INVOLUTIVE HEEGAARD-FLOER HOMOLOGY

LECTURE: KAI NAKAMURA

1. Refresher

Let Y be a 3-manifold. In particular, take Y to be a $\mathbb{Q}HS^3$. Let Σ be a surface of genus g. Write the α curves as $\boldsymbol{\alpha} = \{\alpha_1, \ldots, \alpha_g\}$ and similarly for the β -curves $\boldsymbol{\beta} = \{\beta_1, \ldots, \beta_g\}$. Also pick a base point not in the union $\alpha \cup \beta$.

Then CF^+ is generated over $\mathbb{F}[u]$ by the intersection points of

(1)
$$\mathbb{T}_{\alpha} = \alpha_1 \times \ldots \times \alpha_g$$

(2)
$$\mathbb{T}_b = \beta_1 \times \dots \beta_g$$

The idea is that \mathbb{T}_{α} and \mathbb{T}_{β} are Lagrangian submanifolds of

(3)
$$\operatorname{Sym}^g \Sigma \coloneqq \Sigma^{\times g} / S_g$$

where ${\cal S}_g$ is the symmetric group. Write this data as

(4)
$$\mathcal{H} = (\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta}, z)$$

We have a decomposition

(5)
$$\operatorname{CF}^{+} = \bigoplus_{\mathfrak{s} \text{ spin}^{c}} \operatorname{CF}^{+}(Y, \mathfrak{s})$$

over spin^c structures. There is a differential on this complex, which we won't talk much about, but it counts *J*-holomorphic disks.

2. Involutive Heegaard-Floer homology

Write

(6)
$$\bar{\mathcal{H}} = (\bar{\Sigma}, \boldsymbol{\beta}, \boldsymbol{\alpha}, z)$$

for the tuple where Σ has opposite orientation and the α -curves and β -curves are switched. Then we get a map

(7)
$$\eta = \mathrm{CF}^+(\mathcal{H}, \mathfrak{s}) \to \mathrm{CF}^+(\bar{\mathcal{H}}, \bar{\mathfrak{s}}) \ .$$

Write

(8)
$$\varphi\left(\bar{\mathcal{H}},\mathcal{H}\right): \mathrm{CF}^{+}\left(\bar{\mathcal{H}},\bar{\mathfrak{s}}\right) \to \mathrm{CF}^{+}\left(\mathcal{H},\bar{\mathfrak{s}}\right) .$$

Now the involution map is:

(9)
$$\iota = \varphi \left(\bar{\mathcal{H}}, \mathcal{H} \right) \circ \eta : \mathrm{CF}^+ \left(\mathcal{H}, \mathfrak{s} \right) \to \mathrm{CF}^+ \left(\mathcal{H}, \bar{\mathfrak{s}} \right) \ .$$

Lemma 1. ι^2 is chain homotopic to the identity.

Date: September 27, 2019; Notes by Jackson Van Dyke. All errors introduced are my own.

This implies that

(10)
$$\iota_* : \mathrm{HF}^+(Y, \mathfrak{s}) \to \mathrm{HF}^+(Y, \bar{\mathfrak{s}})$$

is an involution.

Now we define CFI, the complex for involutive Heegaard Floer. Recall the mapping cone complex of

(11)
$$\operatorname{CF}^+(\mathcal{H},\mathfrak{s}) \xrightarrow{1+\iota} \operatorname{CF}^+(\bar{\mathcal{H}},\mathfrak{s})$$

the direct sum (up to a -1 shift in the first factor) and for any

(12)
$$(x,y) \in \mathrm{CF}^+(\mathcal{H},\mathfrak{s})[-1] \oplus \mathrm{CF}^+(\bar{\mathcal{H}},\mathfrak{s})$$

the differential is given by

(13)
$$\begin{bmatrix} \partial & 0 \\ 1+\iota & \partial \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

We want an $R = \mathbb{F}[Q, v] / (v^2)$ module where Q is a formal variable of degree -1 and $Q^2 = 0$. So we take the mapping cone of

(14)
$$Q(1+\iota): \mathrm{CF}^+(\mathcal{H},\mathfrak{s}) \to Q\,\mathrm{CF}^+(\mathcal{H},\mathfrak{s})\,[-1]$$

which gives us

(15)
$$\operatorname{CFI}^{+}(\mathcal{H},\mathfrak{s}) = \left(\operatorname{CF}^{+}(\mathcal{H},\mathfrak{s})\left[-1\right] \oplus \otimes \mathbb{F}\left[Q\right] / \left(Q^{1}\right), \partial + Q\left(1+\iota\right)\right) .$$

Write $HFI^+(Y, \mathfrak{s})$ for the homology of this complex.

Now let Y be a $\mathbb{Q}HS^3$ with $c_1(\mathfrak{s})$ torsion. This induces a \mathbb{Q} grading on CF^+ , and CFI^+ .

 $\operatorname{HF}^{+}(Y,\mathfrak{s})$ will decompose as $\mathbb{F}\left[u, u^{-1}\right]/u$ and $\operatorname{HF}^{+}_{\operatorname{red}}(Y,\mathfrak{s})$. Define $\partial(Y,\mathfrak{s})$ to be the lowest degree of an element in this $\mathbb{F}\left[u, u^{-1}\right]/(u)$ summand. Now we have *u*-towers:

(16)

Define $\underline{\partial} + 1$ and $\overline{\partial}$ to be the lowest degrees of the *u*-towers. $\overline{\partial}$ is defined to lie in the image of *q*. So we get this inequality

(17)
$$\underline{\partial}(Y,\mathfrak{s}) \leq \partial(Y,\mathfrak{s}) \leq \overline{\partial}(Y,\mathfrak{s})$$

Note that these are maps

(18) $\partial: \Theta^3_{\mathbb{Z}} \to \mathbb{Z}$ $\underline{\partial}: \Theta^3_{\mathbb{Z}} \to \mathbb{Z}$ $\bar{\partial}: \Theta^3_{\mathbb{Z}} \to \mathbb{Z}$

but neither of the $\underline{\partial}$ and $\overline{\partial}$ are group homomorphisms. Note that we cannot use these for the triangulation conjecture.

Example 1. We have

(19) $\bar{\partial} \left(\Sigma \left(2, 3, 7 \right) \right) = \partial \left(\Sigma \left(2, 3, 7 \right) \right) = 0$

and

(20)
$$\underline{\partial}\left(\Sigma\left(2,3,7\right)\right) = -2$$

This implies that $\Sigma(2,3,7)$ is not homology-cobordant to any L-space.

3. Why HFI?

Basically they are trying to transfer this Pin (2) symmetry to the Heegaard-Floer setting. HF⁺ corresponds to S^1 -equivariant SWF. Since Pin (2) = $S^1 \cup jS^1$, a Pin (2) version of HF would be $\mathbb{Z}/2\mathbb{Z}$ equivariant HF⁺. But we can't really do this. $\mathbb{Z}/2\mathbb{Z}$ equivariant Lagrangian Floer homology would look like the following. The chain complex would look like

(21)
$$\operatorname{CF}^{\operatorname{Pin}(2)} = \operatorname{CF}^{+} \underbrace{\overset{Q(1+\iota)}{\longleftarrow} \operatorname{CF}^{+} \overset{Q(1+\iota)}{\longleftarrow} \operatorname{CF}^{+} \xleftarrow{} \cdots }_{\overset{Q^{2}-w}{\overset{Q^{2}-z}{\overset{Q^{$$

where w is a chain homotopy from ι^2 to the identity and z is a higher homotopy. But we don't know how to compute it, so we quotient out by Q^2 to kill this.

For X with a Pin(2) action we have

(22)
$$H_*\left(C^{\operatorname{Pin}(2)}(X) / (Q^2), \mathbb{F}\right) \cong H^{\mathbb{Z}/4}_*(X, \mathbb{F}) \ .$$

So conjecturally, HFI^+ should correspond to $\mathbb{Z}/4$ equivariant SWF.

So in summary, from SWFH^{S¹} (or HF⁺) we get ∂ , from SWFH^{Pin(2)} we get α , β , and γ , and from SWFH^{Z/4} we get $\underline{\partial}$ and $\overline{\partial}$.