M 328 K 58080 First Midterm

name:

1. Find an integer x simultaneously satisfying the following congruences $3x \equiv 5 \pmod{8}$ and $x \equiv 3 \pmod{15}$.

If $3x \equiv 5 \pmod{8}$, then $x \equiv 9x \equiv 3 \cdot 3x \equiv 3 \cdot 5 \equiv 7 \pmod{8}$. So we need to solve $x \equiv 7 \pmod{8}$ and $x \equiv 3 \pmod{15}$. We apply the Chinese remainder theorem. First, the Euclidean algorithm gives $2 \cdot 8 + (-1) \cdot 15 = 1$. So, a solution to our problem is $x = 3 \cdot 2 \cdot 8 + 7 \cdot (-1) \cdot 15 = -57$. The general solution is $x \equiv 63 \pmod{120}$.

2. Let p and q be two distinct prime numbers. How many positive integers divide the integer p^3q^{10} ? Justify your answer.

If $a|p^3q^{10}$ then by the fundamental theorem of arithmetic, the prime factors of a can only be p and q, so $a=p^iq^j$ and if $a|p^3q^{10}$ we must have $0 \le i \le 3$ and $0 \le j \le 10$. So we have 4 choices for i and 11 choices for j giving a total of 44 divisors.

3. Let a, b be integers. Show that (a, b) = (b, 3b - a).

Let d = (a, b) and e = (b, 3b - a). So d|a, d|b and we can conclude that d|(3b - a). Since we now know that d|b and d|(3b - a) we conclude that d|e. On the other hand, e|b, e|(3b - a) so e|(3b - (3b - a)), that is e|a, since we now know that e|a and e|b we conclude that e|d. Finally, from d|e and e|d and since they are both positive, we get that e = d.

4. Let m > 1 be an odd integer. Prove that every integer is congruent modulo m to an element of the set $\{2n + 3 | n = 1, 2, ..., m\}$.

Given an integer a, we can solve the congruence $2x \equiv a - 3 \pmod{m}$, since (2, m) = 1 as m is odd. If we take a solution x which is the least positive residue modulo m, we get $0 \le x \le m - 1$. Now put n = x if $x \ne 0$ and n = m if x = 0, so in both cases $n \equiv x \pmod{m}$ so $2n + 3 \equiv 2x + 3 \equiv a - 3 + 3 = a \pmod{m}$ and, by construction, $1 \le n \le m$ as we wanted.