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Abstract: We give bounds for the minimal distance of duals of binary BCH codes in a
range where the Carlitz-Uchiyama bound is trivial. This is done by estimating the number

of points on certain curves over finite fields.
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Introduction

The minimal distance of the dual of a binary BCH code of designed distance ¢ can
be estimated by the Carlitz-Uchiyama bound ([MS], Ch. 9, thm 18) when ¢ is not too
large. The question of whether the Carlitz-Uchiyama bound can be improved was raised
in [MS] and studied in a number of papers such as [W], where it is shown that the bound
is sometimes sharp and in [AL|, where several improvements are obtained. The Carlitz-
Uchiyama bound is a consequence of Weil’s Riemann Hypothesis for curves over finite
fields. This note will give some other improvements on the Carlitz-Uchiyama bound using
the method of [SV], which gives a method for improving on Weil’s bound in some cases.
Unfortunately, the bound we seek is not a direct consequence of the results of [SV] and a
more careful analysis of the relevant curves is needed. (See the remark below). We will
discuss the dimensions of the codes for which our bounds improve previous results and

present some numerical examples.
The results

Let m be a positive integer, ¢ = 2™ ,n = ¢ — 1 and § < n another positive integer.

Let o be a fixed primitive n-th root of unity in F,. The (narrow-sense, primitive) BCH
code of designed distance ¢ is the cyclic code of length n generated by the least common
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multiple of the minimal polynomials of o, a”, ..., over Fy. Its dual is thus also a

cyclic code of length n which we denote by Cs. If § is even, the code thus obtained is the
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same as the one obtained by replacing by d + 1, so we can and will restrict to the case
0 =2t + 1 is odd. With these assumptions, the weight w of any non-zero codeword of Cl
satisfies the Carlitz-Uchiyama bound |w — 2™~ < (t — 1)2™/2. This bound is non-trivial
only for t — 1 < 2™/271 and is in fact sharp for some values of ¢ in this range ([W]). We

will provide a non-trivial bound on the weight for an extended range of values of t.

Theorem. The minimal weight w of of the dual of a binary BCH code of length 2™ — 1
and designed distance 6 = 2t+1, with 2™/271 < t < 2Im/21 gsatisfies w > |q/(t+1+€)] -1,

where e = (0 for t odd and e = 1 for t even.

Proof: As is well-known (see e.g. [S, VIII.2.12]), given a codeword of Cj, there exists
f(z) € Fy[z] of odd degree d < 2t — 1 such that the coordinates of the codeword are given
by TrFq/FQ(f(ai)),i = 1,...,n and therefore, the weight of the codeword is ¢ — 1 — N,
where N is the number of solutions z € F} of Trg_/r,(f(z)) = 0, which by the additive
form of Hilbert’s theorem 90, is half the number of affine points over F;, with x # 0 on the
curve X given by y? —y = f(z).

Following [SV], we consider the function W on X which is the determinant of the

2a .. x" y? and the other rows are the first » + 1 Hasse

matrix whose first row is 1,29, x
derivatives of 1,z,22,...,2",y, where r is either (d +1)/2 or (d + 3)/2 and is chosen to
be odd. By [SV] corollary 2.6, W vanishes on the affine F -rational points of X with
multiplicity at least 7 + 1. We now study the behaviour of W at infinity.

Now, it is straightforward to show that W = ZT:_Ol s +3°7_ DY (y) (27 —x)?, where
D is the i-th Hasse derivative. Now, in a completion of F,(z) at a place where f has
a zero, we have y = 377 £2 . so DO (y) = 22j|i(D(i/2j)(f))2j and this latter expression
gives D(i)(y) as a polynomial in z, which is therefore valid globally. It also follows that
W itself is a polynomial. By the above expression we get that deg D(*)(y) is at most
2 d — i, where v(i) is the largest exponent such that 2¥(") divides i. It follows that
deg DO (y) (29 — z)* < ig+2"Dd —i. By our choice, 7 is odd and an elementary argument

shows that the maximum over ¢ = 1, ..., r of the last expression is r¢+d—r, achieved when
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1 = 1 because of our restriction on the range of t. Also the degree of Z;.n:_ol f 2’ is at most
dq/2, which is smaller than rq+d—r under our assumptions. Therefore deg W < rq+d—r.

If W is identically zero then, for x € Fy, Trp_/r,(f(z)) = Z;n:_ol f(@)¥ =W(z) =0,
so the codeword corresponding to f is the zero codeword, which is irrelevant for the
calculation of the minimal weight. We can thus assume that W is not identically zero. It
follows that N < (degW)/(r + 1). Recalling our choice of r, the theorem follows from a
simple calculation.

Remarks:

(i) One can use the results of [SV] directly to get an upper bound for deg W which, in the
notation there, is (deg S —vp(5))/2, for P the point at infinity on X. But this bound will
be far worse than the one obtained above. On the other hand, the issue of showing that
W is not identically zero, which is usually crucial in applying the results of [SV], does not
pose a problem here.

(ii) We still get a bound without the restrictions on ¢, but the bound is trivial for ¢t > 2[™/2]
and is worse than than the Carlitz-Uchiyama bound for ¢ < ,/q/2. Note that the Carlitz-
Uchiyama bound is trivial for ¢ > ,/g/2 while ours is not. In the range given in the
statement of the Theorem, our bound compares with those obtained in [AL] and gives an
improvement on their bound for roughly the top two-thirds of the interval. The numerical
results obtained in [AL] seem to indicate that our bounds as well as their bounds might
be far from being best possible.

The dimension of the codes for which the theorem applies can be readily computed by
the same method of [MS] Ch. 9 Corollary 8, which shows that the dimension of Cs is mt if
2t —1 < 2[™/21 £ 1. In the range 2/™/21 41 < 2t — 1 < 2[™/2141 e have that,for m even,
dim Cs = m(t—1/2) and, for m = 2k+1 odd, dim C5 = mt, m(t — 1) or m(t — 2) according
to whether 2t — 1 < 2k+1 1 2kl 41 <9t —1 < 2k+1 42k 4 T or 2t —1 > 2k+1 42k 1.

As for some numerical examples, if we take ¢ = 32,¢ = 6, we get minimal weight at
least three, which attained, since the code has generator polynomial z° + 23 4+ 1. Another

example is ¢ = 16,t = 3, in this case the Weil bound is attained by 32 + vy = z® but this
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corresponds to the zero codeword, so that is irrelevant. The bound is again three, which
is again attained. It has been noted in the literature that, when ¢ = 2™ with m even and
t = 2™/2=1 11 the Carlitz-Uchiyama bound is attained. Indeed, as in the case ¢ = 16, the
curve y? +y = 29/2~1 attains the Weil bound, but again it leads to the zero codeword, so
that is irrelevant. Our bound provides a non-trivial estimate of the least non-zero weight.
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