
DYNAMICAL PROPERTIES OF CONVEX COCOMPACT

ACTIONS IN PROJECTIVE SPACE

THEODORE WEISMAN

Abstract. We give a dynamical characterization of convex cocompact group

actions on properly convex domains in projective space in the sense of Danciger-
Guéritaud-Kassel: we show that convex cocompactness in RPd is equivalent

to an expansion property of the group about its limit set, occuring in different

Grassmannians. As an application, we give a sufficient and necessary condition
for convex cocompactness for groups which are hyperbolic relative to a collec-

tion of convex cocompact subgroups. We show that convex cocompactness in

this situation is equivalent to the existence of an equivariant homeomorphism
from the Bowditch boundary to the quotient of the limit set of the group by

the limit sets of its peripheral subgroups.
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1. Introduction

When G is a rank-one semisimple Lie group, a convex cocompact subgroup is a
discrete group Γ ⊂ G which acts cocompactly on some convex set in the Riemannian
symmetric space G/K, where K is a maximal compact in G. Convex cocompact
subgroups in rank-one have long been objects of great interest, and have a wide
variety of possible characterizations.

More recently, efforts have been underway to understand the appropriate gen-
eralization of convex cocompactness in higher-rank Lie groups. A key concept is
Anosov representations: discrete and faithful representations of word-hyperbolic
groups into reductive Lie groups which generalize a dynamical definition of convex
cocompact subgroups in rank one. Anosov representations were first defined for
surface groups by Labourie [Lab06], and the definition was later extended to gen-
eral word-hyperbolic groups by Guichard-Wienhard [GW12]. Guichard-Wienhard
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also demonstrated that an Anosov representation ρ of a group Γ can be interpreted
as the holonomy of a certain geometric structure associated to ρ. Currently, under-
standing the connection between Anosov representations and geometric structures
is an area of active research.

In [DGK17], Danciger, Guéritaud, and Kassel developed a notion of convex
cocompact representations in PGL(d,R) that (as in the rank-one setting) have
concrete and transparent convex geometric objects associated to them—in this
case, a compact manifold (or orbifold) with a convex projective structure.

Recall that a subset Ω of projective space RPd−1 is convex if it is contained in
some affine chart in RPd−1, and Ω is a convex subset of that affine chart. The set
Ω is properly convex if its closure is also contained in an affine chart, and it is a
properly convex domain if it is also open. A convex projective orbifold is a quotient
of a convex set in RPd−1 by a discrete subgroup of Aut(Ω), where

Aut(Ω) := {g ∈ PGL(d,R) : g · Ω = Ω}.
The Danciger-Guéritaud-Kassel definition of convex cocompactness in RPd−1

says that a group Γ ⊂ PGL(d,R) is convex cocompact when it is the holonomy of
a compact convex projective orbifold satisfying certain conditions.

Definition 1.1. Let Ω be properly convex domain in RPd−1, and let Γ ⊆ Aut(Ω).

• The full orbital limit set ΛΩ(Γ) is the set of accumulation points in ∂Ω of
Γ-orbits in Ω, i.e. the union⋃

x∈Ω

(Γ · x ∩ ∂Ω).

• The convex core of Γ in Ω, denoted CorΩ(Γ), is the convex hull in Ω of the
full orbital limit set ΛΩ(Γ).

Definition 1.2 ([DGK17, Definition 1.11]). Let Ω be a properly convex domain
in RPd−1, and let Γ be a discrete group acting by projective transformations on Ω.
The group Γ acts convex cocompactly on Ω if it acts cocompactly on CorΩ(Γ).

A group Γ ⊂ PGL(d,R) acts convex cocompactly in RPd−1 if it acts convex
cocompactly on some properly convex domain Ω ⊂ RPd−1.

Note that this definition is strictly stronger than merely asking for Γ to act
cocompactly on some Γ-invariant convex subset of a properly convex domain Ω.

Danciger-Guéritaud-Kassel prove that when a discrete word-hyperbolic group
Γ ⊂ PGL(d,R) preserves a properly convex domain, Γ acts convex cocompactly
on some domain Ω ⊂ RPd−1 precisely when the inclusion Γ ↪→ PGL(d,R) is P1-
Anosov ; a related result was independently shown by Zimmer in [Zim21]. Moreover,
a group acting convex cocompactly on a domain Ω is word-hyperbolic precisely
when there are no nontrivial projective segments in its full orbital limit set (and in
this case the definition is equivalent to a similar notion of convex cocompactness
introduced by Crampon-Marquis in [CM14]).

However, there are also many examples of non-hyperbolic groups which have
convex cocompact representations as in Definition 1.2; see Section 2.6. These non-
hyperbolic convex cocompact groups are somewhat more mysterious than their
hyperbolic counterparts. Recently, however, there has been significant progress to-
wards a deeper understanding of them, especially in the case where the Γ-action on
the entire domain Ω is cocompact: see e.g. [Isl19], [Bob20], [Zim20]. Of particular
relevance to this paper is the description, due to Islam-Zimmer [IZ21], [IZ19], of the



DYNAMICAL PROPERTIES OF CONVEX COCOMPACT ACTIONS 3

domains with a convex cocompact action by a relatively hyperbolic group relative
to a family of virtually abelian subgroups of rank at least two.

1.1. Convex cocompactness and Anosov dynamics. The first main result of
this paper (Theorem 1.5 below) is a dynamical characterization of convex cocom-
pactness that applies even for non-hyperbolic groups, generalizing the relationship
between convex cocompactness and P1-Anosov representations. This addresses a
question asked by Danciger-Guéritaud-Kassel in [DGK17].

The main idea behind Theorem 1.5 is to generalize the dynamical description of
convex cocompactness explored by Sullivan [Sul85] in the rank-one setting: when Γ
is a discrete subgroup of PO(d, 1), Γ is convex cocompact if and only if Γ satisfies
an expansion/contraction property about its limit set in ∂Hd.

More generally, when ρ : Γ→ G is a P -Anosov representation (for P a parabolic
subgroup of a reductive Lie group G), work of Kapovich-Leeb-Porti [KLP17] shows
that Γ satisfies an expansion property on the flag manifold G/P . Kapovich-Leeb-
Porti also showed in [KLP18] (using the same basic idea as Sullivan) that this
expansion property can be used to find cocompact domains of discontinuity for
Anosov representations in G/P .

When Γ is hyperbolic with ρ : Γ→ PGL(d,R) convex cocompact, ρ is P1-Anosov,
yielding an expansion property in RPd−1. Theorem 1.5 says that convex cocompact
representations Γ → PGL(d,R) are characterized by a similar expansion property
on multiple flag manifolds (and some additional technical conditions): different
elements of Γ expand neighborhoods in different Grassmannians Gr(k, d). That
is, convex cocompactness in PGL(d,R) is equivalent to a kind of “mixed Anosov”
property.

Using work of Cooper-Long-Tillmann [CLT18], Danciger-Guéritaud-Kassel also
observe that convex cocompactness in the sense of Definition 1.2 is stable: if Γ ⊂
PGL(d,R) is a convex cocompact subgroup, then there is an open subset U of
Hom(Γ,PGL(d,R)), containing the inclusion Γ ↪→ PGL(d,R), such that any ρ ∈ U
is injective and discrete with ρ(Γ) convex cocompact.

Theorem 1.5 then implies that the “mixed Anosov” property we consider in this
paper is also stable under small deformations. This suggests one possible route
towards a generalization of Anosov representations for non-hyperbolic groups.

1.1.1. Structure of the boundary of a convex domain. The expansion property we
use to characterize convex cocompactness in PGL(d,R) is given in terms of the
natural decomposition of the boundary of a convex domain into convex pieces.
Each point x in the boundary of a convex set Ω lies in a unique face FΩ(x): the
set of all points in ∂Ω which lie in a common open line segment in ∂Ω with x. The
support supp(F ) of a face F in ∂Ω is the projective span of F . We can view the
support as an element of the Grassmannian of k-planes Gr(k, d), for some 1 ≤ k < d.

When Λ is a subset of ∂Ω, we can ask for it to be well-behaved with respect to
the decomposition of ∂Ω into faces.

Definition 1.3. Let Λ be a subset of ∂Ω. If, for all x ∈ Λ, we have

FΩ(x) ⊂ Λ,

we say that Λ contains all of its faces.

Definition 1.4. Let Λ be a subset of ∂Ω. We say that Λ is boundary-convex if any
supporting hyperplane of Ω intersects Λ in a convex set.
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Λ1

Λ2

Figure 1. Here Ω is a cone, the convex hull of a disk and a point
in RP3. The set Λ1 (red) does not contain all of its faces (Definition
1.3), because each point in Λ1 is contained in the interior of a line
segment in ∂Ω which is not contained in Λ1. The set Λ2 (blue)
contains all of its faces, but it is not boundary-convex (Definition
1.4): a line segment joining two points of Λ2 intersects ∂Ω− Λ2.

If Λ = ΛΩ(Γ) for a group Γ ⊆ Aut(Ω) acting convex cocompactly on some domain
Ω, then [DGK17, Lemma 4.1] implies that Λ is closed and boundary convex, and
contains all of its faces.

When Λ is a subset of ∂Ω containing all of its faces, and Γ ⊂ PGL(d,R) is a
group preserving Λ, we say Γ is expanding at the faces of Λ (Definition 3.1) if for
every face F in Λ, the group Γ has an element which is expanding in a neighborhood
of supp(F ) in Gr(k, d). When the expansion constants can be chosen uniformly, we
say Γ is uniformly expanding at the faces of Λ. For the full definitions, see Section
3.1.

Here is the precise version of our characterization of convex cocompactness:

Theorem 1.5. Let Ω be a properly convex domain in RPd−1, and let Γ be a discrete
subgroup of Aut(Ω). The following are equivalent:

(1) Γ acts convex cocompactly on Ω.
(2) There is a closed, Γ-invariant, and boundary-convex subset Λ ⊂ ∂Ω with

nonempty convex hull such that Λ contains all of its faces and Γ is uniformly
expanding at the faces of Λ.

In this case, the set Λ is the full orbital limit set ΛΩ(Γ).

Remark 1.6. When we prove the implication (2) =⇒ (1) of Theorem 1.5, we will
not actually need to assume that the expansion at the faces of Λ is uniform—only
that the expansion occurs with respect to a particular choice of Riemannian metric
on Gr(k, d). See Remark 3.2.

A special case of convex cocompactness is when a discrete group Γ ⊂ Aut(Ω)
acts cocompactly on all of Ω. In this case, we say that Ω is divisible, and the group
Γ divides the domain. As ∂Ω is always boundary convex and contains all of its
faces, when Λ = ∂Ω, Theorem 1.5 can be stated as the following:
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Corollary 1.7. Let Γ be a discrete subgroup of PGL(d,R) preserving a properly
convex domain Ω. Then Γ divides Ω if and only if Γ is uniformly expanding at the
faces of ∂Ω.

1.1.2. Spaces of properly convex domains. A key technical tool we need for the
implication 2 =⇒ 1 in Theorem 1.5 is a version of the Benzécri cocompactness
theorem for properly convex domains in RPd−1, which applies relative to a direct
sum decomposition of Rd. This result (proved in Section 4) may be of independent
interest, so we describe it briefly here.

In [Ben60], Benzécri showed that the group PGL(d,R) acts properly and cocom-
pactly on the space of pointed properly convex domains in RPd−1. One immediate
and useful consequence of this fact is that if Ω ⊂ RPd−1 is a properly convex do-
main, and xn is any sequence of points in Ω, then after extracting a subsequence,
there is a sequence of projective transformations gn ∈ PGL(d,R) such that gnΩ
converges to a fixed properly convex domain Ω∞, and gnxn converges to a point in
the interior of Ω∞.

We prove a result (Proposition 4.4) which provides some control over the group
elements gn appearing above. Roughly, our result says that if the sequence xn lies
in a lower-dimensional “slice” W ⊂ Ω satisfying some technical conditions, then the
sequence gn above can be chosen to preserve both the projective subspace spanned
by W and a fixed complementary subspace in Rd.

Proposition 4.4 can be compared to earlier work of Benoist [Ben03] and Frankel
[Fra91]. These results effectively show that when xn lies in a lower-dimensional
“slice” in Ω as above, then the sequence gn can always be chosen to preserve the
span of the slice. The proposition we prove in this paper has stronger hypotheses,
but also a stronger conclusion. The more precise control we get is necessary for the
intended application—see Remark 5.11.

1.2. Relative hyperbolicity. In the second part of this paper, we use the dy-
namical characterization of convex cocompactness given by Theorem 1.5 to study
convex cocompactness for a group Γ which is hyperbolic relative to a collection H of
convex cocompact subgroups. We will give a necessary and sufficient condition for
such a group to act convex cocompactly in terms of an embedding of the Bowditch
boundary ∂(Γ,H). This strengthens the connection between convex cocompact
groups in PGL(d,R) and Anosov representations, since Anosov representations can
also be characterized by the existence of an equivariant embedding of the Gromov
boundary of a hyperbolic group into some flag manifold (see [GW12], [KLP17]).

We will give a definition of relatively hyperbolic groups in terms of convergence
dynamics in Section 6.

Definition 1.8. Let H = {Hi} be a collection of subgroups of PGL(d,R), each
acting convex cocompactly on a fixed properly convex domain Ω with pairwise
disjoint full orbital limit sets ΛΩ(Hi).

We denote by [∂Ω]H the space obtained from ∂Ω by collapsing all of the full
orbital sets ΛΩ(Hi) to points. Similarly, for x ∈ ∂Ω, or a subset Λ ⊆ ∂Ω, we use
[x]H and [Λ]H to denote the images of x and Λ in [∂Ω]H.

When H is a conjugacy-invariant collection of subgroups of a group Γ ⊆ Aut(Ω),
the action of Γ on ∂Ω descends to an action on [∂Ω]H. More generally, if Λ ⊆ ∂Ω
is Γ-invariant, Γ also acts on [Λ]H.

We show the following:
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Theorem 1.9. Let Γ ⊆ PGL(d,R) act on a properly convex domain Ω, and suppose
that Γ is hyperbolic relative to a family of subgroups H = {Hi}, such that the Hi

each act convex cocompactly on Ω with pairwise disjoint full orbital limit sets.
If there is a boundary-convex Γ-invariant subset Λ ⊆ ∂Ω containing all of its

faces, and a Γ-equivariant embedding ∂(Γ,H) → [∂Ω]H with image [Λ]H, then Γ
acts convex cocompactly on Ω and Λ is the full orbital limit set ΛΩ(Γ).

Remark 1.10. In Theorem 1.9, we do not need to assume that Γ is discrete in
PGL(d,R): this will also follow from the existence of the equivariant boundary
embedding.

There are two special cases of Theorem 1.9 worth considering, which we state
separately as corollaries. The first is when the subset Λ is the entire boundary ∂Ω.

Corollary 1.11. Let Γ,Ω, and H be as in Theorem 1.9, and suppose that ∂(Γ,H)
is equivariantly homeomorphic to [∂Ω]H. Then Γ divides Ω.

The second corollary is when the set of peripheral subgroups is empty, i.e. Γ is
hyperbolic.

Corollary 1.12. Let Γ be a word-hyperbolic group in PGL(d,R) acting on a prop-
erly convex domain Ω, and suppose that the Gromov boundary of Γ embeds equiv-
ariantly into ∂Ω with image Λ.

If Λ is boundary-convex and contains all of its faces, then Γ acts convex cocom-
pactly on Ω and Λ = ΛΩ(Γ).

When a hyperbolic group acts convex cocompactly on a domain Ω, its full orbital
limit set contains no segments. So in this case, Λ contains all of its faces whenever
no point of Λ lies in the interior of any segment in ∂Ω.

We also can phrase this corollary in terms of Anosov boundary maps. Due to
[DGK17, Theorem 1.15] (see also [Zim21, Theorem 1.10]), if a word-hyperbolic
group Γ acts convex cocompactly on some domain Ω, then the inclusion map Γ ↪→
PGL(d,R) is a P1-Anosov representation preserving Ω, and in this case the full
orbital limit set is the image of the Anosov boundary map ∂Γ → RPd−1. Thus
Corollary 1.12 implies:

Corollary 1.13. Let Γ be a word-hyperbolic subgroup of PGL(d,R) preserving a
properly convex domain Ω, and suppose that there exists a Γ-equivariant embedding
ξ : ∂Γ → ∂Ω whose image is boundary-convex and contains all of its faces. Then
the inclusion Γ ↪→ PGL(d,R) is a P1-Anosov representation with RPd−1 boundary
map ξ.

Note that it is not true in general that the RPd−1-boundary map ξ of a P1-
Anosov representation always embeds into the boundary of some properly convex
domain Ω ⊂ RPd−1. Moreover even if ξ does embed into ∂Ω for some Ω, it does not
necessarily follow that the image of the embedding is boundary-convex. However,
it again follows from [DGK17, Theorem 1.15] that in this case, there is some Ω′

such that ξ embeds ∂Γ into ∂Ω′ with a boundary-convex image containing its faces.
In fact it is always possible to take Ω′ strictly convex with C1 boundary.

Remark 1.14. Kapovich-Leeb [KL18] and Zhu [Zhu21] (see also Zhu-Zimmer
[ZZ22]) have given several possible definitions for a relative Anosov representa-
tion of a relatively hyperbolic group, aiming to generalize geometrical finiteness in
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rank-one in the same way that Anosov representations generalize convex cocom-
pactness.

The non-hyperbolic convex cocompact group actions we consider in this paper
are not covered by either the Kapovich-Leeb or Zhu pictures. For one, not all
examples of convex cocompact groups are relatively hyperbolic (see Section 2.6).
But even in the relatively hyperbolic setting, the definitions are not compatible.
Due to [DGK17, Proposition 10.3], convex cocompact groups in PGL(d,R) do not
contain weakly unipotent elements. In contrast, the relative Anosov subgroups
considered by Kapovich-Leeb and Zhu always contain weakly unipotent elements
if the group is not hyperbolic (see section 5 in [KL18]). However, see [Wei22] for
follow-up work which gives a unified approach to studying both relatively hyperbolic
convex cocompact groups in PGL(d,R) and relative Anosov representations.

During the proof of Theorem 1.9, we will see the following (see Proposition 7.1):

Proposition 1.15. In the setting of Theorem 1.9, every nontrivial segment in the
set Λ is contained in the full orbital limit set of some Hi ∈ H.

This leads us to a converse to Theorem 1.9.

Theorem 1.16. Let Γ be a group acting convex cocompactly on a properly convex
domain Ω, and suppose that Γ has a conjugacy-invariant collection of subgroups
H = {Hi}, such that the groups in H lie in finitely many conjugacy classes and
each Hi acts convex cocompactly on Ω.

Then Γ is hyperbolic relative to H if and only if

(i) the full orbital limit sets ΛΩ(Hi), ΛΩ(Hj) are disjoint for distinct Hi, Hj ∈
H,

(ii) every nontrivial segment in ΛΩ(Γ) is contained in ΛΩ(Hi) for some Hi ∈ H,
and

(iii) each Hi ∈ H is its own normalizer in Γ.

Moreover, in this case, ∂(Γ,H) equivariantly embeds into [∂Ω]H with image [ΛΩ(Γ)]H.

Remark 1.17. If conditions (i) and (ii) hold for a conjugacy-closed collection
of subgroups H of Γ, then they also hold for the collection of normalizers, since
g · ΛΩ(Hi) = ΛΩ(gHig

−1) for any Hi ∈ H.
Moreover, condition (iii) of Theorem 1.16 is always true for the peripheral sub-

groups of a relatively hyperbolic group, because then each Hi ∈ H can be exactly
realized as the stabilizer of its unique fixed point in the Bowditch boundary ∂(Γ,H)
(see Theorem 6.3).

Islam and Zimmer [IZ21, IZ19] have previously shown that when Γ is a convex
cocompact group which is hyperbolic relative to a collection H of virtually abelian
subgroups of rank at least 2, conditions (i) and (ii) of Theorem 1.16 hold, and
moreover the assumption that all of the groups in H act convex cocompactly is
automatically satisfied. In particular, this implies that the set [∂Ω]H is well-defined.

Thus, in this case, Theorem 1.16 implies the following:

Corollary 1.18. Let Ω be a properly convex domain, and let Γ be a group which is
hyperbolic relative to a collection H of virtually abelian subgroups with rank at least
2.

If Γ acts convex cocompactly on Ω, then there is an equivariant embedding from
∂(Γ,H) to [∂Ω]H whose image is [ΛΩ(Γ)]H.
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Islam-Zimmer have recently shown in [IZ20] that if Γ acts convex cocompactly
on some domain Ω, and Γ is isomorphic to the fundamental group of an orientable,
closed, and irreducible 3-manifold M which is non-geometric (i.e. does not carry
one of the eight Thurston geometries), then M decomposes into hyperbolic pieces
and therefore Γ is hyperbolic relative to free abelian subgroups. Using different
methods, they also give a proof of Corollary 1.18 in this case.

Theorem 1.16 in fact applies to a strictly larger family of groups than those cov-
ered by Corollary 1.18: there exist relatively hyperbolic convex cocompact groups
which are not hyperbolic relative to virtually abelian subgroups (and are not them-
selves hyperbolic). See the end of Section 2.6.3 for details.

Remark 1.19. Since this paper first appeared, Islam-Zimmer [IZ22] have shown
that when Γ is any relatively hyperbolic group acting convex cocompactly on a
properly convex domain Ω, then each peripheral subgroup of Γ always acts convex
cocompactly on Ω as well. This makes it possible to drop an assumption from The-
orem 1.16, and implies that Corollary 1.18 holds in the case of arbitrary peripheral
subgroups.

In the same paper, Islam-Zimmer extend some of our techniques to show versions
of Theorem 1.16 and Corollary 1.18 in the more general context of naive convex
cocompact group actions in projective space, which we do not discuss in this paper.

Remark 1.20. Relatively hyperbolic group actions on convex projective domains
have previously been studied by Crampon-Marquis [CLM16] (who provide a notion
of a geometrically finite group action on a strictly convex domain), and by Cooper-
Long-Tillmann [CLT15] in the context of convex projective cusps. Choi [Cho10]
has also studied the relationship between the projective geometry of strictly convex
projective orbifolds with ends, and the Bowditch boundaries of their (relatively
hyperbolic) fundamental groups.

The relatively hyperbolic group actions we consider in this paper are different,
however, since we consider projective orbifolds which are not necessarily strictly
convex. In this context, the peripheral subgroups do not need to be associated to
an end of the manifold, and act cocompactly on a convex subset of projective space.

1.3. Outline of the paper. In Section 2, we recall some background about prop-
erly convex domains and their automorphism groups, and describe some known
examples of convex cocompact groups.

Sections 3 through 5 of this paper are devoted to the proof of Theorem 1.5. We
first prove the implication (2) =⇒ (1) in Section 3, using a modified version of an
analogous argument in [DGK17]. The proof proceeds by contradiction: we assume
that the space of Γ-orbits is not compact in CorΩ(Γ), which means that the orbits
uniformly accumulate on the boundary of CorΩ(Γ) in Ω. But the expansivity of
the action on the faces of Λ allows us to move points away from the boundary of
CorΩ(Γ) and we get a contradiction. This basic idea is essentially due to Sullivan
[Sul85], but here the argument is more complicated because the expansivity occurs
in a different space than the one where we want to find a cocompact action.

Remark 1.21. In [KLP18], Kapovich-Leeb-Porti also adapt Sullivan’s argument
to show that an expanding (Anosov) action in one flag manifold can produce a
cocompact domain of discontinuity in another flag manifold. Their argument does
not apply directly to our situation, since it relies on the fact that the “limit set”
where the expanding action occurs is compact. Typically, if Λ is the full orbital limit
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set of a group acting convex cocompactly on Ω ⊂ RPd−1, the subset of Gr(k, d)
consisting of supports of k-dimensional faces of the full orbital limit set Λ is not
compact (see e.g. [Ben06a] for examples). Consequently, it is necessary for us to
work with expansion in several different Grassmannians for the same group—and
to exploit the fact that the full orbital limit set Λ actually lies in the boundary of
a convex subset of RPd−1.

Section 4 of the paper is mainly devoted to the proof of Proposition 4.4, the key
technical result mentioned earlier in 1.1.2. Then, in Section 5, we use the results of
Section 4 to prove the implication (1) =⇒ (2) of Theorem 1.5. The basic argument
is again inspired by Sullivan’s work [Sul79] in the case of convex cocompact actions
in Hd.

The remainder of the paper (Sections 6 through 8) restricts to the context of
relatively hyperbolic groups. In Section 6, we give some background on relatively
hyperbolic groups, and state a dynamical definition of relatively hyperbolic groups
due to Yaman [Yam04]. Then in Section 7, we use this characterization to prove
Theorem 1.9, relying on the characterization of convex cocompactness given by
Theorem 1.5.

In Section 8, we extend a result of Islam-Zimmer [IZ19], showing that when
Γ is a group acting on a properly convex domain Ω, and Γ is hyperbolic relative
to a collection of subgroups acting convex cocompactly on Ω, conditions (i) and
(ii) of Theorem 1.16 hold. Then, we prove the rest of Theorem 1.16, again by
applying Theorem 1.5 and using the dynamical definition of relative hyperbolicity
from Section 6.

1.4. Acknowledgments. The author would like to thank his advisor, Jeff Dan-
ciger, for providing endless amounts of guidance and encouragement. We also would
like to thank Fanny Kassel for giving useful feedback, and two anonymous referees
for helpful comments and insights.

2. Background on properly convex domains

2.1. Basic definitions. All real vector spaces in this paper are finite-dimensional.

2.1.1. Convex cones and convex domains.

Definition 2.1. A convex cone in a real vector space V is a convex subset of
V − {0} which is closed under multiplication by positive scalars.

A convex cone is sharp if it does not contain any affine line.

The boundary of a convex cone C in a real vector space V is the boundary of C
viewed as a cone in its linear span V ′ in V ; this boundary is homeomorphic to a
cone over Sk−2, where k = dimV ′.

Definition 2.2. A subset Ω ⊂ P(V ) is convex if it is the projectivization of some

convex cone Ω̃ ⊂ V , and it is properly convex if Ω̃ is sharp (equivalently, if Ω is
contained in some affine chart in P(V )). An open convex set is a convex domain.

The boundary ∂Ω is the projectivization of ∂Ω̃− {0}. A convex set Ω is strictly
convex if ∂Ω does not contain a nontrivial projective segment.

Definition 2.3. Let Ω be a convex subset of P(V ). A supporting subspace of Ω is
a projective subspace which intersects ∂Ω but not Ω. In particular, a supporting
hyperplane is a codimension-1 supporting subspace.
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Using the convex cone over Ω, one can easily verify the following:

Proposition 2.4. Let Ω be a convex subset of P(V ). Every point x ∈ ∂Ω is
contained in at least one supporting hyperplane.

We remark that a convex domain in P(V ) has C1 boundary precisely when every
point in ∂Ω is contained in exactly one supporting hyperplane.

2.1.2. Projective line segments. When Ω is a properly convex set, and x, y ∈ Ω,
we use [x, y] to denote the unique (closed) projective line segment joining x and y
which is contained in Ω. We similarly use (x, y), [x, y), (x, y] to denote open and
half-open projective line segments.

2.1.3. Convex hull and ideal boundary.

Definition 2.5. If Ω is a properly convex set in P(V ) and Λ ⊂ ∂Ω, then the convex
hull of Λ is its convex hull in Ω in any affine chart containing Ω. We denote the
convex hull of Λ by HullΩ(Λ).

The ideal boundary of a set C in a properly convex set Ω is the set

∂i(C) := C ∩ ∂Ω,

where the closure of C is taken in P(V ).

If Λ is a subset of ∂Ω with nonempty convex hull, Λ is boundary-convex (Defini-
tion 1.4) precisely when

Λ = ∂iHullΩ(Λ).

2.2. Faces in ∂Ω.

Definition 2.6. Let Ω be a properly convex domain. The face of ∂Ω at a point
x, which we denote FΩ(x), is the set of points y ∈ ∂Ω such that x and y lie in an
open segment (a, b) ⊂ ∂Ω.

The dimension of a face F is the dimension of a minimal projective subspace
containing F ; such a minimal subspace is called the support of the face and is
denoted supp(F ).

A face is always a convex subset of projective space, open in its support. A face
is a closed subset of ∂Ω if and only if it is an extreme point of Ω.

Remark 2.7. Earlier versions of [DGK17] (and of this paper) referred to what we
call a face as a “stratum.” Our current definition of face agrees with the definition
used by Islam and Zimmer. Notably, our faces are not the same as the facettes of
Benoist and Benzécri.

In particular, our definition ensures that every face is relatively open in its sup-
port, and that every point in the boundary of a properly convex domain Ω is
contained in some face.

Definition 2.8. When Λ is a subset of ∂Ω, a face of Λ in Ω is a face of ∂Ω which
intersects Λ nontrivially.

We warn the reader that this definition of “face” in Λ depends on both Λ and on
the domain Ω whose boundary contains Λ. Often, we will not need to worry about
this, due to the following consequence of Lemma 4.1 (1) in [DGK17]:

Lemma 2.9. Let Ω be a properly convex domain, and let Γ act convex cocompactly
on Ω. The full orbital limit set ΛΩ(Γ) is closed and boundary-convex, and contains
all of its faces.
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2.3. The Hilbert metric. Here we recall the definition of the Hilbert metric, a
useful tool for understanding group actions on properly convex domains. See e.g.
[Mar14] for more background.

Given four distinct points a, b, c, d in RP1 (or four points in RPd−1 lying on a
single projective line), recall that the cross-ratio [a, b; c, d] is given by

[a, b; c, d] :=
|c− a| · |d− b|
|b− a| · |d− c|

,

where the distances are taken in any Euclidean metric on an affine chart containing
a, b, c, d.

The cross-ratio is a projective invariant on 4-tuples, and in fact it parameterizes
the space of PGL(2,R)-orbits of distinct 4-tuples in RP1.

Definition 2.10. Let Ω ⊂ P(V ) be a properly convex domain. The Hilbert metric

dΩ(·, ·) : Ω2 → R≥0

is given by the formula

dΩ(x, y) =
1

2
log[a, x; y, b],

where a, b are the two points in ∂Ω such that a, x, y, b lie on a projective line in
that order.

When the domain Ω is an ellipsoid of dimension d, the Hilbert metric on Ω
recovers the familiar Klein model for hyperbolic space Hd. More generally we have
the following:

Proposition 2.11 (See for example [BK553, Section 28]). Let Ω be a properly
convex domain. Then:

(1) The pair (Ω, dΩ) is a proper metric space.
(2) If x and y are in Ω, then [x, y] is the image of a geodesic (with respect to

dΩ) joining x and y.
(3) The group Aut(Ω) acts by isometries of dΩ.

This implies that Aut(Ω) always acts properly on Ω. In particular, a subgroup
of Aut(Ω) is discrete in PGL(V ) if and only if it acts properly discontinuously on
Ω.

Part (2) of the above Proposition means that (Ω, dΩ) is always a geodesic metric
space. However, in general it need not be uniquely geodesic—this is one of many
ways in which the geometry on a properly convex domain equipped with its Hilbert
metric can differ from hyperbolic geometry.

The point of the Hilbert metric is that it allows us to understand many aspects
of group actions on convex projective domains in terms of metric geometry; in par-
ticular, we may apply the Švarc-Milnor lemma when we have a convex cocompact
action on a domain.

The Hilbert metric can also be used to characterize faces in ∂Ω. An easy calcu-
lation shows:

Proposition 2.12. Let Ω be a properly convex domain, let x ∈ ∂Ω, and fix points
p1, p2 ∈ Ω. For any y ∈ ∂Ω, we have y ∈ FΩ(x) if and only if the Hausdorff distance
(with respect to dΩ) between [p1, x) and [p2, y) is finite.
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Since [p1, x) and [p2, y) are the images of geodesic rays in (Ω, dΩ), the above is
equivalent to the condition that, if cx, cy are unit-speed geodesic rays in (Ω, dΩ)
following projective line segments from p1, p2 to x, y, respectively, then

dΩ(cx(t), cy(t)) ≤ k
for some fixed k independent of t ∈ R≥0.

2.4. Properly embedded simplices.

Definition 2.13. A projective k-simplex in RPd−1 is the projectivization of the
positive linear span of k + 1 linearly independent vectors in Rd.

A projective k-simplex ∆ is an example of a properly convex set in RPd−1. If
∆ is the span of standard basis vectors e1, . . . , ed, the group D+ ⊂ PGL(d,R)
of projectivized diagonal matrices with positive entries (isomorphic to Rd−1) acts
simply transitively on ∆. Then, any discrete Zd−1 subgroup of D+ acts properly
discontinuously and cocompactly on ∆, so the Švarc-Milnor lemma implies that
(∆, d∆) is quasi-isometric to Euclidean space Ed−1.

Definition 2.14. Let Ω be a properly convex domain. A convex projective simplex
∆ ⊂ Ω is properly embedded if ∂∆ is contained in ∂Ω.

A properly embedded simplex in Ω gives an isometric embedding

(∆, d∆)→ (Ω, dΩ),

which in turn gives a quasi-isometric embedding

Ek → (Ω, dΩ).

Maximal properly embedded simplices in Ω can be thought of as analogues of
maximal flats in CAT(0) spaces; see e.g. [Ben06a], [IZ21], [IZ19], [Bob20]. However,
in general, the metric space (Ω, dΩ) is not CAT(0); in fact this occurs if and only if
Ω is an ellipsoid [KS58].

2.5. Duality for convex domains. Let V be a real vector space. Given a convex
set Ω ⊂ P(V ), it is often useful to consider the dual convex set Ω∗ ⊂ P(V ∗).

Definition 2.15. Let C be a convex cone in a real vector space V . The dual convex
cone C∗ ⊂ V ∗ − {0} is

C∗ = {α ∈ V ∗ : α(x) > 0 for all x ∈ C − {0}}.

The following is easily verified:

Proposition 2.16. Let C be a convex cone in a real vector space V .

(1) C∗ is a convex cone in V ∗ − {0}.
(2) C∗∗ = C, under the canonical identification V ∗∗ = V .
(3) C∗ is sharp if and only if C has nonempty interior.

If Ω is the projectivization of a convex cone in P(V ), the dual convex set is the

projectivization Ω∗ of Ω̃∗, where Ω̃ is any cone over Ω. When Ω is a properly convex
domain in P(V ), Ω∗ is a properly convex domain in P(V ∗).

In general, Ω∗ need not be projectively equivalent to Ω. However, the features
of Ω affect the features of Ω∗. For instance, Ω is strictly convex if and only if the
boundary of Ω∗ is C1 (and vice versa, since Ω∗∗ is naturally identified with Ω). We
also note that duality reverses inclusions of convex sets.
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If Γ is a subgroup of PGL(V ) preserving Ω, the dual action of Γ on P(V ∗)
preserves the dual domain Ω∗. So we can simultaneously view Γ as a subgroup of
Aut(Ω) and Aut(Ω∗).

Remark 2.17. Throughout this paper, we will consistently view the dual projective
space as a space of projective hyperplanes in P(V ). That is, we identify an element
[α] ∈ P(V ∗) with the projective hyperplane P(kerα) ⊂ P(V ).

2.6. Known examples of convex cocompact groups. Groups with convex co-
compact actions in projective space fall into two main classes: the word-hyperbolic
groups and the non-word-hyperbolic groups. A consequence of [DGK17] is that a
group Γ acting convex cocompactly on some domain Ω is word-hyperbolic if and
only if the full orbital limit set of Γ does not contain a nontrivial projective segment.
In particular this always holds if Ω itself is strictly convex.

Some of the examples we list below are examples of groups dividing domains,
meaning that the group Γ acts cocompactly on the entire domain Ω. See [Ben08]
for a survey on the topic of convex divisible domains.

2.6.1. Strictly convex divisible examples. The simplest example of a strictly convex
divisible domain is hyperbolic space Hd. Uniform lattices in PO(d, 1) exist in any
dimension d ≥ 1, so they are examples of hyperbolic groups acting cocompactly on
the projective model for Hd (a round ball in RPd).

A torsion-free uniform lattice in PO(d, 1) can be viewed as the image of the
holonomy representation of a closed hyperbolic d-manifold M . Viewing PO(d, 1)
as a subgroup of PGL(d + 1,R) allows us to view the hyperbolic structure on M
as a convex projective structure. It is sometimes possible to perturb the subgroup
Γ ' π1M inside PGL(d + 1,R) to obtain a new discrete group Γ′ ' π1M in
PGL(d+ 1,R) which is the holonomy of a different convex projective structure on
M . The deformed group Γ′ acts cocompactly on some properly convex domain Ω′,
which in general is not projectively equivalent to a round ball.

Further examples of groups Γ dividing strictly convex domains have been found
by Benoist [Ben06b] in dimension 4, using reflection groups, and Kapovich [Kap07]
in dimensions d ≥ 4, by finding convex projective structures on Gromov-Thurston
manifolds [GT87]. The Benoist and Kapovich examples share the feature that the
dividing group Γ is not isomorphic to any lattice in PO(d, 1)—while Γ is word-
hyperbolic, the quotient orbifold Ω/Γ carries no hyperbolic structure.

2.6.2. Non-strictly convex divisible examples. The simplest examples of non-strictly
convex divisible domains are projective k-simplices, which are divided by free
abelian groups of rank k. When k ≥ 2, these simplices are not strictly convex,
but we can still decompose the action into strictly convex pieces—the cone over the
simplex splits as a sum of strictly convex cones, and each Z factor acts cocompactly
on a summand. So we may wish to find irreducible examples. These exist too: uni-
form lattices in SL(d,R) act cocompactly on the symmetric space SL(d,R)/SO(d).
This symmetric space can be modeled as the projectivization of the set of positive
definite symmetric matrices sitting inside the space of d × d matrices. This set is
convex, but not strictly convex whenever d > 2.

Other interesting examples of non-strictly convex divisible domains have been
discovered. In 2006, Benoist [Ben06a] produced examples of inhomogeneous prop-
erly convex divisible domains in dimensions 3−7, divided by non-hyperbolic groups;
other examples in dimensions 4−7 were later found by Choi-Lee-Marquis in [CLM16].
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Both of these families of examples essentially come from the theory of reflection
groups. Given a Coxeter group Γ acting by reflections in PGL(d,R), there is a
fairly straightforward procedure due to Vinberg [Vin71] which determines whether
or not Γ acts cocompactly on some convex domain in projective space. The domain
fails to be strictly convex if and only if Γ contains virtually abelian subgroups of
rank at least 2 (which happens only when Γ contains a Coxeter subgroup of type

Ãn).
More recently, Blayac-Viaggi [BV23] have constructed additional examples of

irreducible non-strictly convex divisible domains in P(Rd), for any dimension d ≥
4. The construction does not use reflection groups, but rather a combination of
arithmetic methods and a procedure known as projective bending.

2.6.3. Non-hyperbolic convex cocompact groups. In [BDL15], Ballas-Danciger-Lee
produce examples of non-hyperbolic groups acting convex cocompactly which do
not divide a properly convex domain. These come from deformations of hyperbolic
structures on certain cusped hyperbolic 3-manifolds.

None of the groups Γ in the examples in [Ben06a], [CLM16], or [BDL15] are
word-hyperbolic, but they are all relatively hyperbolic, relative to a family of virtu-
ally abelian subgroups of rank at least 2. This situation was studied more generally
by Islam-Zimmer in [IZ21], [IZ19]. Islam-Zimmer show that if Γ is hyperbolic rel-
ative to virtually abelian subgroups of rank ≥ 2, and Γ acts convex cocompactly
on a properly convex domain Ω, the peripheral subgroups of Γ act cocompactly on
properly embedded projective simplices in Ω. Moreover, in this situation, the prop-
erly embedded maximal simplices in CorΩ(Γ) of dimension at least 2 are isolated,
and every such maximal simplex has compact quotient by a free abelian subgroup
of Γ.

Work of Danciger, Guéritaud, Kassel, Lee, and Marquis [DGK+21] shows that
in fact every convex cocompact reflection group is either hyperbolic or relatively
hyperbolic relative to virtually abelian subgroups. But, this is not true for all non-
hyperbolic groups with convex cocompact actions. Uniform lattices in SL(d,R)
provide a counterexample, since the maximal flat subspaces of the Riemannian
symmetric space SL(d,R)/ SO(d) are not isolated (and thus the properly embedded
maximal simplices in its projective model are not isolated).

There are also examples of convex cocompact relatively hyperbolic groups which
are not hyperbolic relative to virtually abelian subgroups. For instance, for every
d ≥ 3, the construction of Blayac-Viaggi mentioned earlier yields groups dividing
domains in PGL(d,R), which are hyperbolic relative to subgroups which are virtu-
ally the product of an infinite cyclic group and the fundamental group of a closed
hyperbolic (d− 3)-manifold.

Another construction of relatively hyperbolic convex cocompact groups uses the
following (not yet published) result of Danciger-Guéritaud-Kassel:

Proposition 2.18 (See [DGK17, Proposition 12.4] for a statement). Let Γ1,Γ2 ⊂
PGL(V ) be groups acting convex cocompactly in P(V ), and suppose that Γ1, Γ2

both do not divide any nonempty properly convex open subset in P(V ). Then for
some g ∈ PGL(V ), the group generated by Γ1 and gΓ2g

−1 is isomorphic to the free
product Γ1 ∗ Γ2, and acts convex cocompactly on P(V ).
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As Danciger-Guéritatud-Kassel observe, it is possible to use this proposition
to construct some exotic examples of convex cocompact groups. Here we ex-
plain the procedure, assuming Proposition 2.18 holds. Let Γ1 and Γ2 be uniform
lattices in SL(d,R). The projective model for the Riemannian symmetric space
SL(d,R)/ SO(d) is embedded into P(V ′), where V ′ is the vector space of d× d real
matrices. We can in turn embed V ′ into some vector space V so that V = V ′⊕V ′′
for some complementary subspace V ′′ with positive dimension. We obtain corre-
sponding embeddings of Γ1 and Γ2 into SL(V ) by asking for both of these groups
to act via the induced representation SL(d,R)→ SL(V ′) and trivially on V ′′.

By [DGK17, Theorem 1.6(E)], Γ1 and Γ2 act convex cocompactly in P(V ). Fur-
ther, since Γ1 and Γ2 divide a domain in P(V ′), their virtual cohomological dimen-
sion is equal to the dimension of P(V ′), which prevents either group from dividing
any larger-dimensional domain. So these groups satisfy the hypotheses of Proposi-
tion 2.18 and we can find a convex cocompact subgroup Γ in P(V ) isomorphic to
Γ1 ∗ Γ2.

This (abstract) free product is relatively hyperbolic, relative to the collection of
conjugates of Γ1,Γ2. But, it is not relatively hyperbolic relative to virtually abelian
subgroups. One way to see this is that the convex core of Γ in P(V ) must contain
the convex core of Γ1, which is a copy of the projective model for SL(d,R)/ SO(d);
this domain contains many maximal properly embedded simplices which are not
isolated.

3. Expansion implies convex cocompactness

The goal of this section is to prove the implication (2) =⇒ (1) of Theorem 1.5.
First let us specify exactly what we mean by “expanding at the faces” of a subset
Λ ⊂ ∂Ω.

3.1. Expansion on the Grassmannian. Recall that a continuous map f : X →
X on a metric space (X, dX) is said to be C-expanding on a subset U ⊂ X, for a
constant C > 1, if

dX(f(x), f(y)) ≥ C · dX(x, y)

for all x, y ∈ U .

Definition 3.1. Let Ω be a properly convex domain in RPd−1, let Γ ⊂ PGL(d,R)
preserve Ω, and let Λ be a Γ-invariant subset of ∂Ω.

Fix a Riemannian metric dk on each Grassmannian Gr(k, d). We say that the
action of Γ on Ω is expanding at the faces of Λ if, for every face F of Λ, there
is a constant C > 1, an element γ ∈ Γ, and an open subset U ⊂ Gr(k, d) with
supp(F ) ∈ U such that γ is C-expanding on U (with respect to the metric dk).

If the constant C > 1 can be chosen uniformly for all faces F of Λ, then we say
the action is C-expanding at the faces of Λ or just uniformly expanding at the faces.

Remark 3.2. It is conceivable that a group action could be expanding at the faces
of Λ with respect to some choice of Riemannian metric dk on Gr(k, d), but not with
respect to another.

However, if Γ is C-expanding with respect to dk for a uniform constant C, the
choice of metric does not matter: since Gr(k, d) is compact, all Riemannian metrics
on Gr(k, d) are bilipschitz-equivalent, and when Γ is C-expanding at the faces of
Λ, one can apply expanding elements iteratively to see that Γ is also C ′-expanding
for an arbitrary constant C ′.
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When the set of supports of (k−1)-dimensional faces of Λ is compact in Gr(k, d)
for each k, then a Γ-action is expanding at faces with respect to some choice of
metric dk if and only if it is uniformly expanding at faces with respect to that metric
(and hence to every metric). For instance, this is the case when Λ is compact and
does not contain any nontrivial segments (so the set of faces is the same as the set
of points).

In our context, however, we will not be able to assume this kind of compactness.
So, when we discuss expansion, we need to either specify the metric or assume that
the expansion is uniform.

Any metric on RPd−1 induces a metric on each Gr(k, d), by viewing elements
of Gr(k, d) as closed subsets of RPd−1 and taking Hausdorff distance. From this
point forward, we will assume that dP denotes the angle metric on projective space,
which is induced by a choice of inner product on Rd. Hausdorff distance on Gr(k, d)
(with respect to the angle metric) is a Riemannian metric.

Lemma 3.3. Let x ∈ RPd−1, and let W ∈ Gr(k, d). There exists V ∈ Gr(k, d) so
that x ∈ V and

dP(x,W ) = dH(V,W ),

where dP is the angle metric on projective space, and dH is the metric induced on
Gr(k, d) by Hausdorff distance.

Proof. If x ∈W , then we can just take V = W , so assume that dP(x,W ) > 0. The
definition of Hausdorff distance immediately implies that for any V containing x,
dH(V,W ) ≥ dP(x,W ), so we only need to find some V satisfying the other bound.
The diameter of projective space in the angle metric is π/2, which gives an upper
bound on the Hausdorff distance between any two closed subsets of RPd−1. So we
only need to consider the case where dP(x,W ) < π/2.

In this case, we let W ′ = x⊥ ∩ W , and then let V = W ′ ⊕ x. Let z be the
orthogonal projection of x onto W , so that dP(x, z) = dP(x,W ). Let z̃ and x̃ be
unit vector representatives of z and x, respectively, chosen so that if

λ = 〈x̃, z̃〉,
then

dP(x, z) = cos−1(λ).

Let v ∈ V −{0}. We want to show that dP([v],W ) ≤ cos−1(λ), i.e. that for some
w ∈W ,

〈v, w〉
||v|| · ||w||

≥ λ.

If v ∈ W , then we can choose w = v. Otherwise, we can rescale v in order to
write it as w′ + x̃, for w′ ∈W ′. Then let w = w′ + z̃. Note that

||w|| = ||v|| =
√

1 + ||w′||2.
Now we just compute:

〈v, w〉
||v|| · ||w||

=
〈w′ + x̃, w′ + z̃〉
||v|| · ||w||

=
〈x̃, z̃〉+ 〈w′, w′〉

1 + ||w′||2

≥ 〈x̃, z̃〉+ 〈x̃, z̃〉||w′||2

1 + ||w′||2
= 〈x̃, z̃〉 = λ.

�
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Most of the work of proving the implication (2) =⇒ (1) in Theorem 1.5 is
contained in the following:

Proposition 3.4. Let Ω be a convex domain preserved by a group Γ ⊂ PGL(d,R).
Let C be a Γ-invariant subset of Ω, closed in Ω, with ideal boundary ∂iC. Suppose
that Γ is expanding at the faces of ∂iC, with respect to the metrics on Gr(k, d)
specified in Lemma 3.3.

If either

(i) Γ is discrete and Ω is properly convex, or
(ii) Γ is uniformly expanding at the faces of ∂iC,

then Γ acts cocompactly on C.

Proof. Danciger-Guéritaud-Kassel give a proof of this fact in the case where ∂iC
contains no segments (see [DGK17, Lemma 8.7]). Their proof is based on work of
Kapovich, Leeb, and Porti [KLP18], which was in turn inspired by Sullivan [Sul85].
Our proof will use essentially the same idea.

We let dP denote the angle metric on projective space, and we let dH denote the
metric on Gr(k, d) induced by Hausdorff distance.

For any ε > 0, the set

Sε = {x ∈ C : dP(x, ∂Ω) ≥ ε}
is compact. So, supposing for a contradiction that the action of Γ on C is not
cocompact, for a sequence εn → 0, there exists xn so that Γ · xn lies in C − Sεn .

We start by fixing a constant E ≥ 1. If Γ is discrete and Ω is properly convex,
then we set E = 1; otherwise, we let E be less than the uniform expansion constant.
In either case, we can replace each xn with an element in its orbit so that

(3.1) dP(γxn, ∂Ω) ≤ E · dP(xn, ∂Ω)

for all γ ∈ Γ. This is possible if Γ is discrete and Ω is properly convex because then
Γ ·xn is a discrete subset of Ω. Otherwise, we choose xn sufficiently close to a point
realizing the maximum distance between Γ · xn and ∂Ω.

Up to a subsequence, xn converges in RPd−1 to some x ∈ ∂iC. Let F be the
face of ∂Ω at x, and let V ∈ Gr(k, d) be the support of F .

Let U ⊂ Gr(k, d) be an expanding neighborhood of V in Gr(k, d), with expanding
element γ ∈ Γ expanding by a constant E(γ) > E on U .

Since ∂Ω is compact and Γ-invariant, there is some zn ∈ ∂Ω so that

dP(γxn, γzn) = dP(γxn, ∂Ω).

Since xn → x, and the distance from γxn to γzn is at most εn, zn converges to
x as well.

Proposition 2.4 implies that there is some supporting hyperplane of Ω which
intersects zn. Any such sequence of supporting hyperplanes must sub-converge to a
supporting hyperplane of Ω at x. This supporting hyperplane contains V , so there
is a sequence Vn ∈ Gr(k, d) supporting Ω at zn, which sub-converges to V .

Since we know γzn realizes the distance from γxn to ∂Ω, we must have

(3.2) dP(γxn, ∂Ω) ≥ dP(γxn, γVn).

Then, Lemma 3.3 implies that we can choose subspaces Wn ∈ Gr(k, d) containing
xn so that

(3.3) dP(γxn, γVn) = dH(γWn, γVn).
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Since dP(γxn, γVn) converges to 0, dH(γWn, γVn) does as well. Since γ is fixed,
and Vn converges to V , Wn also converges to V . So eventually, both Vn and Wn

lie in the E(γ)-expanding neighborhood U of V , meaning that we have

(3.4) dH(γWn, γVn) > E · dH(Wn, Vn).

The trivial bound on Hausdorff distance implies that

(3.5) dH(Wn, Vn) ≥ dP(xn, Vn).

Since xn ∈ Ω and Vn ⊂ RPd−1 − Ω, any dP-geodesic from xn to Vn must intersect
∂Ω. This implies

(3.6) dP(xn, Vn) ≥ dP(xn, ∂Ω).

Putting (3.2), (3.3), (3.4), (3.5), and (3.6) together, we see that

dP(γxn, ∂Ω) > E · dP(xn, ∂Ω),

which contradicts (3.1) above. �

We need one more lemma before we can show the main result of this section.
The statement is closely related to [DGK17, Lemma 6.3], and gives a condition for
when a Γ-invariant convex subset of a properly convex domain Ω contains CorΩ(Γ).
(The result in [DGK17] is stated for a cocompact action of a group Γ on a convex
set C, but the proof only uses Γ-invariance.)

Lemma 3.5. Let C be a nonempty convex set in Ω whose ideal boundary contains
all of its faces, and suppose that Γ ⊆ Aut(Ω) preserves C. Then ∂iC contains
ΛΩ(Γ), the full orbital limit set of Γ.

In particular, if Γ is discrete, and the Γ action on C is cocompact, then the
action of Γ on Ω is convex cocompact and ∂iC = ΛΩ(Γ).

Proof. We follow the proof of Lemma 6.3 in [DGK17].
Let z∞ ∈ ΛΩ(Γ), which is by definition the limit of a sequence γnz for some

z ∈ Ω and a sequence γn ∈ Γ. Fix y ∈ C, and consider the sequence γny. Since
d(γnz, γny) = d(z, y) for all n, Proposition 2.12 implies that up to a subsequence,
γnz and γny both converge to points in the same face of ∂Ω. But any accumulation
point of γny in ∂Ω lies in ∂iC and ∂iC contains its faces, so z∞ ∈ ∂iC.

Since ∂iC contains ΛΩ(Γ), C must contain CorΩ(Γ). [DGK17, Lemma 4.10 (3)]
then implies that ΛΩ(Γ) = ∂iC is closed in C, which means that CorΩ(Γ) is closed
in C and the action on CorΩ(Γ) is cocompact. �

Proof of (2) =⇒ (1) in Theorem 1.5. Let Ω be a properly convex domain, let Γ
be a discrete subgroup of Aut(Ω), and Λ be a Γ-invariant, closed and boundary-
convex subset of ∂Ω with nonempty convex hull, such that Λ contains all of its faces
and Γ is uniformly expanding at the faces of Λ.

Since Λ is boundary-convex and has nonempty convex hull, Λ is exactly the ideal
boundary of HullΩ(Λ). So, Proposition 3.4 implies that Γ acts cocompactly on
HullΩ(Λ). Since Λ also contains its faces, applying Lemma 3.5 with C = HullΩ(Λ)
completes the proof. �

4. Actions on spaces of projective domains

In this section we recall the statement of Benzécri’s cocompactness theorem for
convex projective domains, as well as prove a version of it (Proposition 4.4) that
applies relative to a direct sum decomposition of Rd.
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4.1. The space of projective domains. Good references for this material include
[Gol88] and [Mar14].

Let V be a real vector space. We denote the set of non-empty properly convex
open subsets of P(V ) by C(V ). We topologize C(V ) via the metric:

d(Ω1,Ω2) := dHaus(Ω1,Ω2),

where dHaus(·, ·) is the Hausdorff distance induced by any metric on P(V ) (the
choice of metric on P(V ) does not affect the topology on C(V )).

Definition 4.1. A pointed properly convex domain in P(V ) is a pair (Ω, x), where
Ω ∈ C(V ) and x ∈ Ω. We denote the set of pointed properly convex domains in
P(V ) by C∗(V ), and topologize C∗(V ) by viewing it as a subspace of C(V )× P(V ).

PGL(V ) acts on both C(V ) and C∗(V ) by homeomorphisms. We have the fol-
lowing important result:

Theorem 4.2 (Benzécri, [Ben60]). The action of PGL(V ) on C∗(V ) is proper and
cocompact.

4.2. Benzécri relative to a direct sum. We now let Va, Vb be subspaces of V so
that Va⊕Vb = V . The decomposition induces natural projection maps πVa

: V → Va
and πVb

: V → Vb, as well as a decomposition of the dual V ∗ into V ∗a ⊕ V ∗b . Here,
and throughout this section, we will identify V ∗a , V ∗b with the linear functionals on
V which vanish on Vb, Va.

When Ω is a convex subset of P(V ) which is disjoint from P(Vb), we let πVa(Ω)

be the projectivization of πVa(Ω̃), where Ω̃ is a cone over Ω. A priori this is only a
convex subset of P(Va), although we will see (Proposition 4.8) that if Ω is properly
convex and open, and Ω is disjoint from P(Vb), then πVa(Ω) is properly convex and
open in P(Va).

Ω ∩ P(Va)

P(Vb)

P(Va) πVa(Ω)

Ω

Figure 2. The domains Ω∩P(Va) and πVa(Ω). In this case, πVa(Ω)
is properly convex even though Ω intersects P(Vb).

We remark that if Ω ∩ P(Vb) is nonempty, then πVa(Ω) is not even well-defined.
On the other hand, if Ω ∩ P(Vb) is nonempty, but Ω ∩ P(Vb) is empty, then πVa(Ω)
does exist, and may or may not be a properly convex subset of P(Va).

Definition 4.3. Let V = Va⊕ Vb, and let Ka be a subset of C∗(Va). We define the
subset C∗(Va, Vb,Ka) by

C∗(Va, Vb,Ka) :=

(Ω, x) ∈ C∗(V ) :
P(Vb) ∩ Ω = ∅,
(Ω ∩ P(Va), x) ∈ Ka,
(πVa

(Ω), x) ∈ Ka

 .
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The groups GL(Va) and GL(Vb) both have a well-defined action on C∗(V ): we
take g ∈ GL(Va) and h ∈ GL(Vb) to act by the projectivizations of g⊕ idVb

, idVa⊕h
respectively, on P(Va ⊕ Vb).

Since the GL(Vb)-action on P(V ) fixes P(Va) pointwise and commutes with pro-
jection to P(Va), for any Ka ⊂ C∗(Va), GL(Vb) acts on the subset C∗(Va, Vb,Ka).
The main result of this section is the following:

Proposition 4.4. Let Va, Vb be subspaces of a real vector space V such that
Va ⊕ Vb = V . For any compact subset Ka ⊂ C∗(Va), the action of GL(Vb) on
C∗(Va, Vb,Ka) is proper and cocompact.

4.3. Convex cones in direct sums. Before proving Proposition 4.4, we explore
some of the properties of convex cones in a vector space V which splits as a direct
sum V = Va ⊕ Vb.

4.3.1. Duality. If V = Va ⊕ Vb, a convex cone C ⊂ V determines two different
convex cones in Va, namely C ∩ Va and πVa

(C). The arguments in this section
rely heavily on the fact that these projection and intersection operations are in
some sense “dual” to each other. Before explaining how this works, we first prove
a lemma:

Lemma 4.5. Let V be a real vector space with V = Va⊕Vb, and let C be a convex
cone intersecting Vb trivially. Then C∗ ∩ V ∗a ⊆ πVa(C)∗ ∩ V ∗a and

πVa(C)∗ ∩ V ∗a ⊆ C∗ ∩ V ∗a .

Moreover, if C ∩ Vb = {0} then in fact

πVa
(C)∗ ∩ V ∗a = C∗ ∩ V ∗a .

Proof. First let α ∈ C∗∩V ∗a . Let v be any nonzero element of the closure of πVa
(C),

so that v + v2 ∈ C for some v2 ∈ Vb. We know that α(v + v2) 6= 0 and α(v2) = 0,
so α(v) 6= 0. This shows that α is in πVa(C)∗.

Now let α ∈ πVa
(C)∗ ∩ V ∗a − {0}, and let v ∈ C. We can write v = v1 + v2 for

v1 ∈ Va, v2 ∈ Vb; since we assume C does not intersect Vb, and C ⊂ V − {0} by
definition, v1 is nonzero. Then since α ∈ V ∗a , α(v) = α(v1) 6= 0. So, α ∈ C∗.

If we further assume that C ∩ Vb = {0}, a similar argument shows that any
α ∈ πVa(C)∗ ∩ V ∗a is nonzero on any v ∈ C − {0}, implying α ∈ C∗. �

Now, suppose that Ca is a convex cone in V − {0}, for V = Va ⊕ Vb. The
intersection C∗a ∩ V ∗a consists of functionals in C∗a which vanish on Vb. If we know
that Ca lies inside of Va, then any functional on Va which does not vanish anywhere
on Ca − {0} can be extended by zero on Vb to get an element of C∗a ∩ V ∗a . So in
this case, C∗a ∩ V ∗a is canonically identified with the dual of the cone Ca viewed as
a cone in Va.

We can say this a different way via the following:

Definition 4.6. For each subspace U ⊂ V , we define a “restricted duality” op-
eration DU , which takes convex cones in U to convex cones in U∗ via the dual
operation on U . Explicitly, if C ⊂ U is a convex cone, we let

DU (C) = {α ∈ U∗ : α(v) > 0 for all v ∈ C − {0}}.
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By definition, we have DV (C) = C∗ for any convex cone C ⊂ V . The reasoning
above tells us that when V = Va ⊕ Vb, then for any cone Ca ⊂ Va, we have
DVa(Ca) = C∗a ∩ V ∗a .

With this notation, Lemma 4.5 can be restated as:

Lemma 4.7. Let V be a real vector space with V = Va ⊕ Vb, and let C be
a convex cone intersecting Vb trivially. Then DV (C) ∩ V ∗a ⊆ DVa

(πVa
(C)) and

DVa
(πVa

(C)) ⊆ DV (C) ∩ V ∗a . Moreover, if C ∩ Vb = {0}, then in fact

DV (C) ∩ V ∗a = DVa(πVa(C)).

As a consequence of this lemma, we note:

Proposition 4.8. Let C be a sharp (Definition 2.1) open convex cone in a vector
space V = Va ⊕ Vb. If C − {0} intersects Vb trivially, then the projection πVa(C) is
sharp and open in Va.

Proof. Openness is immediate since projection is an open map. Since C is sharp,
if C does not intersect Vb, then there is some α ∈ V ∗ whose kernel contains Vb and
does not intersect C, i.e. α ∈ C∗ ∩ V ∗a . Since non-intersection with C is an open
condition, C∗∩V ∗a is a nonempty open subset of V ∗a . Then Lemma 4.5 implies that
πVa

(C)∗ ∩ V ∗a is nonempty and open in V ∗a . So its dual in V ∗∗a = Va is sharp by
part 3 of Proposition 2.16. �

For the rest of the section we will be working with convex domains in P(V ), rather
than convex cones in V . The restricted dual operation DU from Definition 4.6
gives rise to a restricted dual operation on convex domains contained in projective
subspaces P(U) ⊆ P(V ); we also denote this by DU . Also, recall (from Remark 2.17)
that if W is an element in some dual domain DV (Ω) = Ω∗, we identify W with a
projective hyperplane in P(V ).

4.3.2. Convex hulls. If Ω1, Ω2 are properly convex subsets of P(V ), we cannot
always find a minimal properly convex subset Ω ⊂ P(V ) which contains Ω1 ∪ Ω2

(that is, convex hulls do not always exist). Here we describe some circumstances
under which this is possible.

Definition 4.9. Let Ω1, Ω2 be properly convex sets in P(V ). For each W ∈ Ω∗1∩Ω∗2,
we let HullW (Ω1,Ω2) denote the convex hull of Ω1 and Ω2 in the affine chart
P(V )−W .

The set HullW (Ω1,Ω2) is minimal among all convex subsets of P(V ) −W con-
taining Ω1 ∪ Ω2. However, it is possible that for some other W ′ ∈ Ω∗1 ∩ Ω∗2,
HullW ′(Ω1,Ω2) is not contained in P(V )−W . So, to guarantee minimality among
all convex subsets of P(V ), we need a little more:

Lemma 4.10. If Ω1 ∩Ω2 is nonempty, then for any W ∈ Ω∗1 ∩Ω∗2, HullW (Ω1,Ω2)
is the unique minimal properly convex subset of P(V ) containing Ω1 ∪ Ω2.

Proof. Let A be the affine chart P(V )−W , and let H be any properly convex set
containing Ω1 ∪ Ω2. Since Ω1 ∩ Ω2 is nonempty, Ω1 ∪ Ω2 is a connected subset of
A, so it is contained in a single connected component C of H ∩A. This component
is a convex subset of A, so by definition C (hence H) contains HullW (Ω1,Ω2). �

Lemma 4.10 allows us to define the convex hull of a pair of properly convex sets
without reference to a particular affine chart.
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Definition 4.11. When Ω1, Ω2 are properly convex sets such that Ω1 ∩ Ω2 and
Ω∗1∩Ω∗2 are both nonempty, we let Hull(Ω1,Ω2) denote the minimal properly convex
set containing Ω1 ∪ Ω2.

4.4. Proving Benzécri for direct sums. We can now begin proving Proposition
4.4. As a first step, we consider the case where dimVa = 1, i.e. P(Va) is identified
with a single point in P(V ).

Lemma 4.12. Let V = Vb ⊕ x for a point x ∈ P(V ). Then GL(Vb) acts properly
and cocompactly on the set of domains

C∗(x, Vb) := C∗(x, Vb, C∗(x)) = {(Ω, x) ∈ C∗(V ) : P(Vb) ∩ Ω = ∅}.

Here C∗(x) denotes the space of pointed nonempty properly convex domains in
P(x) ' RP0, so the only nonempty domain in this space is the singleton {x}.

Statements similar to this lemma can be found in work of Frankel (see [Fra91,
Theorem 9.3]) and Benoist (section 2.3 in [Ben03]); Benoist notes that the idea
already appears in Benzécri [Ben60].

Proof. Properness follows immediately from the standard Benzécri theorem (The-
orem 4.2), since the restriction of a proper action of a group G on X to a closed
subgroup H and an H-invariant subset of X is always proper. So, we focus on
cocompactness.

Let (Ωn, x) be a sequence of domains in C∗(x, Vb). Theorem 4.2 implies that we
can find group elements gn ∈ PGL(V ) so that the sequence of pointed domains

(gnΩn, gnx)

sub-converges to a pointed domain (Ω, x′). We want to show that these group
elements can be chosen to preserve the decomposition Vb ⊕ x.

We know that Vb lies in Ω∗n, so gnVb lies in gnΩ∗n for all n, and a subsequence of
gnVb converges to some W ∈ Ω∗. In particular, W does not contain x′. This means
that we can find a sequence of group elements g′n, lying in a fixed compact subset
of PGL(V ), so that

g′n · gnVb = Vb, g′n · gnx = x.

Since the g′n lie in a compact subset of PGL(Vb), the domains

g′ngnΩn

must also sub-converge to some properly convex domain Ω′, which contains x. So
we can replace gn with g′ngn to get the desired sequence of group elements. �

Lemma 4.12 gets us partway to proving Proposition 4.4. We see that if Ω is any
domain in C∗(Va, Vb,Ka), we can always find some h ∈ GL(Vb) so that hΩ∩P(Vb⊕x)
lies in a fixed compact set of domains in C(Vb⊕x). This is almost enough to ensure
that hΩ itself lies in a fixed compact set of domains in C(V ). The exact condition
we will need is the following:

Lemma 4.13. Let V be a real vector space, and suppose V = Wa ⊕ Vb ⊕ x, for a
point x ∈ P(V ).

Let Ωa,Ω
′
a be properly convex domains in P(Wa ⊕ x), and let Ωb,Ω

′
b be properly

convex domains in P(Vb ⊕ x), such that

x ∈ Ωa ⊂ Ω′a,

x ∈ Ωb ⊂ Ω′b.
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There exist properly convex domains Ω1 ⊂ Ω2 in P(V ), with x ∈ Ω1, such that
any Ω ∈ C(V ) disjoint from P(Wa) and P(Vb) which satisfies:

(1) Ω′a ⊃ πWa⊕x(Ω),
(2) Ωa ⊂ Ω ∩ P(Wa ⊕ x),
(3) Ω′b ⊃ πVb⊕x(Ω)
(4) Ωb ⊂ Ω ∩ P(Vb ⊕ x),

also satisfies Ω1 ⊂ Ω ⊂ Ω2.

Ω

Ω1

Ω2

x

Vb

Wa

Figure 3. Ω fits between a pair of domains Ω1 and Ω2, which
depend only on the intersections and projections between Ω and
P(Wa ⊕ x), P(Vb ⊕ x).

Proof. We know Ωa ∩ Ωb = {x}. If necessary, we can slightly shrink Ωa and Ωb so
that Ωa ∩ P(Wa) = ∅ and Ωb ∩ P(Vb) = ∅, which means that P(Wa ⊕ Vb) can be
viewed as an element of Ω∗a ∩Ω∗b . So, the convex hull (Definition 4.11) Hull(Ωa,Ωb)
of Ωa,Ωb exists.

In any affine chart A containing Ωa ∪ Ωb, the subspaces Wa ⊕ x and Vb ⊕ x
correspond to pair of transverse affine subspaces intersecting at the point x, which
together span all of A. We know Ωa and Ωb are open in these subspaces and each
contain x, so the interior of their convex hull in A also contains x. Thus, we may
define Ω1 to be the interior of Hull(Ωa,Ωb).

To build Ω2, we consider the “restricted dual” domains

DWa⊕x(Ω′a) ⊂ P((Wa ⊕ x)∗), DVb⊕x(Ω′b) ⊂ P((Vb ⊕ x)∗),

which are defined using the restricted dual operation DU from Definition 4.6. To
simplify notation, we write D(Ω′a) = DWa⊕x(Ω′a) and D(Ω′b) = DVb⊕x(Ω′b). Explic-
itly, we have

D(Ω′a) = (Ω′a)∗ ∩ P((Wa ⊕ x)∗), D(Ω′b) = (Ω′b)
∗ ∩ P((Vb ⊕ x)∗).

Since Ω′a and Ω′b are properly convex subsets of P(Wa⊕x) and P(Vb⊕x), D(Ω′a) and
D(Ω′b) are open in P((Wa ⊕ x)∗) and P((Vb ⊕ x)∗) (see part 3 of Proposition 2.16).
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We also know that x lies in D(Ω′a)∗ ∩D(Ω′b)
∗. So we can define the convex open

set Ω∗2 to be the interior of

Hullx(D(Ω′a), D(Ω′b)),

using Definition 4.9. Using similar reasoning as for Ω1, we can see that the interior
of this hull is nonempty, because (Wa ⊕ x)∗ and (Vb ⊕ x)∗ span V ∗ and D(Ω′a) and
D(Ω′b) are open subsets of the corresponding projective subspaces.

Let Ω be any domain satisfying the hypotheses of the lemma. Since duality re-
verses inclusions, we knowD(Ω′a) ⊆ DWa⊕x(πWa⊕x(Ω)) andD(Ω′b) ⊆ DVb⊕x(πVb⊕x(Ω)).
Then, Lemma 4.7 implies

D(Ω′a) ⊆ DV (Ω) ∩ P((Wa ⊕ x)∗),

D(Ω′b) ⊆ DV (Ω) ∩ P((Vb ⊕ x)∗).

In particular, D(Ω′a) and D(Ω′b) are both contained in DV (Ω) = Ω∗. Since Ω∗∗ = Ω

contains x, Ω∗ is contained in the affine chart P(V ∗)−x. So, Ω∗ contains the closure
of

Hullx(D(Ω′a), D(Ω′b)),

meaning Ω∗ contains Ω∗2 and Ω is contained in the properly convex set Ω2 = Ω∗∗2 . �

Remark 4.14. If Ωb does not intersect P(Vb) and Ωa does not intersect P(Wa), we
can work in the affine chart P(V )−P(Wa⊕Vb), and Lemma 4.13 is equivalent to the
fact that if a convex subset C of an affine space has open and bounded projections
to and intersections with a pair of complementary affine subspaces, C is itself open
and bounded in terms of the size of the projections and intersections.

We do not take this approach because we do not want to assume that Ωb and
P(Vb) are disjoint.

Our next task is to show that we can sometimes replace assumption (3) in Lemma
4.13 with:

(3a) Ω′b ⊃ Ω ∩ P(Vb ⊕ x).

This will be done in Proposition 4.16 below. We start with some Euclidean
geometry.

We endow Rd with its standard inner product. For a subspace W ⊆ Rd, we let
πW : Rd → W denote the orthogonal projection, and for R > 0, let B(R) denote
the open ball around the origin of radius R.

Lemma 4.15. Let Ω be a convex subset of Rd containing the origin, and let W be
a subspace of Rd.

Suppose that there are R1, R2 > 0 so that:

• B(R1) ∩W⊥ ⊂ Ω ∩W⊥,
• πW⊥(Ω) ⊂ B(R2).

Then there exists a linear map f : Rd → Rd, depending only on R1 and R2, so that
πW (Ω) ⊂ f(Ω ∩W ).

Proof. Let p be any point in πW (Ω), and let z be some point in Ω so that πW (z) = p.
We can write z = p+ y for y ∈ πW⊥(Ω).
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p

y−αy
p′

W

W⊥

z

Figure 4. Illustration for the proof of Lemma 4.15. The ratio
||p||/||p′|| is bounded in terms of α.

Let ` be the line through the origin passing through y. For some α > 0, we know

that ` intersects (Ω ∩W⊥)−B(R1) at y′ = −αy. Note that

α =
||y′||
||y||

>
R1

R2
.

Since Ω is convex and contains Ω ∩W⊥, it contains the open line segment

{t(−αy) + (1− t)(y + p) : t ∈ (0, 1)}.

This line segment passes through W when t = 1
1+α , meaning that Ω must contain

the point

p′ =

(
1− 1

1 + α

)
p.

Since Ω contains the origin, it also contains(
1− 1

1 +R1/R2

)
p =

R1

R1 +R2
p.

This point lies in Ω ∩W , meaning that p lies in R3 · (Ω ∩W ) where

R3 :=
R1 +R2

R1
.

So we can take our map f to be the linear rescaling about the origin by R3. �

Proposition 4.16. Let V = Wa ⊕ Vb ⊕ x, for x ∈ P(V ).
Let Ωa,Ω

′
a be properly convex domains in P(Wa ⊕ x), and let Ω′′b be a properly

convex domain in P(Vb ⊕ x) such that

x ∈ Ωa ⊂ Ω′a, x ∈ Ω′′b .

If Ω′a does not intersect P(Wa), then there exists a properly convex domain Ω′b in
P(Vb ⊕ x) so that any Ω ∈ C(V ) which satisfies Ω ∩ P(Vb) = ∅ and

(1) Ω′a ⊃ πWa⊕x(Ω),
(2) Ωa ⊂ Ω ∩ P(Wa ⊕ x),

(3a) Ω′′b ⊃ Ω ∩ P(Vb ⊕ x)

also satisfies

(3) Ω′b ⊃ πVb⊕x(Ω).
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Proof. Let H = Wa ⊕ Vb, and consider the affine chart A = P(V )− P(H). We can
choose coordinates and a Euclidean metric on this affine chart so that Wa ⊕ x and
Vb ⊕ x map to complementary orthogonal subspaces Wa, Vb of A, meeting at the
origin. In these coordinates, the projectivizations of the projection maps πWa⊕x,
πVb⊕x correspond to the orthogonal projections to Wa and Vb, respectively.

Since P(Wa) does not intersect Ω′a, the images of Ω′a and Ωa in A are both
bounded open convex subsets of Wa.

Let Ω be a properly convex domain not intersecting P(Vb) and satisfying as-
sumptions (1), (2), (3a). Since πWa⊕x(Ω) is contained in A, Ω cannot intersect
P(Wa ⊕ Vb), so Ω is contained in the affine chart A (although its closure need not
be).

In particular, Ω ∩ P(Vb ⊕ x) is contained in the unique connected component of
Ω′′b ∩ A which contains x. So, by replacing Ω′′b with this connected component, we
may assume that the image of Ω′′b in A is a convex open subset of Vb.

Lemma 4.15 then implies that there is an affine map f : A→ A, depending only
on Ωa and Ω′a, so that

πVb⊕x(Ω) ⊆ f(Ω′′b ).

So, we can take Ω′b to be the properly convex domain f(Ω′′b ). �

We are now ready to prove Proposition 4.4.

Proof of Proposition 4.4. As in the proof of Lemma 4.12, properness is immediate
from the Benzécri cocompactness theorem, so we just need to show cocompactness.
We let Va, Vb, and Ka ⊂ C∗(Va) be as in the statement of the theorem. Let (Ωn, xn)
be a sequence of properly convex domains in C∗(Va, Vb,Ka). We can choose a
subsequence so that xn → x. Our goal is to find a pair of properly convex domains
Ω1,Ω2 (with x ∈ Ω1) and hn ∈ GL(Vb), so that up to a subsequence,

Ω1 ⊂ hn · Ωn ⊂ Ω2.

This will be sufficient, because xn ∈ P(Va), so hnxn = xn converges to x and
hnΩn sub-converges to some properly convex domain Ω containing Ω1 3 x.

Vb

Wa
xVa

hn

Wa

Vb

x

Figure 5. Applying an element hn ∈ GL(Vb) “rescales” in
P(Vb ⊕ x) about x; if the size of the intersection Ω ∩ P(Vb ⊕ x)
is bounded, then the size of the projection to Vb ⊕ x (with respect
to the decomposition V = Wa ⊕ Vb ⊕ x) is also bounded (Proposi-
tion 4.16).

Consider the sequence of domains Ω′n = Ωn ∩ P(Vb ⊕ x). We know P(Vb) is
disjoint from Ωn for all n. So, Lemma 4.12 implies that we can find hn ∈ GL(Vb) so
that the domains hnΩ′n sub-converge in C(Vb ⊕ x) to some domain Ω′ in P(Vb ⊕ x).
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In particular, up to a subsequence, we can find fixed domains Ωb,Ω
′′
b ⊂ P(Vb ⊕ x)

such that for all n,

x ∈ Ωb ⊂ hnΩ′n ⊂ Ω′′b .

Since the intersections Ωn ∩ P(Va) and projections πVa(Ωn) both lie in a fixed
compact set in C(Va), we can also assume that there are domains Ωa,Ω

′
a ∈ C(Va)

so that for all n,

Ωa ⊂ Ωn ∩ P(Va), Ω′a ⊃ πVa(Ωn).

Since the action of any hn ∈ GL(Vb) fixes Va pointwise and commutes with projec-
tion to Va, this immediately implies that for all n,

Ωa ⊂ hnΩn ∩ P(Va), Ω′a ⊃ πVa
(hnΩn).

Fix a subspace Wa ⊂ Va so that Va = Wa ⊕ x and P(Wa) does not intersect the
closure of Ω′a. This allows us to define a projection map πVb⊕x : V → Vb⊕x, whose
kernel is Wa. Proposition 4.8 implies that πVb⊕x(hnΩn) is a properly convex open
subset of P(Vb ⊕ x), and Proposition 4.16 implies that for all n, πVb⊕x(hnΩn) is
contained in a properly convex domain Ω′b ⊂ P(Vb⊕ x), depending only on Ωa, Ω′a,
and Ω′′b . Then we can apply Lemma 4.13 to the domains Ωa,Ω

′
a,Ωb, Ω′b to finish

the proof. �

5. Cocompactness implies expansion

The main goal of this section is to prove the implication (1) =⇒ (2) of Theorem
1.5. In fact we will prove a slightly more general statement:

Proposition 5.1. Let C be a convex subset of a properly convex domain Ω, and
suppose that Γ ⊆ Aut(Ω) acts cocompactly on C. Then Γ is uniformly expanding
at the faces of the ideal boundary of C.

Afterwards, we will use some of the ideas arising in the proof to show that
a version of “north-south dynamics” holds for certain sequences of elements in a
convex cocompact group (Proposition 5.15).

5.1. Pseudo-loxodromic elements. Our main inspiration comes from an obser-
vation in Sullivan’s study [Sul79] of conformal densities on Hd: if x0 ∈ Hd is a
basepoint defining a visual metric on ∂Hd, and γ is any isometry of Hd not fixing
x0, then γ expands a small ball in ∂Hd at the endpoint of the geodesic ray from x0

to γ−1x0, with expansion constant related to d(x0, γ
−1x0).

This observation relies on the fact that, given distinct points x, y ∈ Hd, there
is a loxodromic isometry taking x to y whose axis is the geodesic joining x and
y. The exact analogue of this fact for properly convex domains does not hold in
general, since there is no reason to expect even the full automorphism group of
a properly convex domain to act transitively on the domain. However, instead of
looking for actual automorphisms of the domain, we can instead look for elements
of PGL(d,R) that do not perturb the domain “too much.” We make this precise
below.

Definition 5.2. Let Ω ⊂ RPd−1 be a properly convex domain, and let K be a
compact subset of C(Rd) containing Ω. An element g ∈ PGL(d,R) is a K-pseudo-
automorphism of Ω if gΩ ∈ K.
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Definition 5.3. Let Ω ⊂ RPd−1 be a properly convex domain. For a compact sub-
set K ⊂ C(Rd) containing Ω, we say that a K-pseudo-automorphism g ∈ PGL(d,R)
is K-pseudo-loxodromic if there is a g-invariant direct sum decomposition

Rd = V− ⊕ V0 ⊕ V+,

where:

(i) the subspaces V−, V+ are positive eigenspaces of g and supporting subspaces
of Ω,

(ii) the convex hull of P(V+) ∩ ∂Ω and P(V−) ∩ ∂Ω has nonempty intersection
with Ω, and

(iii) the projective subspace P(V− ⊕ V+) intersects every Ω′ in K.

The subspaces V− and V+ are referred to as endpoints of g. The projective subspace
P(V− ⊕ V+) is the axis of the pseudo-loxodromic, and V0 is the neutral subspace.

A pseudo-loxodromic element preserves its axis P(V− ⊕ V+). When V− and V+

are points in RPd−1, this axis is an actual projective line.
We do not assume that an individual pseudo-loxodromic element attracts points

on its axis towards either of its endpoints, since we are only interested in the
dynamics of sequences of pseudo-loxodromics.

If gn is a sequence of K-pseudo-loxodromic elements with common endpoints,
then, up to a subsequence, the domains gnΩ converge to a domain Ω∞ in K which
intersects the common axis. In fact, we observe:

Proposition 5.4. Let gn be a sequence of K-pseudo-loxodromic elements with com-
mon endpoints V+, V−. If gnΩ converges to Ω∞, then Ω∞ contains the relative
interior of the convex hull (in Ω) of P(V+) ∩ ∂Ω and P(V−) ∩ ∂Ω.

Proof. Let W denote the subspace V+⊕V−. We know that the intersection P(W )∩
Ω∞ is either contained in a face of Ω∞, or else its relative interior is contained in
Ω∞. It must be the latter, since we know Ω∞ is in K and by definition Ω′ ∩ P(W )
is nonempty for every Ω′ ∈ K.

We let C denote the convex hull of P(V+)∩∂Ω and P(V−)∩∂Ω. It now suffices to
show that the relative interior of C is contained in the relative interior of P(W ) ∩
Ω∞. First, suppose that every subsequence of the restriction of gn to W has a
further subsequence which converges to some g ∈ PGL(W ). In this case, we know
gΩ ∩ P(W ) = Ω∞ ∩ P(W ); then gC lies in the relative interior of Ω∞ because C
lies in the relative interior of Ω ∩ P(W ) by assumption.

Otherwise, the ratio of the eigenvalues of gn on V+ and V− is unbounded. We
let W ′ ⊂ W be the vector space whose projectivization P(W ′) is the projective
span of Ω ∩ P(V+) and Ω ∩ P(V−). The unboundedness of the eigenvalue ratio of
gn implies that gnΩ ∩ P(W ) must converge to a subset of P(W ′). But this limit
is Ω∞ ∩ P(W ), which has nonempty relative interior in P(W ) because P(W ) ∩ Ω∞
is nonempty. This is only possible if W ′ = W , which means that C also has
nonempty relative interior in P(W ). Since C ⊂ Ω∞ ∩P(W ) we must therefore have
C ⊂ Ω∞ ∩ P(W ). �

Definition 5.5. Let Ω be a properly convex domain, and let gn be a sequence of K-
pseudo-loxodromic elements with common endpoints V+, V− and common neutral
subspace V0. We say that V− is a repelling endpoint of the sequence gn if there is
a sequence

xn ∈ Ω ∩ P(V− ⊕ V+)
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such that gnxn = x for some x ∈ Ω, and xn → x− ∈ ∂Ω with

V− = suppFΩ(x−).

5.2. Existence of repelling pseudo-loxodromics. We will use pseudo-loxodromics
to state an analogue (Lemma 5.7) of the fact that any two points in Hd can be joined
by the axis of a loxodromic isometry. First, we need a lemma:

Lemma 5.6. Let x+, x− be a pair of points in the boundary of a properly convex
domain Ω ⊂ P(V ) such that (x−, x+) ⊆ Ω. Let P(H+), P(H−) be supporting
hyperplanes of Ω at x+, x−. Let V− = supp(FΩ(x−)), and let W = V− ⊕ x+.

There exists a (possibly trivial) subspace H0 ⊂ H+ ∩H− such that

(1) H− = H0 ⊕ V−, and
(2) πW (Ω) is properly convex, where πW : V →W is the projection with kernel

H0.

Note that while P(H0) does not intersect Ω, the intersection P(H0) ∩ Ω may be
nonempty.

Proof. First suppose that V− = x−. In this case, we take H0 = H+ ∩ H−, and
πW (Ω) is exactly the line segment (x−, x+). On the other hand, if V− has codi-
mension one, then W = V− ⊕ x+ = V and we can take H0 to be trivial, so πW is
the identity map.

So now suppose that V− is neither a single point nor a hyperplane in V . Consider
the properly convex set Ω− = ∂Ω∩H−. We know P(H+∩H−) is a codimension-one
projective subspace of P(H−). Because (x−, x+) ⊆ Ω, H+ ∩H− does not contain
V−.

We also know P(H+ ∩H−) intersects Ω− in a (possibly empty) properly convex
set. We know the projective subspace V− has dimension k ≥ 1 and positive codi-
mension in H−, so there exists a codimension-k projective subspace of H+ ∩ H−
which does not intersect Ω− or V−. Let H0 be such a subspace; since H0 is disjoint
from Ω, we are done by Proposition 4.8. �

The following lemma is the main technical result in this section. It implies
in particular that every face in the boundary of a properly convex domain is the
repelling endpoint of some sequence of K-pseudo-loxodromics.

Lemma 5.7. Let Ω be a properly convex domain, let x− ∈ ∂Ω, and let L be a
projective line intersecting Ω, joining x− with some x+ ∈ ∂Ω, x+ 6= x−. Let
F− = FΩ(x−).

For any sequence {xn} ⊂ L, with xn → x−, up to a subsequence, there exists
a compact set K ⊂ C(Rd), a subspace H0 ⊂ Rd, and a sequence of K-pseudo-
loxodromic elements gn in PGL(d,R), with endpoints supp(F−) and x+ and neutral
subspace H0, such that gnxn = x for a fixed x ∈ L ∩ Ω.

Proof. Our strategy is to start with the case that F− is codimension-one (so the
neutral subspace H0 is trivial), and then use Proposition 4.4 to extend to the general
case.

F− is codimension-one. Let V− be the support of F−. For each n, we let sn ∈
GL(d,R) be the diagonal map

λnidx+
⊕ idV− =

[
λn

idV−

]
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acting on x+⊕V−, where λn →∞ is chosen so that snxn = x for a fixed x ∈ L∩Ω.

x+

V−

xnx

Ω

snΩ

F−

x−

Figure 6. Since sn attracts towards x+ and repels from V−, snΩ
converges to the convex hull of F− and x+.

The sequence of domains sn ·Ωn converges to a cone over F−, with a cone point at
x+ (see Figure 6). Since F− is a codimension-one face of Ω, this cone is a properly
convex domain containing x in its interior.

The general case. Let V− be the support of F−, and let H+, H− be supporting
hyperplanes of Ω at x+, F−. Let W = V− ⊕ x+. We choose a subspace H0 ⊂
H+ ∩H− as in Lemma 5.6 so that H− = V− ⊕H0 and πW (Ω) is properly convex,
where πW : V →W is the projection with kernel H0.

The domains

Ω ∩ P(W ), πW (Ω)

are both properly convex open subsets of P(W ) containing F− as a codimension-one
face in their boundaries. Using the argument from the previous case, we can find
group elements sn ∈ GL(W ) so that

sn · (Ω ∩ P (W )), sn · πW (Ω)

both converge to properly convex domains in P(W ) containing a fixed x = snxn in
Ω.

xn
x+ V−

H0

W

H−H+

sn hn

x

Figure 7. To build the sequence of pseudo-loxodromic elements
gn, we push xn away from x− with sn ∈ GL(W ), ensuring that
snΩ ∩ P(W ) and πW (snΩ) converge, and then use a “correcting”
element hn ∈ GL(H0) to keep the domain from degenerating. Both
sn and hn preserve the decomposition Rd = x+ ⊕H0 ⊕ V−.
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We extend sn linearly to the map sn ⊕ idH0
on W ⊕H0. Consider the sequence

of properly convex domains

Ωn = (sn ⊕ idH0) · Ω.
Since sn ⊕ idH0 commutes with projection to W and intersection with W , the
sequences of pointed properly convex domains

(Ωn ∩ P(W ), x), (πW (Ωn), x)

both converge in C∗(W ). In particular, both of these sequences are contained in a
fixed compact KW ⊂ C∗(W ), and the pointed domains (Ωn, x) all lie in the subset

C∗(W,H0,KW )

from Definition 4.3.
Then, Proposition 4.4 (applied to the decomposition Rd = W ⊕H0) tells us that

there is a sequence of group elements hn ∈ GL(H0) such that the pointed properly
convex domains

(idW ⊕ hn) · (Ωn, x)

lie in a fixed compact K in C∗(Rd).
Then, we can take our sequence of K-pseudo-loxodromic elements gn to be the

projectivizations of (idW ⊕ hn) · (sn ⊕ idH0
) = (sn ⊕ hn). �

Next we examine some of the dynamical behavior of pseudo-loxodromic se-
quences that have a repelling endpoint. Let V be a normed vector space. For
any g ∈ GL(V ), recall that the norm and conorm of g on V are defined by

||g|| = sup
v∈V−{0}

||gv||
||v||

, m(g) = inf
v∈V−{0}

||gv||
||v||

.

Proposition 5.8. Let gn be a sequence of K-pseudo-loxodromic elements with com-
mon endpoints V+, V− and common neutral subspace V0, and suppose that V− is a
repelling endpoint (Definition 5.5) of the sequence gn. Let U+ = V+ ⊕ V0. The
sequence gn satisfies

(5.1)
m(gn|U+

)

||gn|V− ||
→ ∞.

The ratio in (5.1) can be computed by fixing a norm on Rd, and then choosing
a lift of each gn in GL(d,R). The value of this ratio does not depend on the choice
of lift, and the asymptotic behavior of the ratio does not depend on the choice of
norm.

Proof. We can fix lifts g̃n of gn in GL(d,R) which restrict to the identity on V−.
Our goal is then to show that

m(g̃n|U+
)→∞,

or equivalently, that
||g̃−1
n |U+

|| → 0.

Suppose otherwise, so that for a sequence vn ∈ U+ with ||vn|| = 1, there is some
ε > 0 so that

||g̃−1
n · vn|| ≥ ε.

Let xn ∈ Ω ∩ P(V+ ⊕ V−) be a sequence so that gnxn = x for some x ∈ Ω and
xn → x−, where V− is the support of FΩ(x−). We can choose a subsequence so that
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gnΩ converges to some properly convex domain Ω∞. We know Ω∞ contains x by
Proposition 5.4, so let U be an open neighborhood of x whose closure is contained
in Ω∞. We can find a lift x̃ of x in Rd so that the projectivizations of each vector

x̃± vn
lie in U , and thus in Ωn for all sufficiently large n. Since g̃n restricts to the identity
on V−, the sequence g̃−1

n x̃ converges to a lift x̃− of x−.
Then, up to a subsequence, the sequence of pairs of vectors

g̃−1
n · (x̃± vn)

lies in a lift Ω̃ of Ω, and converges in Rd to x̃− ± v∞, where v∞ ∈ U+ has norm
at least ε. This pair of points spans a nontrivial projective line segment in Ω
whose interior intersects the face FΩ(x−) only at x−, contradicting the definition
of FΩ(x−). �

Proposition 5.8 implies in particular that a sequence of K-pseudo-loxodromic ele-
ments with repelling subspace V− attracts generic points in RPd−1 to the projective
subspace P(U+), and repels generic points away from P(V−). In fact, because the
subspaces U+ and V− are transverse, and gn preserves each of them, the proposi-
tion also implies that the sequence gn has expansion behavior on the Grassmannian
Gr(k, d) in a neighborhood of V−. To see this, we need an estimate relating the
ratio appearing in (5.1) to the metric behavior of gn on the Grassmannian.

To state the estimate, we choose an inner product on Rd, and endow RPd−1

with the metric ds obtained by setting ds(x, y) to be the sine of the minimum angle
between lifts of x and y in Rd. Then we let dk denote the metric on Gr(k, d) induced
by Hausdorff distance with respect to ds.

Lemma 5.9 (See the appendix in [BPS19], specifically Lemma A.10). Let U+ ∈
Gr(d−k, d) and U− ∈ Gr(k, d) be transverse subspaces of Rd, and let g ∈ PGL(d,R).
Suppose that for some α > 0, we have ∠(U+, U−) > α and ∠(gU+, gU−) > α.

Then, for constants b > 0 and δ > 0 (depending only on α), if W1,W2 ∈ Gr(k, d)
satisfy dk(Wi, V−) < δ, then:

dk(gW1, gW2) ≥ b
m(g|U+)

||g|U− ||
d(W1,W2).

We can use this lemma to estimate the expansion behavior of elements in our
sequence gn:

Corollary 5.10. Let gn be a sequence of K-pseudo-loxodromic elements with com-
mon endpoints V+, V− and common neutral subspace V0, and suppose that V− is a
repelling endpoint of the sequence, lying in Gr(k, d).

Then for any Riemannian metric on Gr(k, d), and any E > 1, there exists N ∈ N
such that if n ≥ N , gn is E-expanding on some neighborhood of V− in Gr(k, d).

Proof. This follows directly from Proposition 5.8 and Lemma 5.9, taking U+ = V+⊕
V0 and U− = V− and exploiting the fact that each gn preserves the decomposition
Rd = V− ⊕ U+. �

Remark 5.11. In order to apply Lemma 5.9 to our situation, we need to know that
our sequence of group elements gn actually preserves the decomposition V−⊕U+ (or
at least that the sequence of decompositions gnV− ⊕ gnU+ does not degenerate).
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This is why it is useful to have the additional control afforded by the pseudo-
loxodromic sequences we have constructed—it is not enough to know merely that
the sequence of domains gnΩ does not degenerate.

5.3. Expansion. Before we proceed, we fix some additional terminology:

Definition 5.12. Given a properly convex domain Ω and a point x ∈ ∂Ω, we say
that a sequence xn ∈ Ω limits to x along a line L if xn → x in RPd−1, L is an open
projective line segment (x, x′) ⊆ Ω, and there exists a constant R > 0 such that

dΩ(xn, L) < R

for all n.
If the specific line L is implied (or not relevant), we will just say that xn limits

to x along a line.
If F is some face of ∂Ω, we say that xn limits to F along a line L if every

subsequence of xn has a subsequence limiting to some x ∈ F along L.

Remark 5.13. If Γ is a group acting on a properly convex domain Ω, and there
are γn ∈ Γ so that γnx0 limits to x along a line for some x0 ∈ Ω, the point x is
often referred to as a conical limit point for the action of Γ on ∂Ω. We will avoid
this terminology, since we will need to discuss conical limit points later in a way
that is not exactly equivalent.

Proposition 5.14. Let Ω be a properly convex domain and let Γ ⊆ Aut(Ω). Let
F− be a face of ∂Ω, and let xn be a sequence in Ω limiting to F− along a line.

If there exists γn ∈ Γ so that γnxn is relatively compact in Ω, then:

(a) There exists a compact set K ⊆ PGL(d,R) such that γn = kngn, where
kn ∈ K and gn ∈ PGL(d,R) is a sequence of K-pseudo-loxodromics with
repelling endpoint supp(F−).

(b) For any Riemannian metric d on Gr(k, d), and any E > 1, for all suffi-
ciently large n there is a neighborhood U of supp(F−) in Gr(k, d) such that
γn is E-expanding (with respect to d) on U .

Proof. Fix a compact C ⊂ Ω so that γnxn ∈ C for all n. We can move each xn by a
bounded Hilbert distance so that it lies on a fixed line segment L with an endpoint
on F−. So, by enlarging C if necessary, we can assume that the points xn actually
lie on the line L.

Let K′ ⊂ C∗(Rd) be the compact set {Ω} ×C. By assumption we know that for
all n, we have

(Ω, γnxn) ∈ K′.
Using Lemma 5.7, we can find a compact subset K ⊂ C(Rd) and a sequence gn

of K-pseudo-loxodromic elements with repelling endpoint supp(F−) taking xn to x,
for some x ∈ Ω ∩ L. The gn can be chosen so that the axis contains L, implying
that the set

K × {x} ⊂ C∗(Rd)
is compact.

Each group element kn = γng
−1
n takes a pointed domain in the compact set

K× {x} to a pointed domain in the compact set K′. But then, because PGL(d,R)
acts properly on C∗(Rd), the kn lie in a fixed compact subset of PGL(d,R). This
proves part (a).
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Let V− be the support of F−, and let k = dimV−. The elements kn can be
viewed as lying in a compact subset of the diffeomorphisms of the compact manifold
Gr(k, d). So, for any fixed Riemannian metric d on Gr(k, d), there is a constant
M > 0 so that for all n and all W1,W2 ∈ Gr(k, d),

d(knW1, knW2) > M · d(W1,W2).

Fix E > 1. Since gn has repelling endpoint V−, Corollary 5.10 implies that for
some sufficiently large n, there is a neighborhood U of V− in Gr(k, d) so that gn
satisfies

d(gnW1, gnW2) >
E

M
· d(W1,W2)

for all W1,W2 ∈ U . But then we have

d(γnW1, γnW2) > E · d(W1,W2)

giving us the required expansion. �

Proof of Proposition 5.1. Let Γ act cocompactly on some convex C ⊂ Ω. Fix a
Riemannian metric on Gr(k, d) and a constant E > 1.

For every face F of ∂iC, there is a sequence xn in C limiting to F along a line.
Then part (b) of Proposition 5.14 implies that if γnxn is relatively compact in C
for γn ∈ Γ, γn is E-expanding on a neighborhood of supp(F ) for sufficiently large
n. �

Proof of (1) =⇒ (2) in Theorem 1.5. We apply Proposition 5.1 to CorΩ(Γ), whose
ideal boundary is the full orbital limit set ΛΩ(Γ). Lemma 2.9 implies that ΛΩ(Γ)
contains all of its faces and is closed and boundary-convex, so it is the Γ-invariant
subset required by the theorem. �

5.4. North-south dynamics. In Section 8, it will be useful to apply a consequence
of part (a) of Proposition 5.14. The following can be thought of as a kind of weak
version of north-south dynamics on the limit set of a group acting on a convex
projective domain.

Proposition 5.15. Let Ω be a properly convex domain, let Γ ⊂ Aut(Ω), and let Λ
be a closed Γ-invariant subset of ∂Ω. Let F be a face of Λ, and let xn be a sequence
limiting to F along a line.

For any sequence γn such that γnxn is relatively compact in Ω, there exist sub-
spaces E+ and E−, with E+ ⊕ E− = Rd, so that:

(1) P(E+), P(E−) are supporting subspaces of Ω, intersecting Λ,
(2) for every compact K ⊂ ∂Ω−F , a subsequence of γnK converges uniformly

to a subset of P(E+), and a subsequence of γnF converges uniformly to a
subset of P(E−),

(3) for every x ∈ F and every z ∈ ∂Ω− F , the sequence of line segments

γn · [x, z]

sub-converges to a line segment intersecting Ω.

We emphasize again that the subspaces E± above are complementary in Rd.
Without this additional condition, the proposition follows easily from (for example)
[IZ21, Proposition 5.7].
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Proof. Using Proposition 5.14, we decompose each γn as kngn, for a sequence gn
of K-pseudo-loxodromic elements with repelling endpoint V− = supp(F ), and kn
lying in a fixed compact in PGL(d,R). Taking a subsequence, we may assume that
kn converges to k ∈ PGL(d,R), so that

γnV− = kngnV− = knV− → kV−.

Let E− = kV−. We let V+ be the other endpoint of the sequence gn, let V0 be
the neutral subspace, and let E+ := k(V+ ⊕ V0). Since Λ is closed and Γ-invariant,
both P(E+) and P(E−) intersect Λ.

Fix a compact subset K in ∂Ω−F . Proposition 5.8 implies that gnK converges
uniformly to a subset of P(V+⊕V0). So, kngnK converges uniformly to a subset of
P(E+).

This shows parts (1) and (2). To see part (3), let L be the line segment [x, z].
By Proposition 2.12, we can find R > 0 and x′n ∈ L such that

dΩ(xn, x
′
n) ≤ R.

We know that γnxn lies in a fixed compact subset C of Ω. So, γnx
′
n lies in a closed

and bounded Hilbert neighborhood of C. This is also a compact subset of Ω, so up
to a subsequence, γnx

′
n converges to some x′0 ∈ Ω.

The limit of the line segment [γnx−, γnx
′
n] is nontrivial, intersects Ω, and is a

sub-segment of the limit of [γnx−, γnz], so this implies the desired result. �

6. Background on relative hyperbolicity

6.1. A definition using convergence groups. Relatively hyperbolic groups, like
word-hyperbolic groups, have a wide variety of possible definitions. Here we are
most interested in the dynamical properties of relatively hyperbolic groups, so we
will use a dynamical characterization due to Yaman [Yam04].

Yaman’s characterization uses the language of convergence group actions, which
we review below. Convergence groups were originally studied in the context of
group actions on spheres in Rd by Gehring and Martin [GM87], and for general
group actions on compact Hausdorff spaces by Freden and Tukia [Fre97, Tuk98].

Definition 6.1. A group Γ acting on a topological space X is said to act on X as
a convergence group if, for every sequence of distinct elements γn ∈ Γ, there exist
(not necessarily distinct) points a, b ∈ X and a subsequence γ′n of γn such that the
restriction of γ′n to X − {a} converges to the constant map b.

When X is a compact Hausdorff space, Γ acts on X as a convergence group if
and only if Γ acts properly discontinuously on the space of pairwise distinct triples
in X [Bow99].

Definition 6.2. Let Γ act as a convergence group on X.

• We say that x ∈ X is a conical limit point if there exist distinct points
a, b ∈ X and an infinite sequence of elements γn ∈ Γ such that γnx → a
and γny → b for all y 6= x in X.

• An infinite subgroup H of Γ is a parabolic subgroup if it fixes a point x ∈ X
and each infinite-order element of H has exactly one fixed point in X.

• A point x ∈ X is a parabolic point if its stabilizer is a parabolic subgroup.
A parabolic point x is bounded if StabΓ(x) acts cocompactly on X − {x}.
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When Γ acts as a convergence group on a space X with no isolated points,
and every point in X is a conical limit point, we say that Γ acts as a uniform
convergence group on X. This can be shown to be equivalent to the condition that
Γ act cocompactly on the space of distinct triples in X [Tuk98].

An important theorem of Bowditch [Bow98] says that if Γ is a non-elementary
group (i.e. not finite or virtually cyclic), Γ acts on a perfect metrizable compact
space X as a uniform convergence group if and only if Γ is word-hyperbolic and X
is equivariantly homeomorphic to the Gromov boundary of Γ. Yaman later proved
an analogous result for relatively hyperbolic groups:

Theorem 6.3 ([Yam04]). Let Γ be a non-elementary group, and let H be the
collection of all conjugates of a finite collection of finitely-generated proper subgroups
of Γ.

Then Γ is hyperbolic relative to H if and only if Γ acts on a compact, perfect,
and metrizable space X as a convergence group, every point in X is either a conical
limit point or a bounded parabolic point for the Γ-action, and the parabolic points
in X are exactly the fixed points of the groups in H.

In this case, the Bowditch boundary ∂(Γ,H) is equivariantly homeomorphic to
X.

We will use Theorem 6.3 as our definition of both relative hyperbolicity and the
Bowditch boundary of a relatively hyperbolic group. For other definitions, see e.g.
[Bow12], [DS05]. The groups in H are referred to as the peripheral subgroups.

Remark 6.4. Here we are adopting the convention that a group is hyperbolic rel-
ative to a conjugacy-closed collection of subgroups lying in finitely many conjugacy
classes.

The alternative convention would be to fix a finite set P = {Pi} of representatives
for these conjugacy classes, and say that the group Γ is hyperbolic relative to P.
We avoid this since we will work with the collection H of conjugates more often
than we work with P—the main exception is section 8.1.

7. Embedding the Bowditch boundary

Our goal here is to prove Theorem 1.9. Our first step is the following:

Proposition 7.1. Let Ω be a properly convex domain, and let Γ ⊂ Aut(Ω) be hyper-
bolic relative to a collection of subgroups H = {Hi} each acting convex cocompactly
on Ω with disjoint full orbital limit sets ΛΩ(Hi).

Suppose Λ is a Γ-invariant subset of ∂Ω containing all of its faces and con-
taining ΛΩ(Hi) for every Hi. If [Λ]H is the image of a Γ-equivariant embedding
φ : ∂(Γ,H)→ [∂Ω]H, then the set

Λc = Λ−
⋃

Hi∈H
ΛΩ(Hi)

contains only extreme points in ∂Ω.

Proof. The equivariant homeomorphism φ : ∂(Γ,H) → [Λ]H means that Γ acts on
[Λ]H as a convergence group as in Theorem 6.3. In particular, we can classify the
points of [Λ]H as either bounded parabolic points or conical limit points, where the
parabolic points are exactly the points corresponding to ΛΩ(Hi).
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So, if x is a point in Λc, it represents a conical limit point in [Λ]H. Suppose for a
contradiction that x is not an extreme point, i.e. x lies in the interior of a nontrivial
segment [a, b] ⊂ ∂Ω. Since Λ contains all of its faces, (a, b) ⊂ Λ, and we can find
w, z ∈ Λ such that w, x, z are pairwise distinct points lying on (a, b) in that order.

Lemma 2.9 tells us that each ΛΩ(Hi) contains its faces, so we know that w and
z cannot lie in any ΛΩ(Hi). So w, x, and z represent three distinct points in [Λ]H.

This means that there exist group elements γn ∈ Γ so that γn[x]H → a, and
γn[z]H, γn[w]H both converge to some b ∈ [Λ]H, with a, b distinct.

This convergence is only in [Λ]H. However, since the Bowditch boundary ∂(Γ,H)
is always compact, [Λ]H is as well, and therefore its preimage Λ in the compact set
∂Ω is compact too. So, up to a subsequence, we can assume that γnx → u, and
γnz → v1, γnw → v2, with

[u]H = a, [v1]H = [v2]H = b.

The line segment [w, z] must converge to the line segment [v1, v2], which must
contain u. If v1 = v2, this is clearly impossible without having u = v1 = v2. If
v1 6= v2, then v1, v2 both lie in ΛΩ(Hi) for some Hi. Since each ΛΩ(Hi) is boundary-
convex (Lemma 2.9 again), u must lie in ΛΩ(Hi) as well, a contradiction. �

The above is important partly because of the following proposition, which we
will use repeatedly in the proof of both Theorem 1.9 and its converse.

Proposition 7.2. Let Ω be a properly convex domain, and let Λ be a boundary-
convex subset of ∂Ω containing all of its faces. Let H be a collection of subgroups
of Aut(Ω) acting convex cocompactly with disjoint full orbital limit sets in Ω.

If every point in Λc = Λ −
⋃
Hi∈H ΛΩ(Hi) is an extreme point, then for any

x, y ∈ Λ with [x]H 6= [y]H, the segment (x, y) lies in Ω.

Proof. We will prove the contrapositive, and show that if x, y are distinct points in
Λ with (x, y) ⊂ ∂Ω, then [x]H = [y]H.

Assume x, y ∈ Λ are distinct. Boundary-convexity tells us that if (x, y) ⊂ ∂Ω,
then (x, y) ⊂ Λ. Since we know Λc only contains extreme points, some u ∈ (x, y)
lies in ΛΩ(Hi) for some Hi ∈ H. Since Hi acts convex cocompactly on Ω, Lemma
2.9 implies that [x, y] lies in ΛΩ(Hi), which means that [x]H = [y]H. �

The following proposition explains why we do not need to assume that Γ is
discrete in the statement of Theorem 1.9.

Proposition 7.3. If Ω, Γ, Λ are as in Theorem 1.9, and Γ is non-elementary,
then Γ is discrete.

Proof. Γ acts as a convergence group on [Λ]H, so it acts properly discontinuously
on the space of pairwise distinct triples in [Λ]H, which we denote T ([Λ]H).

The map
Γ× T ([Λ]H)→ T ([Λ]H)

given by the Γ-action is continuous, so Γ is discrete. �

We are now able to prove Theorem 1.9.

Proof of Theorem 1.9. Let Ω, Γ, Λ, H be as in the hypotheses for Theorem 1.9. We
can assume that H 6= {Γ} and that Γ is infinite (if not then the theorem is trivial).
This means that ∂(Γ,H) contains at least two points, and Proposition 7.2 implies
that CorΩ(Γ) is nonempty.
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If Γ is virtually infinite cyclic, the hypotheses of the theorem imply that the
generator γ of a finite-index cyclic subgroup fixes a pair of points {x, y} in ∂Ω with
(x, y) ⊂ Ω; γ acts as a translation in the Hilbert metric along the axis (x, y). This
action is properly discontinuous (so Γ is discrete) and cocompact. Further, since x
and y are extreme points, γnz converges to either x or y as n→ ±∞ for all z ∈ Ω,
so ΛΩ(Γ) = {x, y}.

So we may assume Γ is non-elementary. Owing to Theorem 1.5, we only need to
show that Γ is expanding at the faces of Λ; in fact we will show directly that the
expansion is uniform.

Since each Hi acts convex cocompactly on Ω, Theorem 1.5 means that Γ is
expanding in a neighborhood of the support of any face of ΛΩ(Hi) for some Hi. In
fact, we can assume that the expansion constants are uniform over all Hi ∈ H (see
Remark 3.2), so we only need to consider the faces in

Λc = Λ−
⋃

Hi∈H
ΛΩ(Hi).

Proposition 7.1 implies that each of these faces is actually just a point in ∂Ω, whose
support is equal to itself.

Let x be a point in Λc. We will build a sequence of points xn in Ω limiting to
x along a line (Definition 5.12), and show that the orbits Γ · xn intersect a fixed
compact set.

Since Γ is non-elementary, its Bowditch boundary contains at least three distinct
conical limit points, so we can find y, z ∈ Λc so that [x]H, [y]H, [z]H are pairwise
distinct.

Fix supporting hyperplanes W,V of Ω at x and z, respectively. Proposition 7.2
implies that W ∩ V does not contain x, y, or z, and that the line segment (x, z) is
in Ω. The projective hyperplane

H = (W ∩ V )⊕ y

intersects (x, z) at a point w ∈ Ω.
Since [x]H is a conical limit point, we can find a sequence γn ∈ Γ so that

γn[x]H → a

and

γn[z]H, γn[y]H → b

for a, b distinct. As in the proof of Proposition 7.1, we can pick subsequences so
that γnx, γny, and γnz all converge to points x∞, y∞, z∞ in Λ, and γnW and γnV
converge to supporting hyperplanes W∞, V∞ of Ω at x∞ and z∞.

Since x∞ and z∞ represent distinct points of [Λ]H, Proposition 7.2 implies that
W∞∩V∞ must not contain x∞ or z∞; for the same reason y∞ is also not contained
in W∞ ∩ V∞.

While [z∞]H = [y∞]H, it is not necessarily true that y∞ = z∞. However, we do
know that the segment (y∞, x∞) cannot lie in ∂Ω. So, the sequence

γn(H ∩ (x, z)) = γnw

cannot approach x∞.
Proposition 7.3 means that we know Γ is discrete, and so its action on Ω is

properly discontinuous. Thus γnw must accumulate to an endpoint of [x∞, z∞]—
and therefore to z∞.
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γnx

γnzγny

γnw

x∞

z∞
v0

γnW
γnV

γnH

Figure 8. The sequence γnw limits to z∞, so the sequence γ−1
n v0

limits to x along a line.

Let ` be the line segment [x, z]. This segment has a well-defined total order,
where a < b if a is closer to x than b. If `n = [γnx, γnz], then γn is an order-
preserving isometry from ` to `n, where the metric is the restricted Hilbert metric
dΩ.

Fix a basepoint v0 on the line segment `∞ = [x∞, z∞], and choose vn ∈ `n
converging to v0. Since γnw converges to z∞, we see that vn < γnw and

dΩ(vn, γnw)→∞.
Thus we must have γ−1

n vn → x.
But now we can apply part (b) of Proposition 5.14 to the sequence γ−1

n vn ⊂ `
to see that γn is eventually expanding in a neighborhood of x in RPd−1. �

8. Convex cocompact groups which are relatively hyperbolic

The goal of this section is to prove Theorem 1.16.

8.1. Non-peripheral segments in the boundary. We start by showing that
conditions (i) and (ii) of Theorem 1.16 are satisfied whenever Γ is a convex cocom-
pact group hyperbolic relative to a collection of convex cocompact subgroups. That
is, we will show:

Proposition 8.1. Let Γ be a group hyperbolic relative to a collection H of sub-
groups, and suppose that Γ and each Hi ∈ H act on a properly convex domain Ω
convex cocompactly.

Then:

(i) The full orbital limit sets ΛΩ(Hi) are disjoint for distinct Hi, Hj ∈ H,
(ii) Every nontrivial segment in ΛΩ(Γ) is contained in the full orbital limit set

of some peripheral subgroup Hi,

We will closely follow the proof of a similar result of Islam and Zimmer [IZ19,
Theorem 1.8 (7)]. The main idea is that a nontrivial segment ` in the full orbital
limit set ΛΩ(Γ) of a convex cocompact group Γ is accumulated to by segments in
the boundary of some maximal properly embedded simplices in CorΩ(Γ). When
Γ is hyperbolic relative to a collection A of virtually abelian subgroups of rank
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at least 2, Islam and Zimmer show that A is in one-to-one correspondence with
the set of maximal properly embedded simplices in CorΩ(Γ), and then use a coset
separation property due to Druţu and Sapir [DS05] to see that these maximal
properly embedded simplices are isolated. This ends up implying that ` lies in the
boundary of one of the simplices that accumulate to it.

When we do not assume the peripheral subgroups are virtually abelian, we need
to modify this approach slightly. First, we need to assume that the peripheral
subgroups act convex cocompactly on Ω ([IZ19] implies that this assumption is
always satisfied in the virtually abelian case). Second, in our situation, the maximal
properly embedded simplices in CorΩ(Γ) do not need to be isolated. However, it is
true that the convex cores CorΩ(Hi) of the peripheral subgroups in H are isolated.
So the desired result ends up following from the fact that every maximal properly
embedded k-simplex (k ≥ 2) in CorΩ(Γ) lies in CorΩ(Hi) for some Hi ∈ H; this is
Lemma 8.3 below.

8.1.1. Cosets and convex cores of peripheral subgroups. Let Γ be hyperbolic relative
to a collection of subgroups H, and suppose that Γ and each Hi ∈ H act convex
cocompactly on a fixed properly convex domain Ω. We fix a basepoint x ∈ Ω, and
fix a finite set P = {Pi} of conjugacy representatives for H.

The Švarc-Milnor lemma implies that Γ is finitely generated and that, under the
word metric induced by any finite generating set, Γ is equivariantly quasi-isometric
to the convex core CorΩ(Γ) equipped with the restricted Hilbert metric dΩ. The
quasi-isometry can be taken to be the orbit map γ 7→ γx.

Since each Pi also acts convex cocompactly on Ω, each Pi is also finitely gen-
erated, and Pi is quasi-isometric to CorΩ(Pi), which isometrically embeds into
CorΩ(Γ). We may assume that the quasi-isometry constants are uniform over all
Pi ∈ P, and fix a finite generating set for Γ containing generating sets for each Pi.

Since g · CorΩ(Pi) = CorΩ(gPig
−1), if we fix a Γ-equivariant quasi-isometry

φ : CorΩ(Γ)→ Γ,

we know φ restricts to a quasi-isometry

CorΩ(gPig
−1)→ gPi,

with uniform quasi-isometry constants over all g ∈ Γ, Pi ∈ P.
The cosets gPi have a separation property : distinct cosets cannot stay “close” to

each other over sets of large diameter. The precise statement is as follows. For any
metric space X, and any A ⊆ X, we let

NX(A; r)

denote the open r-neighborhood of A in X with respect to the metric dX , and let

BX(x; r)

denote the open r-ball about x ∈ X.

Theorem 8.2 ([DS05, Theorem 4.1 (α1)]). Let Γ be hyperbolic relative to H, and
let P be a finite set of conjugacy representatives. For every r > 0, there exists
R > 0 such that for every distinct pair of left cosets g1P1, g2P2, the diameter of the
set

NΓ(g1P1; r) ∩NΓ(g2P2; r)

is at most R.
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In addition, Theorem 1.7 of [DS05] implies that if k ≥ 2, any quasi-isometrically
embedded k-flat in a relatively hyperbolic group Γ is contained in theD-neighborhood
of a coset gPi of some peripheral subgroup Pi ∈ P. This allows us to see the fol-
lowing:

Lemma 8.3. Suppose Γ acts convex cocompactly on Ω, and that Γ is hyperbolic
relative to a collection of subgroups H also acting convex cocompactly on Ω. Every
properly embedded k-simplex (k ≥ 2) in Ω with boundary in ΛΩ(Γ) is contained in
CorΩ(Hi) for some Hi ∈ H.

Proof. Each such embedded k-simplex ∆ is a quasi-isometrically embedded k-flat
in CorΩ(Γ), so φ(∆) is a quasi-isometrically embedded k-flat in Γ. [DS05], Theorem
1.7 implies that φ(∆) is contained in a uniform neighborhood of gP for some P ∈ P.

Applying a quasi-inverse of φ tells us that ∆ is in a uniform Hilbert neighborhood
of CorΩ(gPg−1) in Ω. So the boundary of ∆ is contained in ∂iCorΩ(gPg−1), and
∆ itself lies in CorΩ(gPg−1). �

We now quote:

Lemma 8.4 ([IZ19, Lemma 15.4]). Let (u, v) be a nontrivial line segment in ΛΩ(Γ),
let m ∈ (u, v) and p ∈ CorΩ(Γ), and let V be the span of (u, v) and p. For any r > 0,
ε > 0, there exists a neighborhood U of m in P(V ) such that if x ∈ U ∩ CorΩ(Γ),
then there is a properly embedded simplex Sx ⊂ CorΩ(Γ) such that

BΩ(x; r) ∩ P(V ) ⊂ NΩ(Sx; ε).

Now we can prove Proposition 8.1. The proof of part (ii) is nearly identical to
the proof of Lemma 15.5 in [IZ19].

Proof of Proposition 8.1. (i). Let Hi, Hj be a pair of peripheral subgroups in H,
and suppose that ΛΩ(Hi) ∩ ΛΩ(Hj) contains a point x ∈ ∂Ω. We can find a pair
of projective-line geodesic rays in CorΩ(Hi) and CorΩ(Hj) with one endpoint at
x. Proposition 2.12 implies that the images of these rays have finite Hausdorff
distance.

Thus, in Γ, a uniform neighborhood of the coset giPi corresponding to Hi con-
tains an infinite-diameter subset of the coset gjPj corresponding to Hj . So Theorem
8.2 implies that Hi = Hj .

(ii). Consider any nontrivial segment [u, v] in ΛΩ(Γ), and fix m ∈ (u, v) and
p ∈ CorΩ(Γ). Theorem 8.2 implies that for some R > 0, there exists r > 0 such
that the diameter of

NΩ(CorΩ(Hi); r) ∩NΩ(CorΩ(Hj); r)

is less than R whenever Hi and Hj are distinct.
Let V be the span of u, v, and p. Lemma 8.4 implies that for some neighborhood

U of m in P(V ), for every x ∈ U , there is some properly embedded simplex Sx such
that

BΩ(x;R) ∩ P(V ) ⊂ NΩ(Sx; r).

Lemma 8.3 means that the simplex Sx is contained in the convex hull CorΩ(Hx) of
some peripheral subgroup Hx, and part (i) implies that this peripheral subgroup is
unique.
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We can shrink U so that it is convex, and claim that in this case Hx = Hy for
all x, y ∈ U ∩CorΩ(Γ). By convexity, it suffices to show this when dΩ(x, y) ≤ R/2.
Then

BΩ(x;R/2) ∩ P(V ) ⊂ BΩ(y;R) ∩ P(V ) ⊂ NΩ(Sy; r)

so the diameter of

NΩ(CorΩ(Hx); r) ∩NΩ(CorΩ(Hy); r)

is at least the diameter of BΩ(x;R/2) = R. Thus Hx = Hy.
Fix H = Hx for some x ∈ U ∩ CorΩ(Γ). Then, if xn is a sequence in CorΩ(Γ)

approaching m, there is a sequence x′n ∈ CorΩ(H) such that

dΩ(xn, x
′
n) ≤ k,

for k independent of n. Up to a subsequence, x′n converges to some x′ ∈ ΛΩ(H).
Proposition 2.12 implies that

FΩ(x′) = FΩ(m) ⊇ (u, v).

ΛΩ(H) contains x′. It is also closed and contains all of its faces (Lemma 2.9). So
[u, v] ⊂ ΛΩ(H).

�

8.2. Convex cocompact and no relative segment implies relatively hyper-
bolic. We now turn to the rest of Theorem 1.16. As in our proof of Theorem 1.9,
the main tool will be Yaman’s dynamical characterization of relative hyperbolicity
(Theorem 6.3). If Γ is virtually cyclic, Yaman’s theorem does not apply, but in this
case Γ is hyperbolic and the result follows from [DGK17].

Throughout the rest of this section, we assume (as in the hypotheses to Theorem
1.16) that Ω is a properly convex domain in RPd−1 preserved by a discrete non-
elementary group Γ acting convex cocompactly with full orbital limit set ΛΩ(Γ), and
H is a conjugacy-invariant set of subgroups of Γ lying in finitely many conjugacy
classes, with each Hi ∈ H acting convex cocompactly on Ω. We also assume
H 6= {Γ}, since the result is trivial in this case.

We will prove the following:

Proposition 8.5. Suppose that conditions (i), (ii), and (iii) of Theorem 1.16 hold
for the collection of subgroups H. Then:

(1) Γ acts as a convergence group on [ΛΩ(Γ)]H,
(2) [ΛΩ(Γ)]H is compact, metrizable, and perfect,
(3) the groups Hi are parabolic subgroups, and their fixed points are bounded

parabolic,
(4) every point in

[ΛΩ(Γ)]H − {[ΛΩ(Hi)]H : Hi ∈ H}

is a conical limit point for the Γ-action on [ΛΩ(Γ)]H.

Since convex cocompact groups are always finitely generated, Theorem 1.16 is a
direct consequence of Proposition 8.5, Proposition 8.1, and Theorem 6.3.
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8.2.1. Dynamics of the Γ-action on ΛΩ(Γ). We start by establishing a basic dy-
namical fact about the action of Γ on ΛΩ(Γ) and [ΛΩ(Γ)]H. We need to recall
some basic properties of divergent sequences (that is, sequences which leave every
compact) in PGL(d,R).

Definition 8.6. Let gn be a divergent sequence of elements in PGL(d,R). We say
that a pair of nontrivial subspaces E+, E− ⊂ Rd is a pair of attracting and repelling
subspaces for gn (or just an attracting/repelling pair) if dim(E+) + dim(E−) = d,
and there is a subsequence gm of gn so that for any compact K ⊂ RPd−1 − P(E−),
the set gmK accumulates uniformly on P(E+).

Note that neither the subspaces E+, E− nor even their respective dimensions are
uniquely determined by the sequence gn itself. We also emphasize that while the
subspaces in an attracting/repelling pair have complementary dimension, they do
not need to be transverse.

It is always possible to find at least one pair of attracting and repelling subspaces
for a divergent sequence gn ∈ PGL(d,R), for instance by embedding PGL(d,R) into
the compact space P(End(Rd)). Then, if g ∈ P(End(Rd)) is any accumulation point
of gn, the image and kernel of g form a pair of attracting and repelling subspaces
for the sequence. However, gn may have other attracting/repelling pairs which do
not arise in this way. For example, if gn is given by the sequence of matrices2n

1
2−n

 ,

then the limit of gn in P(End(R3)) is the (projectivized) matrix
(

1 0 0
0 0 0
0 0 0

)
, yielding the

attracting subspace 〈e1〉 and repelling subspace 〈e2, e3〉. But in this example, the
subspace 〈e1, e2〉 is also an attracting subspace, paired with the repelling subspace
〈e3〉.

The result below is certainly well-known, but we include a proof for completeness.

Lemma 8.7. Let Ω be a properly convex domain in RPd−1, let Γ be a subgroup of
Aut(Ω), and let Λ be any closed Γ-invariant subset of ∂Ω with nonempty convex
hull in Ω.

If E+ and E− are a pair of attracting and repelling subspaces for some divergent
sequence {γn} ⊂ Γ, then P(E+) and P(E−) are supporting subspaces of Ω that
intersect Λ nontrivially.

Note that if E+ and E− are attracting and repelling subspaces arising from a
limit of gn in P(End(Rd)), then this lemma can be seen as a consequence of [IZ21,
Proposition 5.6] (and in fact this case of the lemma is already strong enough for
our intended application).

Proof. It suffices to show the claim for E+, because replacing γn with γ−1
n reverses

the role of the attracting and repelling subspaces.
Since Ω is open, it is not contained in P(E−). So, for some x ∈ Ω, the limit of

γnx is contained in P(E+). Since Ω is Γ-invariant, P(E+) intersects Ω nontrivially.
Let E∗+ be the subspace of (Rd)∗ consisting of functionals which vanish on E+.

Then E∗+ is an attracting subspace for the sequence γn under the dual action of Γ

on (Rd)∗. So, by the previous argument, P(E∗+) intersects Ω∗ nontrivially, which
means P(E+) cannot intersect Ω.
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This shows that P(E+) is a supporting subspace of Ω (and therefore P(E−) is as
well). To see that P(E+) intersects Λ nontrivially, note that since Λ has nonempty
convex hull in Ω and P(E−) is a supporting subspace of Ω, Λ is not a subset of
P(E−) ∩ ∂Ω. So, for some x ∈ Λ, γnx accumulates to a point y in P(E+); since Λ
is Γ-invariant and closed, y is in Λ also. �

A straightforward consequence of Lemma 8.7 is part (1) of Proposition 8.5:

Proposition 8.8. Γ acts as a convergence group on [ΛΩ(Γ)]H.

Proof. Let γn be an infinite sequence in Γ. Since Γ is discrete, γn is divergent,
so we let E+, E− be (the projectivizations of ) a pair of attracting and repelling
subspaces, and extract a subsequence so that for any compact K ⊂ RPd−1 − E−,
γnK converges to a subset of E+.

Lemma 8.7 implies that E+ and E− are both supporting subspaces of Ω and
both intersect ΛΩ(Γ) nontrivially. The intersections E+ ∩ ΛΩ(Γ) and E− ∩ ΛΩ(Γ)
are respectively the closures of subsets of a pair of faces F+, F− ⊂ ΛΩ(Γ). By
assumption, every face in ΛΩ(Γ) containing a nontrivial projective segment lies in
some ΛΩ(Hi), so each face in ΛΩ(Γ) represents a single point of [ΛΩ(Γ)]H. So we
have

[E− ∩ ΛΩ(Γ)]H = a, [E+ ∩ ΛΩ(Γ)]H = b

for (not necessarily distinct) points a, b ∈ [ΛΩ(Γ)]H.
Let [K]H be a compact subset of [ΛΩ(Γ)]H − {a}, where K is the preimage of

[K]H in ΛΩ(Γ). Because ΛΩ(Γ) is compact, so is K. Moreover, K cannot intersect
E−. So, γn ·K converges to a subset of E+∩ΛΩ(Γ), and γn[K]H converges to b. �

8.2.2. Topological properties of [ΛΩ(Γ)]H. Next, we will check that [ΛΩ(Γ)]H satis-
fies each of the properties in part (2) of Proposition 8.5. The first, compactness, is
immediate from the compactness of ΛΩ(Γ).

Showing that [ΛΩ(Γ)]H is metrizable is equivalent to showing that it is Hausdorff,
since it is a quotient of a compact metrizable space.

Let

πH : ΛΩ(Γ)→ [ΛΩ(Γ)]H

be the quotient map. We will show that if a is a point in [ΛΩ(Γ)]H, then we can
find arbitrarily small open neighborhoods of π−1

H (a) in ΛΩ(Γ) which are of the form

π−1
H (U) for U ⊂ [ΛΩ(Γ)]H.

Our first step is the following:

Lemma 8.9. Fix any metric dP on projective space. Let a ∈ [ΛΩ(Γ)]H.
For any ε > 0, there exists a subset W (a, ε) ⊂ ΛΩ(Γ) satisfying:

(1) W (a, ε) = π−1
H (V ) for some V ⊂ [ΛΩ(Γ)]H,

(2) W (a, ε) contains an open neighborhood of π−1
H (a) in ΛΩ(Γ), and

(3) For every z ∈W (a, ε), we have

dP(z, π−1
H (a)) < ε.

Proof. Let Xa = π−1
H (a). For any open set U in ΛΩ(Γ) containing Xa, we let W (U)

be the set

π−1
H ([U ]H) = U ∪ {x ∈ ΛΩ(Hi) : ΛΩ(Hi) ∩ U 6= ∅}.

W (U) is a subset of ΛΩ(Γ) satisfying conditions (1) and (2). We claim that for any
given ε > 0, W (U) also satisfies condition (3) as long as U is sufficiently small.
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We proceed by contradiction. Suppose otherwise, so that there is some ε > 0
so that for a shrinking sequence of open neighborhoods Un of Xa, there is some
Hn ∈ H such that

ΛΩ(Hn) ∩ Un 6= ∅,
and ΛΩ(Hn) contains a point zn such that dP(zn, Xa) ≥ ε.

We write Λn = ΛΩ(Hn). We can choose a subsequence so that in the topology on
nonempty closed subsets of projective space, Λn converges to some closed subset of
ΛΩ(Γ), which we denote Λ∞, and zn converges to z∞ ∈ Λ∞ such that dP(z∞, Xa) ≥
ε.

The set Λ∞ intersects every open subset of ΛΩ(Γ) containing Xa, and since Xa

is a closed subset of a metrizable space, this means Λ∞ intersects Xa. We will get
a contradiction by showing that in fact z∞ ∈ Xa.

We consider two cases:

Case 1: HullΩ(Λ∞) is nonempty. Since the groups in H lie in only finitely many
conjugacy classes, up to a subsequence, the Hn are all conjugate to each other, and
we may assume that Λn = γnΛ0 for a sequence γn ∈ Γ.

We can find a sequence xn ∈ HullΩ(Λn) converging to some x∞ ∈ HullΩ(Λ∞).
Since the action of H0 on HullΩ(Λ0) is cocompact, there is some fixed R > 0 so
that every H0-orbit in HullΩ(Λ0) intersects the Hilbert ball of radius R about x0.
Since Hn is a conjugate of H0 by an isometry of the Hilbert metric on Ω, the same
is true (with the same R) for every xn, Hn, and Λn.

So, we can find a sequence

µn ∈ γnHnγ
−1
n

so that µnγnx0 lies in the Hilbert ball of radius R about xn. Since xn converges to
x∞ ∈ Ω, and Γ acts properly discontinuously on Ω, this means that a subsequence
of µnγn is eventually constant. Because µnγnΛ0 = γnΛ0, this means we can assume
there is some fixed γ ∈ Γ so that

Λ∞ = γΛ0 = ΛΩ(γH0γ
−1).

But then since the limit sets ΛΩ(Hi) are disjoint, we must have Xa = Λ∞, which
means z∞ ∈ Xa.

Case 2: HullΩ(Λ∞) is empty. In this case, HullΩ(Λ∞) must be contained in the
closure of some face F of ∂Ω. We may choose this face minimally, which means
that HullΩ(Λ∞) is not contained in ∂F . Then, because ΛΩ(Γ) is boundary convex,
we know that ΛΩ(Γ) ∩ F is nonempty. Because ΛΩ(Γ) contains all of its faces this
means that F ⊂ ΛΩ(Γ).

If F is a single point, then its closure is also a singleton, hence Λ∞ is the singleton
{z∞}. So in this case z∞ lies in Xa. If F is not a single point, it contains a nontrivial
segment. By assumption, this segment lies in ΛΩ(Hi) for some Hi; since ΛΩ(Hi)
is closed and contains its faces, all of F lies in ΛΩ(Hi) as well. But then ΛΩ(Hi)
intersects both Xa and z∞. Since Xa = π−1

H (a) we must have Xa = ΛΩ(Hi) =
[z∞]H and therefore z∞ ∈ Xa in this case as well.

�

Proposition 8.10. [ΛΩ(Γ)]H is Hausdorff.

Proof. Let a, a′ be distinct points in [ΛΩ(Γ)]H, and let Xa, X
′
a be the preimages of

a and a′ in ΛΩ(Γ).
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Since Xa and X ′a are closed disjoint subsets of the metrizable space ΛΩ(Γ), there
is some ε > 0 such that for any x ∈ Xa, x′ ∈ X ′a,

d(x, x′) > 2ε.

For each n ∈ N, we define a sequence of sets Un containing Xa as follows. We
let U0 = Xa. Then, for each n > 0, we take Un to be the set⋃

b∈[Un−1]H

W (b, ε/2n),

where W (b, ε/2n) is the set given by Lemma 8.9. Note that each Un is a set of the
form π−1

H (V ) for some V ⊂ [ΛΩ(Γ)]H; moreover, if z ∈ Un, then

d(z, Un−1) < ε/2n.

Consider the set U =
⋃
n∈N Un. This set is the preimage of some V ⊂ [ΛΩ(Γ)]H,

and it must be contained in an ε-neighborhood of Xa. In addition, U is open in
ΛΩ(Γ): if z is in Un, then Un+1 contains W ([z]H, ε/2

n+1), which in turn contains
an open neighborhood of z.

This means that [U ]H is an open set in [ΛΩ(Γ)]H containing a. We can sim-
ilarly construct an open set [U ′]H containing a′ such that U ′ is contained in an
ε-neighborhood of X ′a. We know U and U ′ are disjoint, so [U ]H and [U ′]H separate
a and a′. �

Next we show that the space [ΛΩ(Γ)]H is perfect, i.e. [ΛΩ(Γ)]H contains no
isolated points.

Proposition 8.11. [ΛΩ(Γ)]H is perfect.

Proof. Fix a ∈ [ΛΩ(Γ)]H and a representative x of a. Let F = FΩ(x).
Let xn be a sequence of points in CorΩ(Γ) converging to x in RPd−1. Convex

cocompactness means that for some γn ∈ Γ, γ−1
n xn ∈ C for a fixed compact C ⊂ Ω.

This means that (up to a subsequence) for fixed x0 ∈ Ω, γnx0 converges to a
point in F . And since γn acts by Hilbert isometries, Proposition 2.12 implies that
if B is any open ball with finite Hilbert radius about x0, γnB converges uniformly
to a subset of F .
γn is divergent in PGL(d,R), so let E+ and E− be a pair of attracting and

repelling (projective) subspaces for the sequence γn. We know that E+ and E− are
supporting subspaces of Ω, and that

[E− ∩ ΛΩ(Γ)]H, [E+ ∩ ΛΩ(Γ)]H

are single points in [ΛΩ(Γ)]H. Moreover, since an open subset of projective space
converges under γn to F , E+ intersects F , and [E+ ∩ ΛΩ(Γ)]H = a. Let b =
[E− ∩ ΛΩ(Γ)]H.

Since we assume H 6= {Γ}, [ΛΩ(Γ)]H cannot be a single point, and since Γ is
non-elementary, [ΛΩ(Γ)]H contains at least three points. So, we can find a pair of
points c1, c2 ∈ [ΛΩ(Γ)]H such that {b, c1, c2} are pairwise distinct. Both c1 and c2
have a representative which does not lie in E−, so both γnc1 and γnc2 converge to
a; since c1 6= c2, a cannot be isolated. �
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8.2.3. Parabolic points in [ΛΩ(Γ)]H. Our next task is to verify part (3) of Propo-
sition 8.5—that is, to show that points stabilized by our candidate peripheral sub-
groups are bounded parabolic points.

Proposition 8.12. Each point [ΛΩ(Hi)]H in [ΛΩ(Γ)]H is a parabolic point for the
action of Γ, with stabilizer Hi.

Proof. The fact that Hi is self-normalizing implies that Hi is exactly the stabilizer
of [ΛΩ(Hi)]H in Γ: for general g ∈ Aut(Ω),

g · ΛΩ(Hi) = ΛΩ(gHig
−1),

and since we assume that the full orbital limit sets of distinct groups in H are
disjoint, g ∈ Γ preserves ΛΩ(Hi) if and only if g normalizes Hi.

So we just need to check that the groups Hi are parabolic. Let γ ∈ Hi be an
infinite-order element, so that γn is a divergent sequence in PGL(d,R). We want
to show that γ does not fix any point in [ΛΩ(Γ)]H other than [ΛΩ(Hi)]H.

Let E+ and E− be a pair of attracting and repelling projective subspaces for the
sequence γn. Lemma 8.7 implies that both E+ and E− support Ω and intersect
ΛΩ(Hi) nontrivially.

Let b ∈ [ΛΩ(Γ)]H − {[ΛΩ(Hi)]H}, let y ∈ ΛΩ(Hi) ∩ E−, and let x ∈ ΛΩ(Γ)
be a representative of b. Proposition 7.2 implies that x cannot lie in E−, so γnx
converges to a point in ΛΩ(Γ) ∩ E+. Then γnb converges to [ΛΩ(Hi)]H, and in
particular γ does not fix b. �

We still need to show that the parabolic points [ΛΩ(Hi)]H are bounded parabolic
points, i.e. that Hi acts cocompactly on

[ΛΩ(Γ)]H − {[ΛΩ(Hi)]H}.
Our strategy is to show that the set

Λi = ΛΩ(Γ)− ΛΩ(Hi)

is a closed subset of the interior of some convex open set ΩHi
, such that the ideal

boundary of Λi in ΩHi
is exactly ΛΩ(Hi). Then, we can use the fact that Hi is

uniformly expanding in supports at ΛΩ(Hi) to see that the action of Hi on Λi is
cocompact.

If Hi is irreducible (or more generally, if we know that Hi contains a proximal
element), then as a consequence of [Ben00, Proposition 3.1] (or [DGK17, Proposi-
tion 4.5]), we can simply take ΩHi

to be the unique Hi-invariant maximal properly
convex domain Ωmax in RPd−1. Since we do not know if Hi contains a proximal
element in general, we do not know if such a maximal domain exists. So, we will
construct ΩHi directly.

To do so, we consider the dual full orbital limit set ΛΩ∗(Γ) of a group Γ acting
on a properly convex domain Ω. i.e. the full orbital limit set in Ω∗ of Γ viewed
as a subgroup of Aut(Ω∗). Each element of ΛΩ∗(Γ) is an element of ∂Ω∗, i.e. a
supporting hyperplane of Ω.

Proposition 8.13. Let Γ be any subgroup of Aut(Ω).

(1) For every x ∈ ΛΩ(Γ) there exists w ∈ ΛΩ∗(Γ) such that w(x) = 0.
(2) For every w ∈ ΛΩ∗(Γ) there exists x ∈ ΛΩ(Γ) such that w(x) = 0.

The statement follows from e.g. Proposition 5.6 in [IZ21]; we provide an alter-
native proof for convenience.
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Proof. The two statements are dual to each other, so we only need to prove (1).
Given a point x ∈ Ω, and W ∈ Ω∗, we consider a quantity

δΩ(x,W )

defined in [DGK17] as follows:

δΩ(x,W ) = inf
z∈W
{min{[az, x; bz, z], [bz, x; az, z]},

where az and bz are the points in ∂Ω such that az, x, bz, z lie on a projective line.
The function δΩ(x,W ) can be thought of as an Aut(Ω)-invariant measure of how
“close” x is to ∂Ω, relative to the projective hyperplane W : it takes on nonzero
values for x ∈ Ω, W ∈ Ω∗, and for fixed W ∈ Ω∗ and xn converging to ∂Ω,
δΩ(xn,W ) converges to 0.

We now take z ∈ ΛΩ(Γ), and choose γn ∈ Γ, z0 ∈ Ω so that γnz0 → z. Fix some
W0 ∈ Ω∗, and consider the sequence γnW0. Up to a subsequence, this converges to
some W ∈ Λ∗Ω(Γ).

ayn

yn

γnz0

γnW0

byn

Figure 9. If γnz0 approaches the boundary of Ω, and
δΩ(γnz0, γnW0) is bounded away from 0, γnW0 must limit to a
hyperplane containing the limit of γnz0.

Since δΩ(x,W ) is Γ-invariant, for any sequence

yn ∈ γnW0,

both of the cross-ratios

[ayn , γnz0; byn , yn], [byn , γnz0; ayn , yn]

remain bounded away from 0 as n→∞. But since γnz0 approaches z ∈ ∂Ω, we can
choose yn so that exactly one of ayn , byn also approaches z. Thus, yn approaches z
as well, and so W contains z. �

Next, we consider the dual convex core for the Γ-action on Ω.

Definition 8.14. Let Ω ⊂ RPd−1 be a properly convex domain, and let Γ ⊆
Aut(Ω). The dual convex core Cor∗Ω(Γ) is the convex set

[HullΩ∗(ΛΩ∗(Γ))]∗.
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Equivalently, Cor∗Ω(Γ) is the unique connected component of

RPd−1 −
⋃

W∈ΛΩ∗ (Γ)

W

which contains Ω.

Figure 10. Part of the limit set and dual limit set for a group Γ
acting convex compactly on the projective model for H2 (the inte-
rior of the white circle). CorΩ(Γ) is the light region, and Cor∗Ω(Γ)
is the dark region.

As long as ΛΩ∗(Γ) contains at least two points, Cor∗Ω(Γ) does not contain all of
RPd−1. It can be viewed as an intersection of convex subspaces, so it is convex in
the sense of Definition 2.2, but in general it is not properly convex.

We can use the dual convex core to finish proving part (3) of Proposition 8.5.

Proposition 8.15. The stabilizer of [ΛΩ(Hi)]H acts cocompactly on

Λi = [ΛΩ(Γ)]H − {[ΛΩ(Hi)]H}.

Proof. Let ΩHi = Cor∗Ω(Hi) be the dual convex core of Hi in Ω. Proposition 8.13
implies that ΛΩ(Hi) lies in the boundary of ΩHi

.
Moreover, the set ΛΩ(Γ) − ΛΩ(Hi) lies in the interior of ΩHi

—for, every point
in the boundary of ΩHi

is contained in a projective hyperplane W ∈ ΛΩ∗(Hi), and
each such hyperplane supports some x ∈ ΛΩ(Hi). Since W is also a supporting
hyperplane of Ω, Proposition 7.2 implies that no y ∈ ΛΩ(Γ)− ΛΩ(Hi) lies in W .

ΛΩ(Γ) is thus a closed subset of ΩHi
whose ideal boundary in ΩHi

is contained
in ΛΩ(Hi). Since Hi acts convex cocompactly on Ω, it is uniformly expanding in
supports at ΛΩ(Hi) by Theorem 1.5. Then Proposition 3.4 (applied to the convex
domain ΩHi

) implies that the action of Hi on ΛΩ(Γ)−ΛΩ(Hi) is cocompact—which
means that the Hi-action on the quotient [ΛΩ(Γ)]H−{[ΛΩ(Hi)]H} is cocompact as
well. �

8.2.4. Conical limit points in [ΛΩ(Γ)]H. Finally we check part (4) of Proposition
8.5—that the remaining points in our candidate Bowditch boundary are indeed
conical limit points. We will do this in two steps.
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Lemma 8.16. Let Hi ∈ H, let

xn ∈ ΛΩ(Γ)− ΛΩ(Hi)

be a sequence approaching x ∈ ΛΩ(Hi), and let F = FΩ(x). If hn is a sequence
such that hn[xn]H is relatively compact in

[ΛΩ(Γ)]H − {[ΛΩ(Hi)]H},
then for any compact

K ⊂ ΛΩ(Γ)− F ,
hn sub-converges on [K]H to the constant map [ΛΩ(Hi)]H.

Proof. Any such sequence hn must be divergent, so we let E+ and E− be a pair of
attracting and repelling projective subspaces for hn. We know from Lemma 8.7 that
E+ and E− are supporting subspaces of Ω, each intersecting ΛΩ(Hi) nontrivially.
Proposition 7.2 implies that E+ ∩ ΛΩ(Γ) ⊂ ΛΩ(Hi) and E− ∩ ΛΩ(Γ) ⊂ ΛΩ(Hi).
We can see that the subspace E− must contain x, since otherwise hnxn would
subconverge to a point in E+ ∩ ∂ΛΩ(Γ) ⊆ ΛΩ(Hi).

But then E− ∩ ∂Ω is a subset of F . Then, since E+ and E− are a pair of
attracting and repelling subspaces, if K is compact in ΛΩ(Γ)− E−, we know hnK
uniformly accumulates on E+ ∩ ΛΩ(Γ) ⊂ ΛΩ(Hi). �

Proposition 8.17. Every element of the set

[ΛΩ(Γ)]H − {[ΛΩ(Hi)]H : Hi ∈ H}
is a conical limit point for the action of Γ on ΛΩ(Γ).

Proof. By assumption, any point in this set has a unique representative x ∈ ΛΩ(Γ)
which is an extreme point in ∂Ω. Fix a sequence xn ∈ Ω limiting to x along a line,
and let γn ∈ Γ be group elements taking xn back to some fixed compact in Ω.

Proposition 5.15 implies that there is a supporting subspace E+ of Ω, intersecting
ΛΩ(Γ), so that γnx limits to some x′ ∈ ΛΩ(Γ) not intersecting E+, and if K is any
compact subset of ΛΩ(Γ)−x, a subsequence of γnK converges uniformly to a subset
of E+ ∩ ΛΩ(Γ). In particular, γn converges uniformly on compacts in

[Λ]H − {[x]H}
to the constant map [E+ ∩ ΛΩ(Γ)]H.

If [x′]H 6= [E+ ∩ΛΩ(Γ)]H, then we are done. However, it is also possible that x′

and E+∩ΛΩ(Γ) both lie in the same full orbital limit set of some convex cocompact
subgroup Hi.

In this case, we use the fact that [ΛΩ(Hi)]H is a bounded parabolic fixed point
(Proposition 8.15) to find a sequence hn ∈ Hi such that hn · [γnx]H lies in a fixed
compact set C in

[ΛΩ(Γ)]H − {[ΛΩ(Hi)]H},
and consider the sequence of group elements hnγn. We will show that hnγn is
a conical limit sequence for x, i.e. that after taking a subsequence, for distinct
a, b ∈ [ΛΩ(Γ)]H, we have hnγn[x]H → a and hnγn[K]H → b for any compact
[K]H ⊂ [ΛΩ(Γ)]H − [x]H.

So, fix an arbitrary compact subset [K]H of

[ΛΩ(Γ)]H − {[x]H},
where K is the (compact) preimage of [K]H in ΛΩ(Γ)− {x}.
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After taking a subsequence, γnK must converge to a compact subset of E+ ∩
ΛΩ(Γ), which does not intersect x′. In fact, part (3) of Proposition 5.15 implies
that γnK converges to a compact subset of ΛΩ(Γ) − F ′, where F ′ = FΩ(x′). So
there is a fixed compact

K ′ ⊂ ΛΩ(Γ)− F ′

so that for sufficiently large n, γnK ⊂ K ′. Then Lemma 8.16 implies that

hnγn[K]H ⊆ hn[K ′]H

sub-converges to [ΛΩ(Hi)]H. But on the other hand,

[(hnγn)xn]H ∈ C
sub-converges to some b 6= [ΛΩ(Hi)]H, so hnγn gives us the sequence of group
elements we need. �
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