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Abstract: We give bounds for the minimal distance of duals of binary BCH codes in a

range where the Carlitz-Uchiyama bound is trivial. This is done by estimating the number

of points on certain curves over finite fields.
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Introduction

The minimal distance of the dual of a binary BCH code of designed distance δ can

be estimated by the Carlitz-Uchiyama bound ([MS], Ch. 9, thm 18) when δ is not too

large. The question of whether the Carlitz-Uchiyama bound can be improved was raised

in [MS] and studied in a number of papers such as [W], where it is shown that the bound

is sometimes sharp and in [AL], where several improvements are obtained. The Carlitz-

Uchiyama bound is a consequence of Weil’s Riemann Hypothesis for curves over finite

fields. This note will give some other improvements on the Carlitz-Uchiyama bound using

the method of [SV], which gives a method for improving on Weil’s bound in some cases.

Unfortunately, the bound we seek is not a direct consequence of the results of [SV] and a

more careful analysis of the relevant curves is needed. (See the remark below). We will

discuss the dimensions of the codes for which our bounds improve previous results and

present some numerical examples.

The results

Let m be a positive integer, q = 2m, n = q − 1 and δ < n another positive integer.

Let α be a fixed primitive n-th root of unity in Fq. The (narrow-sense, primitive) BCH

code of designed distance δ is the cyclic code of length n generated by the least common

multiple of the minimal polynomials of α, α2, . . . , αδ−1 over F2. Its dual is thus also a

cyclic code of length n which we denote by Cδ. If δ is even, the code thus obtained is the
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same as the one obtained by replacing δ by δ + 1, so we can and will restrict to the case

δ = 2t+ 1 is odd. With these assumptions, the weight w of any non-zero codeword of Cδ

satisfies the Carlitz-Uchiyama bound |w − 2m−1| ≤ (t− 1)2m/2. This bound is non-trivial

only for t − 1 < 2m/2−1 and is in fact sharp for some values of t in this range ([W]). We

will provide a non-trivial bound on the weight for an extended range of values of t.

Theorem. The minimal weight w of of the dual of a binary BCH code of length 2m − 1

and designed distance δ = 2t+1, with 2m/2−1 < t < 2dm/2e, satisfies w ≥ bq/(t+1+ε)c−1,

where ε = 0 for t odd and ε = 1 for t even.

Proof: As is well-known (see e.g. [S, VIII.2.12]), given a codeword of Cδ, there exists

f(x) ∈ Fq[x] of odd degree d ≤ 2t− 1 such that the coordinates of the codeword are given

by TrFq/F2(f(αi)), i = 1, . . . , n and therefore, the weight of the codeword is q − 1 − N ,

where N is the number of solutions x ∈ F∗q of TrFq/F2(f(x)) = 0, which by the additive

form of Hilbert’s theorem 90, is half the number of affine points over Fq with x 6= 0 on the

curve X given by y2 − y = f(x).

Following [SV], we consider the function W on X which is the determinant of the

matrix whose first row is 1, xq, x2q, . . . , xrq, yq and the other rows are the first r+ 1 Hasse

derivatives of 1, x, x2, . . . , xr, y, where r is either (d + 1)/2 or (d + 3)/2 and is chosen to

be odd. By [SV] corollary 2.6, W vanishes on the affine Fq-rational points of X with

multiplicity at least r + 1. We now study the behaviour of W at infinity.

Now, it is straightforward to show that W =
∑m−1
j=0 f2j +

∑r
i=1D

(i)(y)(xq−x)i, where

D(i) is the i-th Hasse derivative. Now, in a completion of Fq(x) at a place where f has

a zero, we have y =
∑∞
j=0 f

2j , so D(i)(y) =
∑

2j |i(D
(i/2j)(f))2j and this latter expression

gives D(i)(y) as a polynomial in x, which is therefore valid globally. It also follows that

W itself is a polynomial. By the above expression we get that degD(i)(y) is at most

2ν(i)d − i, where ν(i) is the largest exponent such that 2ν(i) divides i. It follows that

degD(i)(y)(xq −x)i ≤ iq+ 2ν(i)d− i. By our choice, r is odd and an elementary argument

shows that the maximum over i = 1, . . . , r of the last expression is rq+d−r, achieved when
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i = r because of our restriction on the range of t. Also the degree of
∑m−1
j=0 f2j is at most

dq/2, which is smaller than rq+d−r under our assumptions. Therefore degW ≤ rq+d−r.

If W is identically zero then, for x ∈ Fq, TrFq/F2(f(x)) =
∑m−1
j=0 f(x)2j = W (x) = 0,

so the codeword corresponding to f is the zero codeword, which is irrelevant for the

calculation of the minimal weight. We can thus assume that W is not identically zero. It

follows that N ≤ (degW )/(r + 1). Recalling our choice of r, the theorem follows from a

simple calculation.

Remarks:

(i) One can use the results of [SV] directly to get an upper bound for degW which, in the

notation there, is (degS− vP (S))/2, for P the point at infinity on X. But this bound will

be far worse than the one obtained above. On the other hand, the issue of showing that

W is not identically zero, which is usually crucial in applying the results of [SV], does not

pose a problem here.

(ii) We still get a bound without the restrictions on t, but the bound is trivial for t ≥ 2dm/2e

and is worse than than the Carlitz-Uchiyama bound for t <
√
q/2. Note that the Carlitz-

Uchiyama bound is trivial for t ≥ √q/2 while ours is not. In the range given in the

statement of the Theorem, our bound compares with those obtained in [AL] and gives an

improvement on their bound for roughly the top two-thirds of the interval. The numerical

results obtained in [AL] seem to indicate that our bounds as well as their bounds might

be far from being best possible.

The dimension of the codes for which the theorem applies can be readily computed by

the same method of [MS] Ch. 9 Corollary 8, which shows that the dimension of Cδ is mt if

2t− 1 < 2dm/2e+ 1. In the range 2dm/2e+ 1 ≤ 2t− 1 < 2dm/2e+1, we have that,for m even,

dimCδ = m(t−1/2) and, for m = 2k+1 odd, dimCδ = mt,m(t−1) or m(t−2) according

to whether 2t− 1 < 2k+1 + 1, 2k+1 + 1 ≤ 2t− 1 < 2k+1 + 2k + 1 or 2t− 1 ≥ 2k+1 + 2k + 1.

As for some numerical examples, if we take q = 32, t = 6, we get minimal weight at

least three, which attained, since the code has generator polynomial x5 + x3 + 1. Another

example is q = 16, t = 3, in this case the Weil bound is attained by y2 + y = x5 but this
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corresponds to the zero codeword, so that is irrelevant. The bound is again three, which

is again attained. It has been noted in the literature that, when q = 2m with m even and

t = 2m/2−1 +1, the Carlitz-Uchiyama bound is attained. Indeed, as in the case q = 16, the

curve y2 + y = xq/2−1 attains the Weil bound, but again it leads to the zero codeword, so

that is irrelevant. Our bound provides a non-trivial estimate of the least non-zero weight.
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