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The theory of differentials on a Riemann surface X is well-developed.
Using the basic tools of integration, we can easily take the residue of a dif-
ferential w on X. In particular, if w has zero residue at every point of X,
we call w a differential of the second kind. If f is a rational function on X,
then df is a differential on X and in fact is a differential of the second kind.
Therefore we can consider the factor space of the differentials of the second
kind modulo the exact differentials. If instead of being a Riemann surface,
X is a curve defined over an algebraically closed field k of characteristic zero,
the same theory can be developed for the differentials of the second kind
modulo exact differentials. When X is defined over a field of characteristic
p > 0, then this factor space is noticeably smaller in dimension. It is our
goal to construct a vector space, isomorphic to this quotient in characteristic
zero, that retains many of the properties of the differentials of the second
kind modulo exact differentials in characteristic zero but for curves defined
over an algebraically closed field of any characteristic.

We begin with some preliminaries. Our objects of study will revolve
around curves X defined over an algebraically closed ground field k. These
curves are assumed to be smooth, projective, and irreducible. We will make
repeated use of the Serre Duality theorem, so we state it here. We denote
by O the sheaf of regular functions on X, € the sheaf of differentials (or
meromorphic differentials) on X, and {2y the sheaf of differentials of the first
kind (or holomorphic differentials) on X.

Serre Duality. Let X be a curve. Then there is an isomorphism
H(X, Qo) = H'(X,0)";
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moreover, this duality induces an isomorphism between the cohomology group

HY (X, Q) and the ground field k.

The explicit isomorphism between H'(X, ) and %k will be used later,
so we will show here how it is given by the trace map tr : H(X,Qq) — k
defined as follows. Let P € X be a point and (¢y;) € H'(X, ). The same
cocycle, viewed in the first cohomology group with coefficients in the sheaf
of differentials H'(X, ), splits as 1;; = ¢; — 1; since H'(X,Q) = 0. Thus

we define

tr(vij) = Z resp(i;)

pPeX

where for each P, we choose a U; containing P and consider the residue of
the corresponding ;. This is independent of which open set U; and corre-
sponding differential is chosen since if P € U; N U;,

resp(y;) = resp(Vi; + 1) = resp(ij) + resp(¢;) = resp(y;)

since resp(1);;) = 0 because it is holomorphic at P.

Note that since H°(X, ) and H'(X, Q) are dual and H*(X, Q) has finite
dimension as a k-vector space, then so does HY(X, Q) and these dimensions
are equal.

1 Curves in Characteristic 0

Let X be a curve defined over an algebraically closed field k& of characteristic
zero. For this section, we view X with the “complex” topology. Note that
there is a short exact sequence of sheaves on X

O—>k‘—>(9i>Q0—>O

since locally every holomorphic differential w has a primitive that is a reg-
ular function on X. This short exact sequence of sheaves induces an exact
sequence of cohomology groups

0— H'(X,k) — H°(X,0) — H(X,Q) — H'(X, k) —
HY(X,0) — H(X, Q).



Now HY(X, k) 2 k(X) =k and H°(X,0) = O(X) which is the vector space
of regular functions on X. But the only functions that are regular on all of
X are the constants, so H%(X,0) = k as well. Hence our sequence becomes

0— HY(X,Q) — H (X, k) — H'(X,0) — H' (X, ).

;From Serre Duality, dimy H°(X, ) = dimy H'(X,0) = g where g is the
genus of the curve X. To show that our sequence reduces to the short exact
sequence

0— HY(X,Q) — HY(X, k) — H'(X,0) — 0,

we will show that dim H'(X, k) = 2g, as a k-vector space.

First, let M denote the sheaf of rational functions on X, and let D be the
sheaf of differentials of the second kind, that is differentials that have zero
residue at every point. Then there is a short exact sequence

0—k—-MELD0

of sheaves on the curve X. Once again this induces an exact sequence of
cohomology groups

0— H'(X,k) — H(X,M) — H*(X,D) — H (X, k) —
HY(X,M) — H'(X,D).

But H'(X,M) = 0 which gives that
HO(X, M) — H(X, D) — H'(X,k) — 0,

if we isolate the end of the new sequence. Then clearly there is an isomor-
phism

HY (X, k)= D/dM

which is the vector space of differentials of the second kind on X modulo the
exact differentials on X. This quotient, as a k-vector space, has dimension
2¢g by a standard argument in algebraic geometry [3]. Thus we have proven
both the exactness of the sequence

0— HY(X,Q) — HY(X, k) — H'(X,0) — 0,

3



and given the cohomology group H'(X, k) an interpretation in terms of dif-
ferential forms on the curve X [2].

Both the exactness of the sequence and the interpretation of H'(X, k)
given above depend heavily on the assumption that £ has characteristic zero.
In a paper by Rosenlicht [4], it is demonstrated that if the ground field & has
characteristic p > 0, then the vector space of differentials of the second kind
modulo exact differentials has dimension over k£ no greater than g; even the
definition given above for differentials of the second kind is not appropriate for
fields of positive characteristic. It is our goal to find a suitable generalization
of H'(X, k) that will retain many of the properties of this cohomology group
(and hence differentials of the second kind), but for arbitrary characteristic.

2 Exactness
We will first construct a short exact sequence
0— H(X,Q) — H(X) - H'(X,0) -0

where X is a curve defined over an algebraically closed field of constants k
of any characteristic. We begin by carefully defining the term H(X) and
proving the exactness of the above sequence.

2.1 Definition of H(X)
Let & = (U;)ier be an open cover of X. Then H(X,4l) is the set

{(wi, fig) « fij € O(Usj), wi € Qo(Us), and w; — w; = dfy;}/ ~

where each (f;;) is taken modulo coboundaries in H'(X,0) and each w; is
taken modulo the exact differentials df;. Thus an element of H(X,4) is a
family of elements of the form (w;, f;;) where if we restrict our attention to
just the set (fi;), we have an element in the cohomology group H*(X,0). On
the other hand, looking at just the family (w;), one has a set of differentials
without poles modulo exact differentials defined on some open set with the
relation on the intersection of open sets that w; —w; = df;;. In particular, the
hypercocycle (w;, fi;) ~ 0 if the family (f;;), viewed as a cocycle in H'(X, O),
splits as fi; = fi — f; and w; = df;. To move to a definition of H(X) that is
independent of an open cover, we shall use a direct limit over all open covers.



This approach requires the two lemmas. Before these lemmas can be stated
and proven, some notation is necessary.

Let 4 = (U;)ier and B = (Vi)kex be two open covers of X. Then U
is finer than 4, denoted U < 4, if every V} is contained in some U;. This
gives the existence of a map 7 : K — [ between the indexing sets such that
Vi C Uy for all k € K. Using this map 7, it is possible to define a new
map

ty s H(X, 40) — H(X, D)

as follows. Let (wj, fi;) € H(X,4); then t5((w;, fi;)) = (¥r, gr) where gy =
fr) -y restricted to Vi, NV for all k,1 and 9, = w, restricted to Vj for
all k. This map takes coboundaries into coboundaries and exact differentials
into exact differentials, so it is well-defined and a homomorphism.

Lemma 1. For U < U, the mapping
ty s H(X, ) — H(X, D)
1s independent of the choice of refining map 7 : K — 1.

Proof. Let 7 : K — I is another refining map such that V; C Uz, for every
ke K. Let (w;, fij) € H(X,4) and define

gt = fryr@ | Ve NV and gkl—frk% \Vkﬂv
1/1k—wrk)|vk and ¢k—wrk’

To show that the map t§; is independent of the refining map, we need to
show that (gx) — (gr) splits and that )y — ¥y = dgj, for some g;. To show
that (gr) — (gw) splits, first note that Vi C Uy N Uz, so one can define
hi. = fr@) 7k restricted to Vi. Thus on Vi NV,

9l — gl = fT(k),T(l) - f%(k),%(l)
= frmyrw + frns k;) fT 0.#(k) — Jak).70)
= frwyzw) — froz0 = i — Iy

On V,, it is also true that
Uk — Yk = wrny — wWiky = Afr(i) 700)

by the relations defining H(X, ). This gives that 1, — 1y = dhy, proving
the lemma. O



Lemma 2. For U < A, the mapping
ty s H(X, U) — H(X, D)
18 1njective.

Proof. We have to show that if the image of (w;, f;;) is equivalent to zero,
then so is (wj, fi;). First, this means that if the image of the (f;;) component
splits relative to U, then it splits relative to 4.

Suppose frw),+1) = g — g on VNV, Then on U; NV, NV,

Gk — 91 = freyr) = firy = firi)
so that f; ) + gx = firq) + 9. This gives an element
hi = firky + gr on Uy N V.
Then on the intersection U; N U; NV}, one has

fij = fire) + fre)g = fire) + 96 — fir) — g = hi — hj.

Thus (fi;) splits relative to the covering 4l.

Thus we have proven that (w;, fi;) ~ (w;,0) in H(X,4), and we know
that (w;, fi;) ~ 0 in H(X, ). In particular, we also have that (w;,0) ~ 0
in H(X,9). From the definition of H(X, ), the hypercocycle (w;,0) gives
an element w € HY(X, Q) by w |y,= w;; the relation w; —w; = df;; = 0 on
ViNV; shows that w is well-defined on the intersection of two open sets in the
cover. Since (w;,0) ~ 0, there exist functions f; € O(V;) such that w; = df;
and f; — f; = fi; = 0 on V;NV;. But then (f;) € H°(X, ), proving that
there exists a regular function f on X such that f; = f |y;; such a regular
function on X is an element of k, so w; = df; = 0 proving that w = 0 and
hence that (w;, fij) ~ 0 in H(X,4) and that

ty s H(X, U) — H(X, D)
is injective. ]

We are now ready to define H(X). Given open covers 20 < U < 4, we
have

toy © ty = toy-
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Define an equivalence relation ~ by two equivalence classes £ € H(X, ) and
n € H(X, ') are equivalent, £ ~ 7, if there exists some common refinement
U with U < U and U < U’ such that

ty(€) = 5 (n).
The set of equivalence classes taken over all open covers is the direct limit
lim H(X, )
which we will now show can be computed in terms of a single open cover.

Proposition. Let 4 = (U;);e; be an open cover of X such that H(U;) = 0
for every i € 1. Then H(X,4) = H(X).

Proof. We will show that given U < 4, the map 5, is an isomorphism. We
have already established that this map is injective, so we need only prove
surjectivity. Let 7 : K — I be a refining map with Vj, C U, for all k € K.
Then given a hypercocycle (wy, fr) € H(X, D), we must show there exists a
hypercocycle (15, F;) € H(X, ) such that (wg, fu) — (Vry, Fre),r@)) is zero
in H(X, D).

The family (U; N Vi)rex covers U; and U; NY will denote this covering.
By hypothesis, H(U;, U; NB) = 0 so there exist g € O(U; N Vi) such that

Jeo =gk —ga on U;N VNV,
On the intersection U; N U; NV, NV}, the relation
9ik — Gik = G451 — il
holds, giving rise to elements F;; € O(U; N Uj) such that
Fij = gjr — g on U; NU; N V.

Now (F};) satisfies the cocycle condition; let hy = gy on Vi. Then on
Vi, NV, one has

Frayra) — fu = (9r0) .k — 9rtek) — (Gr@) e — Gr0)0)
= 9r) — Gr(kye = hu — T,

Now on U; NV, NV,
wr —w; = dfyy = dgir, — dga
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and thus
Wi — dgir, = w; — dgy

giving an element of Qy(U;) by ¥; = wy — dgix on U; N V. Then it is clear
that wyp — ¢; = dg;; restricted to Vi. The only thing left to check is that
wz_d}]:dﬂ] On UZmU]ﬂV;g,

Vi — 5 = (Wr — dgix) — (Wr — dgjx) = dgjr. — dgix = dFij;
since k was arbitrary, this holds on all of U; N Uj. O

The set H(X) forms a k-vector space. Addition is performed component-
wise, using a common refinement of open covers if necessary. Multiplication
by scalars is given by A(w;, fij) = (Awi, Afij)-

2.2 The Exact Sequence

Using the Leray-type result of the previous proposition, we can compute
H(X) using a single covering of X. Now we are ready to prove the exactness
of the sequence

0— H°(X,Q) — H(X) - H'(X,0) =0

where the map H°(X, Q) — H(X) is given by
w— (w;, 0) where w; = w | Uj;
and the map H(X) — H'(X, ) is given by
(wis fig) = (fij)-

Theorem 1. The sequence

0 — HO(X, Q) — H(X) — H'(X,0) — 0
18 ezact.

Proof. First one has to check that the map H°(X, Q) — H(X) is actually a
map into H(X). On U; N Uj,

Ozwi—wj:dfij
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so this map does give an element of H(X). Now we must check that this
map is injective; assume that w € Qy(X) maps to zero in H(X). Then there
exist f; € O; such that

w = df; on U;, and
fi— f; = fi; = 0 on Uy.

This means that the f; give a global element f in O(X), but then f € k
and w = df = 0. It is clear that the kernel of the map H(X) — H'(X,0)
is the image of H°(X,Qy) — H(X), so to prove that the above sequence
is exact, it only remains to be shown that H(X) — H'(X, ) is surjective.
Let (fi;) € H'(X,0) be given. Then if we can find w; € Qo(U;) such that
w; — wj = dfi;, then the hypercocycle (w;, f;;) would map to (f;;). Thus we
must show that (df;;) splits in H'(X, Qo). Using the isomorphism between
H'(X, Q) and k given by Serre Duality, (df;;) splits if and only if ¢tr(df;;) = 0.
Now (f;;) splits when viewed as a cocycle in H*(X, M), the first cohomology
group with coefficients in the sheaf of meromorphic functions. Thus we can
write fi; = fi—f; on U;NU;. Thus it is possible to split (df;;) as df;; = df;—df;
on U; NU;. Therefore

tr(dfi;) = Z resp(df;) =0

PeX

since exact differentials have no residue. O

3 Differentials of the Second Kind
Now that we have proven that the sequence
0— H(X,Q) — H(X) - H'(X,0) =0

is exact, we would like to investigate any similarities these groups have to
the corresponding cohomology groups in the exact sequence

0— H°(X,Q0) — H' (X, k) — H'(X,0) =0

for fields & of characteristic zero.



3.1 An Isomorphism Theorem

Assume that k£ has characteristic zero. We previously demonstrated an iso-
morphism between the vector space of differentials of the second kind mod-
ulo exact differentials and the cohomology group H'(X, k). Thus there is
an isomorphism between H(X) and this vector space of differentials when
char(k) = 0. We now explicitly construct this isomorphism.

Theorem 2. Let k be an algebraically closed field of characteristic zero, and
X a curve defined over k. Then H(X) is isomorphic, as a k-vector space, to
the vector space of differentials of the second kind modulo exact differentials.

Proof. First, define a map from H(X) to the vector space of differentials of
the second kind as follows. Let (w;, fi;) € H(X) be a hypercocycle. Then by
construction,

Wy —w; = dej = dfl—df] on UZﬂU]

where we take fi; = f; — f; in the cohomology group H*(X,M); then f; and
f; are rational functions defined over U; and Uj, respectively. Thus there is
the relation w; — df; = w; — df; on the intersection U; NU;. Define the image
of the hypercocycle (w;, f;;) in the vector space of differentials of the second
kind to be the differential w where

W|Ui = W; — dfz

Assume that the hypercocycle (w;, f;;) maps to zero in the vector space of
differentials of the second kind. Then w;—df; = 0, so it is immediate that w; =
df; and thus the original hypercocycle can be written (0, f;;). Proving that
the cocycle (f;;) € H'(X,O) splits is sufficient to show that the map from
H(X) to the vector space of differentials of the second kind is injective. Since
HY(X,M) =0, f;; = fi—f; where the f; are rational functions on U;. Assume
that f; has a pole at the point P € U;. Then, since k has characteristic zero,
df; also has a pole at P. But df; = w; which is by hypothesis without
poles on U;. Thus f; is regular on U;, and (f;;) = 0 in H(X,0). Now
assume that there exists some hypercocycle (w;, f;;) that maps to an exact
differential dg in the vector space of differentials of the second kind. Then
on U;, it follows from the definition of H(X) that w; — df; = dg. Hence
w; = dg + df; = d(g + fi) and the hypercocycle (w;, f;;) is equivalent to
(0, fi;). If the cocycle (fi;) € H'(X,O) splits, then the only hypercocycle
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that maps to an exact differential is the zero hypercocycle and hence the
image of the constructed map lies within the vector space of differentials of
the second kind modulo exact differentials. We know that on U;, w;—df; = dg.
Thus w; = d(g + f;); since w; has no poles in U;, d(g + f;) also has no poles
in U;. By the same argument as above, g+ f; is regular on U;. Therefore the
image of the cochain (g + f;) under the coboundary map is

g+ fi)—(+f)=Ffi—fi=T1y
and (f;;) € H'(X,0) splits.

It is trivial to show that this is a k-vector space homomorphism, so to
prove the isomorphism between H(X ) and the differentials of the second kind
modulo exact differentials, we need only construct a two-sided inverse. Let
w be a differential of the second kind on X. Let {Py, P»,...,P,} be the
set of points at which w has poles, which we know is a finite set. By the
proposition, we can assume that our open cover (U;);¢; is fine enough so that
no pole lies in the intersection of two open sets. If Uy is an open set such
that w has no poles on Uy, then set w, = w. If U; is an open set containing
the point P;, then we can write

w = w; — df;

where w; is a differential without poles on Uj; it is possible to write w in this
way by an equivalent definition of differentials of the second kind that will
be discussed later. Then the map from the vector space of differentials of the
second kind to H(X) is defined by

w = (wi, fij)

where w; is the differential above in the representation of w on U;, and f;; =
fi — f; where f; is some rational function such that w = w; — df;. First,
we prove that this map is well defined. Assume that, on U;, w = w; — df;
and w = 1; — dg; are two ways to write w, and hence w gets mapped to the
hypercocycles (w;, fi;) and (¢, gij). To show the map above is well-defined,
we must prove that (w;, fi;) — (¢4, gij) ~ 0 in H(X). First, note the relations

w+ df; = w; and w+dg; = U,
on the open set U;. Thus on U,

wi — P = (w+df;) — (w+dgi) = df; — dgi; = d(fi — ;).
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Since w; — v; has no poles on U;, we can conclude as above that f; — g; has
no poles on U;. Using the same calculations gives

fij — 9ij = (fi - fj) - (gi - gj) =(fi—ag)— (fj - gj)

so (fij — gi;) splits in H'(X, O). This shows that (w;, fi;) — (¥, gi;) is equiv-
alent to the zero hypercocycle in H(X) and so the map from differentials of
the second kind to H(X) is well-defined.

Denote by 7 the map from H(X) to the differentials of the second kind
modulo exact differentials, and o the map from differentials of the second kind
to H(X); we will prove that Too = o o7 = 1. Let w be an element of the
vector space of differentials of the second kind modulo exact differentials, with
w = w; — df; on the open set U;. Then o(w) = (w;, fi;) and 7((w;, fij)) = ¢
where

¢|U¢ = Ww; — df’w

so 1 is visibly equal to w and 7 oo = 1. Now let (w;, fi;) € H(X); then
T((wi, fij)) = w where

W|U1- = Ww; — dfi

writing f;; = fi — f; with f;, f; rational functions. Then clearly we can take
o(w) to be the hypercocycle (w;, fi;), proving o o7 = 1. O

It would be desirable to be able to recover as much of the previous theorem
as possible when the characteristic of the ground field k£ is p > 0. To make
the discussion clear, we introduce another definition of differentials of the
second kind that, in characteristic 0, is equivalent to the usual definition of
a differential having zero residue at every point; the definition we present
now is the same one used by Rosenlicht [4]. A differential of the second kind
is a differential w such that at every point P € X, w can be written, on
some neighborhood of P, as the sum of a differential without poles and an
exact differential. In characteristic zero, if ¢ is a local parameter at P, then
a differential of the first kind on some neighborhood of P can be written
w =y dt where y is a power series

o0

Y= Z cit’;

=0
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an exact differential can be written ¢ = dz, so

Jj=—m J=—m

It is then easy to see that in characteristic zero a differential with zero residue
at every point can be written as w + ¥ as above, and a differential w + ¥
clearly has no residue at every P € X.

Now let w be a differential of the second kind on X, a curve defined over
the algebraically closed ground field k of positive characteristic. Then on the
open set U;, we can write w = w; — df; for some rational function f;. We
would like to define the same map o as above sending the differential w to
the hypercocycle (w;, f;;). First we check that this map is well-defined as
before; let w = w; — df; = ¢; — dg; on U;. Then the requirement that o be
well-defined is that the hypercocycle (w;, fi;) — (4, gij) is equivalent to the
zero hypercocycle in H(X). Once again, we find that

wi — ¥ = (w+df;) — (w+dg) = df; — dg; = d(fi — 9:)

on U;. To conclude that (w;, fi;) — (¥, gij) ~ 0, it is necessary that

(1) (fij — giy) splits in H'(X,0), that is fi; — g = (fi — ;) = (f; — 95)
where f; — g; € O(U;), and

(2) w; —; =d(f; — g;) where f; — g; is the regular function on U;
given in (1).

Thus it is required that f; — g; is a regular function on U;; unfortunately,
we cannot conclude this from the construction given when £k has positive
characteristic. The condition that d(f; — ¢;) is a differential without poles
on U; merely implies that the derivative of the polar part of f; — g; is zero,
not that it has no polar part as in characteristic zero. Conversely, requiring
that f; — g; be regular on U; is also a sufficient condition to ensure that
(wi, fij) — (¥i,9i5) ~ 0; thus if we want to prove that the differentials of
the second kind modulo exact differentials are isomorphically embedded in
H(X), a different map will be necessary.

To construct the correct map, first choose an open cover of X with the
following properties. For every pole of w - say at the point P; - there exists
a unique open set U; containing P; with the property that U; contains no
other point of X at which w has a pole. We also have an open set Uy in the
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cover with the property that w has no poles in U, and it contains a point
Q) € U, that is in no other open set of the cover. Now let w = w; — df; on U;;
we will now explicitly construct the functions f; to ensure that the map o is
well-defined. We know that on Uj,

dfl = i Z'Citiildt

i=—m

where m € Z and the characteristic of k does not divide ¢ in Z for all i.
Producing a function having polar part

Z Citi
i€z~
char(k) 11
and any other poles outside of U; would prove that the map o as defined
above would be well-defined as any two functions f; and g; meeting this
criteria would clearly have as their difference a regular function on Uj.

To produce such a function, we need to use the Riemann-Roch Theorem,
stated here without proof. First we introduce the following notation. Let D
be a divisor on a curve X and let L(D) denote the vector space of functions
f, along with the zero function, that have the property that the divisor of
f is greater than or equal to —D. These are the functions, then, such that
(f) > =D or (f) + D > 0. Let I(D) denote the dimension of this vector
space over k.

Theorem of Riemann-Roch. There erists a divisor K and an integer g
such that

(D) =deg(D)+1—g+ (K — D)
for all divisors D on X.

It is easy to show that if the degree of some divisor D is negative, then
[(D) = 0; this also gives that if deg(D) > 2¢g — 2, then I(K — D) = 0 since it
can be shown that deg(K) = 29 — 2.

We make use of the divisors D = j - P; + 2g - Q where 0 < j < m. This
divisor clearly has degree larger than 2g — 2 for all j, so by Riemann-Roch

(D) =deg(D)+1—g=g+7j+1.
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Since all of these vector spaces have different dimensions depending on j, we
know that there exist functions with polar part

0

Z a,»ti

i=—j

on U; and a_; # 0. Let f_,,41 be a function with a pole of order —m + 1
at P; and all its other poles at ) as given by the Riemann-Roch theorem.
Multplying by a suitable constant gives f_,,.1 the same coefficient as the
desired function for the t~™*! term. Now we repeat the process, choosing
a function f_,, 2 using Riemann-Roch and then multplying by the correct
constant so that when added to f_,,.1, the resulting function has the correct
coefficients for the t*! and t~™*2 terms. This produces a function which
we denote f; as above. It is clear that if another function g; was produced in
this fashion, f; — g; would be regular on U; since they have the same polar
parts on that open set, hence the map o from differentials of the second kind
modulo exact differentials to H(X) is well-defined. Now we have proved

Theorem 3. The map o is well-defined, with left inverse T as shown above.
Thus o isomorphically embeds the differentials of the second kind modulo ex-
act differentials in H(X). Therefore the map T from H(X) to the vector space
of differentials of the second kind modulo exact differentials is surjective, and
if k has characteristic zero both of these maps are isomorphisms of k-vector
spaces.

3.2 Self-Duality of H(X)

By the Serre Duality theorem, we obtain the duality of the first and third
terms in the short exact sequence

0— H°(X,Q) — H' (X,k) — HY(X,0) — 0

when k has characteristic zero. It is also true that the middle term H'(X, k)
is self-dual, although this duality is easiest to prove using the isomorphic
vector space of differentials of the second kind modulo exact differentials on
X. Let w and n be two such differentials. Let P € X be a point; then at P,
the differntial 1 can be written n = dgp. Then we define the pairing (,) by

(w,n) = Z resp(gpw).

pPeX
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A proof that (,) is a non-degenerate pairing can be found in Chevalley [1].
This proves that H(X) is self-dual when £ has characteristic zero and provides
the motivation for the next theorem. But first, let © = (w;, fi;) and y =
(mi, gij) be elements of H(X). Then define

(z,y) = Z resp(giwi — fini + fidg;)
Pex

where P € U; and f;; = f; — f; with the f; rational functions on U;.

Theorem 4. H(X) is self-dual under the pairing (,) when X is defined over
any algebraically closed field k.

Proof. First we must prove that this pairing is well-defined. If P € U; N Uj,
then to show that this pairing is well-defined, we need to show that (z, y) gives
the same result regardless of whether we use the functions and differentials
given on U; or given on Uj;. Thus

(z,y) = Z resp(giwi — fini + fidg;)

pPeX

= > resp((gi + 95)(wj +dfiy) = (fij + f1)(n

PeX
+dgij) + (fij + f3)(dgi; + dgj))

using the relations

fo=fi=fi  and o wi—w = dfy
9ij = 9i — g and M = Nj = dgij.

Since the residue is an additive homomorphism, after multiplying these terms
out, we can separate the resultant residue into

Z resp(gjw; — fin; + fidg;) + Z resp(y)

pPeX pPeX

where
Y = gijwj + giidfi; + g;dfi; — fiyn; — fijdgi; — fidgij + fi;dgi; + fidgi; + fijdg;.

Now g;jw; — fijn; has no poles on U; N Uj, and thus has no residue. After
cancellation, we are left showing that

9i5dfi; + gidfi; + fijdg
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has zero residue. Since g;; = g; — g;, this differential is equal to g;df;; + fi;dg;.
Noting that

gidfi; + fi;dg; = d(g;fi;)

and that exact differentials have no residue, we have shown that

Z resp(y) =0

PeX
and the pairing (,) is well-defined.
Let w € H°(X, ), so that its image in H(X) is the hypercocycle (w;, 0)
where w; = w|y,. Let n € H°(X, Q) be another differential with image (1, 0)
in the same fashion. Then

(w,n) = Z resp(0) = 0;

since we have proven that the sequence
0— H°(X,Q) — H(X) — H(X,0) —0

is exact, the above calculation proves that if we identify w € H°(X, Q) with
its image in HI((X), then (w, ) depends only on the image of the hypercocycle
rin H(X,0). Let T denote the image of x € H(X) in H'(X,0). Now let
x € H(X) be a hypercocycle such that (z,y) =0 for all y € H(X). Let y be
the image in H(X) of a differential H°(X, ). Then (z,y) depends only on
7, and in fact

(T,y) = Z resp(—fiti)

if © = (w;, fi;) and y = (¢4, 0). Recall the function on H°(X, Qo) x H'(X, O)
given by Serre Duality. Given (¢;) and (f;;), first write f;; = fi — f; as
rational functions. Now (f;;1;) is an element of H'(X, ), so we can apply
the map

tr: HY(X, Q) — k

previously defined to the cocycle (f;;1;) Clearly we can split this cocycle as
fiji = fibi — fj1i. Thus

tr(fijii) = Z resp(fiti).

PeX
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This is, up to sign, the pairing (7,y), so (T,y) = 0 for all y € H°(X, Q) if
and only if (fi;) splits in H'(X,0). Therefore z ~ (w;,0) in H(X). Then
(r,y) = > pex resp(giw;) where y = (¢4, gi;). Applying Serre Duality with
the fixed differential w, w|y, = w;, we know that (z,y) = 0 for all y if
and only if w = 0. Thus the only hypercocycle that pairs with every other
hypercocycle to yield zero is the zero hypercocycle. Since we are dealing with
two vector spaces - both H(X) actually - of equal dimension, this proves that
the pairing (,) makes H(X) self-dual. O

Chevalley also proves that his pairing on differentials of the second kind
modulo exact differentials is anti-symmetric, so (w,n) = —(n,w). We will
prove that the pairing given above on H(X) is also anti-symmetric. By the
definition of the pairing,

(z,y) = Z resp(giw; — fimi + fidg:) = — Z resp(fimi — giwi — fidg:).

Pex PeX
Since d(fig:) = fidg: + gidfs,
(z,y) = — Z resp(fini — giwi — d(figi) + gidf;)
Pex

which is equal to —(y,x) since the residue is an additive map and exact
differentials have no residue.
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