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1. Proof of main theorem

Recall last time we discusses the SES

0→ kerµ→ ΘH,µ
3

µ−→ Z/2Z→ 0 .

Then we have that µ not splitting is equivalent to the statement that for all Y ZHS
(with µ (Y ) = 1) we have [2Y ] 6= 0 (or equivalently Y 6∼ −Y ).

To prove this we will invent an invariant β which takes some integral homology
sphere and gives us a number. It has the following properties:

(1) Y1 ∼ Y2 implies β (Y1) = β (Y2).
(2) β is the integral lift of the Rocklin invariant: µ (Y ) = β (Y ) (mod 2).
(3) β (−Y ) = −β (Y ).

Warning 1. β is not a group homomorphism.

Proof. If Y ∼ −Y then β (Y ) = β (−Y ) = −β (−Y ) so β (Y ) = 0 which implies
µ (Y ) = 0. �

Some lectures down the road we will get some gadget SWFpin(2),∗ (Y ) which will
lead to β.

2. Seiberg-Witten theory

2.1. Setup. Let Y be an ZHS and g some Riemannian metric. This will have a
(unique) spinc structure. I.e. we have S a spinor bundle, rank 2 Hermitian and

ρ : T ∗Y ' TY → su (S) .
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TY = 〈e1, e2, e3〉 is trivializable so S is the trivial rank 2 bundle and ρ explicitly
sends:

ρ (e1) =

(
i 0
0 −i

)
ρ (e2) =

(
0 −1
1 0

)
ρ (e3) =

(
0 i
i 0

)
This is some kind of gauge theory so we need to specify our fields. Define A

to be the space of U (1) connections. Since we are doing abelian gauge theory we
should think of A as 1-forms on Y with imaginary coefficients: A = Ω1 (Y ; iR). A
spinor is a section ϕ ∈ Γ (S). Then define

/∂ϕ :=
∑

ρ (ei)
∂ϕ

∂xi
.

We should think of ϕ ⊗ ϕ∗ ∈ End (S). Then in order to land in sl (S) we take
the traceless part:

(ϕ⊗ ϕ∗)0 ∈ sl (S) .

So we can take

ρ ((ρ⊗ ϕ∗)0) ∈ Ω1 (Y ; iR) .

Now we can state the actual SW equations. Define

C := Ω1 (Y ; iR)× Γ (S) 3 (a, ϕ) .

Now define:

S̃W : C → C
to map:

(a, ϕ) 7→
(
? da − 2ρ−1 ((ϕ⊗ ϕ∗)0) , /∂ϕ+ aϕ

)
.

Remark 1. This is a Gauge theory, so we should think of ˜SW = ∇CSD where CSD
is the Chern-Simons-Dirac functional given by:

CSD (a, ϕ) =
1

2

(∫
Y

〈
ϕ,
(
/ϕ+ ρ (a)

)
ϕ
〉
dVol−

∫
Y

a ∧ da
)
.

This is a functional on an infinite-dimensional space so we will be completing some
sort of infinite-dimensional Morse theory in this setting, i.e. Floer homology.

We now define the Gauge group to be:

G = C∞ (Y,U (1)) .

For U ∈ G we have the action

U · (a, ϕ) =
(
a− U−1 dU ,U · ϕ

)
.

Because Y has trivial fundamental group we can write U = eξ where ξ : Y → iR.
Therefore we can rewrite the action to be:

Uξ (a, ϕ) =
(
a− dξ , eξ · ϕ

)
.

As it turns out we have

U∗S̃W = S̃W .
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V

/G ↓

C

Figure 1. The space C with the orbit of some point under the
action of G pictured as the vertical lines. The red horizontal line
is a choice of section V , i.e. a choice of representatives.

3. Gauge fixing

We now describe the process of gauge fixing. For a point in our C we get an orbit
of G, and then Gauge fixing is a choice of a section V as in fig. 1. We will choose
the Coulomb gauge, i.e. just some particular V .

Recall for U ∈ G, a ∈ A we have U · a = a− U · dU = a− dξ . As it turns out
we can write G = G0 × S1 where

G0 :=

{
U = eξ

∣∣∣∣ ∫
Y

ξ = 0

}
.

In general this integral won’t be 0, so we write:

ξ′ = ξ −
∫
ξ

VolY
.

Then we get that Uξ corresponds to(
eξ

′
, e

∫
ξ/VolY

)
∈ G0 × S1 .

For a ∈ A we write [a] ∈ A/G0. To understand this we do a bit of Hodge theory.

A = Ω1 (Y ; iR) = dΩ0 ⊕ d∗
(
Ω2
)

= ker d⊕ ker d∗ .

From this point of view we write

a = da0 + d∗a2 .

Formally we have that for any a ∈ A there exists a unique b such that [b] = [a] and
b ∈ ker d∗.

Then our choice of section is given by:

C ⊃ V := {(a, ϕ) ∈ C | d∗a = 0} .
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Then what we have shown is that

C/G0 = V .

Explicitly this map is:

C V

(da0 + d∗a2, ϕ) (d∗a2, e
a0ϕ)

π

Remark 2. The point of this is that we went from studying C/G to studying V/S1.

Now we might be worried about S̃W
∣∣∣
V

: V → C not landing in V . So we will

do the obvious thing and post-compose with the projection. Really we should take
some kind of tangential projection. For (a, ϕ) ∈ V we define

π(a,ϕ) : T(a,ϕ)C → T(a,ϕ)V .

So now we define our real SW : V → V to be given by:

SW (a, ϕ) = π(a,ϕ) ◦ S̃W .

So we have an honest vector field on an (infinite-dimensional) space and we will
study the flow-lines.

Lemma 1. We can split SW = ` + c such that ` is a linear first order elliptic
operator and c is quadratic.

Explicitly these will be given by:

V V

(a, ϕ)
(
? da , /∂ϕ

)
V V

(a, ϕ) π(a,ϕ) ◦
(
−2ρ−1 ((ϕ⊗ ϕ∗)0) , a · ϕ

)
.

l

c

So via gauge fixing we sent ˜SW to SW on V modulo S1. So we have an S1

action, but in fact we actually have a pin (2) = U (1) ∪ j · U (1) ⊂ H action where
j2 = −1 and ij = −j. So to get a pin (2) action we just need to specify the action
of j:

j (a, ϕ) = (−a, ϕj) .

for ϕ ∈ S = C2 = H.
Looking ahead, we need a finite dimensional approximation to do Morse theory

which we will talk about next week.
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