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Abstract. We prove combination theorems in the spirit of Klein and Maskit in the con-

text of discrete convergence groups acting geometrically finitely on their limit sets. As

special cases, we obtain combination theorems for geometrically finite groups of isome-
tries of Hadamard manifolds with pinched negative curvature, and for relatively quasi-

convex subgroups of relatively hyperbolic groups.
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1. Introduction

When a group G acts by homeomorphisms on a compact metrizable space M , we say
G is a discrete convergence group if the induced action on the space of distinct triples in
M is properly discontinuous. Despite their simple definition, convergence groups carry a
considerable amount of structure. They arise naturally when considering actions of isometry
groups of negatively curved metric spaces on their ideal boundaries, and provide a way to
study discrete subgroups of isometries of these spaces from the perspective of topological
dynamics.

The action of a convergence group G on a space M is geometrically finite if every point
of the limit set of G in M is either a conical limit point or bounded parabolic point for the
action. Work of Bowditch [Bow12], [Bow95] implies that, if M is the boundary of a proper
geodesic negatively curved metric space X, and the action of G on M = ∂X is induced by
an isometric action on X, then this definition essentially agrees with the usual definitions
of geometrical finiteness in this geometric context.

In this paper, we prove Klein-Maskit-type combination theorems for convergence groups
acting geometrically finitely on their limit sets. Our theorems give sufficient conditions for
geometrically finite subgroups of Homeo(M) to generate a geometrically finite convergence
group isomorphic to an amalgamated free product or HNN extension of the original groups.
Precisely, we prove the following two theorems:
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Theorem A. Let G1 and G2 be discrete convergence groups acting on a compact metrizable
space M . Suppose that J = G1 ∩ G2 is geometrically finite, and G1 and G2 are in AFP
ping-pong position with respect to J . Let G = 〈G1, G2〉 < Homeo(M), and suppose G acts
as a convergence group. Then the following hold:

(i) G = G1 ∗J G2.
(ii) G is discrete.

(iii) Elements of G not conjugate into G1 nor G2 are loxodromic.
(iv) G is geometrically finite if and only if both G1 and G2 are geometrically finite.

Theorem B. Let G0 be a discrete convergence group acting on a compact metrizable space
M , and suppose that J1, J−1 < G0 are both geometrically finite. Let G1 = 〈f〉 be an infinite
cyclic discrete convergence group also acting on M , where fJ−1f

−1 = J1 in Homeo(M).
Suppose G0 is in HNN ping-pong position with respect to f, J1 and J−1. Let G = 〈G0, G1〉 <
Homeo(M), and suppose G acts as a convergence group. Then the following hold:

(i) G = G0∗f .
(ii) G is discrete.

(iii) Elements of G not conjugate into G0 are loxodromic.
(iv) G is geometrically finite if and only if G0 is geometrically finite.

The exact definitions of “AFP ping-pong position” and “HNN ping-pong position” are
given at the beginning of Section 4 and Section 6, respectively. They are versions of
the “ping-pong” configuration of limit sets required by Maskit’s combination theorems for
Kleinian groups (see [Mas88]).

1.1. Special case: M is the boundary of a negatively curved metric space. If X is
a proper geodesic metric space which is hyperbolic in the sense of Gromov, then any discrete
subgroup of Isom(X) acts on both the Gromov boundary ∂X of X and the compactification
X t ∂X as a discrete convergence group. In particular this holds if X is a Hadamard
manifold with pinched negative curvature, e.g. a rank-1 symmetric space of noncompact
type.

Theorem A and Theorem B both apply in this situation, meaning they imply combination
theorems for geometrically finite subgroups of rank-1 semisimple Lie groups. In particular,
in the special case M = ∂HnR, Theorem A recovers a result of Li-Ohshika-Wang [LOW09],
who proved a version of Maskit’s combination theorem for amalgamated free products of
geometrically finite groups acting on real hyperbolic space of any dimension.

In [LOW15], Li-Ohshika-Wang also proved a version of Maskit’s HNN extension theorem
in arbitrary-dimensional real hyperbolic space. Theorem B is not strong enough to fully
recover this result, and both Theorem A and Theorem B fail to fully recover Maskit’s
analogous combination theorems for Kleinian groups. The reason is that we impose some
additional hypotheses on the relative positions of the limit sets of the subgroups we are
combining. See Remark 4.2 for more detail.

1.2. Combination theorems for relatively hyperbolic groups. Any relatively hyper-
bolic group acts as a convergence group on its Bowditch boundary, which means that Theo-
rem A and Theorem B also directly imply combination theorems for relatively quasi-convex
subgroups of relatively hyperbolic groups.

A number of combination theorems along these lines can be found in the literature; see
for instance [Git99], [MP09], [MPS12], [Yan12], [MM22]. The combination theorems given
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by these papers are all virtual : they provide conditions guaranteeing that certain finite-
index subgroups G′1, G′2 of relatively quasi-convex subgroups G1, G2 generate a relatively
quasi-convex subgroup, isomorphic to an amalgam of G′1 and G′2. In contrast, the results
in this paper give explicit conditions which can be used to verify that a particular pair of
relatively quasi-convex subgroups generates a relatively quasi-convex amalgam.

We can additionally contrast the combination theorems in this paper with abstract com-
bination theorems for relatively hyperbolic groups, which provide conditions that guarantee
that the fundamental group of some graph of relatively hyperbolic groups is also relatively
hyperbolic. Combination theorems of this type were originally proved for hyperbolic groups
by Bestvina-Feighn [BF92], and various generalizations have been given for relatively hy-
perbolic groups (see [Dah03], [Ali05], [MR08], [Gau16], [Tom22a], [Tom22b]).

We give special mention to the work of Dahmani [Dah03] (later generalized by Tomar
[Tom22a], [Tom22b]), because the method of proof is particularly relevant to the situation we
encounter in this paper. Dahmani and Tomar prove that an amalgam of relatively hyperbolic
groups is relatively hyperbolic by giving an abstract construction of an appropriate “limit
set” for the amalgam to act on. That is, their strategy is to directly construct the Bowditch
boundary of the amalgam, and then prove that the amalgam acts geometrically finitely
on this space. Indeed, an alternative approach to the proof of the combination theorems
given in this paper would be to show that the “limit sets” constructed in [Dah03], [Tom22a],
[Tom22b] appear embedded in the space M on which our subgroups all act. However, in this
paper we prefer a direct approach, which we feel is more self-contained and straightforward.

1.3. Possible generalizations: higher rank combination theorems. Dey-Kapovich-
Leeb [DKL19] have previously proved combination theorems for Anosov subgroups of higher-
rank Lie groups, along the lines of the combination theorems for hyperbolic groups proved
by Gitik in [Git99]. Anosov subgroups are discrete subgroups of higher-rank Lie groups
which generalize the dynamical behavior of convex cocompact groups in rank one.

More recently, Dey-Kapovich [DK22], [DK23] have proved sharper combination theorems
for Anosov subgroups, giving Maskit-type ping-pong criteria (analogous to the ones in this
paper) which guarantee that a pair of Anosov subgroups generates a larger Anosov subgroup,
isomorphic to an amalgam of the original groups. The Dey-Kapovich results also apply in
rank one, which means that they imply Theorem A and Theorem B in the special case where
M is the visual boundary of a rank-one symmetric space X and the subgroups generating
the amalgam G are all convex cocompact in Isom(X).

Unlike the Dey-Kapovich results, the theorems in the present paper do not apply directly
in the higher rank setting. However, at their core, our arguments only involve the topolog-
ical dynamics of an action by homeomorphisms on some space M , and do not rely directly
on geometric properties of any metric space bounded by M . Consequently, it is reasonable
to believe that our methods could be adapted to extend the work of Dey-Kapovich, and
prove combination theorems for discrete subgroups of higher-rank Lie groups with “geomet-
rically finite” dynamical behavior—for instance relative Anosov subgroups, or the extended
geometrically finite subgroups considered by the second author in [Wei22].

1.4. Tools used in the proof. Although almost all of the arguments in this paper are
purely topological, we do use some metric geometry to prove a key technical result at the
end of Section 2. The proof of this proposition (Proposition 2.18) uses the following fact,
due to Yaman [Yam04]: if G is a geometrically finite convergence group acting on M , then
there is a proper δ-hyperbolic metric space X where G acts by isometries, such that ∂X is
equivariantly homeomorphic to the limit set of G in M .
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We use the coarse geometry of the space X, together with the convergence action of G on
M , to establish some further dynamical properties of the action of G on M . Specifically, we
prove that, when a subgroup J < G is fully quasi-convex, there is a way to modify sequences
(gk) in G\J by elements of J , so that certain sequences of the form (gkx) for x ∈M do not
accumulate on the limit set of J . Once we have established this dynamical fact, we apply
the conclusion repeatedly while working in M , and no longer need to reference the geometry
of any metric space.

1.5. Acknowledgements. Both authors would like to pay special thanks to Sara Maloni,
who initially suggested this problem and provided valuable feedback at every stage of the
project. The first author was partially supported by the NSF Graduate Research Fellowship
under Grant No. 1842490, as well as NSF grants DMS-1848346 and DMS-1839968. The
second author was supported by NSF grant DMS-2202770.

2. Convergence group actions and geometrical finiteness

This section is mostly devoted to background related to convergence group actions. We
start by defining convergence groups and geometrical finiteness in Section 2.1 and Sec-
tion 2.2. In Section 2.3 we recall some background on relatively hyperbolic groups. At the
end of this section, we state and prove a key proposition (Proposition 2.18) about relatively
quasi-convex subgroups of geometrically finite convergence groups.

2.1. Convergence groups. We refer to [Tuk94], [Tuk98], [Bow99] for further background
on the material in this section.

Definition 2.1. Let G be a group acting on a compact metrizable space M . We say the
action is a convergence action and call G a convergence group if, whenever (gk) is a sequence
of pairwise distinct elements in G, we can take a subsequence so that one of the following
two conditions is satisfied:

(1) The sequence (gk) converges to a homeomorphism g in the compact-open topology
on Homeo(M).

(2) There are points z+, z− ∈ M (not necessarily distinct) so that the maps gk|M\{z−}
converge to the constant map z 7→ z+ uniformly on compacts.

If G is a convergence group such that only the second condition occurs, we call G a discrete
convergence group and the action a discrete convergence action.

Remark 2.2. Note that when G < Homeo(M) is a convergence group, G is a discrete
convergence group if and only if G is a discrete subgroup of Homeo(M) with respect to
the compact-open topology on Homeo(M). So, if (gk) is a divergent sequence (that is, a
sequence which leaves every compact subset of Homeo(M)) in a discrete convergence group
G, then we can extract a subsequence so that the second condition above holds.

When M is a topological n-sphere, the definition of a convergence group is due to Gehring
and Martin [GM87], who observed that the isometry group of HnR always acts as a conver-
gence group on ∂HnR. Gehring and Martin also showed (again when M is an n-sphere) that
a group G is a discrete convergence group if and only if the induced action of G on the space
of distinct triples in M is properly discontinuous; later Bowditch [Bow99] observed that the
same holds when M is an arbitrary compact Hausdorff space.

In the setting where M is compact metrizable, convergence groups were studied system-
atically by Tukia [Tuk94]. In particular Tukia showed that any group of isometries acting
properly discontinuously on a proper geodesic Gromov-hyperbolic metric space X acts as a
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discrete convergence group on both the boundary ∂X and the compactification X = Xt∂X
(see also Freden [Fre95]).

Definition 2.3. Following [Tuk94], if (gk) is a sequence in G < Homeo(M) such that the
second condition of Definition 2.1 holds without extracting a subsequence, then we say that
(gk) is a convergence sequence.

In this case, the (uniquely defined) points z+ and z− are respectively called the attracting
point and repelling point of the sequence (gk). It follows immediately that if (gk) is a
convergence sequence with attracting and repelling points z+, z−, then (g−1k ) is also a
convergence sequence, with attracting and repelling points z−, z+.

When G is a discrete convergence group, an arbitrary sequence of pairwise distinct ele-
ments in G is not necessarily a convergence sequence, but it always has a subsequence which
is.

One easy consequence of the definitions above is the following:

Proposition 2.4. Let (gk) be a convergence sequence in a discrete convergence group G
acting on a compact metrizable space M containing at least 3 points. If U is any open
neighborhood of the repelling point z− of (gk), then (gkU) converges to M in the topology
on closed subsets of M induced by Hausdorff distance.

Proof. If U = M the result is immediate, so assume that M \ U is nonempty. Then,
since M \ U is a nonempty compact subset of M \ {z−}, the set gk(M \ U) converges to a
singleton {z+}. So gkU eventually contains every compact in the complement of {z+}, and
must converge to the closure of M \ {z+}. In addition, since M contains at least 3 points,
there are distinct points x, y ∈M so that (gkx) and (gky) both converge to z+. This implies
z+ is not an isolated point of M and so the closure of M \ {z+} is M . �

The set of attracting points (or equivalently, the set of repelling points) of sequences in
a discrete convergence group G acting on a space M is called the limit set of G in M , and
is denoted Λ(G). The limit set is always a closed G-invariant subset of M . In fact, if G is
neither finite nor virtually cyclic, then the limit set of G is the unique minimal nonempty
closed G-invariant subset of M .

The complement of Λ(G) in M is denoted Ω(G), and is called the domain of discontinuity
for G since (as in the setting of Kleinian groups) it is the maximal open subset of M on
which G acts properly discontinuously. Recall that a group G acts properly discontinuously
on a space X if for any compact K ⊂ X, the set {g ∈ G | gK ∩K 6= ∅} is finite.

We say that a discrete convergence group G is elementary if |Λ(G)| ≤ 2; this turns out
to be equivalent to asking for |Λ(G)| to be finite. When G is non-elementary, one can also
view Λ(G) as the set of accumulation points of any G-orbit in M .

The classification of isometries in hyperbolic space also generalizes to a classification of
the elements of a group G acting as a convergence group on M :

Proposition 2.5 ([Tuk94]). Let G act as a convergence group on a compact metrizable
space M . Every g ∈ G satisfies exactly one of the following:

• The closure of the cyclic group 〈g〉 is compact in Homeo(M), in which case we say
g is elliptic.

• g is not elliptic and g fixes exactly one point in M , in which case we say g is
parabolic.

• g is not elliptic and g fixes exactly two points in M , in which case we say g is
loxodromic.
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Moreover, if g is parabolic or loxodromic, then (gn) is a convergence sequence, and the set
of attracting and repelling points {z±} of (gn) is precisely the set of fixed points of g.

If G is a discrete convergence group, then the elliptic elements of G are precisely those
with finite order. The classification also implies that if G is a virtually cyclic discrete
convergence group, then G is elementary (but note that the converse need not hold).

2.2. Geometrical finiteness. When X is a Hadamard manifold with pinched negative
curvature, the geometrically finite subgroups of Isom(X) are the subgroups G such that the
quotient X/G is topologically tame in a precise sense. Geometrical finiteness was originally
defined in real hyperbolic spaces of dimension 2 and 3, where the definition concerned the
existence of a well-behaved fundamental domain for the action of G on X. This definition
proved to be unsatisfactory in hyperbolic spaces of higher dimension and in other negatively
curved Hadamard manifolds, however.

In [Bow95], Bowditch gave several different definitions of geometrical finiteness for groups
of isometries of a Hadamard manifold X with pinched negative curvature, and proved that
they are all equivalent. One of Bowditch’s definitions (definition GF5), based on work of
Beardon and Maskit [BM74], can be expressed entirely in terms of the convergence action
of G on its limit set in ∂X, and therefore generalizes readily to the situation where G is a
convergence group acting on an arbitrary compact metrizable space M .

Before giving the definition we recall some essential terminology:

Definition 2.6. Let G be a discrete convergence group acting on a compact metrizable
space M .

i) A point x ∈ Λ(G) is a conical limit point if there is a sequence (gk) in G of distinct
elements such that for every z ∈M \ {x}, the pair (gkx, gkz) stays inside a compact
subset of (M ×M) \∆, where ∆ ⊂ M ×M is the diagonal subspace. We will call
the sequence (gk) a conical limiting sequence for the point x.

ii) A point x ∈ Λ(G) is a parabolic point if it is the fixed point of a parabolic isometry
in G. A parabolic subgroup of G is the stabilizer in G of a parabolic point in Λ(G).
A parabolic point x is bounded if (Λ(G) \ {x})/StabG(x) is compact.

Remark 2.7. Tukia [Tuk98] showed that no point in M can be both a parabolic point and a
conical limit point. By using the convergence group condition and extracting subsequences,
one can also see that a point x ∈M is a conical limit point if and only if there are distinct
points a, b ∈ M and a conical limiting sequence (gk) in G such that (gkx) converges to a
and (gky) converges to b for all y 6= x. The sequence (gk) is then a convergence sequence,
with z+ = b and z− = x.

Furthermore, we could just as well ask that the defining condition for a conical limiting
sequence holds only for z ∈ Λ(G) \ {x}, and then the discrete convergence dynamics imply
this also holds in Ω(G).

Definition 2.8. Let G be a discrete convergence group acting on a compact metrizable
space M . We say that G is geometrically finite if every point of Λ(G) is either a conical
limit point or a bounded parabolic point.

Remark 2.9. Unfortunately, the standard definitions of “geometrically finite” in the geo-
metric and dynamical contexts do not exactly agree. According to the definitions in e.g.
[Bow12], [Dah03], a convergence group G acting on M is “geometrically finite” if every
point of M (not just of Λ(G)) is a conical limit point or bounded parabolic point. With
this convention, if X is a Hadamard manifold with pinched negative curvature, and G is a
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geometrically finite subgroup of Isom(X) (according to the definitions in [Bow93], [Bow95]),
then the action of G on ∂X is not a “geometrically finite convergence action” if Λ(G) is a
proper subset of ∂X.

In this paper, we adopt the convention that a convergence group acting on M is geomet-
rically finite if and only if it acts geometrically finitely (in the sense of [Bow12], [Dah03]) on
its limit set in M . So for us, when G acts by isometries on a hyperbolic space X, “geomet-
rically finite” means the same thing regardless of whether we consider the isometric action
on X or the induced action by homeomorphisms on ∂X.

We conclude this subsection with another simple but useful criterion which can be used
to guarantee that a point x ∈M is a conical limit point.

Lemma 2.10. Let G be a discrete convergence group acting on a compact metrizable space
M . Let Y be a subset of M containing at least two points, let K1,K2 be disjoint compact
subsets of M , and let x ∈M . If there exists a sequence (gk) of pairwise distinct elements of
G such that for all k we have gkx ∈ K2 and gkY ⊂ K1, then x is a conical limit point for
G.

Proof. Since G is a discrete convergence group we can extract a subsequence so that, for
points z± ∈M , the sequence (gk) converges in Homeo(M) to the constant map z+ uniformly
on compacts. In particular, for any y 6= z−, (gky) converges to z+. Since Y contains at least
two points, it contains at least one point y not equal to z−. Then since gky ∈ gkY ⊂ K1 we
must have z+ ∈ K1. Since gkx ∈ K2, (gkx) cannot converge to z+, hence x = z−. Then for
any y ∈ M with y 6= x, (gky) converges to z+. The characterization of conical limit points
described in Remark 2.7 implies that x is a conical limit point. �

2.3. Relatively hyperbolic groups. For most of this paper, we will only ever need to
work with the dynamical definition of geometrical finiteness given above. However, our
proof of one key technical lemma (Proposition 2.18) does rely on a geometric interpretation
of the definition, which is best understood via the connection between geometrically finite
groups and relative hyperbolicity. We refer to [Bow12], [Hru10] for further background on
relatively hyperbolic groups.

The definition of geometrical finiteness we will use is given in Proposition 2.12 below.
As in the classical (Kleinian) case, the definition says that, if G is a geometrically finite
convergence group acting on a compact metrizable space M , then an appropriately defined
“convex core” for the G-action has a “thick-thin” decomposition into a compact piece and
some standard “cusps.” When M is the boundary of a δ-hyperbolic metric space X, this
“convex core” can be defined via the following. For any closed subset Z of ∂X, we let
join(Z) denote the union of all bi-infinite geodesics in X joining distinct points in Z.

Proposition 2.11 (see e.g. [Bow12], section 5). Suppose that X is a proper geodesic δ-
hyperbolic metric space, and Z ⊂ ∂X is a closed subset containing at least two points. Then
join(Z) (with the metric induced by X) is the image of a quasi-isometrically embedded proper
geodesic metric space, and its ideal boundary is precisely Z.

When G is a Kleinian group, join(Λ(G)) is within uniformly bounded Hausdorff distance
of the convex hull of the limit set of G, i.e. the minimal closed G-invariant convex subset

of H3
R whose closure in H3

R contains Λ(G). So in the general setting, we can think of the
quotient join(Λ(G))/G as a “convex core” for X/G.
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Proposition 2.12 (see [Bow12], section 6). Let X be a proper geodesic δ-hyperbolic met-
ric space and let G be an infinite discrete subgroup of Isom(X). Then the following are
equivalent:

• The induced action of G on ∂X is geometrically finite in the sense of Definition 2.8.
• There exists a G-invariant system of pairwise disjoint horoballs B in X, such that

the stabilizer in G of each B ∈ B is a parabolic subgroup, and G acts cocompactly
on the set

C(G,B) := join(Λ(G)) \
⋃
B∈B

B.

Moreover, if |Λ(G)| > 1, then for any G-invariant system of pairwise disjoint horoballs B
in X, the action of G on C(G,B) is cocompact if and only if the set of centers of horoballs
in B is precisely the set of parabolic points in Λ(G).

Proof. Since G is infinite and discrete, Λ(G) cannot be empty. If |Λ(G)| = 1, then the first
bullet point is trivial because the unique point in Λ(G) is trivially bounded parabolic, and
the second bullet point is trivial because join(Λ(G)) is empty. So assume |Λ(G)| > 1.

The space Y = join(Λ(G)) is a taut hyperbolic metric space (i.e. every point in Y lies
within uniformly bounded distance of a bi-infinite geodesic in Y ). Furthermore, horoballs in
Y (which can be viewed as a proper geodesic hyperbolic metric space via Proposition 2.11)
are at a uniformly bounded Hausdorff distance away from horoballs in X intersected with
Y . The result now follows from Proposition 6.12 and Proposition 6.13 in [Bow12] after
replacing X with Y . �

If |Λ(G)| > 1 in the situation above, then we say G is a relatively hyperbolic group, and
the stabilizers of horoballs in B are called the peripheral subgroups. We say G is hyperbolic
relative to the collection P of peripheral subgroups. We also say that any countably infinite
group G is hyperbolic relative to {G}, and that any finite group is hyperbolic relative to an
empty collection of peripheral subgroups.

In the special case where X is taut and Λ(G) = ∂X, we say that X is a cusped space for
the data of the relatively hyperbolic group G and the peripheral subgroups P. If |Λ(G)| > 1
we can always find a cusped space by replacing X with join(Λ(G)).

The cusped space is in general not uniquely determined, even up to quasi-isometry.
However, its ideal boundary is a well-defined G-space once the peripheral subgroups of G
have been specified (see section 9 in [Bow12]). This space is called the Bowditch boundary of
G and we denote it ∂G (the notation ignores the dependence on P). When P = {G}, then
the Bowditch boundary of G is defined to be a singleton, and when G is finite its Bowditch
boundary is empty.

When |∂G| ≤ 2, then we say G is elementary. The Bowditch boundary of a non-
elementary relatively hyperbolic group is always perfect, i.e. it contains no isolated points.
In particular if |∂G| ≥ 3, then ∂G is infinite.

A result of Yaman shows that the action of G on its Bowditch boundary can actually be
used to completely recover the definition of G as a relatively hyperbolic group:

Theorem 2.13 ([Yam04]). Let G be a discrete convergence group acting on a perfect com-
pact metrizable space M . If every point of M is either a conical limit point or a bounded par-
abolic point (equivalently, if G is geometrically finite and Λ(G) = M), then there is a proper
geodesic δ-hyperbolic metric space X, an embedding G → Isom(X), and a G-equivariant
homeomorphism from M to ∂X.
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The theorem implies in particular that a geometrically finite convergence group is exactly
the same thing as a relatively hyperbolic group.

Remark 2.14. Some definitions of relative hyperbolicity explicitly require either the group G
or the peripheral subgroups in P to be finitely generated. We do not make this assumption
in this paper, since both Proposition 2.12 and Theorem 2.13 hold without it. Our setup
does always force the groups in P to be infinite, since they are parabolic subgroups of a
convergence group.

2.3.1. Accumulation in geometrically finite subgroups. Yaman’s theorem means that we can
always understand a non-elementary discrete convergence group G which is geometrically
finite in the sense of Definition 2.8 using its isometric action on a cusped space X. In the
case |∂G| = 0 or |∂G| = 2, we can also find a cusped space by taking X to be either a point
or a line; if |∂G| = 1 and G is finitely generated, then we can take the cusped space to be a
“horoball” modeled on G (see [GM08], [Hru10]).

We take advantage of the existence of the cusped space to prove some properties of
subgroups of G which act geometrically finitely on Λ(G). A convenient notation we will use
here and many times later whenever we have a group G acting on M is

H(U) =
⋃
g∈H

gU

for some U ⊂M,H ⊂ G. For the orbit of a point, we will just write Hx.

Definition 2.15. Let G be a relatively hyperbolic group, with Bowditch boundary ∂G. A
subgroup H ≤ G is relatively quasi-convex if H acts geometrically finitely on ∂G (i.e. if
every point of Λ(H) ⊆ ∂G is either a conical limit point or a bounded parabolic point for
the H-action).

Following [Dah03], we say that a relatively quasi-convex subgroup H is fully quasi-convex
if for all but finitely many left cosets gH, we have gH(Λ(H)) ∩ Λ(H) = ∅.

Observe that, if G is elementary, then any fully quasi-convex subgroup of G is either
finite or has finite index in G.

Lemma 2.16. Let G be a non-elementary relatively hyperbolic group with associated cusped
space X = X(G), and let H ≤ G be a fully quasi-convex subgroup of G.

Fix x ∈ X, and suppose that (gk) is an infinite sequence in G \H such that

(2.1) dX(gkx, x) = dX(gkx,Hx)

for all k. Then no attracting point of gk in ∂X lies in Λ(H).

Proof. Suppose for a contradiction that gk has an attracting point z ∈ Λ(H) ⊂ ∂X. It
follows that H is infinite, since Λ(H) is nonempty. Since G acts as a convergence group on
both ∂X and X t ∂X, we see that (gkx) converges to z in X t ∂X.

For each k, we let ck : [0, rk] → X be a geodesic ray in X from x to gkx; since (gk)
is divergent we have rk → ∞. We may extend each ck to a map [0,∞) → X by setting
ck(t) = ck(rk) for all t ≥ rk. Up to subsequence, these maps converge uniformly on compacts
to a geodesic ray cz : [0,∞)→ X, whose ideal endpoint must be z.

By Proposition 2.12, there is a G-invariant family BG of pairwise disjoint horoballs in X
such that the parabolic subgroups of G are precisely the stabilizers of the horoballs in BG,
and the quotient of

(2.2) C(G,BG) = X \
⋃

B∈BG

B
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by the action of G is compact. By shrinking the horoballs in BG if necessary, we can also
assume that x ∈ C(G,BG).

We claim that z is the center of some horoball B ∈ BG. If H is an infinite subgroup of
a parabolic subgroup P in G, this is immediate, because then the unique point in Λ(H) is
the center of the unique horoball in BG fixed by P . Otherwise, Λ(H) contains at least two
points, and we can consider the space join(Λ(H)) ⊂ X.

Let BH be the horoballs in BG whose centers are parabolic points in Λ(H). By Proposi-
tion 2.12 again, H acts cocompactly on the set

C(H,BH) := join(Λ(H)) \
⋃

B∈BH

B.

Since the endpoint of the geodesic cz lies in Λ(H), there is some uniform R > 0 so that
every point in the image of cz lies within distance R of join(Λ(H)).

Now, suppose that for arbitrarily large t, the point cz(t) lies in an open R-neighborhood of
the set C(H,BH). But then for some k = k(t), the point ck(t) also lies in an R-neighborhood
of C(H,BH). Since H acts cocompactly on C(H,BH), this means that ck(t) is within
uniform distance of hx for some h ∈ H. But this contradicts assumption (2.1).

So, for all sufficiently large times t, cz(t) must lie in some horoball in BH . Since the
horoballs in BH are pairwise disjoint, there is in fact a single horoball B ∈ BH so that cz(t)
is in the interior of B for all large enough t. The center of this horoball must be z.

Since (ck) converges to cz, for all sufficiently large k, the geodesic ck enters B. However,
since we have assumed x ∈ C(G,BG), we know that gkx ∈ C(G,BG), and thus ck must
also leave the horoball B after it enters it. So, let wk denote the last point where ck leaves
B. The distances dX(x,wk) must tend to infinity as k → ∞, since cz never leaves B. See
Figure 2.1.

Bwk
gkx

x

z

ck

Figure 2.1. Illustration for the proof of Lemma 2.16. The geodesic ck
from x to gkx must enter B, and leave B far from x.

Since ck is a geodesic we know that dX(x, gkx) = dX(x,wk)+dX(wk, gkx). Then, because
dX(x,wk) tends to infinity, our assumption (2.1) implies that dX(Hx,wk) tends to infinity
as well. But, we also know that the stabilizer of B in G acts cocompactly on ∂B. Then
since wk ∈ ∂B, there is some constant D > 0 so that for every k, we have sk ∈ G preserving
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B such that dX(x, s−1k wk) < D, hence dX(skx,wk) < D. It follows that the elements in the
sequence (sk) cannot lie in finitely many left cosets of H. However, since sk preserves B,
each sk also fixes the point z ∈ Λ(H), which contradicts the full quasi-convexity of H. �

The geometric statement of the lemma above has the following (completely dynamical)
consequence:

Lemma 2.17. Let G be a relatively hyperbolic group with Bowditch boundary ∂G, and let
J1, J2 be fully quasi-convex subgroups of G.

For any sequence (gk) in G, there exists jk ∈ J1, j′k ∈ J2 such that the sequence (jkgkj
′
k)

has no attracting points in Λ(J1) ⊂ ∂G and no repelling points in Λ(J2) ⊂ ∂G.

Proof. If gk ∈ J1 ∪ J2, then we can choose jk and j′k so that jkgkj
′
k is the the identity. A

bounded sequence has no attracting or repelling points. So, we may assume gk ∈ G\(J1∪J2)
for all k.

If G is elementary, then J1 and J2 are both either finite or finite-index subgroups of G.
In this case the result is immediate, so we can assume G is non-elementary and let X be a
cusped space for G. Fix x ∈ X. For each k, we choose jk ∈ J1, j′k ∈ J2 so that

dX(gk(J2x), J1x) = dX(gkj
′
kx, j

−1
k x).

We know such jk, j
′
k exist because Jix are discrete subsets of X for i = 1, 2. Let g′k = jkgkj

′
k.

We will show that g′k has no repelling points in Λ(J2); the argument that g′k has no attracting
points in Λ(J1) is completely symmetric, after replacing g′k with its inverse.

Since jJix = Jix for any j ∈ Ji, we know that for all k we have

dX(g′kx, x) = dX(gkJ2x, J1x) = dX(g′kJ2x, J1x).

By definition, we know that

dX(g′kJ2x, J1x) ≤ dX(g′kJ2x, x) = dX(J2x, (g
′
k)−1x),

so combining this with the previous equality we conclude

dX(x, (g′k)−1x) = dX(g′kx, x) ≤ dX(J2x, (g
′
k)−1x)

so in fact dX(x, (g′k)−1x) = dX(J2x, (g
′
k)−1x) for every k. Then Lemma 2.16 implies that

((g′k)−1) has no attracting points in Λ(J2), or equivalently (g′k) has no repelling points in
Λ(J2). �

Our main application of these lemmas is the technical proposition below. Roughly, this
proposition tells us that in certain circumstances, it is possible to strengthen the “ping-
pong” combinatorics of geometrically finite convergence groups. That is, the proposition
gives us a way to modify a “ping-pong” element g ∈ Homeo(M), so that instead of nesting
the closure of an open subset U ⊂ M inside of another open subset V ⊂ M , g takes the
closure of U inside of a fixed compact subset K ⊂ V . This “strong nesting” property will
be useful throughout the paper.

Proposition 2.18. Let G be a geometrically finite convergence group acting on a compact
metrizable space M , let H be a subgroup of G, and let J1, J2 ≤ H be fully quasi-convex
subgroups of G.

Let U1, U2 be open subsets of M such that, for i ∈ {1, 2}, we have Ji(Ui) = Ui and
Λ(H) \ Λ(Ji) ⊂ Ui. Suppose that for every g ∈ H \ J2, we have g(M \ U2) ⊂ U1.

Then, there exists a compact set K ⊂ U1 such that for all g ∈ H \ J2, we can find j ∈ J1
such that jg(M \ U2) ⊂ K.
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Proof. Suppose that the claim does not hold. This means that we can find a sequence of
group elements (gk) in H \J2 such that for any sequence (jk) in J1, there is a sequence (xk)
in M \ U2 such that the sequence (jkgkxk) accumulates in M \ U1.

Fix this sequence (gk). Lemma 2.17 gives a pair of sequences (jk) in J1 and (j′k) in J2
so that any attracting points of the sequence (g′k) = (jkgkj

′
k) do not lie in Λ(J2), and any

repelling points do not lie in Λ(J1). Then, since U2 is J2-invariant, there is a sequence (xk)
in M \ U2 so that (jkgkj

′
kxk) accumulates in M \ U1. After taking a subsequence, we may

assume that (jkgkj
′
kxk) has a unique limit z ∈M \ U1.

Again using the fact that U1 and U2 are invariant under J1 and J2 respectively, we know
that for every k, we have g′k(M \U2) ⊂ U1. So, if only finitely many different elements appear
in the sequence (g′k), we can find a fixed compact set K ⊂ U1 so that g′k(M \ U2) ⊂ K for
every k, hence g′kxk ∈ K for every k. This is impossible if g′kxk → z ∈M \ U1.

So, we may extract a subsequence so that the elements in (g′k) are pairwise distinct. After
taking a further subsequence, we can find a pair of points z+ ∈M \Λ(J1), z− ∈M \Λ(J2) so
that (g′k) converges uniformly to the constant map z+, uniformly on compacts in M \ {z−}.
Both of z± lie in Λ(H), so in fact z+ ∈ U1 and z− ∈ U2.

Since M \ U2 is closed, xk cannot accumulate on z−, which means (g′kxk) converges to
z+ ∈ U1, which contradicts the fact that g′kxk → z. �

3. Combinatorial group theory: amalgamated free products

Our first main result deals with amalgamated free products, so we set up the notation and
basic facts here. Our reference throughout is [Mas88]. As before, M will continue to denote
a compact metrizable space, although the results in this section are purely set-theoretic.
We further assume throughout this section that G1, G2 are subgroups of Homeo(M), and
G1 ∩G2 = J , where J is a proper subgroup of both G1 and G2. We let G denote 〈G1, G2〉,
the subgroup generated by G1 and G2.

The following definition will be convenient in this section as well as later in the paper:

Definition 3.1. We say a subset U ⊂ M is precisely invariant under J in G if U is J-
invariant, and for every g ∈ G \ J , we have gU ∩ U = ∅.

More generally, given subgroups J1, · · · , Jn < G, we say a tuple of subsets (U1, · · · , Un)
is precisely invariant under (J1, · · · , Jn) in G if each Ui is precisely invariant under Ji in G,
and if for i 6= j and for every g ∈ G, we have gUi ∩ Uj = ∅.

Given a word g = g1 · · · gn in the elements of G1 and G2, we call g a normal form when
the elements gi alternate between G1 \J and G2 \J . We say two normal forms g = g1 · · · gn
and h = h1 · · ·hn are equivalent if g can be obtained from h by inserting finitely many words
of the form jj−1 for j ∈ J . We set

G1 ∗J G2 = J ∪ {equivalence classes of normal forms}.

We have a group operation on G1 ∗J G2 given by concatenation, which is well-defined on
normal forms up to equivalence. The abstract group G1 ∗J G2 is called the free product of
G1 and G2 amalgamated over J .

The normal form g = g1 · · · gn is called an (i, j)-form if g1 ∈ Gi and gn ∈ Gj . The length
of the normal form is defined as |g| = n. By convention, we will say that elements of J have
length 0. Note that if g is an (i, j)-form, then its formal inverse g−1 is a (j, i)-form.
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There is group homomorphism

ϕ : G1 ∗J G2 → G

g1 · · · gn 7→ g1 ◦ · · · ◦ gn,

where on the right we are just composing the corresponding elements in Homeo(M). This
map is always surjective, but its kernel need not be trivial. When ϕ is an isomorphism, we
will abuse notation and leave it implicit, writing G = G1 ∗J G2; then we can view elements
of the subgroup G as (equivalence classes of) normal forms in the abstract amalgamated
free product G1 ∗J G2.

Using a ping-pong technique (Proposition 3.6 below), we can give a sufficient condition
which guarantees that ϕ is actually an isomorphism.

Definition 3.2. A pair of disjoint nonempty J-invariant sets U1, U2 ⊂ M is called an
interactive pair for G1 and G2 if for every g ∈ Gi \ J , we have gUi ⊂ U3−i.

If, in addition, gUi ⊂ U3−i is a proper inclusion for every g ∈ Gi \ J for at least one of
i ∈ {1, 2}, then we call (U1, U2) a proper interactive pair.

Remark 3.3. Maskit’s convention is to call an interactive pair U1, U2 proper if the Gi-
translates of Ui do not cover U3−i for at least one i ∈ {1, 2}. Our assumption is slightly
weaker, but does not change any of the standard arguments.

It is immediate that if (U1, U2) is an interactive pair, then Ui is precisely invariant under
J in Gi for i = 1, 2.

We observe the following:

Proposition 3.4. If (U1, U2) is a proper interactive pair for G1 and G2, then both U1 and
U2 are infinite sets.

Proof. Since J is a proper subgroup of Gi for i = 1, 2, there is at least one element g1 ∈ G1\J
and at least one element g2 ∈ G2 \ J . We know that at least one inclusion g1U1 ⊂ U2 or
g2U2 ⊂ U1 is proper, so g2g1U1 is a proper subset of U1. Therefore U1 is infinite, and since
g1U1 ⊂ U2, so is U2. �

Via the map ϕ, normal forms in G1 ∗J G2 act in a “ping-pong” manner on the sets in an
interactive pair.

Lemma 3.5 ([Mas88] VII.A.9). Suppose we have an interactive pair (U1, U2). Then if
g ∈ G1 ∗J G2 is an (i, j)-form, we have ϕ(g)Uj ⊂ U3−i. Further, this inclusion is proper if
(U1, U2) is proper and |g| ≥ 2.

The lemma can be proved via a straightforward combinatorial argument; see the reference
for details. To illustrate the idea, suppose the G1-translates of U1 are all properly contained
in U2, and that g has length 2. If g = g1g2 is a (2, 1)-form, then g2(U1) ⊂ U2 is already
proper, and hence ϕ(g)U1 ⊂ U1 is also a proper inclusion. If g is a (1, 2)-form, then
g2U2 ⊂ U1 need not be a proper inclusion, but then applying g1 will cause the next inclusion
ϕ(g)U2 = g1g2U2 ⊂ U2 to be proper.

Proposition 3.6 (Ping-pong for amalgamated free products; see [Mas88] VII.A.10). Sup-
pose (U1, U2) is a proper interactive pair for G1 and G2. Set G = 〈G1, G2〉. Then G =
G1 ∗J G2.

Proof. We will show the surjective group homomorphism ϕ : G1 ∗J G2 → G has trivial
kernel. The only length 0 element sent to the identity is the identity, and length 1 elements
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are all nontrivial in G1 or G2, so it suffices to show ϕ(g) 6= 1 when |g| ≥ 2. Suppose g is an
(i, j)-form. We now note that because we have a proper interactive pair, ϕ(g)Uj ⊂ U3−i is a
proper inclusion by Lemma 3.5, and so ϕ(g) cannot be the identity. The result follows. �

4. Theorem A

We now introduce the main definition for Theorem A.

Definition A (AFP ping-pong position). Let G1 and G2 act as discrete convergence groups
on a compact metrizable space M , and suppose that G1 ∩G2 = J is a geometrically finite
group distinct from both G1 and G2. We say G1 and G2 are in AFP ping-pong position
(with respect to J) if there exist closed sets B1, B2 ⊂ M with nonempty disjoint interiors
satisfying the following:

(1) For i ∈ {1, 2}, Bi is J-invariant.
(2) For i ∈ {1, 2}, and for each g ∈ Gi \ J , gBi ⊂ Int(B3−i).
(3) For i ∈ {1, 2}, Λ(Gi) \ Λ(J) ⊂ Int(B3−i).

The definition above for the most part mimics the setup in Maskit’s original combination
theorem for amalgamated free products of Kleinian groups. It may be helpful to consider
the following concrete example.

iR

∞

B1 B2

R

Λ(J) = {0,∞}

g ∈ G1 \ J

Λ(G1)Λ(G2)

g ∈ G2 \ J

Figure 4.1. Illustration for the example. The limit sets Λ(Gi) are Cantor sets.

Example 4.1. Let X = H3
R, and let M be the visual boundary ∂H3

R, viewed as the one-

point compactification Ĉ of C. We let G be a Fuchsian genus 2 surface group, embedded
in PSL2(C) ∼= Isom(H3) via the inclusion PSL2(R) < PSL2(C).

Then G has the presentation 〈a, b, c, d | [a, b][c, d] = 1〉. Set j = [a, b] = [c, d]−1. We
then take G1 = 〈a, b〉 ∼= F2, and G2 = 〈c, d〉 ∼= F2, the free group on 2 letters, and
J = G1 ∩ G2 = 〈j〉 ∼= Z. We can arrange our generators so Λ(G1) ⊂ R≥0 ∪ {∞} and
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Λ(G2) ⊂ R≤0 ∪ {∞}, where Λ(J) = {0,∞}. These will be the fixed points of j = (x 7→ λx)
where λ > 1. See Figure 4.1.

This is precisely the picture one gets when gluing the sides of an octagon in H2
R to form

a surface of genus 2, and then isometrically embedding this picture into the standard H2
R

sitting inside H3
R whose boundary is R ∪ {∞}. The limit set of the surface group coincides

with ∂H2
R, and then the octagon with sides identified appears once in each connected com-

ponent of ∂H3
R \ ∂H2

R. Our J-invariant sets B1 and B2 are then the closed left and right
closed half-planes respectively, including ∞, and their common intersection is iR ∪ ∞. If

we identify Ĉ with S2, then B1 and B2 are complementary hemispheres.

We recall the main result of this section:

Theorem A. Let G1 and G2 be discrete convergence groups acting on a compact metrizable
space M . Suppose that J = G1 ∩ G2 is geometrically finite, and G1 and G2 are in AFP
ping-pong position with respect to J . Let G = 〈G1, G2〉 < Homeo(M), and suppose G acts
as a convergence group. Then the following hold:

(i) G = G1 ∗J G2.
(ii) G is discrete.

(iii) Elements of G not conjugate into G1 nor G2 are loxodromic.
(iv) G is geometrically finite if and only if both G1 and G2 are geometrically finite.

Remark 4.2. The hypotheses for Theorem A are different from the hypotheses for Maskit’s
original combination theorems in H3

R in two respects. First, Maskit insists that the sets
B1, B2 in Definition A are topological balls in M = ∂H3

R, satisfying ∂B1 = ∂B2 and
B1 ∪ B2 = M . This requirement is unnatural in our setting, since M may not even be a
manifold, and it is not needed in any of our arguments.

Second, and more significantly, Maskit’s version of condition (2) in Definition A is weaker
than what we have given here. Our condition implies in particular that if g ∈ Gi \ J , then
gBi ∩ Bi = ∅. This means that if P < J is a maximal parabolic subgroup in J , then P
must also be a maximal parabolic subgroup in Gi.

Maskit’s original statement in H3
R allows gBi to intersect Bi in limit points of J , which

means his theorem allows for amalgamations along subgroups J < Gi whose parabolic
subgroups are not maximal in Gi. This means our theorem is not strong enough to recover
Maskit’s original result in the case M = ∂H3

R. However, most of the examples constructed
in Maskit’s book satisfy the stronger hypothesis we have given above.

Below, we give a quick proof of the first three parts of Theorem A. The arguments are
standard, but we provide them for convenience.

Proof of (i) - (iii) in Theorem A. (i) Let B1, B2 be the closed subsets of M from Definition
A. We note that since gBi ⊂ Int(B3−i) for any g ∈ Gi \J , it follows that gInt(Bi) ⊂ Int(Bi)
is a proper inclusion for every g ∈ Gi \J . Hence (Int(B1), Int(B2)) form a proper interactive
pair for G1 and G2 by conditions (1) and (2), so we are done by Proposition 3.6.

(ii) It suffices to show no sequence in G accumulates at the identity. Let (gk) be a
sequence of distinct elements in G. Since G1, G2 are discrete we can assume |gk| > 1. If the
length of gk is odd, then gk maps one of the sets B1, B2 into the interior of the other and
hence is far from the identity, so assume the lengths are all even. Without loss of generality,
we may assume every gk is a (2, 1)-form. We have gkB1 ⊂ Int(B1) for every k.

Suppose for a contradiction that (gk) converges to the identity. Then gkB1 converges to
B1. Write gk = hkg

′
k where |g′k| = |gk| − 1 and hk ∈ G2 \ J . Then gkB1 ⊂ hkB2 ⊂ Int(B1)
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for every k since g′kB1 ⊂ B2. It now also follows that (hkB2) converges to B1. Now, in
general, when g, h ∈ G2 \ J , we will have gB2 and hB2 either disjoint or equal. Indeed, if
gB2 ∩ hB2 6= ∅, then h−1g sends a point in B2 back into B2, hence h−1g = j ∈ J . Then
gB2 = hjB2 = hB2 as desired.

Since h1B2 ⊂ Int(B1) has nonempty interior and hkB2 ⊂ Int(B1) converges to B1, it
follows that for some fixed large k, we will have hkB2 ∩ h1B2 6= ∅, and also hkB2 6= h1B2.
This gives our contradiction, so we conclude G is discrete.

(iii) Assume g ∈ G is not conjugate into G1 nor G2. Take g to have minimal length in its
conjugacy class. If g is an (i, i)-form (that is, |g| is odd) then we can conjugate by an element
of Gi to reduce its length, hence g has even length. Without loss of generality suppose g
is a (2, 1)-form. Since gnB1 ⊂ Int(B1) is a proper inclusion for every n, we see that g has
infinite order, hence is parabolic or loxodromic since G is discrete. At least one fixed point
of g is an attracting point z+ for the convergence sequence (gn) (see Proposition 2.5). Since
B1 has nonempty interior, there is some w ∈ B1 so that gnw → z+. But for every n ≥ 1,
the set gnB1 is a subset of the fixed compact gB1 ⊂ Int(B1), so we must have z+ ∈ Int(B1).
An identical argument applied to g−1 (a (1, 2)-form) gives a fixed point for g in Int(B2),
hence g is loxodromic by Proposition 2.5. �

4.1. Limit sets of amalgamated free products. The rest of the section is devoted to
the proof of part (iv) of Theorem A, so for the rest of the section, we fix groups G1, G2, J,G
and sets B1, B2 ⊂M satisfying the conditions of Definition A. We will prove each direction
of the theorem separately, but we start by making some general observations about the
positioning of the limit sets of subgroups of G.

Proposition 4.3. Each of the following holds.

(i) Λ(J) ⊂ ∂B1 ∩ ∂B2. In particular, if J is infinite, then ∂B1 ∩ ∂B2 is nonempty.
(ii) For i ∈ {1, 2}, Λ(Gi) ⊂ B3−i.

(iii) For i ∈ {1, 2}, and any g ∈ G \Gi, we have g(Λ(Gi)) ∩ Λ(Gi) = ∅.

Proof. (i) Note that since J preserves the closed set B1 and Int(B1) is an infinite set by
Proposition 3.4, we have Λ(J) ⊂ B1. Similarly, Λ(J) ⊂ B2, hence Λ(J) ⊂ B1 ∩ B2 =
∂B1 ∩ ∂B2 since these sets have disjoint interiors.

(ii) This is an immediate consequence of condition (3) in Definition A along with (i)
above.

(iii) For concreteness, take i = 1, and let g ∈ G \ G1. In particular g /∈ J , so g has a
normal form with positive length. We can always find some h, h′ ∈ G1 so that g′ = hgh′ is
a (1, 2)-form. Then, applying (ii), we know that g′Λ(G1) ⊂ Int(B1) and so

g′Λ(G1) ∩ Λ(G1) = ∅.
Now, since Λ(G1) is invariant under G1, we see that g′Λ(G1) = hgΛ(G1), and therefore

hgΛ(G1) ∩ Λ(G1) = ∅.
But then h−1(hgΛ(G1) ∩ Λ(G1)) = gΛ(G1) ∩ h−1Λ(G1) = gΛ(G1) ∩ Λ(G1) is empty as
well. �

4.2. AFP ping-pong and contraction. Both directions of the proof of Theorem A rely
crucially on a key contraction property of the ping-pong action of G on the sets B1 and
B2, stated as Lemma 4.6 below. This contraction lemma gives a sufficient condition for a
sequence of sets (gkBi) to converge to a singleton in M .

The proof of the contraction lemma relies on an application of Proposition 2.18 to the
subgroups we are currently considering. Recall that this proposition gives us control over



COMBINATION THEOREMS FOR GEOMETRICALLY FINITE CONVERGENCE GROUPS 17

the topological behavior of the action of fully quasi-convex subgroups on certain subsets of
M . So, in order to apply the proposition, we first need to check:

Lemma 4.4. Let H be one of G,G1, or G2. If H is geometrically finite, then J is a fully
quasi-convex subgroup of H.

Proof. We know J is relatively quasi-convex since it is a geometrically finite subgroup of M ,
so we just need to prove that for all but finitely many h ∈ H \J we have hΛ(J)∩Λ(J) = ∅.
In fact, we will see that this is true for all h ∈ H \ J .

First, if H = Gi for i = 1 or 2, by assumption we know that for any h ∈ H \ J we
have hΛ(J) ⊂ hBi ⊂ Int(B3−i), hence hΛ(J) ∩ Λ(J) = ∅ by part (i) of Proposition 4.3. If
H = G, then any h ∈ H \ J is an (i, j)-form, so that hΛ(J) ⊂ hBj ⊂ Int(B3−i) and again
hΛ(J) ∩ Λ(J) = ∅. �

Now, we can specialize Proposition 2.18 to the current setting.

Lemma 4.5. Suppose that either G is geometrically finite, or both G1 and G2 are geometri-
cally finite. For i ∈ {1, 2}, there exists a compact Ki ⊂ Int(B3−i) so that for any g ∈ Gi \J ,
there is j ∈ J so that jgBi ⊂ Ki.

Proof. This follows directly from Proposition 2.18, taking the ambient geometrically finite
group G to be either G or Gi for i ∈ {1, 2}, H to be Gi, J1 = J2 = J , U1 to be Int(B3−i),
and U2 to be M \Bi. By assumption we know that Λ(Gi) \Λ(J) ⊂ Int(B3−i) ⊂M \Bi, so
in fact Λ(Gi) \ Λ(J) ⊂ U1 ∩ U2 and the hypotheses of the proposition are satisfied. �

Finally, we can establish the contraction property for sequences in G.

Lemma 4.6 (Contraction for amalgamated free products). Suppose that either G is geomet-
rically finite, or both G1 and G2 are geometrically finite. If (hk) is a sequence of (i, j)-forms
(for fixed i and j) lying in distinct left cosets of J , then, up to subsequence, (hkBj) converges
to a singleton {x}.

It is not hard to verify directly that the subgroup {g ∈ G : gBj = Bj} is exactly J . So,
asking for the sequence of cosets (hkJ) to be pairwise distinct is equivalent to asking for the
sequence of translates (hkBj) to be pairwise distinct.

Proof. We first prove the following:

Claim. There exists a compact subset K ⊂ Int(B3−j) and a sequence (jk) in J such that

jkh
−1
k Bi ⊂ K for all k.

To prove the claim, first observe that if |hk| = 1 for every k, then i = j and hk ∈ Gi\J for
all k. Then the claim follows directly from Lemma 4.5. Otherwise, suppose that |hk| > 1,
and write a normal form for hk:

hk = gk,1 · · · gk,n.
Although n can depend on k, we ignore this in the notation. The word h−1k = g−1k,n · · · g

−1
k,1

is a (j, i)-form, and the word

gk,nh
−1
k = g−1k,n−1 · · · g

−1
k,1

is a (3− j, i)-form. This means that gk,nh
−1
k Bi ⊂ Bj . Then, we can apply Lemma 4.5 again

to find a fixed compact K ⊂ Int(B3−j) and jk ∈ J so that jkg
−1
k,nBj ⊂ K for every k, and

therefore

jkh
−1
k Bi = jkg

−1
k,ngk,nh

−1
k Bi ⊂ jkg−1k,nBj ⊂ K.
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This proves the claim, so now we consider the sequence (hkj
−1
k ). Since the left cosets hkJ

are all distinct, it follows that the sequence of group elements (hkj
−1
k ) is divergent in G, and

therefore we can extract a convergence subsequence: we can find attracting and repelling
points z+, z− ∈ M so that (hkj

−1
k y) converges to z+ whenever y 6= z−. Equivalently,

(jkh
−1
k y) converges to z− whenever y 6= z+.

By Proposition 3.4, the set Bj is infinite, so there is at least one point y ∈ Bj \ {z+}.
Since jkh

−1
k Bj ⊂ K, we must have z− ∈ K. In particular, z− must lie in Int(B3−j), which

means that Bj is a compact subset of M \ {z−}. Thus, (hkj
−1
k Bj) = (hkBj) converges to

the singleton {z+} as desired. �

4.3. Geometrical finiteness of the product. We now turn to the proof of the implication
(G1 and G2 geometrically finite) =⇒ (G geometrically finite), which is one of the directions
of Theorem A (iv).

The proof of this direction of the theorem relies on the fact that limit points of G fall into
one of two classes: either they are G-translates of limit points of G1 or G2, or else they are
limit points of sequences of (i, j)-forms in G whose length tends to infinity. The essential
step in the proof is to show that any limit point x of the latter form can be “coded” by a
sequence of nested translates of B1 or B2.

Precisely, we prove the following:

Proposition 4.7 (AFP coding for G-limit points). Suppose that G1 and G2 are geometri-
cally finite, and let x be a point in Λ(G) \G(Λ(G1) ∪ Λ(G2)). Then there exists a sequence
(gk) in (G1 ∪G2) \ J so that for every k,

hk = g1 · · · gk
has length k, and if gk ∈ Gj, then x ∈ hkBj.

To prove this proposition, we follow Maskit’s strategy, and consider a sequence of “ping-
pong” sets in M , defined inductively as follows. We let T0 = B1 ∪ B2. Then, for every
n > 0, and i ∈ {1, 2}, we define

Tn,i =
⋃

g∈Gi\J

g(Bi ∩ Tn−1).

Then we define

Tn = Tn,1 ∪ Tn,2.
The set T1 is just the union of the G1 \ J translates of B1 and the G2 \ J translates of
B2. More generally, Tn is the union of translates of B1 by (i, 1)-forms of length n and the
translates of B2 by (i, 2)-forms of length n. See Figure 4.2 for a depiction of T1 and T2. We
see that these sets are decreasing, so let

T =

∞⋂
n=0

Tn.

We will see that limit points of G which are not translates of limit points of G1 nor G2 are
in T , which allows us to construct the sequence given by the conclusion of the proposition
above.

We observe:

Lemma 4.8. The set T is G-invariant and nonempty. In particular, since G is non-
elementary, we have Λ(G) ⊂ T ⊂ B1 ∪B2.
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B1 B2

Λ(J)T1,2 T1,1

Figure 4.2. Part of the sets T1 and T2.

Proof. We know T is nonempty because it is the intersection of a decreasing sequence of
nonempty subsets of the compact space M . The definition of Tn implies that if x ∈ Tn and
g ∈ G1 ∪G2, then gx ∈ Tn−1. Inductively, we see that if g ∈ G has |g| = k, and x ∈ Tn+k,
then gx ∈ Tn. It follows that if x ∈ T then gx ∈ T for any g ∈ G. �

Lemma 4.9. If G1 and G2 are geometrically finite, we have Λ(G) \ (Λ(G1)∪Λ(G2)) ⊂ T1.

Proof. We will prove that if y ∈ Λ(G) \ T1, then y ∈ Λ(G1) ∪ Λ(G2), so suppose that
y ∈ Λ(G) does not lie in T1. Using the above lemma, we know y ∈ B1 ∪B2, so without loss
of generality assume y ∈ B2. Since y is in the limit set of G, we can find a sequence (gk) in
G so that (gkw) converges to y for all but a single point in M . If y ∈ Λ(J) we are done, so
we can assume that gk /∈ J for infinitely many k.

Then, after extracting a subsequence, we can assume that for every k, gk is an (i, j)-form
for i, j fixed, and then find w ∈ Bj so that gkw → y.

Since gk is an (i, j)-form and w ∈ Bj , we have gkw ∈ Gi(Bi) for every k. So, we may
write gkw = g′kzk for g′k ∈ Gi \ J and zk ∈ Bi. Note that g′k is just the first letter in the
(i, j)-form gk. In particular, we know g′kzk ∈ T1 for every k, so g′kzk is never equal to y.
If, up to subsequence, there are only finitely many distinct translates g′kBi, then we would
have g′kzk ∈

⋃
g′kBi, a compact set in the complement of T1, which contradicts the fact that

g′kzk → y ∈ T1. Hence we may assume that the translates g′kBi are all distinct, which means
that the left cosets g′kJ are all distinct.

Now, Lemma 4.6 implies that (g′kBi) converges to a singleton. This singleton must be y
since g′kzk → y. It follows that g′kz → y for any z ∈ Bi, and since Bi is an infinite set it
follows that y ∈ Λ(Gi) as desired. �

Proof of Proposition 4.7. We first claim that Λ(G)\G(Λ(G1)∪Λ(G2)) is a subset of T . So,
fix z ∈ Λ(G), and suppose z /∈ T . We will show z ∈ G(Λ(G1) ∪ Λ(G2)).



20 ALEC TRAASETH AND THEODORE WEISMAN

By Lemma 4.8 we know that Λ(G) ⊂ B1 ∪ B2 = T0, so there is some n > 0 such
that z ∈ Tn−1 \ Tn. In particular, because z ∈ Tn−1, there is an (i, j)-form g ∈ G, with
|g| = n − 1, such that gy = z for y ∈ Bj . We must have y /∈ T1, since otherwise we would
have y = hw for w ∈ B3−j and h ∈ G3−j \ J , and then z = ghw would lie in Tn. Then,
since Λ(G) is G-invariant we see that y ∈ Λ(G) but y /∈ T1, so by the previous lemma we
have y ∈ Λ(G1) ∪ Λ(G2), hence z ∈ G(Λ(G1) ∪ Λ(G2)).

We have now seen that Λ(G) \ G(Λ(G1) ∪ Λ(G2)) is a subset of T , so we just need to
show that for any x ∈ T , there is a sequence of (i, j)-forms (hk) satisfying the conclusions
of the proposition. We construct this sequence inductively. Take h0 to be the identity. For
k > 0, assume that x ∈ hk−1Bj for an (i, j)-form

hk−1 = g1 · · · gk−1.
By Lemma 4.8, T is G-invariant, so h−1k−1x ∈ Bj ∩ T . In particular, h−1k−1x lies in T1 ∩Bj =

T1,j , so there is some gk ∈ G3−j \J so that h−1k−1x ∈ gkB3−j . Then if hk is the (i, 3−j)-form

g1 · · · gk,
we have x ∈ hk(B3−j) and |hk| = |hk−1|+ 1, as required. �

The next step is to use the “coding” of limit points given by Proposition 4.7 to prove
that there is a conical limit sequence for every point in Λ(G) \G(Λ(G1) ∪ Λ(G2)).

Lemma 4.10. If G1 and G2 are geometrically finite, every point in Λ(G)\G(Λ(G1)∪Λ(G2))
is a conical limit point for G.

Proof. Let x ∈ Λ(G) \ G(Λ(G1) ∪ Λ(G2)). We know x ∈ B1 ∪ B2 from Lemma 4.8, so
to simplify notation assume x ∈ B2. We let (gk) be the sequence in (G1 ∪ G2) \ J from
Proposition 4.7, so that, for every k, we have |g1 · · · gk| = k and if gk ∈ Gj , then x ∈
g1 · · · gkBj .

For each k, we let hk = g1 · · · g2k, so that hk is an (i, j)-form for fixed i 6= j. Since
hkBj ⊂ Int(B3−i), and x ∈ B2, we have i = 1 and thus hk is a (1, 2)-form for every k. This
means that (g2k) is a sequence in G2 \ J . So, using Lemma 4.5, we find a fixed compact
subset K ⊂ Int(B1) and a sequence (jk) in J so that jkg

−1
2k B2 ⊂ K.

Consider the sequence (fk) given by fk = hkj
−1
k . Since |fk| → ∞, a subsequence of (f−1k )

consists of pairwise distinct elements of G. Since f−1k is a (2, 1)-form, we know that

f−1k B1 = jkg
−1
2k · · · g

−1
1 B1 ⊂ K.

On the other hand, by construction, we know that

h−1k x = g−12k · · · g
−1
1 x ∈ B2.

Since B2 is J-invariant, we also see that f−1k x = jkh
−1
k x ∈ B2 for every k. By Proposi-

tion 3.4, Int(B1) is an infinite set. Then, since B2 and K are disjoint compact subsets of
M , we can apply Lemma 2.10 (with Y = Int(B1), K1 = K, and K2 = B2) to complete the
proof. �

Next we deal with parabolic points.

Lemma 4.11. If both G1 and G2 are geometrically finite, then every parabolic point of G
in Λ(G1) ∪ Λ(G2) is a bounded parabolic point for the action of G on Λ(G).

Proof. Fix a parabolic point p ∈ Λ(G1), and let P < G be the parabolic subgroup stabilizing
p. We will show that there is a compact set K ⊂ Λ(G) \ {p} so that P (K) = Λ(G) \ {p},
which implies the action is cocompact. The main idea here is to apply Proposition 2.18 to
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the parabolic subgroup P , which gives us a way to use elements of P to position certain
points in M far away from Λ(P ) = {p}. Our strategy is to decompose the set Λ(G) \ {p}
into pieces. We will show that every point in Λ(G) \ {p} is either far away from p to begin
with, or else it is in a piece of Λ(G) \ {p} which can be translated far away from p using
either Proposition 2.18 or the boundedness of p in Λ(G1).

We consider two cases. For both cases, in order to apply Proposition 2.18, we need to know
that J and P are fully quasi-convex subgroups of G1; for J this follows from Lemma 4.4,
and for P this is true because P is exactly the stabilizer of its limit set {p} ⊂ Λ(G1) in G1.

Case 1: p ∈ Λ(G1)\G1(Λ(J)). Using Lemma 4.9, we can see that every point in Λ(G)\{p}
lies in one of the sets Λ(G1),Λ(G2), or T1. Since Λ(G2) ⊂ B1, and T1 ⊂ B1∪B2, this means
that every point in Λ(G) lies in one of the sets

L1 = Λ(G1), L2 = B1, L3 = T1 ∩B2.

Now, for each i, we will find a compact set Ki ⊂ M \ {p} so that P (Ki) contains (Λ(G) \
{p}) ∩ Li. Then we can define K = (K1 ∪K2 ∪K3) ∩ Λ(G), so that P (K) = Λ(G) \ {p}.

Since p is a bounded parabolic point for the action of G1 on Λ(G1), and Λ(G1) is locally
compact, we already know that there is a compact K1 ⊂ Λ(G1) \ {p} so that P (K1) =
Λ(G1) − {p}. And, by part 3 of Definition A, we know p ∈ Int(B2), so B1 is already a
compact subset of M \ {p} and we can take K2 = B1. So, we just need to construct the
compact set K3.

For this, we apply Proposition 2.18, with G = H = G1, J1 = P , J2 = J , U1 = M \ {p},
and U2 = M \ B1. To verify that the hypotheses of the proposition are satisfied, we need
to check that gB1 ⊂ M \ {p} for every g ∈ G1 \ J . But, since Λ(G1) is G1-invariant we
can only have p ∈ gB1 if g−1p ∈ B1 ∩ Λ(G1) = Λ(J), which is impossible since we assume
p ∈ Λ(G1) \G1(Λ(J)).

So, we know there is a compact subset K ′ ⊂M \ {p} so that for any g ∈ G1 \ J , we can
find h ∈ P so that hgB1 ⊂ K ′. But by definition, any y ∈ T1 ∩ B2 lies in (G1 \ J)(B1), so
we can take K3 = K ′ and we are done.

p

Λ(G1)

K3

K1

K2

Figure 4.3. The sets K1,K2, and K3 proving that p ∈ Λ(G1) is a bounded
parabolic point (Case 1).
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Case 2: p ∈ G1(Λ(J)). Since G acts by homeomorphisms on Λ(G) it suffices to consider
the case p ∈ Λ(J). For this case, we again use Lemma 4.9 to see that every point in Λ(G)
lies in one of the three sets

L1 = Λ(G1), L2 = Λ(G2), L3 = T1.

As in the previous case, for each of these sets, we will find a compact set Ki ⊂ M \ {p} so
that P (Ki) contains (Λ(G) \ {p}) ∩ Li.

For i = 1, 2, as in Case 1, we can use the fact that p is a bounded parabolic point for the
Gi-action on Λ(Gi), to find compact sets Ki ⊂ Λ(Gi) \ {p} such that P (Ki) = Λ(Gi) \ {p}.

To find K3, we apply Proposition 2.18 twice: for i = 1, 2, we take G = H = Gi, J1 = P ,
J2 = J , U1 = M \ {p}, and U2 = M \ Bi. As in the previous case we need to verify that
gBi ⊂ M \ {p} for every g ∈ Gi \ J , but this follows because gBi ⊂ Int(B3−i), which is
disjoint from Λ(J) and hence does not contain p.

This gives us a pair of compact set K3,1 and K3,2, such that for any g ∈ Gi \ J , we can
find h ∈ P so that hgBi ⊂ K3,i. Then, since any y ∈ T1 lies in (G1 \ J)(B1) ∪ (G2 \ J)(B2)
by definition, we can take K3 = K3,1 ∪K3,2 and we are done. �

Finally, we can complete the proof of this direction of Theorem A part (iv).

Proposition 4.12. If G1 and G2 are geometrically finite, then G is geometrically finite.

Proof. Let x ∈ Λ(G). We must show x is either a conical limit point or a bounded parabolic
point for G. First, if x is not a translate of a limit point of G1 nor G2, then x is a conical
limit point by Lemma 4.10. So, assume x ∈ G(Λ(G1) ∪ Λ(G2)). Acting by elements of G
preserves the properties we are trying to show, so in fact we may assume x ∈ Λ(G1)∪Λ(G2).
If x is a parabolic point of G, we are done by Lemma 4.11. Otherwise, x is necessarily a
conical limit point for G1 or G2 since these are geometrically finite, and again we are done
since x will also be a conical limit point for G. �

4.4. Geometrical finiteness of the factors. The last thing to do in this section is prove
the other direction of Theorem A part (iv), and show that G1 and G2 are geometrically
finite if G is geometrically finite. The first step is the following lemma, which makes use of
the contraction property proved earlier in this section.

Lemma 4.13. Assume that G is geometrically finite. Let x ∈ Λ(Gi) for i ∈ {1, 2}, and
suppose that (hk) is a conical limit sequence in G for x. Then, after extracting a subsequence,
we can find some h ∈ G so that hk ∈ hGi for every k.

Proof. Without loss of generality take x ∈ Λ(G1). Let (hk) be a conical limit sequence for
x. This means that there are distinct points a, b ∈ M such that hkx → a and hkz → b for
any z ∈M \ {x}.

If there is some h ∈ G so that hk ∈ hJ for infinitely many k, then we are done. So we
may assume that, after taking a subsequence, each hk is an (i, j)-form for i, j fixed, and each
hk represents a different left J-coset in G. There are two cases to consider: either every hk
is an (i, 1)-form or every hk is an (i, 2)-form.

First suppose that hk is an (i, 2)-form. By Lemma 4.6, after extraction the sets (hkB2)
converge to a singleton. Since x ∈ Λ(G1) ⊂ B2, and hkx → a, we must have hkB2 → {a}.
Since B2 is an infinite set by Proposition 3.4, there is some point z ∈ B2 \ {x}, which must
satisfy hkz → a. But this is impossible if (hk) is a conical limit sequence for x.

We conclude that each hk must be (i, 1)-form. If hk ∈ G1 for infinitely many k then we
are done, so assume that this is not the case. Then after taking a subsequence we have
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|hk| > 1 for every k. We write hk as an (i, j)-form of length n ≥ 2:

hk = gk,1 · · · gk,n.
Note that although n can depend on k, we omit this from the notation. Since hk is an
(i, 1)-form, we have gk,n ∈ G1, and since Λ(G1) is G1-invariant, gk,nx lies in Λ(G1) ⊂ B2.
Then

(hkg
−1
k,n) = (gk,1 · · · gk,n−1)

is a sequence of (i, 2)-forms. If the elements in this sequence lie in infinitely many different
left J-cosets inG, then we extract a subsequence and apply Lemma 4.6 to see that (hkg

−1
k,nB2)

again converges to a singleton. This singleton contains the limit of (hkg
−1
k,ngk,nx) = (hkx),

so it is again equal to {a}. But then for any z ∈ B1 \ {x}, we have gk,nz ∈ B2 and thus

hkz = hkg
−1
k,ngk,nz → a, again giving a contradiction. We conclude that a subsequence of

(hkg
−1
k,n) lies in a single coset hJ for h ∈ G, hence hk ∈ hJgk,n ⊂ hG1. �

Proposition 4.14. If G is geometrically finite, then G1 and G2 are geometrically finite.

Proof. Let x ∈ Λ(G1). We will show that x is either a conical limit point or a bounded
parabolic point for G1. Since G is geometrically finite, we know x is either a conical limit
point for G or a bounded parabolic point for G.

If x is a conical limit point for G, then it has a conical limit sequence (hk) in G, i.e. a
sequence such that (hkx, hkz) lies in a compact subset of (M ×M) \∆ for any z 6= x in M .
By Lemma 4.13, we know that, up to subsequence, hk = hgk for gk ∈ G1 and h fixed. Then
(gk) is a conical limit sequence for x in G1 and we are done.

Otherwise, suppose x is a bounded parabolic point for G. Let P be the stabilizer of x in
G. As we observed in the proof of Lemma 4.11, part (iii) of Proposition 4.3 implies that P
is a subgroup of G1.

Since x is a bounded parabolic point forG, again applying local compactness of Λ(G)\{x},
there is a compact K ⊂ Λ(G) \ {x} so that P (K) = Λ(G) \ {x}. Let K1 = K ∩ Λ(G1).
Since Λ(G1) is closed, K1 is compact, and since Λ(G1) is G1-invariant (hence P -invariant),
we have

P (K1) = P (K ∩ Λ(G1)) = P (K) ∩ Λ(G1) = Λ(G1) \ {x}.
Thus x is bounded parabolic for G1 and we are done. �

5. Combinatorial group theory: HNN extensions

In this section we establish notation and give some basic facts about HNN extensions, in
preparation for our second combination theorem. Our main reference is again [Mas88]. In
this section, M is again an arbitrary compact metrizable space, but as in Section 3, these
results are purely set-theoretic. We further assume throughout this section that G0, G1 are
subgroups of Homeo(M), where G1 = 〈f〉 is infinite cyclic, and J1, J−1 are subgroups of G0

with fJ−1f
−1 = J1. We let G denote 〈G0, G1〉, the subgroup of Homeo(M) generated by

G0 and G1. Note that conjugation by f induces an abstract isomorphism J−1 → J1, which
we denote f∗. The indices are chosen to make notation more convenient later.

As was the case for amalgamated free products, we can define HNN extensions using
equivalence classes of normal forms.

Definition 5.1. A word g = fα1g1 · · · fαngn in f and elements gk of G0 is a normal form
if:

(1) Each gk ∈ G0 is nontrivial for k < n;
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(2) Each αk is an integer, with αk 6= 0 whenever k > 1;
(3) If αk < 0 and gk−1 ∈ J−1 \ {1}, then αk−1 < 0;
(4) If αk > 0 and gk−1 ∈ J1 \ {1}, then αk−1 > 0.

Two words g = fα1g1 · · · fαngn and h = fβ1h1 · · · fβnhn are equivalent if we can ob-
tain g from h by inserting finitely many conjugates and inverses of words of the form
fjf−1(f∗(j))

−1 for j ∈ J−1 (words of this form are the identity in G). Every word of
the form fα1g1 · · · fαngn is equivalent either to a normal form or to the identity, which
means that every word in f and elements of G0 is equivalent to either a normal form or the
identity.

The length of a normal form g = fα1g1 · · · fαngn is defined to be |g| =
∑n
i=1 |αi|. Note

that, in contrast to normal forms for amalgamated free products, the length of a normal
form fα1g1 · · · fαngn is not necessarily n. Length-0 normal forms correspond by definition
to elements of G0.

If a normal form g has positive length, i ∈ {0,±1} and j ∈ {±1}, then we say g =
fα1g1 · · · fαngn is an (i, j)-form if α1 is positive (resp. negative, zero) and i = 1 (resp. −1,
0), and αn is positive (resp. negative) and j = 1 (resp. −1). Our notation differs slightly
from Maskit’s, which will make some of our later arguments less cumbersome.

We set

G0∗f = {id} ∪ {equivalence classes of normal forms}.
This set forms a group, with operation given by concatenation followed by reduction to a
normal form. It is called the HNN extension of G0 by f . Note that it is not in general true
that the formal inverse of a normal form g is also a normal form (see Lemma 5.6 below),
but it is a formal product of normal forms, which tells us that G0∗f contains inverses.

We again have a natural surjective homomorphism

ϕ : G0∗f → G

fα1g1 · · · fαngn 7→ fα1 ◦ g1 ◦ · · · ◦ fαn ◦ gn.
The map ϕ may or may not be an isomorphism. As was the case for amalagamated free
products, if ϕ is an isomorphism, we will abuse notation and say that G = G0∗f . In this
situation, we implicitly identify elements of G with equivalence classes of normal forms in
G0∗f .

As in Section 3, we want a “ping-pong” condition ensuring that ϕ actually is an isomor-
phism.

Definition 5.2. Let U1, U−1 ⊂ M be nonempty disjoint sets, with A = M \ (U1 ∪ U−1)
nonempty. We call (A,U1, U−1) an interactive triple for G0 and G1 if the following hold:

(1) The pair (U1, U−1) is precisely invariant under (J1, J−1) in G0.
(2) For i ∈ {±1}, and for every g ∈ G0, gUi ⊂ A ∪ Ui.
(3) We have f(A ∪ U1) ⊂ U1 and f−1(A ∪ U−1) ⊂ U−1.

We say an interactive triple is proper if the set A \ (G0(U1 ∪ U−1)) is nonempty.

Note that these conditions imply that in particular gUi ⊂ A for g ∈ G0 \ Ji. Similarly to
Section 3, we can observe:

Proposition 5.3. If (A,U1, U−1) is a proper interactive triple for G1 and G2, then A, U ,
and U−1 are all infinite sets.

Proof. Since J1 is a proper subgroup G0, there is some element g ∈ G0 \ J1, and by precise
invariance we have gU1 ⊂ A. By properness of the triple, the inclusion is proper, which
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means that fgU1 is a proper subset of U1. We conclude that U1 is infinite. Since gU1 ⊂ A
and f−1gU1 ⊂ U−1 the other two sets are infinite as well. �

We have a description of the way normal forms in G0∗f act on certain sets in the inter-
active triple, in analogy to the way normal forms in an amalgamated free product act on
sets in an interactive pair.

Lemma 5.4 ([Mas88] VII.D.11). Suppose there is an interactive triple (A,U1, U−1) for G0

and G1, and set A0 = A \G0(U1 ∪ U2). Let g = fα1g1 · · · fαngn ∈ G0∗f be a normal form
with |g| > 0. Then the following hold.

i) if g is an (i, j)-form for i, j ∈ {±1}, then ϕ(g)(A0 ∪ Uj) ⊂ Ui.
ii) If g is a (0, j)-form for j ∈ {±1}, then there is h ∈ G0 so ϕ(g)(A0 ∪Uj) ⊂ hU ⊂ A,

where U = U−1 if α2 < 0 and U = U1 if α2 > 0.

The combinatorics in this case are slightly more complicated than for amalgamated free
products, but the basic idea is the same. To illustrate the idea, consider a (1, 1)-form of
length 2, for example g = fg1fg2. Then g2(A0 ∪ U1) ⊂ A ∪ U1 by definition (in fact A0 is
G0-invariant by our conditions). Then we have

g(A0 ∪ U1) ⊂ fg1f(A ∪ U1)

⊂ fg1(U1)

⊂ f(A ∪ U1)

⊂ U1.

Conditions (3) and (4) in Definition 5.1 ensure that when we iteratively apply a normal
form to A0 ∪ Ui, we always can say where each set is mapped to next. We have chosen our
notation so that if g is an (i, j)-form with i 6= 0, then gUj ⊂ Ui. This is consistent with the
convention for amalgamated free products.

The proposition below gives the combinatorial condition we need to ensure that ϕ is
actually an isomorphism.

Proposition 5.5 (Ping-pong for HNN extensions; [Mas88] VII.D.12). Suppose (A,U1, U−1)
is a proper interactive triple for G0 and G1. Then G = G0∗f .

Proof. We just need to show that ϕ : G0∗f → G is injective. This map is already injective
on G0, so suppose g ∈ G0∗f has |g| > 0. Then by Lemma 5.4 we have ϕ(g)x 6= x for any
x ∈ A0 = A \G0(U1 ∪ U−1), showing that ϕ(g) is not the identity. �

5.1. More combinatorics of normal forms. Normal forms in an HNN extension are
slightly more complicated than normal forms for an amalgamated free product, so here we
collect some results which will later make working with these normal forms a little easier.

5.1.1. Formal inverses. In several situations later in the paper, we will want to work with
formal inverses of (i, j)-forms. These inverses may not themselves be normal forms, but it
is still useful to work with them directly, rather than with an equivalent normal form. To
that end, we prove:

Lemma 5.6. Let g = fα1g1 · · · fαngn be an (i, j)-form for i, j ∈ {±1} (so in particular, g
has positive length). Then the formal inverse

g−1 = g−1n f−αn · · · g−11 f−α1

is a (0,−i)-form if gn ∈ G0 \ (J1 ∪ J−1). The word f−αn · · · g−11 f−α1 is a (−j,−i)-form,
regardless of gn.
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Proof. We set β0 = 0 and βk = −αn+1−k for 1 ≤ k < n, so that g−1 is the word

fβ0g−1n fβ1g−1n−1 · · · fβn−1 .

We need to verify that this word is a normal form. The only conditions in Definition 5.1
which could possibly fail are the technical requirements (3) and (4).

For (3), we must show that, for k ≥ 0, if βk+1 < 0 and g−1n−k ∈ J−1 \ {id}, then βk < 0.
Equivalently, we need to show that if αn+1−k > 0 and gn−k ∈ J−1, then αn−k < 0. When
k ≥ 1 this follows from condition (4) on our original normal form g, and when k = 0 the
condition is vacuous because we assume gn /∈ J−1. The argument for condition (4) is nearly
identical.

The same reasoning implies that fβ1g−1n−1 · · · fβn−1 is a normal form, with β1 = −αn and
βn−1 = −α1. �

5.1.2. Ping-pong for normal forms. When we have an interactive triple (A,U1, U−1) for an
HNN extension G, Lemma 5.4 above gives us a way to locate sets of the form gUi when g
is a normal form in G. However, the statement of the lemma is often a little unwieldy to
work with directly, so to simplify some arguments later on, we introduce some additional
terminology.

Definition 5.7. Let G = G0∗f be the HNN extension of G0 along J1 = f−1J−1f . We say
that a normal form

g = fα1g1 · · · fαngn

is an HNN ping-pong form of type 1 (or just a type-1 form) if either gn ∈ G0 \ J1, or
αn > 0. Similarly a normal form is an HNN ping-pong form of type −1 if either αn < 0 or
gn ∈ G0 \ J−1.

Note that if |g| = 0, then g has type i if and only if g ∈ G0 \ Ji. An (i, j)-form is always
type j, and it may or may not also be type −j. If (A,U1, U−1) is an interactive triple for
G0, 〈f〉, then a normal form g has type k when the dynamics of the triple allow us to locate
the set gUk. That is, we have the following immediate consequence of Lemma 5.4:

Lemma 5.8. Let (A,U1, U−1) be an interactive triple for G0 and 〈f〉. If g is an (i, j)-form
of type k, and i 6= 0, then gUk ⊂ Ui.

Frequently we will want to apply inductive arguments to normal forms, which means that
we want some control over the ping-pong behavior of a prefix of an (i, j)-form. The lemma
below gives one way to do this. Here (and elsewhere), a “prefix” h′ of a normal form h
is a normal form which appears as an initial subword of h. That is, if h is a normal form
fα1g1 · · · fαngn, then a prefix h′ is a normal form fα1g1 · · · fαkgk for some 1 ≤ k ≤ n.

Lemma 5.9. Let (A,U1, U−1) be an interactive triple for G0 and 〈f〉, and let g be a type-i
normal form of length m ≥ 1. Then for some j ∈ {−1, 1}, there is a length-(m − 1) prefix
g′ of g and g0 ∈ G0 so that g = g′f jg0 and f jg0Ui ⊂ Uj. If |g′| ≥ 1, then g′ is type j.

Proof. When m = 1 we can just take g′ = id, so assume m > 1. We let g = fα1g1 · · · fαngn
be a type-i normal form. Without loss of generality assume αn > 0, and consider the normal
form

g′ = gg−1n f−1 = fα1g1 · · · fαn−1gn−1f
αn−1.

This is a normal form with positive length m − 1. It is also type 1: if αn > 1 or gn−1 ∈
G \ J1, then this follows directly from the definition; if αn = 1 and gn−1 ∈ J1, then, since
fα1g1 · · · fαn−1gn−1f

αngn is a normal form, we must have αn−1 > 0, which again means the
above form has type 1.
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We need to verify that fgnUi ⊂ U1, which will show the lemma holds with g0 = gn. If
i = 1, then fgnUi = fgnU1 ⊂ U1. On the other hand, if i = −1, then since αn > 0 and g
has type i, we must have gn ∈ G \ J−1. Then fgnUi = fgnU−1 ⊂ U1. �

We will also sometimes want to characterize elements in G via their action on sets in
an interactive triple (A,U1, U−1). This can again be expressed using the ping-pong type of
normal forms for these elements. The lemma below is a precise statement of this form, and
generalizes the fact that in G0, (U1, U−1) is precisely invariant under (J1, J−1):

Lemma 5.10. Let (A,U1, U−1) be an interactive triple for G0 and 〈f〉. Let g be a ping-pong
form of type i and let h be a ping-pong form of type k.

Suppose that |g| = |h|. Then either i = k, gUi = hUi, and g = hj for j ∈ Ji, or
gUi ∩ hUk = ∅.

Proof. We proceed by induction on the length m of g and h; the main idea is to use the
previous lemma to find prefixes of g and h where we can assume that the statement holds,
and then apply precise invariance of (U1, U−1) under (J1, J−1) for the inductive step.

First observe that, if g, h are elements of G0, and if gUi ∩ hUk 6= ∅, then the fact that
(U1, U−1) is precisely invariant under (J1, J−1) implies i = k and g = hj for j ∈ Ji. Now,
let m ≥ 1, let g, h be normal forms with |g| = |h| = m, and suppose that g has type i, h
has type k, and gUi ∩ hUk 6= ∅.

By Lemma 5.9 we can find prefixes g′, h′ of type i′, k′ respectively, with |g′| = |h′| = m−1

and g = g′f i
′
g0, h = h′fk

′
h0 for g0, h0 ∈ G0 satisfying f i

′
g0Ui ⊂ Ui′ and fk

′
h0Uk ⊂ Uk′ .

Then we know that both gUi ⊂ g′Ui′ and hUk ⊂ h′Uk′ hold, which means that h′Uk′∩g′Ui′ 6=
∅. By induction (or by precise invariance if n = 1), we know that i′ = k′ and h′ = g′j′ for
j′ ∈ Ji′ . Without loss of generality take i′ = k′ = 1, so j′ ∈ J1.

Then since gUi = g′fg0Ui has nonempty intersection with hUk = h′fh0Uk = g′j′fh0Uk,
the intersection fg0Ui ∩ j′fh0Uk is also nonempty. Since f conjugates J1 to J−1, for some
j′′ ∈ J−1 we have j′fh0 = fj′′h0. Then fg0Ui ∩ fj′′h0Uk is nonempty as well, hence
g0Ui ∩ j′′h0Uk 6= ∅. Then by precise invariance we know i = k and g0 = j′′h0j for j ∈ Ji.

Finally, we see that

g = g′fg0 = g′fj′′h0j = g′j′fh0j = h′fh0j = hj,

and we are done. �

6. Theorem B

In this section we prove Theorem B. The proof is very similar in spirit and structure
to the proof of Theorem A, but the details are different. Where possible, we have tried to
imitate the structure of Section 4, and have indicated the analogies between the proofs.

We start (as in Section 4) by setting up the general ping-pong framework.

Definition B (HNN Ping-Pong Position). Let G0 be a discrete convergence group acting
on a compact metrizable space M , and suppose that J1, J−1 < G0 are both geometrically
finite. Let G1 = 〈f〉 be an infinite discrete convergence group also acting on M , where
fJ−1f

−1 = J1 in Homeo(M). We will say G0 is in HNN ping-pong position (with respect
to f, J1 and J−1) if there exists closed sets B1, B−1 ⊂ M with nonempty disjoint interiors
satisfying the following:

(1) (B1, B−1) is precisely invariant under (J1, J−1) in G0 (recall Definition 3.1).
(2) If A = M \ (B1 ∪B−1), then f(A ∪B1) = Int(B1).
(3) For i ∈ {±1}, we have Λ(G0) ∩Bi = Λ(Ji).
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(4) The set A0 = M \G0(B1 ∪B−1) is nonempty.

Remark 6.1. Note that our precise invariance assumption forces B1 ∩B−1 = ∅.

We restate Theorem B here for reference.

Theorem B. Let G0 be a discrete convergence group acting on a compact metrizable space
M , and suppose that J1, J−1 < G0 are both geometrically finite. Let G1 = 〈f〉 be an infinite
cyclic discrete convergence group also acting on M , where fJ−1f

−1 = J1 in Homeo(M).
Suppose G0 is in HNN ping-pong position with respect to f, J1 and J−1. Let G = 〈G0, G1〉 <
Homeo(M), and suppose G acts as a convergence group. Then the following hold:

(i) G = G0∗f .
(ii) G is discrete.

(iii) Elements of G not conjugate into G0 are loxodromic.
(iv) G is geometrically finite if and only if G0 is geometrically finite.

Remark 6.2. As was the case for amalgamated free products, when M = ∂H3
R, this theorem

is not strong enough to recover Maskit’s full result, since we ask for stronger hypotheses
on our ping-pong configuration. Specifically, we do not allow B1 and B−1 to intersect, and
consequently f cannot be parabolic. This condition ensures that our subgroups are fully
quasi-convex, and allows us to apply Proposition 2.18.

Before proving the first three parts of Theorem B, we give the following slightly stronger
version of Lemma 5.8, which will be useful throughout this section.

Lemma 6.3. Suppose that g is an (i, j)-form of type k. If i 6= 0, then gBk ( Int(Bi), and
if i = 0, then gBk ( A.

Proof. First suppose that i 6= 0. For concreteness, assume g is a (1, j)-form. We first
suppose that |g| = 1, so that g = fg1 for g1 ∈ G0. If k = 1, then g1B1 is a subset of
M \ B−1 = Int(A ∪ B1) by precise invariance. In fact it is a proper subset by properness
of the interactive triple, so fg1B1 ( Int(B1) by condition (2) in Definition B. If k = −1,
then since g has type k, we must have g1 ∈ G0 \ J−1 and g1B−1 ⊂M \B−1 = Int(A ∪B1).
Again, the inclusion is proper by properness of the interactive triple, so again we have
fg1B−1 ( Int(B1).

When |g| > 1, we can apply Lemma 5.9 and induction: we write g = g′f jgn, where g′ is
a type-j normal form with length |g| − 1, and f jgnBk ⊂ Bj . Via induction we know that
g′Bj ( Int(B1), which means gBk ( Int(B1).

The case i = 0 follows from the first case and precise invariance of Bi under Ji, since any
(0, j)-form g can be written g = g1g

′, where g′ is an (i, j)-form and g1 ∈ G0 \ Ji. �

We now prove the first three parts of Theorem B. Again, the arguments are standard.

Proof of (i) - (iii) in Theorem B. (i) Let B1 and B−1 be the sets given by our conditions,
and set A = M \(B1∪B−1). Note that condition (2) of Definition B implies f−1(A∪B−1) =
Int(B−1). The result now follows from Proposition 5.5 since (A, Int(B1), Int(B−1)) form an
interactive triple which is proper by condition (4) of Definition B.

(ii) It suffices to show no sequence (gk) in G can accumulate at the identity. If |gk| = 0,
then gk lies in the discrete group G0, so assume |gk| ≥ 1 for all k. We can consider several
cases. If a normal form for gk ends in a power of f , then gkA0 ⊂ B1 ∪ B−1. Otherwise,
gk is either a (0, 1) or a (0,−1)-form. In the former case, gkB1 ⊂ A, and in the latter case
gkB−1 ⊂ A. In each of these cases, gk takes a fixed set with nonempty interior into another
fixed disjoint set, which means gk cannot accumulate on the identity.
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(iii) Let g = fα1g1 · · · fαngn be a normal form not conjugate into G0. Conjugating
and replacing g with g−1 if necessary, we can assume that α1 > 0 (so g is a (1, j)-form)
and that |g| is minimal in its conjugacy class. Note that if αn < 0 and gn ∈ J1, then
f−1gf = fα1−1g1 · · · fαn+1f−1gnf has a strictly smaller length than g since f−1gnf ∈ J−1,
so we know that either αn > 0 or gn ∈ G0 \ J1. That is, g is a (1, j)-form of type 1, so by
Lemma 6.3, gB1 is a proper subset of Int(B1). Then the same argument as in Theorem A
part (iii) implies that g has infinite order, and a fixed point in Int(B1).

On the other hand if gB1 is a proper subset of B1, then g−1(M \ gB1) is a proper subset
of M \ B1, so the same argument again shows that g−1 has a fixed point in the closure of
M \B1. Thus g has two distinct fixed points and is loxodromic. �

6.1. Limit sets of HNN extensions. The remainder of the section is meant to prove part
(iv) of Theorem B, so for the rest of the paper we fix the space M and groups G0, J, 〈f〉, G
in Homeo(M) satisfying the conditions of Definition B. As for Theorem A, we start by
establishing some properties of the limit points of G under these assumptions.

Proposition 6.4. With the above conditions and notation, each of the following holds.

(i) B1 ∩ B−1 = ∅, and f is loxodromic with attracting fixed point in Int(B1) and
repelling fixed point in Int(B−1).

(ii) Λ(J±1) ⊂ ∂B±1.
(iii) Λ(G0) \G0(Λ(J1) ∪ Λ(J−1)) ⊂ A0.

Proof. (i) The fact that B1 ∩ B−1 = ∅ follows from precise invariance of (B1, B−1) under
(J1, J−1) in G0. Now, since f(A ∪ B1) = Int(B1), we have f(∂B−1) = ∂B1, and so fB1 ⊂
Int(B1). Arguing as in the proof of Theorem A part (iii), we know this implies f has a fixed
point in Int(B1) which is necessarily attracting. The same argument applied to f−1 gives a
fixed point in Int(B−1) which is necessarily a repelling fixed point for f .

(ii) Since Bi is closed and J1-invariant, and Int(Bi) is infinite by Proposition 5.3, it follows
that Λ(Ji) ⊂ Bi. Further, since f conjugates J−1 to J1, f maps Λ(J−1) bijectively onto
Λ(J1). Hence

Λ(J1) = fΛ(J−1) ⊂ fB−1 = B−1 ∪A ∪ ∂B1.

So we conclude Λ(J1) ⊂ (B−1 ∪ A ∪ ∂B1) ∩ B1 = ∂B1 as desired. Applying an identical
argument using f−1 gives Λ(J−1) ⊂ ∂B−1.

(iii) Fix x ∈ Λ(G0), and suppose that x /∈ A0, i.e. that x = gy for g ∈ G0 and y ∈ Bi.
Then y = g−1x ∈ Λ(G0) ∩Bi, which means y ∈ Λ(Ji) by condition (3) in Definition B, and
therefore x ∈ G0(Λ(Ji)). It follows that Λ(G0) \ A0 is contained in G0(Λ(J1) ∪ Λ(J−1)),
which is equivalent to the desired claim. �

6.2. HNN ping-pong and contraction. Next, we will establish a contraction lemma for
HNN ping-pong sequences, similar to Lemma 4.6 for amalgamated free products. As in the
earlier case, the key tool is Proposition 2.18, so we start by establishing that the subgroups
J1 and J−1 are fully quasi-convex in some ambient geometrically finite group.

First, we show:

Lemma 6.5. Fix i, j ∈ {±1} and g ∈ G. Then g∂Bi ∩ ∂Bj 6= ∅ if and only if either:

(1) i = j and g ∈ Ji, or
(2) i = −j and g = f jh for h ∈ Ji.

Proof. We induct on the length of g. If |g| = 0, then the claim follows from precise invariance
of (B1, B−1) under (J1, J−1) in G0, so suppose |g| ≥ 1, and for concreteness, assume i =
1. We write a normal form fα1g1 · · · fαngn for g. If this normal form has type 1, then
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Lemma 6.3 implies that gB1 ⊂ Int(B1) ∪ Int(B−1) ∪A, hence g∂B1 ∩ ∂Bj = ∅. So we can
assume that this normal form does not have type 1, which means that αn < 0 and gn ∈ J1.
In this case, f−1gn∂B1 = ∂B−1.

The group element g′ = gg−1n f has strictly smaller length than g, so if g′∂B−1∩∂Bj 6= ∅
then by induction we know that either j = −1 and g′ ∈ J−1, or j = 1 and g′ = fh for
h ∈ J−1. In the former case we can rewrite g = g′f−1gn = f−1g′′gn for g′′ ∈ J1, and in the
latter case we can rewrite g = g′f−1gn = fhf−1gn = g′′gn for g′′ ∈ J1. Since gn ∈ J1 the
conclusion follows. �

The lemma above implies in particular that ∂Bi is precisely invariant under Ji in both
G and G0. Then, after applying part (ii) of Proposition 6.4, we see:

Corollary 6.6. Let H be one of G or G0. If H is geometrically finite, then J1 and J−1 are
fully quasi-convex subgroups of H.

Now, we can apply Proposition 2.18 to the present setting:

Lemma 6.7. Suppose that either G or G0 is geometrically finite. For i ∈ {±1}, we can
find a compact K ⊂ A ∪B−i so that both of the following hold:

(i) For any g ∈ G0 \ Ji, we have j ∈ Ji so jgBi ⊂ K.
(ii) For any g ∈ G0, we have j ∈ Ji so that jgB−i ⊂ K.

Proof. Take i = 1 to simplify notation. We can find a compact for each claim separately
and take their union. First, we focus on (i). We can assume B1 ⊂ K, so the statement
follows immediately for g ∈ J1 by taking j to be the identity. Otherwise, we apply Proposi-
tion 2.18 with the ambient geometrically finite group as G or G0 (depending on which one
is geometrically finite) and H = G0 in both cases, and our two fully quasi-convex subgroups
J1 and J−1 with corresponding invariant open sets U1 = M \B1 and U−1 = M \B−1. Then
if g ∈ G0 \ J1, we have g(M \ U1) = g(B1) ⊂ A ⊂ U−1, and so the proposition gives our
desired compact subset K ⊂ U−1 = A ∪B1.

For (ii), the proof is identical with J1 playing the role of both fully quasi-convex subgroups
in the statement of Proposition 2.18, and both open sets being M \B1 = A ∪B−1. �

We can now establish the HNN contraction property:

Lemma 6.8 (Contraction for HNN extensions). Suppose that either G or G0 is geometrically
finite, and let (hk) be a sequence of type-i forms such that the left cosets hkJi are all distinct.
Then up to subsequence, (hkBi) converges to a singleton {x}.

It follows from Lemma 6.5 that any group element g ∈ G satisfying gBi = Bi must lie in
Ji. So, asking for the left cosets (hkJi) to be distinct is the same as asking for the translates
(hkBi) to be distinct.

Proof. To simplify notation, assume i = 1. The proof is very similar to the proof of
Lemma 4.6. The first step is to show the following:

Claim. After extracting a subsequence, there is a fixed ` = ±1, a compact set K ⊂ A∪B−1,
and a sequence (jk) in J1 so that jkh

−1
k B` ⊂ K for all k.

To prove the claim, we first suppose that |hk| = 0. Then, since hk has type 1, we know
hk ∈ G0 \ J1. Then we take ` = 1, and apply Lemma 6.7 to find the required set K and
elements jk. Otherwise, suppose that |hk| ≥ 1, and write out a normal form for hk:

hk = fαk,1gk,1 · · · fαk,ngk,n.
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We consider the inverse word

g−1k,nf
−αk,n · · · g−1k,1f

−αk,1 .

By Lemma 5.6, the sub-word gk,nh
−1
k = f−αk,n · · · g−1k,1f−αk,1 is a normal form, which must

have length at least 1. Up to subsequence, for every k this normal form is type ` for
some fixed ` = ±1, meaning that gk,nh

−1
k B` ⊂ B1 if −αk,n > 0 and gk,nh

−1
k B` ⊂ B−1 if

−αk,n < 0. After extracting another subsequence we can assume one of these conditions
holds for every k.

In the case where −αk,n < 0 for every k, we can use Lemma 6.7 to find elements jk ∈ J1
and a compact K ⊂ A ∪ B−1 so that jkg

−1
k,nB−1 ⊂ K for every k. Then, we know that for

every k, we have
jkh
−1
k B` = jkg

−1
k,ngk,nh

−1
k B` ⊂ jkg−1k,nB−1 ⊂ K.

On the other hand, if −αk,n > 0, then since hk has type 1 we know that gk,n ∈ G0\J1. Then

again by Lemma 6.7 we can find a compact K ⊂ A∪B−1 and jk ∈ J1 so that jkg
−1
k,nB1 ⊂ K.

Thus, we have
jkh
−1
k B` = jkg

−1
k,ngk,nh

−1
k B` ⊂ jkg−1k,nB1 ⊂ K.

We have shown the claim above, so now consider the sequence (hkj
−1
k ). Since all the

translates hkB1 are distinct, the group elements hk lie in infinitely many left J1-cosets,
hence so do the group elements hkj

−1
k . In particular, the sequence hkj

−1
k is divergent in G,

so we can extract a convergence subsequence and assume that there are points z+, z− ∈M
so that (hkj

−1
k y) converges to z+ whenever y 6= z−. Equivalently, (jkh

−1
k y) converges to z−

whenever y 6= z+.
Proposition 5.3 tells us that the set B1 is infinite, so in particular there must be some

y ∈ B1 \ {z+}. Then, since jkh
−1
k B1 ⊂ K we conclude that z− ∈ K. Finally, since B1 is

a compact set in the complement of K, we see that (hkj
−1
k B1) = (hkB1) must converge to

{z+}. �

6.3. Geometrical finiteness of the extension. We now prove that (G0 geometrically
finite) =⇒ (G geometrically finite). This gives one of the directions of Theorem B part
(iv).

As in the proof of the analogous direction of Theorem A, the key for this direction of
theorem is to show that limit points in Λ(G) \Λ(G0) can be “coded” by sequences of (i, j)-
forms in G. The precise statement is:

Proposition 6.9 (HNN coding for G-limit points). Suppose that either G or G0 is geomet-
rically finite, and let x ∈ B1 ∪ B−1 be a point in Λ(G) \G(Λ(G0)). Then for fixed `, there
is a sequence of type-` forms (hk) in G so that |hk| → ∞, each hk is a prefix of hk+1, and
x ∈ hkB` for every k.

We can think of this proposition as a less explicit version of Proposition 4.7 in the
amalgamated free product case. The construction in this case is slightly more involved, and
we need a little more information about the location of certain points in Λ(G). So, we start
by showing the following:

Lemma 6.10. Suppose that either G or G0 is geometrically finite. Then the only limit
points of G in ∂B±1 are limit points of J±1. That is, Λ(G) ∩ ∂B±1 = Λ(J±1).

Proof. We will show that the intersection Λ(G) ∩ (∂B1 ∪ ∂B−1) is a subset of Λ(G0); then
we will be done by condition (3) in Definition B. So, let x ∈ Λ(G) ∩ ∂B1. We can find a
sequence (gk) in G so that gkz → x for all but perhaps a single z ∈M . Now, if gk ∈ G0 for
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infinitely many k, the conclusion immediately follows. So we may assume |gk| ≥ 1 for every
k.

Up to subsequence, the gk are all (i, j)-forms for fixed i ∈ {0,±1} and j ∈ {±1}. If
i = −1, then gkBj ⊂ Int(B−1). But for some z ∈ Bj , the sequence (gkz) converges to
x ∈ ∂B1. So, we know that either i = 0 or i = 1.

If i = 0, then by Lemma 5.4, for some ` = ±1 and some hk ∈ G0 \ Ji, we have gkBj ⊂
hkB` ⊂ A. There must be infinitely many distinct translates hkB`, since otherwise each gkz
would lie in a fixed compact subset of A, and (gkz) could not converge to x ∈ B1. So, the
left cosets hkJ` are all distinct. Then by Lemma 6.8, the sequence of sets (hkB`) converges
to a singleton, which must be x. But since hk ∈ G0 this again implies that x ∈ Λ(G0).

Finally, we consider the case i = 1. We write out a normal form for gk:

gk = fαk,1gk,1 · · · fαk,ngk,n.

First observe that if αk,1 > 1 for infinitely many k, then the word

g′k = f−1gk = fαk,1−1gk,1 · · · fαk,ngk,n

is still a (1, j)-form, which means that f−1gkBj ⊂ B1 for infinitely many k. But then
for infinitely many k, the point gkz lies in the compact subset fB1 ⊂ Int(B1), which is
impossible if gkz → x ∈ ∂B1.

We conclude that after extraction, we have αk,1 = 1 for every k. After further extraction,
we can assume that one of the the three conditions below holds for every k:

(a) The length of g′k is zero;
(b) g′k is a (0, j)-form;
(c) g′k is not a normal form, hence gk,1 ∈ J1 and αk,2 > 0.

If either (a) or (b) holds, we can use the first two cases of this proof to see that that f−1x
lies in Λ(G0)∩∂B−1 = Λ(J−1), and thus x ∈ Λ(J1). And, (c) cannot occur: if αk,2 > 0, then
the word fαk,2gk,2 · · · fαk,ngk,n is a (1, j)-form, which means g′kz ∈ gk,1B1, and if gk,1 ∈ J1
then gkz = fg′kz ∈ fB1 and again (gkz) cannot converge to x ∈ ∂B1. �

We now set about proving Proposition 6.9. As in the analogous situation in the amalga-
mated free product case, we follow Maskit’s strategy by defining certain “ping-pong” sets in
M . Let T0,i = G0(Bi), and T0 = T0,1∪T0,−1 = G0(B1∪B−1), the union of all G0 translates
of B1 and B−1.

More generally, let

Tm,−1 =
⋃
gB−1,

where the union is taken over length-m normal forms g of type −1. Similarly, let

Tm,1 =
⋃
gB1,

where the union is taken over length-m normal forms of type 1. Let

Tm = Tm,1 ∪ Tm,−1.

Lemma 5.9 implies that the sets Tm are decreasing: for any length-m normal form g with
type i, we can use the lemma to find a length-(m − 1) normal form g′ with type j, and
g0 ∈ G0 so that gBi = g′f jg0Bi ⊂ g′Bj . So, we can now consider the set

T =

∞⋂
m=0

Tm.
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B1 B−1

A

Figure 6.1. Part of the sets T0 and T1.

The proof of Proposition 6.9 mainly involves showing that Λ(G) \G(Λ(G0)) ⊂ T . Then,
we construct the desired sequence using the definition for T . The first step is:

Lemma 6.11. Suppose either G or G0 is geometrically finite. Then Λ(G) \ Λ(G0) ⊂ T0.

Proof. This argument is similar to the proof of Lemma 6.10. Suppose y ∈ Λ(G) does not lie
in T0 (that is, y ∈ A0). We must show y ∈ Λ(G0). Since y ∈ Λ(G), we can find a sequence
(gk) in G so that gkw → y for all but a single w ∈ M . If gk ∈ G0 for infinitely many k we
will have y ∈ Λ(G0) as desired, so now suppose that |gk| ≥ 1 for infinitely many k. After
extracting a subsequence we can assume that each gk is an (i, j)-form for i, j fixed. Since
Bj is an infinite set, we can fix some w ∈ Bj so that (gkw) converges to y.

By definition, we know that gkw ∈ Tn, so in particular gkw ∈ T0 for every k. Then, we
can extract a further subsequence so that gkw ∈ G0(Bi) for fixed i and write gkw = g′kzk
for g′k ∈ G0 and zk ∈ Bi.

As y /∈ T0, there must be infinitely many distinct translates g′kBi, because otherwise every
g′kzk would lie in a fixed compact subset of T0. Thus there are infinitely many distinct cosets
g′kJi, and Lemma 6.8 tells us that after extraction, (g′kBi) must converge to a singleton.
Since g′kzk → y, it follows that this singleton is y. Hence for any choice of z ∈ Bi we have
g′kz → y, so y ∈ Λ(G0). �

Proof of Proposition 6.9. We first prove that Λ(G) \G(Λ(G0)) ⊂ T . So, fix z ∈ Λ(G), and
suppose z /∈ T . We will show z ∈ G(Λ(G0)).

If z ∈ Λ(G0) we are done, hence by Lemma 6.11 we can assume z ∈ T0. Then we can find
m > 0 so that z ∈ Tm−1 \ Tm since these sets are decreasing. Without loss of generality,
we have z ∈ gB−1 for g = fα1g1 · · · fαngn a normal form with length m − 1 and type −1.
If g−1z ∈ ∂B−1, then since Λ(G) is G-invariant we have g−1z ∈ Λ(G) ∩ ∂B1 = Λ(J−1) by
Lemma 6.10 and we are done. So suppose g−1z ∈ Int(B−1).
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Since z /∈ Tm, we have fg−1z /∈ B−1 since gf−1 has length m. Also, fg−1z /∈ B1 since
f does not map any points of Int(B−1) into B1. It follows that fg−1z /∈ B1 ∪ B2, but
also, fg−1z cannot be in a translate of B1 nor B2. Indeed, if fg−1z = hy for y ∈ Bi and
h ∈ G0, then h ∈ G0 \ Ji since hy 6∈ Bi and Bi is Ji-invariant. Hence z = gf−1hy ∈ Tm,
a contradiction. Hence fg−1z /∈ T0, and so by Lemma 6.11 we have fg−1z ∈ Λ(G0) and
z ∈ G(Λ(G0)) as desired.

We have now shown that Λ(G) \ G(Λ(G0)) ⊂ T , so consider z ∈ T . We will construct
our sequence (hk) of normal forms inductively. We know that z ∈ T1, so we can find some
normal form h1 with type i1 so that z ∈ h1Bi1 . Now, assume that we have constructed a
normal form hk of type i so that z ∈ hkBi. Since z ∈ Tk+1, we can find a normal form h′k+1

with length k + 1 and type ` so that x ∈ h′k+1B`. Then, by Lemma 5.9, there is a type-i′

form h′k with length k and g0 ∈ G0 so that h′k+1 = h′kf
i′g0 and h′k+1B` ⊂ h′kBi′ . Then

h′kBi′ has nonempty intersection with hkBi, so by Lemma 5.10 we have i = i′ and hkj = h′k
for j ∈ Ji. We can write jf i = f ij′ for j′ ∈ J−i. Then since hk has type i, hk is a prefix
of the type-` form hk+1 = hkf

ij′g0. This form is equivalent in G to the type-` form h′k+1,
hence z ∈ hk+1B`.

Finally, by taking a subsequence, we can assume that each hk is a form of type ` for `
fixed, and we are done. �

As for amalgamated free products, we can use the coding given by Proposition 6.9 to
construct conical limit sequences for points in Λ(G) \G(Λ(G0)):

Lemma 6.12. If G0 is geometrically finite, then every point of Λ(G)\G(Λ(G0)) is a conical
limit point for G.

Proof. Let x ∈ Λ(G)\G(Λ(G0)). Proposition 6.9 says that for i fixed, we can find a sequence
(hk) of ping-pong forms of type i, with |hk| → ∞, so that each hk is a prefix of hk+1, and
x ∈ hkBi for all k. Possibly after relabeling we may assume i = 1.

We write hk in a normal form:

fα1g1 · · · fαnk gnk
.

If α1 = 0, then α2 6= 0, in which case h′k = fα2g2 · · · fαnk gnk
is a ping-pong form of type 1

such that h′kB1 contains x′ = g−11 x. Since x′ is a conical limit point if and only if x is, if
necessary we can replace x with x′ and hk with h′k, and assume that α1 6= 0. That is, hk is
an (`, j)-form for ` 6= 0, so hkB1 ⊂ B`.

Further, since x ∈ h1B1, by replacing x with h−11 x and hk with h−11 hk, we can assume
that also x ∈ B1, hence hkB1 ∩B1 6= ∅. Since hkB1 ⊂ B` we have ` = 1, meaning α1 > 0.

Now, consider the sequence of sets

(h−1k B−1) = (g−1nk
f−αnk · · · g−11 f−α1B−1).

By Lemma 5.6, the word f−αnk · · · g−11 f−α1 is a normal form; since α1 > 0 it is a form of
type −1, implying that f−αnk · · · g−11 f−α1B−1 is a subset of B1 if αnk

< 0 and a subset of
B−1 if αnk

> 0. And, since hk is a form of type 1, we know that either gnk
∈ G0 \ J1 or

αnk
> 0.

To prove that x is conical, we want to apply Lemma 2.10, which means we need to
produce distinct elements gk, a set Y with at least two points, and disjoint compact sets
K1 and K2 so that gkx ∈ K2 and gkY ⊂ K1. Let K ⊂ A ∪ B−1 = M \ B1 be the compact
from Lemma 6.7, and take Y = B−1,K1 = K and K2 = B1. We know Y contains at least
two points from Proposition 5.3, so we just need to produce the sequence (gk) by modifying
h−1k .
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For each fixed k, we already have h−1k x ∈ B1 as desired. If αnk
> 0, then h−1k B−1 ⊂

g−1nk
B−1. From the definition of K, we can find jk ∈ J1 so that jkg

−1
nk
B−1 ⊂ K, hence

jkh
−1
k B−1 ⊂ K.

On the other hand, if αnk
< 0, then we necessarily have gnk

∈ G0 \ J1, and h−1k B−1 ⊂
g−1nk

B1 ⊂ A. Again using the definition of K, we can find jk ∈ J1 so that jkg
−1
nk
B1 ⊂ K,

hence jkh
−1
k B−1 ⊂ K.

In either of these cases, we have jkh
−1
k B−1 ⊂ K and jkh

−1
k x ∈ jkB1 = B1, which means

we can take gk = jkh
−1
k to complete the proof. �

We next consider parabolic points.

Lemma 6.13. Suppose that G0 is geometrically finite. If p ∈ Λ(G0) is a parabolic point for
the action of G0 on Λ(G0), then p is a bounded parabolic point for the action of G on Λ(G).

Proof. Let p ∈ Λ(G0) be a parabolic point for G, and let P be the stabilizer of p in G. Since
p is a bounded parabolic point, and P contains the stabilizer of p in G0, we know that there

is a compact K̂ ⊂ Λ(G0) \ {p} so that P (K̂) = Λ(G0) \ {p}. We want to find a compact
K ⊂ Λ(G) \ {p} so that P (K) = Λ(G) \ {p}.

As in the proof of Lemma 4.11, our strategy is to show that Λ(G)\{p} can be decomposed
into several pieces, such that each piece is either far away from p to begin with, or can
be pushed uniformly far away from p using either the boundedness of p in Λ(G0) or an
application of Proposition 2.18. We consider two cases:

Case 1: p ∈ Λ(G0) \G0(Λ(J1)∪Λ(J−1)). In this case, Lemma 6.11 tells us that each point
in Λ(G) \ {p} lies in the union Λ(G0) ∪ T0. We can further decompose T0 by intersecting it
with (B1∪B−1) and its complement A, meaning we decompose Λ(G)\{p} into three pieces
lying in

L1 = Λ(G0), L2 = (B1 ∪B−1), L3 = T0 ∩A.
For each Li, we need to find a compact set Ki ⊂M \ {p} so that if y ∈ Λ(G) ∩ Li, then we
can find h ∈ P so that hy ∈ Ki. Then we can take K = K1 ∪K2 ∪K3.

We know we can take K1 = K̂ from the boundedness of p in Λ(G0), and from part (3)
of Definition B we know that B1 ∪B−1 is already a compact subset of M \ {p}. So, we just
need to find the compact set K3.

We apply Proposition 2.18, taking H = G0, J1 = P , U1 = M \ {p}, J2 = J±1, and
U2 = M \B±1, to see that there are sets K+,K− ⊂M \ {p} such that for any g ∈ G0 \J±1,
we can find h ∈ P so that hgB±1 ⊂ K±. To justify the application of the proposition, we
need to check that for every g ∈ G0 \ J±1, we have gB±1 ⊂ M \ {p}, but this follows from
part (iii) of Proposition 6.4. Then, we take K3 = K+ ∪K−.

Now, if y ∈ T0 ∩A, then by definition we know that y ∈ (G0 \J1)(B1)∪ (G0 \J−1)(B−1).
But then by definition of K± we know that we can find h ∈ P so that hy ∈ K+ ∪K− = K3

and we are done.

Case 2: p ∈ G0(Λ(J1) ∪ Λ(J−1)). Since G acts by homeomorphisms it suffices to consider
p ∈ Λ(J1) ∪ Λ(J−1). Without loss of generality take p ∈ Λ(J1). As in the previous case, we
decompose Λ(G) \ {p} into several different pieces, by writing M as the union

M = fB1 ∪ fA ∪ ∂B1 ∪A ∪B−1.
Since p ∈ ∂B1, the sets fB1 ⊂ Int(B1) and B−1 are compact sets in the complement of p.

So, we only need to consider the three pieces of Λ(G) \ {p} contained in the three sets

∂B1, A, fA.
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We can further decompose these pieces by intersecting each of them with the sets Λ(G0),
fΛ(G0) and their complements in M . By Lemma 6.10, we know that ∂B1 ∩Λ(G) ⊂ Λ(G0).
Also, from Lemma 6.11, we know that Λ(G) \ Λ(G0) lies in T0, which means we now only
need to consider the pieces of Λ(G) \ {p} contained in the four sets

L1 = Λ(G0), L2 = T0 ∩A, L3 = fΛ(G0), L4 = f(T0 ∩A).

We want to find compact sets K1,K2,K3,K4 ⊂M\{p} so that for each y ∈ Li∩(Λ(G)\{p}),
we can find h ∈ P so that hy ∈ Ki.

We already know that we can take K1 = K̂, and to find K2, we can use the exact same
construction we used for K3 in Case 1. To justify the application of Proposition 2.18 in this
situtation, we again need to check that for any g ∈ G0 \J±1, we have gB±1 ⊂M \{p}. This
time, the desired inclusion follows from precise invariance of (B1, B−1) under (J1, J−1) and
the fact that p ∈ B1.

f(B1)

B−1B1

p

K2

K3

Figure 6.2. Illustration for Case 2 of Lemma 6.13. The sets B−1 and
f(B1) are already compact subsets of M \{p}, so we need to divide the rest
of Λ(G) into pieces. The sets K1 and K4 (not pictured) lie in Λ(G0) \ {p}
and f(Λ(G0)) \ {p}.

Finally, to find K3 and K4, we just apply the same exact arguments to the parabolic
point f−1p ∈ Λ(J−1) and its stabilizer f−1Pf , to obtain a pair of compact sets K ′3,K

′
4 ⊂

M \ {f−1p} such that for any z ∈ (Λ(G) \ {f−1p}) ∩ (L1 ∪ L2), we can find h ∈ P so
that f−1hfz ∈ K ′3 ∪ K ′4. We can take K3 = fK ′3 and K4 = fK ′4 (see Figure 6.2). Then
if y ∈ (Λ(G) \ {p}) ∩ (L3 ∪ L4) = (Λ(G) \ {p}) ∩ (fL1 ∪ fL2), we have y = fz for z ∈
(Λ(G) \ {f−1p}) ∩ (L1 ∪ L2), and we can find h ∈ P so that f−1hfz ∈ f−1K3 ∪ f−1K4,
hence hy ∈ K3 ∪K4. �

Finally, we complete the proof of this direction of Theorem B part (iv):

Proposition 6.14. If G0 is geometrically finite, then G is geometrically finite.
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Proof. We must show that any x ∈ Λ(G) is a conical limit point or bounded parabolic point.
By Lemma 6.12, we may assume x ∈ G(Λ(G0)). Since G acts by homeomorphisms, in fact
we can assume that x ∈ Λ(G0). Since G0 is geometrically finite, x is either a conical limit
point or bounded parabolic point for the action of G0 on Λ(G0). In the former case, x is also
a conical limit point for G acting on Λ(G), and in the latter case x is a bounded parabolic
point for G acting on Λ(G) by Lemma 6.13. Hence G is geometrically finite. �

6.4. Geometrical finiteness of G0. Finally, we prove the other direction of Theorem B
part (iv), and show that if G is geometrically finite, then so is G0. As for the amalgamated
free product case, the first step is the following:

Lemma 6.15. Assume that G is geometrically finite. Let x ∈ Λ(G0) \G0(Λ(J1)∪Λ(J−1)),
and suppose that hk ∈ G is a conical limit sequence for x. Then, after extracting a subse-
quence, we can find some h ∈ G so that hk ∈ hG0 for every k.

Proof. By Proposition 6.4 part (iii), we know x ∈ A0 ⊂ A. As x is a conical limit point, we
can find a conical limit sequence (hk) for x, so that for distinct points a, b ∈ M , we have
hkx→ a and hkz → b for any z ∈M \ {x}.

If hk ∈ G0 for infinitely many k then we are done, so we may assume |hk| ≥ 1 for every
k. Suppose we can write hk = h′kfgk where |h′k| = |hk| − 1 (the case where hk = hkf

−1gk
is similar). We note that gkx ∈ A0 ⊂ A still since A0 is G0-invariant.

Consider the sequence (hkg
−1
k ) = (h′kf). We know that fgkx ∈ fA ⊂ B1, so hkx lies

in h′kB1 for every k. If the h′k are all in distinct left J1-cosets in G, the sequence (h′kB1)
converges to a singleton by Lemma 6.8. The limit of (hkx) is contained in this singleton, so
the singleton is {a}. On the other hand, since A is infinite, the set g−1k A is also infinite, so

there is at least one point z in g−1k A \ {x}. But then hkz ∈ hkg−1k A, so we have

hkz ∈ h′kfgkg−1k A ⊂ h′kfA ⊂ h′kB1.

This means that (hkz) converges to a, which contradicts the fact that (hk) is a conical limit
sequence for x.

So, after taking a subsequence, we must have h′k ∈ h′J1 for some fixed h′ ∈ G. Then for
every k, we have hk ∈ h′J1fgk = h′fJ−1gk ⊂ h′fG0, and we are done. �

Proposition 6.16. If G is geometrically finite, then G0 is geometrically finite.

Proof. We must show that any x ∈ Λ(G0) is a conical limit point or bounded parabolic
point for the G0-action. Since G is geometrically finite, x is either a conical limit point or
bounded parabolic point for the G-action. In the former case, by Lemma 6.15 we conclude
that there is a conical limit sequence of the form (hgk) for x, where h ∈ G and gk ∈ G0.
Then (gk) is a conical limit sequence for x in G0 and we are done.

In the latter case, let P < G be the stabilizer of x, a parabolic subgroup of G. We claim
that in fact P is a subgroup of G0. If x ∈ Λ(J1)∪Λ(J−1), then x lies in either ∂B1 or ∂B−1,
and then this follows from Lemma 6.5. And, if x = gy for y ∈ Λ(J1) ∪ Λ(J−1) and g ∈ G0,
then the stabilizer of x lies in gG0g

−1 = G0. Finally, if x ∈ Λ(G0) \ G0(Λ(J1) ∪ Λ(J−1)),
then part (iii) of Proposition 6.4 says that x ∈ A0, and Lemma 5.4 implies that no element
of G with positive length can fix a point in A0.

Now, since x is a bounded parabolic point for the G-action on Λ(G), local compactness
of Λ(G) \ {x} implies that there is some compact K ⊂ Λ(G) so that P (K) = Λ(G) \ {x}.
We let K0 = K ∩ Λ(G0), which is a compact in Λ(G0) \ {x}.

Using G0-invariance (and hence P -invariance) of Λ(G0), we now have that

P (K0) = P (K ∩ Λ(G0)) = P (K) ∩ Λ(G0) = Λ(G0) \ {x}
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as desired. �
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