MA ∈ModA, and AN ∈A Mod, with
at least one of MA or NA bounded, define MA �A N to be a chain complex with
underlying space M ⊗k N and boundary operator

(70) ∂ := (mM ⊗ idN ) ◦
(
idM ⊗δN

)
So we have seen how to get a D-structure from the box-tensor product of a

D-structure and an A∞ module. Now we need an analogous pairing between DA-
bimodules. Roughly speaking, the construction forgets the A∞ structure on one,
and forgets the D-structure on the other, and then just using the construction from
above on these simpler objects.

More formally, consider the forgetful functors:

(71)

AModB ModB

AModB
AMod

F

F

Then we can define the following:

Definition 6. Let AMB ∈A ModB and BNC ∈B ModC . Then define the
box-tensor product of these to be:

(72) AMB �
A NB := F

(AMB)B �B F (BNC)
with DA structure given by

(73) δM�N
j :=

∑
n

idM ⊗δN1+j ◦ idN ⊗δM1+j

So the composition δM�N
j maps:

(74) M ⊗N ⊗A⊗j → B⊗k ⊗M ⊗N → C ⊗M ⊗N
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