Differential operators and interpolation series in power series fields

José Felipe Voloch

Let k be a field and K be the field of formal power series over k. That is, the elements of K are of the form $u = \sum_{n=n_0}^{\infty} a_n x^n$, where $a_n \in k$ and n_0 is an arbitrary integer. If $a_n \neq 0$ we put $v(u) = n_0$, then v is a valuation on K and K is a local field, i.e., it is complete with respect to this valuation. Let U be an open subset of K and $f : U \rightarrow K$ a function. Besides the usual notion of continuity there is the notion of differentiability for such functions f, namely, f is differentiable in $a \in U$ if $\lim_{u \rightarrow a} (f(u) - f(a))/(u - a)$ exists. A natural class of functions to consider is that of differential operators, coming from differentiation with respect to the variable x. We can define the Hasse derivations $D^{(r)}, r \geq 0$ by:

$$D^{(r)}(\sum a_n x^n) = \sum \binom{n}{r} a_n x^{n-r}.$$

Theorem 1. The functions $D^{(r)} : K \rightarrow K, r \geq 1$ are k-linear, continuous and nowhere differentiable. (Differentiation is not differentiable!)

Proof: It is clear that $D^{(r)}$ is k-linear and therefore it suffices to check continuity and differentiability at $u = 0$. Plainly $v(D^{(r)}(u)) \geq v(u) - r$, so $D^{(r)}$ is continuous (see also [Go], Prop. 13). Next, $D^{(r)}$ is differentiable at $u = 0$ if and only if $\lim_{u \rightarrow 0} D^{(r)}(u)/u$ exists. However, the sequence x^n converges to 0 but $D^{(r)}(x^n)/x^n = \binom{n}{r} x^{-r}$ does not converge.

Suppose now that k is a finite field with q elements. Then Wagner [W] studied continuous linear functions $f : R \rightarrow K$, where $R = k[[x]]$. He obtained results analogous to classical results of Mahler [M] that gave interpolation series for continuous p-adic functions in terms of binomial coefficients. To state Wagner’s result we need to make a few definitions:

$$\Psi_n(u) = \prod_{m \in k[x], \deg m < n} (u - m), n > 0, \Psi_0(u) = u.$$
\[F_n = (x^{q^n} - x)(x^{q^{n-1}} - x)^q \cdots (x^q - x)^{q-1}, \quad F_0 = 1, \]
\[L_n = (x^{q^n} - x)(x^{q^{n-1}} - x) \cdots (x^q - x), \quad L_0 = 1. \]

Wagner then proved that every continuous linear function \(f : R \to K \) can be written as \(f = \sum_{n=0}^{\infty} A_n \Psi_n/F_n \), where \(A_n \in K \), \(\lim_{n \to \infty} A_n = 0 \) and moreover \(f \) is differentiable if and only if \(\lim_{n \to \infty} A_n/L_n = 0 \). The \(A_n \) can be obtained as follows. Define:

\[\Delta_0 f(u) = f(u) \]
\[\Delta_{n+1} f(u) = \Delta_n f(xu) - x^{q^n} \Delta_n f(u). \]

Wagner then shows that \(A_n = \Delta_n f(1) \). Our next result computes the \(A_n \) for the \(D^{(r)} \).

Theorem 2. For all \(u \in R \) we have:

\[D^{(r)}(u) = \sum_{n=0}^{\infty} A_{nr} \frac{\Psi_n(u)}{F_n}, \]

where \(A_{n1} = (-1)^{n-1} L_{n-1} \) and, for \(r > 1 \),

\[A_{nr} = (-1)^{n-1} L_{n-1} \sum_{0 < i_1 < \cdots < i_{r-1} < n} \frac{1}{(x - x^{q^{i_1}}) \cdots (x - x^{q^{r-1}})}. \]

Proof: We will show that \(\Delta_n D^{(r)} = \sum_{i=0}^{r-1} A_{n,r-i} D^{(i)} \), for \(n \geq 1 \), by induction on \(n \), and the result will follow from Wagner’s results. Clearly, \(\Delta_1 D^{(r)} = D^{(r-1)} \) so the above formula holds for \(n = 1 \). Assume the formula holds for \(n \). From the recursive definition of \(\Delta_{n+1} \) we get that

\[\Delta_{n+1} D^{(r)} = \sum_{i=0}^{r-1} (A_{n,r-i} (x - x^{q^n}) + A_{n,r-i-1} D^{(i)}) = \sum_{i=0}^{r-1} A_{n+1,r-i} D^{(i)} \]

and this completes the proof.

In particular we get the bizarre formula \(du/dx = \sum_{n=0}^{d} (-1)^{n-1} L_{n-1} \Psi_n(u)/F_n \) for \(u \in k[x], \deg u \leq d \).
Another class of continuous linear functions are \(u \mapsto u \circ b \) for \(b \in xR \). These are differentiable when \(b = x \) or \(v(b) > 1 \). The coefficients of their expansion in Wagner’s basis are given by \((b - x) \cdots (b - x^{q^{n-1}})\). The proof is left to the reader.

Finally we establish the following formula expanding the functions \(u^{q^i} \) in terms of the Hasse derivatives.

Proposition. We have

\[
 u^{q^i} = \sum_{r=0}^{\infty} (x^{q^i} - x)^r D^{(r)} u
\]

for \(u \in k[[x]] \).

Proof: We begin with the case \(i = 1 \); i.e.,

\[
 u^q = \sum_{r=0}^{\infty} (x^q - x)^r D^{(r)} u.
\]

Note that both sides of this equation are \(k \)-linear, so it suffices to check the formula for \(u = x^m \) and in this case it is straightforward. In this formula for \(u^q \), one can replace \(q \) by \(q^n \), for any \(n \) by extending \(k \) to its extension of degree \(n \). The proposition now follows.

Acknowledgments: The author would like to thank D. Goss for suggestions and encouragement. The author would also like to acknowledge financial support by the NSF (grant no. DMS-9301157) and by the NSA (grant MDA904-97-1-0037).

References

Dept. of Mathematics, Univ. of Texas, Austin, TX 78712, U.S.A.