Plane curves and p-adic roots of unity

José Felipe Voloch

Let \mathbb{C}_p be the completion of the algebraic closure of \mathbb{Q}_p with its usual norm extending that of \mathbb{Q}_p. In [TV], J. Tate and the author proved a result which implies the following statement. If $f(x, y) \in \mathbb{C}_p[x, y]$ there exists a positive constant c such that, for any roots of unity ζ_1, ζ_2, either $f(\zeta_1, \zeta_2) = 0$ or $|f(\zeta_1, \zeta_2)| \geq c$ (A similar result holds for polynomials with an arbitrary number of variables). In general, however, there is little information about the value of c. In the case that f is linear and its coefficients are units in an unramified extension of \mathbb{Q}_p, it was proved in [TV] that the inequality $|f(\zeta_1, \zeta_2)| \leq p^{-2}$ had at most p solutions ζ_1, ζ_2 roots of unity or zero. The purpose of this note is to obtain a similar result for more general polynomials in two variables. Recall that a binomial is a polynomial with (at most) two non-zero coefficients. Our main result is then

Theorem. Let $f(x, y)$ be a polynomial of degree d in two variables whose coefficients are integers in an unramified extension of \mathbb{Q}_p. Assume that the reduction of f modulo p is irreducible of degree d and not a binomial. Assume also that $p > d^2 + 2$. Then the number of solutions of the inequality $|f(\zeta_1, \zeta_2)| < p^{-1}$, with ζ_1, ζ_2 roots of unity in $\overline{\mathbb{Q}}_p$ or zero, is at most pd^2.

Proof: We will first prove the theorem under the additional condition that we are dealing with roots of unity of order prime to p. The inequality then translates into $f(\zeta_1, \zeta_2) \equiv 0 \pmod{p^2}$. The ring of integers of the completion of the maximal unramified extension of \mathbb{Q}_p can be viewed as the ring of Witt vectors over the algebraic closure of \mathbb{F}_p and, since we are interested only in the situation modulo p^2, we can work in the Witt vectors of length two over the algebraic closure of \mathbb{F}_p. We are thus interested in the solutions of the equation $f((x, 0), (y, 0)) = (0, 0)$. This equation translates into the system $f_0(x, y) = g(x, y) = 0$, where f_0 is the reduction of f modulo p and the polynomial g is the reduction modulo p of the polynomial $(f^\sigma(x^p, y^p) - f(x, y)^p)/p$ and σ is the Frobenius automorphism of the ring of Witt vectors. Clearly g has degree at most pd and, since f_0 is
assumed irreducible of degree d, the result we want follows from Bézout’s theorem unless f_0 divides g, which we proceed to show cannot happen.

Let X be the irreducible plane curve defined by $f_0(x,y) = 0$. We will derive a contradiction from the assumption that g vanishes identically on X. If $g = 0$ on X then, differentiating $g(x,y) = 0$ we obtain $g_x + g_y dy/dx = 0$ and, from the definition of g we have $g_x = f_x^p(x^p,y^p)x^{p-1} - f(x,y)^{p-1}f_x = f_{0x}^p x^{p-1}$ on X. Likewise $g_y = f_{0y}^p y^{p-1}$ on X. Since f_0 is of degree less than p and is not a binomial, we have that $f_0 x, f_0 y$ are non-zero. So we obtain, using that $dy/dx = -f_0 x/f_0 y$, the identity $f_p^{p-1} x^{p-1} - f_{0y}^{p-1} y^{p-1},$ on X. This gives $xf_0 x = cyf_0 y$ for some $c \in F_p$. The lemma below ensures that this cannot hold under the assumptions that $p > d^2$ and f_0 is not a binomial and this will complete the proof in the case the roots of unity are of order prime to p.

If ζ_1, ζ_2 are arbitrary roots of unity satisfying the inequality $|f(\zeta_1, \zeta_2)| < p^{-1}$ we can write $\zeta_i = \lambda_i \eta_i, i = 1, 2$ where the λ_i are of order prime to p and the η_i are of p-power order and are not both equal to one. We will show that this inequality has no such solution. By a harmless change of coordinates we may assume that $\lambda_i = 1, i = 1, 2$. Further, perhaps after switching x and y if necessary, we may assume that $\eta_2 = \eta_1^r$ for some integer r. We write $\eta_1 = 1 + \pi$ and notice that the inequality $|f(\zeta_1, \zeta_2)| < p^{-1}$ implies $f(1 + \pi, (1 + \pi)^r) \equiv 0(\text{mod } \pi^{p-1})$. On the other hand if O is the ring of integer of the field $F(\eta_1)$, where F is a unramified extension of Q_p containing the coefficients of f, then O/π^{p-1} is isomorphic to $k[t]/t^{p-1}$, where k is the residue field of F. Therefore we obtain $f_0(1 + t, (1 + t)^r) \equiv 0(\text{mod } t^{p-1})$. This implies, with notation as above, that $y/x^r - 1$ has a zero of order at least $p - 1$ at some place of X centered at $(1,1)$, so the differential $dy/y - rdx/x$ has a zero of order at least $p - 2$ at that same place. However, this differential has at most $3d$ poles counted with multiplicity, so at most $3d + 2g - 2$ zeros, where g is the genus of X unless it is identically zero. Now, $3d + 2g - 2 \leq 3d + d(d - 3) = d^2 < p - 2$, by hypothesis, so the differential is identically zero, which using that $dy/dx = -f_0 x/f_0 y$ leads to a contradiction with the lemma below.

It remains only to prove:
Lemma. Let \(f(x, y) = 0 \) define an irreducible plane curve \(X \) of degree \(d \) over an algebraically closed field \(k \) of characteristic \(p \) satisfying \(p > d^2 \). If \(xf_x = cyf_y \) on \(X \) for some \(c \) in \(k \) then \(f \) is a binomial.

Proof: The hypothesis means an identity \(xf_x - cyf_y = bf \) for some \(b \) in \(k \). If \(f(x, y) = \sum a_{ij}x^iy^j \) we get \(a_{ij}(i - cj - b) = 0 \) for all \(i, j \). Suppose first that \(b = 0 \). For any \(i, j, i', j' \) with both \(a_{ij}, a_{i'j'} \) non-zero, we get \(i - cj = i' - cj' = 0 \) which implies that \(i'j' - ij = (i - cj)j' - (i' - cj')j = 0 \) in \(k \), which means that \(p \) divides \(i'j' - ij \), but under our assumption that \(p > d^2 \), this implies that \(i'j' = ij \) and this implies that the value of \(i/j \) is constant for all \(i, j \) with \(a_{ij} \neq 0 \). So \(f(x, y) = \sum r a_{rm, r'n}x^m y^n \) which can be written as a constant multiple of a product of terms of the form \(x^m y^n - \alpha \) and, since \(f \) is irreducible, we conclude that \(f \) is a binomial.

Assume now that \(b \) is not zero. First of all, if \(f \) is a polynomial in just one variable and is irreducible, then it is a binomial and we are done. Therefore, we may assume that there exists \(i_1, j_1 \) with \(a_{0j_1}, a_{i_10} \) both non-zero and we get that \(i_1 = b \) and \(cj_1 = -b \), so \(c \) is not zero and \(c = -i_1/j_1 \). If \(i, j \) are such that \(a_{ij} \neq 0 \) then \(i + ji_1/j_1 - i_1 = 0 \) in \(k \) so \(ij_1 + ji_1 \equiv i_1j_1 \pmod{p} \). But \(i_1, j_1 \leq d, i + j \leq d \), therefore \(0 \leq ij_1 + ji_1, i_1j_1 \leq d^2 < p \) so \(ij_1 + ji_1 = i_1j_1 \). Let \(\delta = (i_1, j_1), i_1 = m\delta, j_1 = n\delta, (m, n) = 1 \). We get \(in + jm = mn\delta \), so \(m|i, n|j \) and writing \(i = mu, j = mv \) we get \(u + v = \delta \). Thus \(f(x, y) = \sum_u a_{mu, vn(\delta - u)}x^{mu} y^{n(\delta - u)} \) which can be written as a constant multiple of a product of terms of the form \(x^m - \alpha y^n \) and, since \(f \) is irreducible, we conclude that \(f \) is a binomial.

Remarks(i) If \(X \) is a projective curve of genus bigger than one embedded in an abelian variety \(A \), all defined over an unramified extension of \(\mathbb{Q}_p \), then Raynaud [R] proved that there are only finitely many torsion points of \(A \) of order prime to \(p \) which are in \(X \) modulo \(p^2 \) and Buium [B] gave an explicit bound for the number of those points. Perhaps the techniques of Coleman [C] could be used to extend this result to the full torsion and obtain an abelian analogue of the above result.

(ii) A special case of Lang’s extension of the Manin-Mumford conjecture, proved by
Ihara, Serre and Tate (see [L], ch. 8, thm. 6.1) states that if \(f(x, y) \) is an irreducible polynomial, not a binomial, over a field of characteristic zero, then there are only finitely many roots of unity \(\zeta_1, \zeta_2 \) with \(f(\zeta_1, \zeta_2) = 0 \). This follows from the above theorem by choosing \(p \) large enough such that the field generated by the coefficients of \(f \) embed in \(\mathbb{Q}_p \) and such that the hypotheses of the theorem hold.

Acknowledgements: The author would like to thank the TARP (grant #ARP-006) and the NSA (grant MDA904-97-1-0037) for financial support.

References.

Dept. of Mathematics, Univ. of Texas, Austin, TX 78712, USA

e-mail: voloch@math.utexas.edu