Spherical varieties

Jackson Van Dyke

Monday July 13, 2020

Jackson Van Dyke

Spherical varieties

Monday July 13, 2020 1 / 35

## Our building will officially be renamed "PMA"! ☺

See here for the full announcement.

## Table of contents

#### Motivation

- What are they?
- What are they good for?

#### Reductive groups

- A trip to the zoo
- Representation theory of reductive groups

- Equivalent definitions of spherical varieties
- Good features

- k is a field.
- *G* is an algebraic group over *k* (an algebraic variety which is also a group, i.e. group scheme of finite type over a field).
- X is an algebraic variety over k equipped with an action of G.

- What are they?
- What are they good for?

#### Reductive groups

- A trip to the zoo
- Representation theory of reductive groups

- Equivalent definitions of spherical varieties
- Good features

Spherical varieties are algebraic varieties equipped with an action of a certain type of algebraic group G subject to a finiteness condition.

- The type of G will be called *reductive*.
- First we motivate and define this term.
- Then we make precise what we mean by "finiteness condition" on the action of *G* on the variety.

- What are they?
- What are they good for?

#### Reductive groups

- A trip to the zoo
- Representation theory of reductive groups

- Equivalent definitions of spherical varieties
- Good features

One name of the game is generalizing features of toric varieties and flag varieties.

- Another name of the game is **classification**.
- Classifying all algebraic varieties (up to birational equivalence) would be the dream. This is just too hard to do.
- Instead, one imposes some structure, to make the problem tractable.
- For us, this structure comes in the form of a group action.

Spherical varieties are sometimes taken to be normal. We won't assume this, but this is also natural from this point of view: if we can't classify singular things, it is reasonable to insist on better behavior.

#### Example

If the group is a torus,  $G = (\mathbb{G}_m)^n$ , then we get the notion of a toric variety. This structure restricted the class of varieties enough to get the classification via fans that we have seen.

## Ok, fine. But why do I care about classification?

- Classifications often come in a combinatorial package (ADE classification, classification of toric varieties by fans, etc.).
- If one has an honest classification then one can use this combinatorial data instead of the variety itself to perform constructions.

#### Example

Intrinsic 2d mirror symmetry works somewhat in this way. In particular, the Gross-Siebert program<sup>a</sup> starts with a variety, converts it into combinatorial data, and uses this data to define the mirror variety.

<sup>&</sup>lt;sup>a</sup>My brevity is not intended to simplify this and other programs of 2d mirror symmetry. It is much more complicated and deep than my description might imply.

- Toric and flag varieties are both examples of spherical varieties (as expected).
- Spherical varieties are intimately related to the Langlands program (both geometric and arithmetic). Executive summary: classically one studies automorphic forms on the upper half-plane by calculating period integrals. Now one would like to generalize this, and there is a sense in which key features of this example are encoded in the notion of a spherical variety.
- See David Ben-Zvi's talks at MSRI about the relative Langlands program for more on this.

- What are they?
- What are they good for?

#### Reductive groups

- A trip to the zoo
- Representation theory of reductive groups

- Equivalent definitions of spherical varieties
- Good features



#### Definition (solvable)

An algebraic group G is solvable if and only if it admits a subnormal series

$$G = G_0 \supset G_1 \supset \cdots \supset G_k = \{1\}$$
(1)

such that each  $G_i/G_{i+1}$  is abelian. In other words it is built out of abelian groups by extensions.

12 / 35

## Simple, semisimple, and reductive

The *radical of G*, written R(G), is the maximal normal subgroup which is connected, and solvable.

(Such a subgroup exists because extensions and quotients of solvable algebraic groups are solvable.)

#### Definition 1 (simple)

G is *simple* if and only if it does not contain any (proper, nontrivial, and connected) normal subgroups.

#### Definition 2 (semisimple)

G is semisimple if and only if  $R(G) = \{1\}$ .

#### Definition 3 (reductive)

*G* is *reductive* if and only if  $R(G) \cong (\mathbb{G}_m)^n$  for some *n*.

3

イロト イポト イヨト イヨト

## Simple = no normal subgroups;(2)semisimple = no solvable normal subgroups;(3)reductive = solvable normal subgroups are abelian.(4)

#### Definition 4

Write  $T \subset G$  for a maximal torus.

#### Definition 5

A maximal connected solvable subgroup  $B \subset G$  is called a *Borel subgroup*.

#### Theorem

All maximal tori (resp. Borel subgroups) are conjugate.

A B A A B A

## The butterfly garden



Grothendieck's vision of a pinned reductive group: "the body is a maximal torus T, the wings are the opposite Borel subgroups B, and the pins rigidify the situation."

Picture and description from here.

- $\bullet \ {\sf Simple} \ \Longrightarrow \ {\sf semisimple} \ \Longrightarrow \ {\sf reductive}.$
- G/R(G) is always semisimple.
- If G is abelian then G is reductive.
- If G is solvable and nonabelian then G is not reductive.

## Examples of reductive algebraic groups

#### Example

 $(\mathbb{G}_m)^n$  is abelian, so reductive.

#### Example

The following algebraic groups are simple, so reductive:

 $SL_n$  (for  $n \ge 2$ ),  $Sp_{2n}$  and,  $SO_n$  (for  $k = \overline{k}$ ). (5)

#### Example

A maximal torus of  $SL_n$  consists of diagonal matrices, and a Borel subgroup of  $SL_n$  consists of upper triangular matrices.

# Example $GL_n$ and $O_n$ are reductive.Jackson Van DykeJackson Van Dyke

#### Example 1

If  $G = GL_n$  the radical is just scalar matrices  $aI_n$  for  $a \neq 0$ , i.e.  $\mathbb{G}_m$ . The quotient is  $SL_n$ . This is semisimple (in fact simple).

The following is a more interesting example from [Mil]. Consider the algebraic group  $GL_{m+n}$ . This is given by block matrices

$$\begin{bmatrix} A & B \\ 0 & C \end{bmatrix}$$
 (6

where A is  $m \times m$  and C is  $n \times n$ . The radical consists of matrices of the form:

$$\begin{bmatrix} aI_m & B \\ 0 & cI_n \end{bmatrix}$$

(7)

and the semisimple quotient is:

$$G/R(G) = \mathsf{PGL}_m imes \mathsf{PGL}_n$$
.

Recall an operator T is called *unipotent* if and only if there is some  $N \in \mathbb{Z}_+$  such that

$$(T-1)^N = 0$$
 . (9)

An algebraic group is called *unipotent* if it acts by unipotent operators in any rational representation.

#### Lemma

*G* is reductive if and only if it does not contain any normal subgroups which are (proper, connected, and) unipotent.

- If G is unipotent then G is not reductive.
- Just as G/R(G) was semisimple, the quotient of any algebraic group by its maximal normal subgroup which is (connected and) unipotent is reductive.

#### Example

The additive group  $\mathbb{G}_a$  (and any  $(\mathbb{G}_a)^n$ ) are not reductive. This is because we can view  $a \in \mathbb{G}_a$  as  $\begin{vmatrix} 1 & a \\ 0 & 1 \end{vmatrix}$ 

So this is actually a unipotent group, and therefore cannot be reductive.

#### Example

The Borel subgroup B of  $GL_n$  is not reductive. This consists of upper triangular matrices, and has nontrivial unipotent normal subgroup consisting of upper-triangular matrices with 1 on the diagonal. In fact, Bis solvable.

(10)

Again consider the Borel subgroup of  $GL_n$  consisting of upper triangular matrices. This has maximal normal **unipotent** subgroup given by upper triangular matrices with 1 on the diagonal.

Just as the quotient of G by the radical was semisimple, the quotient by this is reductive. Indeed the quotient is the torus:

$$\operatorname{GL}_n / \left\langle \begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix} \right\rangle \cong (\mathbb{G}_m)^n .$$
 (11)

- What are they?
- What are they good for?

#### Reductive groups

- A trip to the zoo
- Representation theory of reductive groups

- Equivalent definitions of spherical varieties
- Good features

#### Warning

Reductive groups admit a very rich representation theory. This is just the tip of the iceberg.

#### Definition

Let V be a (finite-dimensional) k vector space. A representation of G is a map  $G \to \operatorname{GL}(V)$ .

#### Definition

A *semisimple (or completely reducible) representation* is a direct sum of simple (or irreducible) representations.

#### Theorem

Assume char k = 0. G is reductive iff every (finite-dimensional) representation is semisimple.

The direction ( $\Leftarrow$ ) is easy to show. Normal unipotent subgroups of *G* act trivially on semisimple representations of *G*. So if *G* admits a faithful semisimple representation then *G* is reductive.

25 / 35

< □ > < @ >

- Algebraic varieties were very hard to classify, so instead we just look at ones which have some kind of group action.
- In particular, we ask for a **reductive group action** satisfying some other finiteness constraint which we will meet shortly.
- This is a good type of group to ask for, because:
  - it generalizes abelian groups and
  - it generalizes simple groups so in particular
  - it has good representation theory, i.e. it acts on things in an understandable way.

- What are they?
- What are they good for?

#### Reductive groups

- A trip to the zoo
- Representation theory of reductive groups

- Equivalent definitions of spherical varieties
- Good features

#### Definition (spherical variety)

X is a spherical variety if and only if it contains an open dense B orbit.

Now we will identify some equivalent characterizations of spherical varieties. The punchline will be that this is fundamentally some kind of finiteness condition.

#### Definition (complexity)

The complexity of X, written c(X), is the minimal codimension of a B orbit.

#### Theorem 1

X is spherical if and only if c(X) = 0.

#### Proof.

Open dense orbits are the proper codimension 0 orbits.

- B - - B

## Finitely many B orbits

#### Theorem

X is spherical if and only if it has finitely many B orbits.

#### Lemma 1 (Theorem 4.5.5 [Per])

If  $Y \subset X$  is a closed B-stable subvariety then  $c(Y) \leq c(X)$ .

#### Proof.

 $(\implies)$ : Let  $Y \subseteq X$  be some minimal subvariety containing infinitely many orbits. Lemma 1 implies c(Y) = 0. The complement of this orbit is a closed *G*-stable subvariety which must have infinitely many *B*-orbits, contradicting minimality of *Y*.

( $\Leftarrow$ ): Nonzero complexity implies infinitely many *G* orbits (and hence *B* orbits) since any maximal orbit has nonzero codimension, and orbits are disjoint.

30 / 35

< □ > < @ >

#### Theorem

X is spherical if and only if the only B invariant rational functions are constant:  $k(X)^B = 0$ .

This follows from Rosenlicht's theorem [Ros63] Theorem 2.3.

Theorem (Rosenlicht)

The transcendence degree of  $k(X)^B$  over k is c(X).

The idea is that

$$c(X) = \dim("X/B")$$
(12)

$$= transcendence degree(k("X/B"))$$
(13)

= transcendence degree 
$$\left(k\left(X\right)^{B}\right)$$
 . (14)

So 
$$c(X) = 0$$
 if and only if  $k(X)^B = k$ .

- We are considering *G*-varieties. We want a good type of *G*, and good condition on the action.
- Reductive G is good because it has nice representation theory.
- The condition we put on the action is a finiteness condition given by any of the equivalent conditions in the following theorem.

#### Theorem

The following are equivalent:

- X is spherical (i.e. X contains an open dense B orbit),
- c(X) = 0 (i.e. the maximal B orbit is codimension 0),
- X has finitely many B orbits,
- $k(X)^B = k$ .

A B b A B b

- What are they?
- What are they good for?

#### Reductive groups

- A trip to the zoo
- Representation theory of reductive groups

- Equivalent definitions of spherical varieties
- Good features

This slide could alternatively be titled: other talks people can give about spherical varieties.

- Luna-Vust theory.
  - Birational models of a given spherical variety are classified by colored fans.
  - "Explicitly classify those spherical  $\mathsf{SL}_2$  spaces with an open G/N orbit." Tom Gannon
- Projective spherical varieties are Mori dream spaces.
- The Chow groups of a spherical variety are equal to the *G* invariant Chow groups and are finitely generated. If the variety is smooth, these are the homology groups.
- If char (k) = 0 then all singularities are rational.
- Flesh out connections with automorphic forms.

- James S. Milne, *Reductive groups*, Available at: www.jmilne.org/math/CourseNotes/RG.pdf.
- Nicolas Perrin, *Introduction to spherical varieties*, Available at: hcm.uni-bonn.de/fileadmin/perrin/spherical.pdf.
- Maxwell Rosenlicht, A remark on quotient spaces, An. Acad. Brasil.
   Ci. 35 (1963), 487–489. MR 171782