SEIBERG-WITTEN EQUATIONS, FINITE DIMENSIONAL APPROXIMATION

LECTURE: LEON LIU

Contents

1. Proof of main theorem 1
2. Seiberg-Witten theory 1
2.1. Setup 1
3. Gauge fixing 3

1. Proof of main theorem

Recall last time we discusses the SES

$$
0 \rightarrow \operatorname{ker} \mu \rightarrow \Theta_{3}^{H, \mu} \xrightarrow{\mu} \mathbb{Z} / 2 \mathbb{Z} \rightarrow 0
$$

Then we have that μ not splitting is equivalent to the statement that for all $Y \mathbb{Z} H S$ (with $\mu(Y)=1$) we have $[2 Y] \neq 0$ (or equivalently $Y \nsim-Y$).

To prove this we will invent an invariant β which takes some integral homology sphere and gives us a number. It has the following properties:
(1) $Y_{1} \sim Y_{2}$ implies $\beta\left(Y_{1}\right)=\beta\left(Y_{2}\right)$.
(2) β is the integral lift of the Rocklin invariant: $\mu(Y)=\beta(Y)(\bmod 2)$.
(3) $\beta(-Y)=-\beta(Y)$.

Warning 1. β is not a group homomorphism.
Proof. If $Y \sim-Y$ then $\beta(Y)=\beta(-Y)=-\beta(-Y)$ so $\beta(Y)=0$ which implies $\mu(Y)=0$.

Some lectures down the road we will get some gadget $\operatorname{SWF}^{\operatorname{pin}(2), *}(Y)$ which will lead to β.

2. Seiberg-Witten theory

2.1. Setup. Let Y be an $\mathbb{Z} H S$ and g some Riemannian metric. This will have a (unique) spin^{c} structure. I.e. we have S a spinor bundle, rank 2 Hermitian and

$$
\rho: T^{*} Y \simeq T Y \rightarrow \mathfrak{s u}(S)
$$

[^0]$T Y=\left\langle e_{1}, e_{2}, e_{3}\right\rangle$ is trivializable so S is the trivial rank 2 bundle and ρ explicitly sends:
\[

$$
\begin{aligned}
\rho\left(e_{1}\right) & =\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right) \\
\rho\left(e_{2}\right) & =\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \\
\rho\left(e_{3}\right) & =\left(\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right)
\end{aligned}
$$
\]

This is some kind of gauge theory so we need to specify our fields. Define \mathcal{A} to be the space of $\mathrm{U}(1)$ connections. Since we are doing abelian gauge theory we should think of \mathcal{A} as 1 -forms on Y with imaginary coefficients: $\mathcal{A}=\Omega^{1}(Y ; i \mathbb{R})$. A spinor is a section $\varphi \in \Gamma(S)$. Then define

$$
\not \partial \varphi:=\sum \rho\left(e_{i}\right) \frac{\partial \varphi}{\partial x_{i}}
$$

We should think of $\varphi \otimes \varphi^{*} \in \operatorname{End}(S)$. Then in order to land in $\mathfrak{s l}(S)$ we take the traceless part:

$$
\left(\varphi \otimes \varphi^{*}\right)_{0} \in \mathfrak{s l}(S)
$$

So we can take

$$
\rho\left(\left(\rho \otimes \varphi^{*}\right)_{0}\right) \in \Omega^{1}(Y ; i \mathbb{R})
$$

Now we can state the actual SW equations. Define

$$
\mathcal{C}:=\Omega^{1}(Y ; i \mathbb{R}) \times \Gamma(S) \ni(a, \varphi)
$$

Now define:

$$
\widetilde{\mathrm{SW}}: \mathcal{C} \rightarrow \mathcal{C}
$$

to map:

$$
(a, \varphi) \mapsto\left(\star d a-2 \rho^{-1}\left(\left(\varphi \otimes \varphi^{*}\right)_{0}\right), \not \partial \varphi+a \varphi\right)
$$

Remark 1. This is a Gauge theory, so we should think of $\mathrm{SW}=\nabla \mathrm{CSD}$ where CSD is the Chern-Simons-Dirac functional given by:

$$
\operatorname{CSD}(a, \varphi)=\frac{1}{2}\left(\int_{Y}\langle\varphi,(\varphi+\rho(a)) \varphi\rangle d \mathrm{Vol}-\int_{Y} a \wedge d a\right)
$$

This is a functional on an infinite-dimensional space so we will be completing some sort of infinite-dimensional Morse theory in this setting, i.e. Floer homology.

We now define the Gauge group to be:

$$
\mathcal{G}=\mathcal{C}^{\infty}(Y, \mathrm{U}(1)) .
$$

For $U \in \mathcal{G}$ we have the action

$$
U \cdot(a, \varphi)=\left(a-U^{-1} d U, U \cdot \varphi\right)
$$

Because Y has trivial fundamental group we can write $U=e^{\xi}$ where $\xi: Y \rightarrow i \mathbb{R}$. Therefore we can rewrite the action to be:

$$
U_{\xi}(a, \varphi)=\left(a-d \xi, e^{\xi} \cdot \varphi\right)
$$

As it turns out we have

$$
U_{*} \widetilde{\mathrm{SW}}=\widetilde{\mathrm{SW}}
$$

Figure 1. The space \mathcal{C} with the orbit of some point under the action of \mathcal{G} pictured as the vertical lines. The red horizontal line is a choice of section V, i.e. a choice of representatives.

3. Gauge fixing

We now describe the process of gauge fixing. For a point in our \mathcal{C} we get an orbit of \mathcal{G}, and then Gauge fixing is a choice of a section V as in fig. 1. We will choose the Coulomb gauge, i.e. just some particular V.

Recall for $U \in G, a \in \mathcal{A}$ we have $U \cdot a=a-U \cdot d U=a-d \xi$. As it turns out we can write $\mathcal{G}=\mathcal{G}_{0} \times S^{1}$ where

$$
\mathcal{G}_{0}:=\left\{U=e^{\xi} \mid \int_{Y} \xi=0\right\}
$$

In general this integral won't be 0 , so we write:

$$
\xi^{\prime}=\xi-\frac{\int \xi}{\operatorname{Vol} Y}
$$

Then we get that U_{ξ} corresponds to

$$
\left(e^{\xi^{\prime}}, e^{\int \xi / \operatorname{Vol} Y}\right) \in \mathcal{G}_{0} \times S^{1}
$$

For $a \in \mathcal{A}$ we write $[a] \in \mathcal{A} / \mathcal{G}_{0}$. To understand this we do a bit of Hodge theory.

$$
\mathcal{A}=\Omega^{1}(Y ; i \mathbb{R})=d \Omega^{0} \oplus d^{*}\left(\Omega^{2}\right)=\operatorname{ker} d \oplus \operatorname{ker} d^{*}
$$

From this point of view we write

$$
a=d a_{0}+d^{*} a_{2}
$$

Formally we have that for any $a \in \mathcal{A}$ there exists a unique b such that $[b]=[a]$ and $b \in \operatorname{ker} d^{*}$.

Then our choice of section is given by:

$$
\mathcal{C} \supset V:=\left\{(a, \varphi) \in \mathcal{C} \mid d^{*} a=0\right\}
$$

Then what we have shown is that

$$
\mathcal{C} / \mathcal{G}_{0}=V
$$

Explicitly this map is:

$$
\begin{gathered}
C \xrightarrow{\pi} V \\
\left(d a_{0}+d^{*} a_{2}, \varphi\right) \longmapsto\left(d^{*} a_{2}, e^{a_{0}} \varphi\right)
\end{gathered}
$$

Remark 2. The point of this is that we went from studying $\mathcal{C} / \mathcal{G}$ to studying V / S^{1}.
Now we might be worried about $\left.\widetilde{\mathrm{SW}}\right|_{V}: V \rightarrow \mathcal{C}$ not landing in V. So we will do the obvious thing and post-compose with the projection. Really we should take some kind of tangential projection. For $(a, \varphi) \in V$ we define

$$
\pi_{(a, \varphi)}: T_{(a, \varphi)} \mathcal{C} \rightarrow T_{(a, \varphi)} V
$$

So now we define our real SW : $V \rightarrow V$ to be given by:

$$
\mathrm{SW}(a, \varphi)=\pi_{(a, \varphi)} \circ \widetilde{\mathrm{SW}}
$$

So we have an honest vector field on an (infinite-dimensional) space and we will study the flow-lines.
Lemma 1. We can split $\mathrm{SW}=\ell+c$ such that ℓ is a linear first order elliptic operator and c is quadratic.

Explicitly these will be given by:

$$
\begin{aligned}
& V \xrightarrow{l} V \\
& (a, \varphi) \longmapsto(\star d a, \not \partial \varphi) \\
& V \longrightarrow V \\
& (a, \varphi) \longmapsto \pi_{(a, \varphi)} \circ\left(-2 \rho^{-1}\left(\left(\varphi \otimes \varphi^{*}\right)_{0}\right), a \cdot \varphi\right) .
\end{aligned}
$$

So via gauge fixing we sent SW to SW on V modulo S^{1}. So we have an S^{1} action, but in fact we actually have a pin $(2)=\mathrm{U}(1) \cup j \cdot \mathrm{U}(1) \subset \mathbb{H}$ action where $j^{2}=-1$ and $i j=-j$. So to get a pin (2) action we just need to specify the action of j :

$$
j(a, \varphi)=(-a, \varphi j)
$$

for $\varphi \in S=\mathbb{C}^{2}=\mathbb{H}$.
Looking ahead, we need a finite dimensional approximation to do Morse theory which we will talk about next week.

[^0]: Date: September 27, 2019; Notes by Jackson Van Dyke. All errors introduced are my own.

