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Abstract. We prove that the Brauer-Manin obstruction is the only ob-
struction to the existence of integral points on affine varieties over global
fields of positive characteristic p. More precisely, we show that the only ob-
structions come from étale covers of exponent p or, alternatively, from flat
covers coming from torsors under connected group schemes of exponent p.

1. Introduction

Let K be a global field of characteristic p > 0, that is: the function field of
a geometrically integral curve over a finite field Fq, where q is a power of p.
Let S be a non empty set of primes of K; we denote by OS ⊂ K the ring of
S-integers. Set Ksep for a separable closure of K. Let X be an OS-scheme
of finite type with generic fibre X over K. For each prime of K, let Kv be
the completion of K at v and let Ov be the ring of integers of Kv. Notation
like

∏
v ... means that the product is taken over all places of K.

The goal of this note is to describe the set X (OS) inside the adelic space∏
v 6∈S X (Ov) ×

∏
v∈S X(Kv) in terms of cohomological obstructions related

to certain (fppf or étale) X-torsors and to the Brauer group of X. More
precisely we make the following definition :

Definition 1.1 Let G be a K-group scheme. Let Y → X be an X-torsor
under G. We say that a point (xv) ∈

∏
vX(Kv) is unobstructed by Y if

the evaluation [Y ]((xv)) ∈
∏

vH
1(Kv, G) comes from a global element a ∈

H1(K,G) by the diagonal map.

Equivalently this means that there exists a cocycle a ∈ Z1(K,G) such
that (xv) lifts to some (yv) on the twisted torsor Y a (see [3], section 4.1).
Here all cohomology sets are relative to fppf topology (if G is smooth, then
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étale topology can be used as well). Note that obviously every family (xv) ∈∏
vX(Kv) coming from a rational point x ∈ X(K) is unobstructed.

Let s = qe, where e is some positive integer. Consider the finite étale
K-group scheme Fs, which can also be viewed as a ΓK-module, where ΓK =
Gal (Ksep/K) is the absolute Galois group of K. Let X be a K-variety with
ring of regular functions K[X]. Let Ga be the additive group; there is an
exact sequence of étale (or fppf) sheaves on Spec (K[X]):

0→ Fs → Ga
Φs→ Ga → 0

where Φs is the additive morphism x 7→ xs − x. Since H1(SpecR,Ga) = 0
(Serre’s Theorem) for every affine scheme SpecR, we get a canonical isomor-
phism

K[X]/Φs(K[X]) ' H1(Spec (K[X]),Fs),

hence a canonical map

us,X : K[X]/Φs(K[X])→ H1(X,Fs)

.

Definition 1.2 Let X be a K-variety. An Artin-Schreier torsor over X is a
torsor under the étale group scheme Fs (for some s = qe, e > 0) given by the
equation

zs − z = g

for some g ∈ K[X]. Such a torsor corresponds to the cohomology class
us,X(g) ∈ H1(X,Fs), where g is viewed as an element of K[X]/Φs(K[X]).

In particular Artin-Schreier torsors are abelian étale torsors.

2. Descent obstructions associated to Artin-

Schreier torsors

Consider the affine line A1
K over K and its integral model A1

OS
. Let e be a

positive integer and s = qe. Let f ∈ K. We are interested in Artin-Schreier
torsors Yf,s over A1

K given by the equation

Yf,s : zs − z = fx, x ∈ A1 (1)

In particular Yf,s has a class [Yf,s] in the étale cohomology group H1(A1
K ,Fs),

which is given by [Yf,s] = us,A1(fx).

Proposition 2.1 Assume that (xv) ∈
∏

v 6∈S A1(Ov) ×
∏

v∈S A1(Kv) is un-
obstructed by Yf,s for every s = qe, e > 0 and every f ∈ K. Then (xv) ∈
A1(OS).
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Proof Let ω 6= 0 be a differential form of K which we write as ω = fdt/t,
where f ∈ K and t is a separating variable of K. Let s be a power of q
such that the places of S and the places in the support of the divisor of ω
are Fs-rational. Let x be a coordinate on A1 and consider the étale torsor
Yf,s. The fact that (xv) is unobstructed in this cover means that there is an
a ∈ K such that (xv) lifts to the twist zs − z = xf + a of this cover. In
other words, for all v there exists yv ∈ Kv, y

s
v − yv = xvf + a. It follows that

Resv(xvω + adt/t) = Resv(y
s
v − yv)dt/t = 0. The last equality follows from

Theorem 4 of [1] and the fact that the residues are Fs-rational, by hypothesis.
Thus

∑
v Resv(xvω) = −

∑
v Resvadt/t = 0. This being true for all ω implies

that (xv) is global, by the Riemann-Roch theorem.

We deduce from the previous proposition the following theorem:

Theorem 2.2 Let X be an affine OS-scheme of finite type with generic fibre
X. Let (xv) ∈

∏
v 6∈S X (Ov)×

∏
v∈S X(Kv). Assume that (xv) is unobstructed

by every Artin-Schreier torsor Y → X. Then (xv) ∈ X (OS).

Proof Embed X into the affine space An
OS

for some positive integer n. Let
(γv) ∈

∏
v A1(Kv) be any coordinate of the image of (xv) in

∏
v An(Kv). By

functoriality (xv) is unobstructed by every Artin-Schreier torsor over A1. By
proposition 2.1, the family (γv) comes from a global element γ ∈ A1(OS).
Since this is true for each coordinate, we obtain that (xv) ∈ X (OS).

Remarks -We cannot expect such a simple result for projective varieties
because in this case X (OS) = X(K), and every adelic point in the closure of
X(K) is unobstructed by all torsors (the proof is the same as in the number
field case, see [3], Theorem 4.7); in general X(K) is not closed in the adelic
space (for example if X is the projective line then the closure of X(K) is the
whole adelic space). One can even find examples of projective varieties over
K with X(K) = ∅, but such that X contains adelic points unobstructed by
every torsor under a finite étale group scheme (Poonen in [8] for p > 2, as
well as number fields, and Viray in [9] for p = 2).

-In the previous theorem, it is important for the argument to work to
consider adelic points in the whole product

∏
v 6∈S X (Ov)×

∏
v∈S X(Kv), and

not (as in [4]) in the ”truncated” product
∏

v 6∈S X (Ov).
- Let Y be an X-torsor under a finite group G that extends to a tor-

sor Y → X under a flat OS-group scheme G. For X-torsors Y under finite
groups G of order prime to p (or arbitrary, in characteristic zero), the Selmer

3



set, consisting of the a ∈ H1(OS,G) for which the twisted torsor Y a satis-
fies

∏
v 6∈S Ya(Ov) ×

∏
v∈S Y

a(Kv) 6= ∅, is finite (and computable). This is
typically not the case for Artin-Schreier torsors and simple examples can be
constructed even for A1. If such Selmer sets were finite and computable,
our main result would yield an algorithm to decide solubility of diophantine
equations over Fp[t] and it is well-known that such an algorithm cannot exist
(see [7]).

-Likewise, one cannot expect, in the number field case, that finite descent
obstructions are the only obstructions to the existence of integral points on
affine varieties, as this would contradict the negative solution of Hilbert’s
tenth problem. It would be interesting to have an explicit counterexample.
An example where finite abelian descent obstructions are not enough is given
in [4].

3. Torsors under local group schemes

In this section we consider a different kind of torsors, namely torsors under
the local group scheme αp (given by the equation xp = 0). It turns out that
a result similar to Theorem 2.2 holds (and is still simpler):

Proposition 3.1 Let (av)v ∈
∏

v A1(Kv) =
∏

vKv. Assume that (av)v is
unobstructed by the αp-torsors yp = x and yp = tx of A1

K, where t is a
separating variable of K. Then (av) is global.

Proof The assumption means that there are r, s ∈ K and (bv)v, (cv)v ∈∏
vKv with

av + r = bpv, tav + s = cpv, ∀v

Differentiating with respect to t yields

a′v = −r′, av + ta′v = −s′

and we can eliminate a′v to get av = −s′ + tr′ ∈ K.

The same argument as in the proof of Theorem 2.2 now yields:

Corollary 3.2 Let X be an affine variety over K. Assume that (av)v ∈∏
vX(Kv) is unobstructed by every αp-torsor. Then (av) ∈ X(K).

Observe that in this corollary it is not necessary to assume that (av) is
an adelic point of X: the hypothesis regarding αp-torsors is just very strong.
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4. Relation to the Brauer-Manin obstruction

It has been known for some time (cf. [3], section 4) that torsor obstructions to
the existence of a rational point are linked to the Brauer-Manin obstruction.
In the case of affine varieties over a global field K of positive characteristic,
we can use Theorem 2.2 to give a more precise statement. The structure of
the Brauer group Br (A1

K) in characteristic p is quite complicated and has
been determined by Knus, Ojanguren and Saltman ([5]).

Let s = qe be a power of q. The Cartier dual Gs of the étale K-group
scheme Fs is a finite K-group scheme of order s; for example if s = q then
Gs is just the K-group scheme µq of q-roots of unity. For a K-variety X, an
Artin-Schreier torsor Y → X under Fs, and an element a ∈ H1(K,Gs) (fppf
cohomology), there is a cup-product (a ∪ [Y ]) ∈ H2(X,µs), where [Y ] is the
class of Y in H1(X,Fs) and a stands for the image of a in H1(X,Gs). This
cup-product can also be viewed as an element of H2(X,Gm) = BrX via the
canonical embedding µs → Gm.

Definition 4.1 Let X be a K-variety. Set Br 0X := Im [BrK → BrX]. For
each e > 0, we define a subgroup BAS,e(X) of the Brauer group BrX as the
subgroup generated by Br 0X and the cup-products (a ∪ [Y ]), where Y runs
over all Artin-Schreier X-torsors under Fqe and a runs over all elements of
H1(K,Gs). Then we set

BAS(X) :=
⋃
e>0

BAS,e(X)

Remark In the special case q = p, e = 1, we have the identification
H1(K,Gp) = H1(K,µp) = K∗/K∗

p
. In particular elements of BAS,1(A1

Fp
) are

the p-torsion elements of Br (A1
Fp

) given by symbols (a, b), where a ∈ K∗ and
b ∈ K[T ] (this corresponds to a cup-product, where the element a is viewed
in H1(Fp, µp) and the element b is in H1(Spec (Fp[T ]),Fp)). More gener-
ally the p-torsion subgroup of Br (A1

Fp
) is generated by the symbols (a, b),

where a, b are arbitrary in K[T ] and are considered in H1(Spec (K[T ], αp) =
K[T ]/K[T ]p to make the cup-product ([5], Theorem 6.7).

Theorem 4.2 Let X be an affine K-variety. Let (av) ∈
∏

vX(Kv) be an
adelic point on X. Assume that for every element θ ∈ BAS(X), the evaluation
θ((av)) is global (that is: comes from an element of BrK by the diagonal
embedding). Then (av) ∈ X(K).

In other words: the Brauer-Manin obstruction related to the subgroup
BAS(X) is the only one. Recall that the condition that θ((av)) is global is
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equivalent to ∑
v

jv(θ(av)) = 0

where jv : BrKv → Q/Z is the local invariant.

Proof Taking integral models and using Theorem 2.2, it is sufficient to
check that for every Artin-Schreier torsor Y → X under Fs (with s = qe, e >
0), the adelic point (av) is unobstructed by Y . By assumption the family
(bv) := ([Y ](av)) is orthogonal to H1(K,Gs) for the Poitou-Tate pairing
(which is obtained via the local Tate pairings):

H1(K,Gs)×
′∏
H1(Kv,Fs)→ Q/Z, (a, (bv)) 7→

∑
v

jv(a ∪ bv)

Now by Poitou-Tate exact sequence for finite group schemes over global fields
of characteristic p ([2], Theorem 4.11, applied to N = Fs) this implies that
(bv) comes from a global element b ∈ H1(K,Fs) by the diagonal map, which
means exactly that (av) is unobstructed by Y .

There is a similar statement if we take into account more general p-torsion
elements of the Brauer group:

Proposition 4.3 Let X be an affine K-variety. Let (av) be an adelic point
on X. Assume that (av) is orthogonal to the p-torsion subgroup of BrX in
the Brauer-Manin pairing

((av), θ) 7→
∑
v

jv(θ(av))

Then (av) ∈ X(K).

Proof Arguing as in Corollary 3.2, it is sufficient to treat the case X = A1
K .

Consider p-torsion elements of BrX of the form (a∪ [Y ]) with a ∈ H1(K,αp)
and [Y ] ∈ H1(X,αp) (the finite group scheme αp is its own Cartier dual). The
assumption implies that for a given αp-torsor Y → X, the family ([Y ](av))v
is orthogonal to every a ∈ H1(K,αp) in the Poitou-Tate pairing. By Poitou-
Tate exact sequence, this means that ([Y ](av))v is global. In other words
(av)v is unobstructed by every αp-torsor Y → X, which implies that it comes
from X(K) by Proposition 3.1.
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5. Counterexamples to the Hasse principle

In this section we construct an example of affine scheme X over OS = Fp[t]
(here K := FracOS = Fp(t) and the finite set S consists of the prime at
infinity) such that X has points over every completion of OS but X (OS) = ∅.
In particular every point of

∏
v 6=∞X (Ov) × X(K∞) is obstructed by some

torsor. Hence we get a counterexample to the integral Hasse principle in
characteristic p.

Proposition 5.1 Let p > 2 and A,B ∈ Fp[t] with degA = 3, degB = 1.
Consider the affine scheme over OS = Fp[t]

X : x2 + Ay2 = B

Assume that A,B are chosen so that the generic fibre X of X (defined over
K = Fp(t)) has a K-point. Then every point in

∏
v 6=∞X(Ov) × X(K∞) is

obstructed by the torsor Y : zp − z = y. In particular X has no Fp[t]-point.

Proof Suppose that there exists a global twist

zp − z = y + c

with local points everywhere. The conditions at v 6= ∞ give, in particular,
that c is a polynomial. Looking at the equation for X, we see that the
component y∞ has valuation equal to 1 at infinity so is in Φp(K∞). It follows
that c is in Φp(K∞) also and, being a polynomial, is in Φp(Fp[t]), so without
loss of generality we can assume c = 0. Now, as p > 2 and B is linear,
there exists α ∈ Fp, with B(α) not a square. The condition that zp − z = y
has a local point in the place v = t − α gives that yv vanishes at α and so
xv(α)2 = B(α), contradiction.

Remark Of course in this example one can check directly that X has no
Fp[t]-point by degree considerations. For a specific example one can take
p = 3, A = t2(t+ 1), B = t+ 1 which has the rational point (0, 1/t).

We conclude with an example of finite étale group scheme M over K =
Fp(t), such that the kernel

X1(K,M) := ker[H1(K,M)→
∏
v

H1(Kv,M)]

of the diagonal map is not trivial; in other words, we get a principal homo-
geneous space of M that is a counterexample to the Hasse principle.

Proposition 5.2 Let K = F2(t). Then there exists a ΓK-module M such
that X1(K,M) 6= 0.
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Proof Consider the two quadratic extensions K0, K∞ of K associated to
Artin-Schreier torsors

y2 − y = t z2 − z = 1/t

Let F = K1K2 be the composite biquadratic extension. Then F/K is un-
ramified outside 0 and∞, hence the corresponding decomposition subgroups
are cyclic. Moreover at 0 and ∞ one of the two extensions K0 and K∞
is split, which implies that the decompositions subgroups at 0 and at ∞
are of order ≤ 2, hence cyclic. Now we apply the same construction as
in [6], example 9.1.: we define M as the kernel of the augmentation map
(Z/4Z)[G]→ Z/4Z where G := Gal (F/K). The cohomology sequence iden-
tifies Z/4Z with H1(G,M); now if c is a generator of H1(G,M), the image
of 2c in H1(K,M) is a non zero element of X1(K,M).
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