DEFINITION OF THE HOMOLOGY COBORDISM INVARIANTS

LECTURE: JACKSON VAN DYKE

The point of today will be to see that $\operatorname{SWFH}^{\operatorname{Pin}(2)}(Y, \mathbb{F})$ gives rise to some $\beta: \Theta_{3}^{H} \rightarrow$ \mathbb{Z}. Recall Θ_{3}^{H} is the homology cobordism group consisting of Y^{3} oriented $\mathbb{Z} H S^{3}$ (integral homology three spheres). The upshot will be that β satisfies:

$$
\begin{equation*}
\beta(-Y)=-\beta(Y) \quad \mu(Y)=\beta(Y)(\bmod 2) \tag{1}
\end{equation*}
$$

where μ is the Rokhlin homomorphism, so the SES:

$$
\begin{equation*}
0 \rightarrow \operatorname{ker} \mu \rightarrow \Theta_{3}^{H} \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow 0 \tag{2}
\end{equation*}
$$

does not split.

1. The module structure on equivariant homology

Let G be a Lie group acting on a space X. The Borel homology is

$$
\begin{equation*}
H_{*}^{G}(X)=H_{*}\left(X \times_{G} E G\right) \tag{3}
\end{equation*}
$$

where $E G$ is the universal bundle. This is a module over $H_{G}^{*}(\mathrm{pt})=H^{*}(B G)$. For us $G=\operatorname{Pin}(2)$, and we want to get our hands on

$$
\begin{equation*}
H^{*}(B \operatorname{Pin}(2), \mathbb{F}) \tag{4}
\end{equation*}
$$

Recall Pin (2) $=S^{1} \cup j S^{1} \subset \mathbb{H}$. Also recall $\operatorname{SU}(2)$ is isomorphic to the unit elements of \mathbb{H}, so it is diffeomorphic to S^{3}. This means we get a fibration:

where i is the inclusion and ψ is the Hopf fibration follows by the involution on S^{2}.
In such a setting, we get another fibration ${ }^{1}$

where \mathbb{H}^{∞} is the infinite-dimensional quaternionic projective space.
Now we calculate $H^{*}(B \operatorname{Pin}(2), \mathbb{F})$ using a Leray-Serre spectral sequence. Recall that this is

$$
\begin{equation*}
E_{2}^{p, q}=H^{p}\left(B \mathrm{SU}(2), H^{q}\left(\mathbb{R P}^{2}\right)\right) \Rightarrow H^{p+q}(B \operatorname{Pin}(2)) . \tag{7}
\end{equation*}
$$

Date: October 18, 2019.
${ }^{1}$ Explicitly this is given by the inclusion of orbits. See Peter May's response to this post on MathOverflow.

We know that the cohomology of $\mathbb{R P}^{2}$ in degree 0,1 , and 2 is given by

$$
\begin{equation*}
\mathbb{F} \stackrel{q}{\longrightarrow} \mathbb{F} \stackrel{q}{\longrightarrow}_{\mathbb{F} .} . \tag{8}
\end{equation*}
$$

We also know that the cohomology of $B \mathrm{SU}(2)=\mathbb{H} \mathbb{P}^{\infty}$ looks like

The spectral sequence associated to the fibration has no room for higher differentials, so the cohomology groups of B Pin (2) look like:

The multiplicative property of a spectral sequence gives a ring isomorphism

$$
\begin{equation*}
H^{*}(B \operatorname{Pin}(2), \mathbb{F}) \cong \mathbb{F}[q, v] /\left(q^{3}\right) \tag{11}
\end{equation*}
$$

where $\operatorname{deg}(v)=4, \operatorname{deg}(q)=1$.
Therefore for X with a Pin (2)-action, its Borel homology has an action by the ring above, with q and v decreasing the grading by 1 and 4 respectively.

2. Three infinite towers

Let $\left(I_{\lambda}^{\mu}\right)^{S^{1}}$ denote the fixed points set of I_{λ}^{μ} under the action of the subgroup $S^{1} \subset$ Pin (2). These fixed points pick up the part of the flow that live in the reducible locus, i.e. $\{(a, \varphi) \varphi=0\} .^{2}$ As it turns out:

$$
\begin{equation*}
\left(I_{\lambda}^{\mu}\right)^{S^{1}}=S^{\operatorname{dim} V_{\lambda}^{0}} \tag{12}
\end{equation*}
$$

Since we defined

$$
\begin{equation*}
\operatorname{SWF}(Y)=\Sigma^{\mathbb{H} n(Y, g) / 4} \Sigma^{-V_{\lambda}^{0}} I_{\lambda}^{\mu} \tag{13}
\end{equation*}
$$

we get that

$$
\begin{equation*}
(\operatorname{SWF}(Y))^{S^{1}}=S^{n(Y, g)} \tag{14}
\end{equation*}
$$

We should think of SWF (Y) as being made up of a reducible part $S^{n(Y, g)}$ and some free cells as the irreducible part. I.e. If we mod out by the sphere we get a free Pin (2) action.

The Pin (2)-equivariant Seiberg-Witten Floer homology

$$
\begin{equation*}
\operatorname{SWFH}_{*}^{\operatorname{Pin}(2)}(Y ; \mathbb{F})=\tilde{H}_{*}^{\operatorname{Pin}(2)}(\operatorname{SWF}(Y) ; \mathbb{F}) \tag{15}
\end{equation*}
$$

is a module over $\mathbb{F}[q, v] /\left(q^{3}\right)$ where $\mathbb{F}=\mathbb{Z} / 2 \mathbb{Z}$.
Now we have a localization theorem in equivariant cohomology which tells us that

$$
\begin{equation*}
V^{-1} \tilde{H}_{\mathrm{Pin}(2)}^{*}(\mathrm{SWF}(Y) ; \mathbb{F})=V^{-1} \tilde{H}_{\mathrm{Pin}(2)}^{*}\left(S^{n(Y, g)} ; \mathbb{F}\right) \tag{16}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\tilde{H}_{\operatorname{Pin}(2)}^{*}\left(S^{n(Y, g)} ; \mathbb{F}\right)=H^{*-n(Y, g)}(B \operatorname{Pin}(2) ; \mathbb{F}) \tag{17}
\end{equation*}
$$

Now we interpret this localization theorem as concerning Borel homology rather than cohomology. Since we work over \mathbb{F}, the Borel homology is just the dual space to the cohomology

[^0]in each grading. Furthermore, we can recover the module action on Borel homology from the one on Borel cohomology. The upshot is that $\operatorname{SWFH}_{*}^{\operatorname{Pin}(2)}$ is the homology of a complex (the equivariant cellular complex of the Conley index) of the form:

The finite part can be any finite dimensional vector space, with some v and q actions. There can be various other differentials both inside it and relating to the infinite towers. The important part is that there are always three infinite v towers in the complex, and they produce three infinite towers in homology. These towers correspond to the S^{1}-fixed point set of $\operatorname{SWF}(Y)$, and the finite part comes from the cells with a free Pin (2) action.

The upshot is that since $(\operatorname{SWF}(Y))^{S^{1}}=S^{n(Y, g)}$ and $n(Y, g) \equiv 2 \mu(\bmod 4)$, we have:

- All elements in the first tower are in degree $2 \mu(\bmod 4)$,
- all elements in the second tower are in degree $2 \mu+1(\bmod 4)$, and
- all elements in the third tower are in degree $2 \mu+2(\bmod 4)$.

3. Definition of the invariants

Write $A, B, C \in \mathbb{Z}$ for the lowest degrees of each infinite v-tower in homology. Now define the following:

$$
\begin{equation*}
\alpha:=\frac{A}{2} \quad \beta:=\frac{B-1}{2} \quad \gamma:=\frac{C-2}{2} \tag{19}
\end{equation*}
$$

The point is that:

$$
\begin{equation*}
A, \quad B-1, \quad C-2, \quad \equiv 2 \mu \quad(\bmod 4) \tag{20}
\end{equation*}
$$

so therefore

$$
\begin{equation*}
\alpha, \beta, \gamma \equiv \mu \quad(\bmod 2) . \tag{21}
\end{equation*}
$$

Note that the module structure requires

$$
\begin{equation*}
\alpha \geq \beta \geq \gamma \tag{22}
\end{equation*}
$$

4. Descent to homology cobordism

All we need to do now is check that α, β, and γ descend to maps $\Theta_{3}^{H} \rightarrow \mathbb{Z}$. This will use the construction of cobordism maps on Seiber-Witten Floer spectra.

Let W^{4} be a smooth oriented Spin (4) cobordism with $b_{1}(W)=0$, and with $\partial W=\left(-Y_{0}\right) \cup$ Y_{1}. (We really just care about when W is a homology cobordism between homology three spheres.) We can consider the Seiberg-Witten equations on W, and do a finite-dimensional approximation to the solution space in the same way that we did in three dimensions. This gets more complicated...

In the end we get a stable equivariant map between two suspension spectra

$$
\begin{equation*}
\Psi_{W}: \Sigma^{m \mathbb{H}} \operatorname{SWF}\left(Y_{0}\right) \rightarrow \Sigma^{n \tilde{\mathbb{R}}} \operatorname{SWF}\left(Y_{1}\right) . \tag{23}
\end{equation*}
$$

(Recall $\tilde{\mathbb{R}}$ is the rep where S^{1} acts trivially, and j acts by multiplication by -1.) In particular:

$$
\begin{equation*}
m=\frac{-\sigma(W)}{8}=\operatorname{ind} \not D \quad n=b_{2}^{+}(W)=\operatorname{ind}\left(d^{+}\right) \tag{24}
\end{equation*}
$$

In the case that W is a smooth oriented homology cobordism between homology spheres, there is a unique $\operatorname{Spin}(4)$ structure, $b_{1}(W)=0$, and $n=m=0$. Let F_{W} be the homomorphism induced on Pin (2)-equivariant homology by the map Ψ_{W}.

It follows from equivariant localization that in degree $k \gg 0$, the map F_{W} is an isomorphism. Further F_{W} is a module map, so we have a commutative diagram

Because of the module structure, we cannot have $\alpha\left(Y_{1}\right)<\alpha\left(Y_{0}\right)$, and likewise for β and γ. In conclusion,

$$
\alpha\left(Y_{1}\right) \geq \alpha\left(Y_{0}\right)
$$

$$
\begin{equation*}
\beta\left(Y_{1}\right) \geq \beta\left(Y_{0}\right) \tag{26}
\end{equation*}
$$

$$
\gamma\left(Y_{1}\right) \geq \gamma\left(Y_{0}\right)
$$

Now we can simply repeat the entire argument with reversed orientation and reversed direction of W. Therefore we get

$$
\begin{equation*}
\alpha\left(Y_{1}\right) \leq \alpha\left(Y_{0}\right) \quad \beta\left(Y_{1}\right) \leq \beta\left(Y_{0}\right) \quad \gamma\left(Y_{1}\right) \leq \gamma\left(Y_{0}\right) \tag{27}
\end{equation*}
$$

and therefore we have equalities. Therefore α, β, and γ all descend to maps

$$
\begin{equation*}
\Theta_{3}^{H} \rightarrow \mathbb{Z} \tag{28}
\end{equation*}
$$

[^0]: ${ }^{2}$ Recall $a \in \Omega^{1}(Y, i \mathbb{R})$ and $\varphi \in \Gamma(\mathbb{S})$ is a section of our spin bundle.

