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We study several higher-rank generalizations of the dynamical behavior of

convex cocompact groups in rank-one Lie groups, in the context of both convex

projective geometry and relatively hyperbolic groups. Our results include a dynam-

ical characterization of a notion of convex cocompact projective structure due to

Danciger-Guéritaud-Kassel. This generalizes a dynamical characterization of Anosov

representations of hyperbolic groups. Using topological dynamics, we also define a

new notion of geometrical finiteness in higher rank which generalizes previous notions

of relative Anosov representation due to Kapovich-Leeb and Zhu. We prove that

these “extended geometrically finite” representations are stable under certain small

relative deformations, and we provide various examples coming from the theory of

convex projective structures.
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Chapter 1

Introduction

1.1 Convex cocompactness in rank one

The classical study of Fuchsian and Kleinian groups has yielded enormously

important results in the field of geometric topology. In fact much of the modern

understanding of manifolds in two and three dimensions rests on deep knowledge of

the behavior of discrete subgroups of SL(2,R) and SL(2,C) and their connection to

hyperbolic geometry. Among such subgroups, the most well-behaved examples are

the convex cocompact groups.

Definition 1.1.1. Let Γ be a discrete subgroup of SL(2,R). The group Γ is convex

cocompact if there is a nonempty Γ-invariant convex subset C of the hyperbolic plane

H2 such that the quotient C/Γ is compact.

This definition generalizes without difficulty for discrete subgroups of SL(2,C)

(replacing the action of Γ on H2 with an action on H3) or more generally discrete

subgroups of SO(d, 1) (which acts on d-dimensional hyperbolic space Hd).

One way to study convex cocompact groups is to use the tools of coarse metric

geometry. A convex subset C of d-dimensional hyperbolic space is by definition

isometrically embedded. Since Hd has constant negative sectional curvature, this
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implies that when C is viewed as a metric space, it is δ-hyperbolic in the sense of

Gromov [Gro87]. Then, an immediate consequence of the Milnor-Schwarz lemma is

Proposition 1.1.2. Let Γ ⊂ SO(d, 1) be a convex cocompact group. Then Γ is finitely

generated, and for any point x0 ∈ Hd, the orbit map γ 7→ γ · x0 is a quasi-isometric

embedding. Thus, Γ is a word-hyperbolic group.

Proposition 1.1.2 is one reason that convex cocompact groups are a satisfying

object of study from the perspective of geometric group theory. Indeed the theory of

word-hyperbolic groups has both led to greater understanding of convex cocompactness

in general, and has also been enriched by the wide variety of interesting examples

that appear in this context. Worth mentioning in particular are Schottky groups

and the quasifuchsian subgroups of SL(2,C), i.e. deformations of convex cocompact

subgroups of SL(2,R) ⊂ SL(2,C).

Beyond the realm of hyperbolic geometry, it is also possible to define a notion

of a convex cocompact subgroup of any semisimple Lie group G with real rank equal

to 1. Any discrete subgroup of G acts properly discontinuously on the Riemannian

symmetric space X = G/K, where K is a maximal compact subgroup of G, which

leads to the following

Definition 1.1.3. Let Γ be a discrete subgroup of a real semisimple Lie group G

with rank one. The group Γ is convex cocompact if Γ acts cocompactly on a nonempty

convex subset C of the Riemannian symmetric space X = G/K.

When G = SO(d, 1) this definition agrees exactly with the definition of convex

cocompactness given earlier. When G is a general rank-one Lie group, the Riemannian
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symmetric space G/K still has everywhere (pinched) negative sectional curvature, so

a version of Proposition 1.1.2 also applies in this context.

1.1.1 Convex cocompactness in higher rank

Given that convex cocompact groups in rank-one exhibit a number of desirable

geometric, algebraic, and dynamical properties (many of which will be discussed

throughout this thesis), it is natural to ask if there is a good definition of a convex

cocompact subgroup of a real Lie group G with real rank greater than one—possibly

one that opens a doorway to understanding the (still very mysterious) world of discrete

subgroups of higher-rank Lie groups. Definition 1.1.3 might appear to provide an

immediate way forward: one should simply ask for a discrete subgroup Γ ⊂ G to act

cocompactly on an invariant convex subset of the Riemannian symmetric space G/K.

This is a perfectly sensible definition, but one problem is that it is too strong to

give a theory with a rich variety of examples to work with. In particular, Kleiner-Leeb

[KL06] and Quint [Qui05] independently showed the following

Theorem 1.1.4. Let G be a semisimple Lie group with real rank ≥ 2. If Γ ⊂ G is a

discrete Zariski-dense subgroup which acts cocompactly on a nonempty convex subset

C ⊂ G/K, then Γ is a uniform lattice in G.

If we want to use our understanding of convex cocompact groups in rank one

to study discrete subgroups of higher rank Lie groups, Theorem 1.1.4 tells us that we

should not try generalizing Definition 1.1.3 directly: we will not find any examples

beyond uniform lattices. To understand more, we should look for a broader class of
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discrete subgroup where our rank-one tools still apply, which leads us to the notion

of an Anosov representation.

1.2 Anosov representations

The idea behind an Anosov representation is the fact that convex cocompact

groups in rank one can be characterized by their dynamical properties. The original

definition of an Anosov subgroup was due to Labourie [Lab06]. He proved that if

π1S is the fundamental group of a hyperbolic surface, and ρ : π1S → SL(d,R) is a

Hitchin representation, then the geodesic flow on the unit tangent bundle T 1S induces

an Anosov flow on a certain bundle associated to the representation ρ. Labourie

called representations with such a flow Anosov representations, and showed two

important results. First, an Anosov representation always has discrete image and

finite kernel. Second, Anosov representations are stable: they form an open subset of

the representation variety Hom(π1S, SL(d,R)).

Later, Guichard-Wienhard [GW12] extended Labourie’s definition to cover

representations of an arbitrary word-hyperbolic group Γ into a semisimple Lie group

G. They further introduced a finer notion of P -Anosov representation, where P is a

parabolic subgroup of G, and proved a general version of Labourie’s stability result:

Theorem 1.2.1. Let Γ be a word-hyperbolic group, let G be a semisimple Lie group,

and let P ⊂ G be a parabolic subgroup. The P -Anosov representations of Γ into G

form an open subset of the representation variety Hom(Γ, G).

When G has real rank one, it turns out that Anosov representations are
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basically equivalent to convex cocompact groups: in this case, a representation

ρ : Γ → G is Anosov exactly when ρ has finite kernel and ρ(Γ) ⊂ G is a convex

cocompact subgroup. And in fact the stability theorems for Anosov representations

recall classical work of Sullivan [Sul85] on the stability of convex cocompact groups.

The original proofs of Theorem 1.2.1 in [Lab06] and [GW12] differ significantly

from Sullivan’s proof of stability in rank-one, since verifying Labourie’s original

definition of Anosov representation involves working closely with the technicalities of

a flow on a particular bundle associated to the representation.

However, there are now many equivalent definitions of an Anosov representa-

tion, and some (though not all) of these characterizations are amenable to proofs of

Theorem 1.2.1 that use more of Sullivan’s original techniques. Definitions have been

given in terms of the asymptotics of Cartan and Jordan projections ([GGKW17],

[Tso20]), the geometry of the Riemannian symmetric space G/K ([KLP14], [KLP17]),

dynamics of hyperbolic group actions on their boundaries ([GGKW17], [KLP17]), con-

vex projective geometry ([DGK17], [Zim21]), growth of singular value gaps ([BPS19]),

and even the algorithmic properties of hyperbolic groups ([BPS19]). We will state

the specific definitions that are most relevant to this thesis in Section 2.4.

We emphasize that in every one of the definitions listed above, an Anosov

representation must be a representation of a word-hyperbolic group. One of the main

aims of this thesis is to consider the following

Question 1.2.2. What generalizations of Anosov representations allow us to under-

stand non-word-hyperbolic discrete subgroups of higher-rank Lie groups?
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Throughout this thesis, we will address this question by considering properties

of many of the definitions of Anosov representation listed above. Our focus, however,

will be on the relationship between two of them in particular. The first is the charac-

terization of Anosov representations in terms of certain convex cocompact projective

structures, due to Danciger-Guéritaud-Kassel [DGK17] and Zimmer [Zim21]. The

second is the perspective of Kapovich-Leeb-Porti [KLP17] and Guéritaud-Guichard-

Kassel-Wienhard [GGKW17], which says that a representation of a hyperbolic group

Γ is P -Anosov when it is equipped with an equivariant embedding of the Gromov

boundary ∂Γ of Γ into the flag variety G/P , satisfying certain dynamical conditions.

We will explain both of these viewpoints in much greater detail later on. For

now, we comment that the relationship between them illustrates the deep connection

between geometric structures and hyperbolic boundary dynamics discussed for instance

in a recent survey of Kassel [Kas18]. A central theme of this thesis is that this

connection should persist in a broader context. In particular, a version of this

principle survives even when we leave the world of word-hyperbolic groups.

1.3 Expansion dynamics for projectively convex cocompact
groups

In Chapter 3 of this thesis, we consider one situation in which “Anosov-like”

dynamics emerge from a discrete representation of a non-word-hyperbolic group—

specifically, a representation associated to a convex cocompact projective structure.

Many authors have previously explored the connection between Anosov rep-

resentations and geometric structures. Notably, in [GW12], Guichard-Wienhard
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explained how to construct certain cocompact domains of discontinuity for an Anosov

representation acting on a flag variety G/P , and in [KLP18], Kapovich-Leeb-Porti

gave a systematic procedure for constructing similar domains of discontinuity and

determining whether these domains are cocompact and nonempty.

These results show that many Anosov representations can be viewed as the

holonomy representations of certain (G,X) structures on closed manifolds. However,

the geometric structures in question can be difficult to describe, and indeed under-

standing the topology of these structures in general is currently an active area of

research.

In [DGK17], Danciger-Guéritaud-Kassel introduced a notion of convex cocom-

pact projective structure (see Definition 3.1.2 for the precise definition). They showed

the following

Theorem 1.3.1 ([DGK17]). Let ρ : Γ→ PGL(d,R) be a projectively convex cocom-

pact representation of a word-hyperbolic group Γ. Then ρ is a P1-Anosov representa-

tion.

In fact Danciger-Guéritaud-Kassel’s result is stronger than what we have

stated here, and they prove a partial converse as well. Independently, Zimmer [Zim21]

also showed that a similar notion of convex cocompact projective structure can

be associated to any Anosov representation ρ : Γ → G by composing ρ with an

appropriate representation of G.

Via Theorem 1.3.1, Danciger-Guéritaud-Kassel aimed to facilitate the study

of Anosov representations by associating them to concrete geometric structures
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whose features closely resemble those of convex cocompact manifolds in hyperbolic

space. This echoes work of Choi-Goldman [Gol90] [CG93], which shows that Hitchin

representations of surface groups into SL(3,R) are parameterized by convex real

projective structures on surfaces. The approach is also closely related to results of

Benoist, who in a series of papers (e.g. [Ben00] [Ben04] [Ben06]) extensively studied

the properties of groups acting cocompactly on properly convex subsets of projective

space; see [Ben08] for a survey of such results. Benoist’s work (and the subsequent

results of Danciger-Guéritaud-Kassel and Zimmer) demonstrates that many of the

ideas used to understand closed hyperbolic manifolds can be adapted to the setting of

projective geometry. This in turn allows for a study of Anosov representations which

more closely aligns with the classical study of convex cocompactness in rank one.

However, convex projective structures also hint at a possible way to under-

stand non-word-hyperbolic groups with “Anosov-like” properties. There are many

fascinating examples of convex projective manifolds with non-hyperbolic fundamental

group, which display an intriguing mix of “hyperbolic” and “nonpositively curved”

behavior: see [Ben06], [BDL15], [CLM20], [DGK+21] for some compact examples,

and see [Bal21] [BM20], [Bob19] for examples with cusps. The compact examples

cited above all also fall under Danciger-Guéritaud-Kassel’s definition of projective

convex cocompactness.

Our main result in Chapter 3 (Theorem 3.1.9) answers a question originally

asked by Danciger-Guéritaud-Kassel, and says that these examples also have a

dynamical characterization which is closely analogous to a dynamical characterization

of Anosov representations described in [KLP17].
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To be slightly more specific, [KLP17] states that a representation ρ : Γ→ G

is P -Anosov if and only if Γ has an expanding action about its limit set in the flag

manifold G/P (and the limit set also obeys some additional technical requirements).

Our result says that a representation ρ : Γ → PGL(d,R) is projectively convex

cocompact if and only if Γ has an expanding action about the faces in its full orbital

limit set. The upshot is that projective convex cocompactness is characterized by the

expansion dynamics of Γ on a family of Grassmannians Gr(k, d), for multiple values

of k. In other words, we are able to see “Anosov-like” dynamics in the action of an

(a priori arbitrary) finitely generated group by considering expansion dynamics on

several different flag manifolds simultaneously.

1.4 Convex cocompactness and relative hyperbolicity

Using the results of Chapter 3, we are able to draw a further connection

between Anosov representations and projectively convex cocompact groups which

are relatively hyperbolic, relative to a collection of convex cocompact subgroups. We

explore this connection in detail in Chapter 4. (We provide some background on

relatively hyperbolic groups in Section 2.2).

The key idea here is that an Anosov representation of a hyperbolic group Γ

is characterized by the existence of a certain equivariant embedding of the Gromov

boundary of Γ into a flag variety. When ρ : Γ → PGL(d,R) is a P1-Anosov repre-

sentation, this takes the form of a pair of equivariant embeddings of ∂Γ into real

projective space RPd−1 and the dual projective space (RPd−1)∗.

Our main results in Chapter 4 (Theorem 4.1.2 and Theorem 4.1.8) can be
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summarized as follows. We let Γ be a relatively hyperbolic group, relative to a

collection H of peripheral subgroups. We suppose that ρ : Γ → PGL(d,R) is a

representation such that the restriction ρ|H : H → PGL(d,R) is projectively convex

cocompact for each H ∈ H. Together, Theorem 4.1.2 and Theorem 4.1.8 state that ρ

is projectively convex cocompact if and only if there is an equivariant embedding of

the Bowditch boundary ∂(Γ,H) into a certain quotient of projective space. When the

collection of peripheral subgroups H is empty, then Γ is a hyperbolic group and this

embedding is precisely the equivariant embedding of the Gromov boundary ∂Γ which

characterizes an Anosov representation.

We note that our results are closely related to independent work of Islam-

Zimmer [IZ20], who previously showed a version of Theorem 4.1.8 when the represented

group Γ is isomorphic to the fundamental group of a 3-manifold. In addition, since

our work first appeared, Islam-Zimmer have also adapted some of our techniques to

prove stronger versions of some of these results (see [IZ22]).

1.4.1 Criterion for relative hyperbolicity

The results of Chapter 4 incidentally allow us to prove more than just a

characterization of convex cocompactness for relatively hyperbolic groups. They

also give us a way to verify that a group is relatively hyperbolic, relative to a given

collection of subgroups.

This is motivated by an observation of Benoist, who showed that convex

projective geometry can be used to give a criterion for hyperbolicity of a group with a

representation ρ : Γ→ PGL(d,R). Specifically, Benoist showed
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Theorem 1.4.1 ([Ben04], Theorem 1.1). Let Ω be a properly convex subset of RPd−1,

and suppose that Γ ⊂ PGL(d,R) is a discrete group acting cocompactly on Ω. Then

Γ is word-hyperbolic if and only if Ω is strictly convex, i.e. there are no nontrivial

projective segments in ∂Ω.

Danciger-Guéritaud-Kassel later proved a more general version of this result for

a group Γ with a projectively convex cocompact action (see [DGK17], Theorem 1.4).

We prove a result for relatively hyperbolic groups (also contained in the statement of

Theorem 4.1.8) which has a similar statement in spirit, but a very different proof:

whereas Benoist and Danciger-Guéritaud-Kassel directly use the metric geometry

of convex domains in RPd−1 to prove that certain groups are word-hyperbolic, we

instead exploit a result of Yaman [Yam04], which says that relatively hyperbolic

groups can be characterized by the topological dynamics of their actions on their

Bowditch boundaries.

1.5 Extended geometrically finite representations

The last two chapters of this thesis introduce a new generalization of Anosov

representations for relatively hyperbolic groups. We refer to these as extended

geometrically finite (EGF) representations.

1.5.1 Geometrically finite groups in rank one

As the name implies, EGF representations are also a generalization of geo-

metrically finite subgroups of rank-one Lie groups, which in turn generalize convex

cocompact groups. Compare the following definition to Definition 1.1.3:
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Definition 1.5.1. Let Γ ⊂ G be a finitely generated discrete subgroup of a rank-one

semisimple Lie group G, and let X be the Riemannian symmetric space G/K. We

say that Γ is geometrically finite if there is a Γ-invariant convex subset C ⊆ X with

nonempty interior such that the quotient C/Γ has finite volume.

Remark 1.5.2. In [Bow93] and [Bow95], Bowditch gave several definitions of a

“geometrically finite” group in SO(d, 1) and a rank-one Lie group G, respectively. He

showed that all of these definitions are equivalent (although in general they differ

from the historical definition of geometrical finiteness, which was stated in terms of

finite-sided polyhedra).

The definition we give here is essentially the same as Bowditch’s definition

F5 in [Bow95]. Note than unlike the analogous definition for convex cocompactness

(Definition 1.1.3), Definition 1.5.1 assumes that the discrete group Γ is finitely

generated. This assumption is implied by Bowditch’s other definitions of geometrical

finiteness, but it is included in this one for technical reasons. Indeed Bowditch

observed that the assumption follows automatically when Γ is torsion-free (or more

generally, if there is a uniform bound on the orders of finite subgroups of Γ). Bowditch

further conjectured that this assumption is unnecessary in general, although to the

author’s knowledge this is still unknown.

In general, a geometrically finite group Γ is always relatively hyperbolic,

relative to a collection H of “cusp groups” (i.e. (Γ,H) is a relatively hyperbolic pair).

And in fact, geometrically finite Kleinian groups were one of the primary motivations

behind Gromov’s original definition [Gro87] of a relatively hyperbolic group. In that
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sense, geometrically finite groups are the relatively hyperbolic analogue of convex

cocompact groups in rank one.

One can make this analogy more explicit by presenting two alternative defini-

tions of convex cocompactness and geometrical finiteness, side-by-side; for simplicity

we restrict to the context of discrete subgroups of SO(d, 1).

We first need another definition:

Definition 1.5.3. Let Γ be a discrete subgroup of SO(d, 1). The limit set ΛΓ is the

set of accumulation points in ∂Hd of some (any) Γ-orbit Γ · x, for x ∈ Hd.

The limit set is always a closed Γ-invariant subset of the ideal boundary ∂Hd

of hyperbolic space. The result below is attributed to Coornaert [Coo90] and Bourdon

[Bou95] (although it does not appear in either of those papers exactly as it is stated

here).

Proposition 1.5.4. Let Γ be a word-hyperbolic discrete subgroup of SO(d, 1). Then

Γ is convex cocompact if and only if there is an equivariant embedding ∂Γ → ∂Hd

with image ΛΓ.

The analogous statement for geometrically finite groups is essentially due to

Bowditch. It follows from the first definition of relative hyperbolicity in [Bow12] and

the equivalence of definitions GF2 and GF5 in [Bow93].

Proposition 1.5.5. Let (Γ,H) be a relatively hyperbolic pair, with Γ a discrete sub-

group of SO(d, 1). Then Γ is geometrically finite if and only if there is an equivariant

embedding ∂(Γ,H)→ ∂Hd with image ΛΓ.
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When H is empty, then Γ is a word-hyperbolic group, the Bowditch boundary

∂(Γ,H) is exactly the Gromov boundary ∂Γ, and Proposition 1.5.5 reduces exactly

to Proposition 1.5.4.

1.5.2 Geometrical finiteness in higher rank: existing definitions

The similarity between Proposition 1.5.4 and Proposition 1.5.5 indicates one

possible way to define a higher-rank version of geometrical finiteness—or put another

way, a relatively hyperbolic version of an Anosov representation. Since (in light

of the results of [GGKW17] and [KLP17]) a P -Anosov representation ρ : Γ → G

is a representation equipped with a certain equivariant embedding ∂Γ → G/P , a

“relativized” Anosov representation of a relatively hyperbolic pair (Γ,H) ought to be

a representation of Γ equipped with a certain equivariant embedding of the Bowditch

boundary ∂(Γ,H) into G/P .

In [KL18], Kapovich-Leeb gave several possible definitions of an Anosov

representation of a relatively hyperbolic group, including one (τmod-asymptotic-

embeddedness) which follows this idea. And while not all of the definitions of relative

Anosov representation given by Kapovich-Leeb are equivalent, every one of them

is still at least implicitly equipped with an equivariant embedding of the Bowditch

boundary into some flag manifold G/P .

In independent work, Zhu [Zhu19], [Zhu21] also defined a notion of relative

Anosov representation, called a relatively dominated representation. Generalizing

work of Bochi-Potrie-Sambarino [BPS19] in the Anosov setting, Zhu provided several

equivalent characterizations of relatively dominated representations, and further
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showed that they are always relatively asymptotically embedded in the sense of

Kapovich-Leeb. In particular, a relatively dominated representation is always equipped

with an equivariant Bowditch boundary embedding.

The definitions of Kapovich-Leeb and Zhu cover several interesting examples of

relatively hyperbolic discrete groups in higher rank. For instance, Zhu showed that a

type of “geometrically finite” convex projective structure studied by Crampon-Marquis

[CM14] gives rise to a relatively dominated representation. Further, in [CZZ21],

Canary-Zhang-Zimmer showed that cusped Hitchin representations of geometrically

finite Fuchsian groups are also relatively dominated. (Currently, there are no known

examples of representations that are relatively asymptotically embedded but not

relatively dominated.)

1.5.3 Representations without an equivariant boundary embedding

In rank one, the relatively asymptotic embedded representations of Kapovich-

Leeb are exactly the same as geometrically finite representations. However, there are

also many examples of discrete relatively hyperbolic groups in higher rank which are

not relatively asymptotically embedded—but still exhibit a sort of “geometrically

finite” behavior. Such examples often appear in the context of convex projective

structures. For instance, given a geometrically finite group Γ in SO(d, 1), there are

sometimes deformations of Γ inside of SL(d + 1,R) which do not give rise to an

equivariant embedding of the Bowditch boundary of Γ—but are associated to some

convex projective orbifold with a reasonably tame projective structure on its ends,

called a generalized cusp. Cusps of this type were originally studied by Cooper-Long-
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Tillmann [CLT15] [CLT18] and classified by Ballas-Cooper-Leitner [BCL20]; Ballas

[Bal21] and Bobb [Bob19] have constructed many examples of projective manifolds

with these cusps.

Further, there are also many examples of projectively convex cocompact rep-

resentations of relatively hyperbolic groups which are not relatively asymptotically

embedded in the sense of Kapovich-Leeb—and in fact these representations are never

relatively asymptotically embedded unless the peripheral structure is trivial (so the

group is word-hyperbolic and the representation is Anosov). As mentioned previ-

ously, explicit constructions of such groups have been given in [BDL15], [CLM20],

[DGK+21].

The results of Chapter 4 of this thesis imply, however, that it is still possible

to connect these examples to the dynamics of relatively hyperbolic group actions on

their Bowditch boundaries. This motivates our definition of extended geometrically

finite representations :

Definition 1.5.6. Let (Γ,H) be a relatively hyperbolic pair, and let P be a symmetric

parabolic subgroup of a semisimple Lie group G. We say that a representation

ρ : Γ→ G is extended geometrically finite with respect to P if there exists a closed

ρ(Γ)-invariant subset Λ ⊂ G/P and a continuous ρ-equivariant surjective antipodal

map φ : Λ→ ∂(Γ,H) which extends the convergence dynamics of Γ.

We will explain the technical conditions in Definition 1.5.6 fully in Chapter 5.

For now, we note that the key difference between our definition and relative asymptotic

embeddedness is that our associated Bowditch boundary map “goes the other way:”
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instead of embedding ∂(Γ,H) into a flag manifold, we instead look for an invariant

subset of the flag manifold which factors onto the Bowditch boundary via the map φ.

In the language of this thesis, we say the map φ : Λ→ ∂(Γ,H) is an extension of the

topological dynamical system (Γ, ∂(Γ,H)). It is the boundary extension associated to

the EGF representation ρ. Ultimately, we will find (see Theorem 5.6.2) that EGF

representations are equivalent to relatively asymptotically embedded representations

precisely when the boundary extension is a homeomorphism (so the inverse map is

the associated embedding).

The advantage of defining the map in this “backwards” way is that it is more

flexible with respect to the action of the peripheral subgroups (the “cusp groups”)

of the relatively hyperbolic group Γ on the flag manifold G/P . In particular, unlike

relatively asymptotic embedded representations, EGF representations allow for non-

unipotent peripheral subgroups, and peripheral subgroups which are not P -divergent

(see Section 2.3). This flexibility means that if M is a manifold with relatively

hyperbolic fundamental group, convex cocompact projective structures on M , as

well as convex projective structures with generalized cusps, can give rise to EGF

representations. We prove these results (and provide further new examples of EGF

representations) in Chapter 6.

1.5.4 Anosov relativization and stability

Chapter 5 of this thesis proves several properties of EGF representations.

We first show that EGF representations interact well with the theory of Anosov

representations by proving an Anosov relativization theorem (Theorem 5.1.10). This
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result says that if an EGF representation restricts to Anosov representations on its

peripheral subgroups, then it is itself an Anosov representation.

Our main result about EGF representations (Theorem 5.6.2) is that they satisfy

a relative stability property, in analogy to Theorem 1.2.1 for Anosov representations:

we show that if ρ : Γ → G is an EGF representation, then we can define certain

subspaces W of the representation variety Hom(Γ, G) such that EGF representations

form an open subset of W about ρ. We call such subspaces peripherally stable,

because their definition depends only on the restriction of a deformed representation

to the peripheral subgroups of Γ. Peripheral stability should be thought of as a local

property, giving a criterion which ensures that certain small deformations of ρ are still

EGF representations. The condition is fairly flexible—in particular, in Section 6.2, we

show that one can find peripherally stable deformation spaces which allow unipotent

peripheral subgroups in PGL(d,R) to deform into diagonalizable subgroups. Explicit

examples of deformations of this type have been found in [BDL15].

It seems desirable to understand the nature of peripherally stable subspaces

in general. We know that deformations of EGF representations which restrict to

conjugacy on the peripheral subgroups are always peripherally stable. And for general

EGF representations, we do not expect Hom(Γ, G) itself to be peripherally stable

subspace (or in other words, EGF representations are not absolutely stable in general).

This fails already in rank one, since geometrical finiteness is itself an unstable property

(see Remark 5.6.3).

Remark 1.5.7. As a corollary of Theorem 5.6.2 (Corollary 5.6.5), we are able to show

that small deformations of relatively asymptotically embedded representations which
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restrict to conjugacy on the peripherals are still relatively asymptotically embedded.

In [KL18], Kapovich-Leeb asserted that a result along these lines holds, but

did not make (or prove) any precise claim. In addition, in [CZZ21], Canary-Zhang-

Zimmer study a notion of Pk-Anosov representations for geometrically finite Fuchsian

groups, and prove that these representations are always relatively dominated in the

sense of Zhu. Canary-Zhang-Zimmer then show that their Pk-Anosov representations

are stable in the space of type-preserving deformations, which proves a special case of

our relative stability result.

30



Chapter 2

Background and preliminaries

2.1 Convex projective geometry

Essentially all of the motivating examples in this thesis come from convex

projective geometry, i.e. the geometry of properly convex subsets of real projective

space and the projective transformations which preserve them. In this section we

review the essential features of convex projective geometry, and establish notation

which persists throughout the thesis. For a general reference on this material, see e.g.

[Mar14].

2.1.1 Basic definitions

Notation 2.1.1. We will assume without comment that every real vector space V

in this thesis is finite-dimensional.

• If V is a real vector space, then P(V ) is projective space (V − {0})/ ∼, where

u ∼ v if u = λv for λ ∈ R.

• For any x ∈ V − {0}, we let [x] denote the image of x under the quotient map

V − {0} → P(V ).

• If W is a subset of V , then we let [W ] denote the image of W − {0} in P(V ).

If W ⊆ V is a vector subspace, we will identify P(W ) with [W ] ⊂ P(V ).
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• When B ⊂ P(V ), then the span of B, denoted span(B), is the subspace of

V spanned by any lift of B in V . The projective span of B is the subset

prspan(B) ⊂ P(V ).

• If w is any element of the dual projective space P(V ∗), we let P(w) denote the

image of ker w̃ in P(V ), where w̃ is any lift of w in V ∗.

• If w ∈ P(V ∗) and v ∈ P(V ) satisfy v /∈ P(w), then we say w and v are transverse

and write w ⊥ v.

• We let F±(V ) denote the space of partial flags (V−, V+), where V− ⊂ V+ ⊂ V ,

and dim(V−) = codim(V+) = 1. If dim(V ) = d+ 1, then we say F±(V ) is the

space of flags of type (1, d). If V is understood from context we will sometimes

just write F± = F±(V ).

• We let Gr(k, V ) denote the Grassmannian of k-dimensional subspaces of V ,

and write Gr(k, d) for Gr(k,Rd). If W is an element of Gr(k, V ), we write P(W )

for the image of W − {0} in P(V ).

2.1.1.1 Convex cones and convex domains

Definition 2.1.2. A convex cone in a real vector space V is a convex subset of

V − {0} which is closed under multiplication by positive scalars.

A convex cone is sharp if it does not contain any affine line.

The boundary of a convex cone C in a real vector space V is the boundary of

C viewed as a cone in its linear span span(C) ⊂ V ; this boundary is homeomorphic
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to a cone over Sk−2, where k = dim span(C). We will write ∂C for the boundary of

C.

Definition 2.1.3. Let Ω be a subset of P(V ) for a real vector space V . Ω is convex

if it is the projectivization of some convex cone Ω̃ ⊂ V , and it is properly convex if Ω̃

is sharp (equivalently, if Ω is a convex subset of some affine chart in P(V )). An open

convex set is a convex domain.

The boundary ∂Ω is the projectivization of ∂Ω̃−{0}. A convex set Ω is strictly

convex if ∂Ω does not contain a nontrivial projective segment.

For most of this thesis, we will only consider convex domains Ω ⊂ P(V ) which

are either open, or else open in their projective span P(span(Ω)) ⊂ P(V ). In both of

these cases we can write Ω = ∂Ω t Ω.

Definition 2.1.4. Let Ω be a convex subset of P(V ). A supporting subspace of Ω

is a projective subspace which intersects ∂Ω but not Ω. In particular, a supporting

hyperplane is a codimension-1 supporting subspace.

Proposition 2.1.5. Let Ω be a convex subset of P(V ). Every point x ∈ ∂Ω is

contained in at least one supporting hyperplane.

Proof. This follows immediately from the fact that every point x 6= 0 in the boundary

of a convex cone C in V is contained in a codimension-1 subspace containing x but

not intersecting C.

We remark that a convex domain in P(V ) has C1 boundary precisely when

every point in ∂Ω is contained in exactly one supporting hyperplane.
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2.1.1.2 Projective line segments

When Ω is a properly convex set, and x, y ∈ Ω, we use [x, y] to denote the

unique (closed) projective line segment joining x and y which is contained in Ω.

We similarly use (x, y), [x, y), (x, y] to denote open and half-open projective line

segments.

2.1.1.3 Convex hull and ideal boundary

Definition 2.1.6. If Ω is a properly convex set in P(V ) and Λ ⊂ ∂Ω, then the convex

hull of Λ is its convex hull in Ω in any affine chart containing Ω. We denote the

convex hull of Λ by HullΩ(Λ).

The ideal boundary of a set C in a properly convex set Ω is the set

∂i(C) := C ∩ ∂Ω,

where the closure of C is taken in P(V ).

2.1.2 Open faces in ∂Ω

Definition 2.1.7. Let Ω be a properly convex domain. The open face of ∂Ω at a

point x, which we denote FΩ(x), is the set of points y ∈ ∂Ω such that x and y lie in

an open segment (a, b) ⊂ ∂Ω.

The dimension of a face F is the dimension of a minimal projective subspace

containing F ; such a minimal subspace is called the support of the face and is denoted

supp(F ).

34



A face is always a convex subset of projective space, open in its support. An

open face is a closed subset of ∂Ω if and only if it is an extreme point of Ω.

Remark 2.1.8. Earlier versions of [DGK17] referred to what we call a face as a

“stratum.” Our definition of face agrees with the definition used by Islam and Zimmer.

Notably, our faces are not the same as the facettes of Benoist and Benzecri.

In particular, our definition ensures that every point in the boundary of a

properly convex domain Ω is contained in some face.

2.1.3 The Hilbert metric

Here we recall the definition of the Hilbert metric, a useful tool for under-

standing group actions on properly convex domains. See e.g. [Mar14] for more

background.

Given four distinct points a, b, c, d in RP1 (or four points in RPd−1 lying on a

single projective line), recall that the cross-ratio [a, b; c, d] is given by

[a, b; c, d] :=
(d− a) · (c− b)
(c− a) · (d− b)

,

where the distances are measured in any identification of RP1 with R ∪ {∞}. Our

convention is chosen so that [0,∞; 1, z] = z.

The cross-ratio is a projective invariant on 4-tuples, and in fact it parameterizes

the space of PGL(2,R)-orbits of distinct 4-tuples in RP1.

Definition 2.1.9. Let Ω ⊂ P(V ) be a properly convex domain. The Hilbert metric

dΩ(·, ·) : Ω2 → R≥0
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is given by the formula

dΩ(x, y) =
1

2
log[a, b;x, y],

where a, b are the two points in ∂Ω such that a, x, y, b lie on a projective line in that

order.

When the domain Ω is an ellipsoid of dimension d, the Hilbert metric on Ω

recovers the familiar Klein model for hyperbolic space Hd. More generally we have

the following:

Proposition 2.1.10. Let Ω be a properly convex domain. Then:

1. (Ω, dΩ) is a proper metric space.

2. If x and y are in Ω, then [x, y] is the image of a geodesic (with respect to dΩ)

joining x and y.

3. Aut(Ω) acts by isometries of dΩ.

This implies that Aut(Ω) always acts properly on Ω. In particular, a subgroup

of Aut(Ω) is discrete in PGL(V ) if and only if it acts properly discontinuously on Ω.

Part (2) of the above Proposition means that (Ω, dΩ) is always a geodesic

metric space. However, in general it need not be uniquely geodesic—this is one of

many ways in which the geometry on a properly convex domain equipped with its

Hilbert metric can differ from hyperbolic geometry.

The point of the Hilbert metric is that it allows us to understand many

aspects of group actions on convex projective domains in terms of metric geometry; in

36



particular, we may apply the Švarc-Milnor lemma when we have a convex cocompact

action on a domain.

The Hilbert metric can also be used to characterize open faces in ∂Ω:

Proposition 2.1.11. Let Ω be a properly convex domain, let x ∈ ∂Ω, and fix points

p1, p2 ∈ Ω. For any y ∈ ∂Ω, we have y ∈ FΩ(x) if and only if the Hausdorff distance

(with respect to dΩ) between [p1, x) and [p2, y) is finite.

Since [p1, x) and [p2, y) are the images of geodesic rays in (Ω, dΩ), the above

is equivalent to the condition that, if cx, cy are unit-speed geodesic rays in (Ω, dΩ)

following projective line segments from p1, p2 to x, y, respectively, then

dΩ(cx(t), cy(t)) ≤ k

for some fixed k independent of t ∈ R≥0.

Each face F of a properly convex projective domain Ω is itself a properly

convex set. By viewing F as an open subset of its projective span, one can also define

a Hilbert metric dF on this face.

Proposition 2.1.12. Let Ω be a properly convex domain, let F be a face of Ω, and

let xn be a sequence in Ω converging to some x∞ ∈ F .

For any D > 0, if yn ∈ Ω is a sequence satisfying

dΩ(xn, yn) ≤ D,

then any accumulation point y∞ of yn lies in F , and

dF (x∞, y∞) ≤ D.
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2.1.4 Properly embedded simplices

Definition 2.1.13. A projective k-simplex in RPd−1 is the projectivization of the

positive linear span of k + 1 linearly independent vectors in Rd.

A projective k-simplex ∆ is an example of a properly convex set in RPd−1.

If ∆ is the span of standard basis vectors e1, . . . , ed, the group D+ ⊂ PGL(d,R)

of projectivized diagonal matrices with positive entries (isomorphic to Rd−1) acts

simply transitively on ∆. Then, any discrete Zd−1 subgroup of D+ acts properly

discontinuously and cocompactly on ∆, so the Švarc-Milnor lemma implies that

(∆, d∆) is quasi-isometric to Euclidean space Ed−1.

Definition 2.1.14. Let Ω be a properly convex domain. A convex projective simplex

∆ ⊂ Ω is properly embedded if ∂∆ is contained in ∂Ω.

A properly embedded simplex in Ω gives an isometric embedding

(∆, d∆)→ (Ω, dΩ),

which in turn gives a quasi-isometric embedding

Ek → (Ω, dΩ).

Maximal properly embedded simplices in Ω can be thought of as analogues of

maximal flats in CAT(0) spaces; see e.g. [Ben06], [IZ19a], [IZ19b], [Bob20]. However,

in general, the metric space (Ω, dΩ) is not CAT(0); in fact this occurs if and only if Ω

is an ellipsoid [KS58].
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2.1.5 Duality for convex domains

Let V be a real vector space. Given a convex set Ω ⊂ P(V ), it is often useful

to consider the dual convex set Ω∗ ⊂ P(V ∗).

Definition 2.1.15. Let C be a convex cone in a real vector space V . The dual

convex cone C∗ ⊂ V ∗ − {0} is

C∗ = {α ∈ V ∗ : α(x) > 0 for all x ∈ C}.

The following is easily verified:

Proposition 2.1.16. Let C be a convex cone in a real vector space V .

1. C∗ is a convex cone in V ∗ − {0}.

2. C∗∗ = C, under the canonical identification V ∗∗ = V .

3. C∗ is sharp if and only if C has nonempty interior.

If Ω is the projectivization of a convex cone in P(V ), the dual convex set is

the projectivization Ω∗ of Ω̃∗, where Ω̃ is any cone over Ω. When Ω is a properly

convex domain in P(V ), Ω∗ is a properly convex domain in P(V ∗).

In general, Ω∗ need not be projectively equivalent to Ω. However, the features

of Ω affect the features of Ω∗. For instance, Ω is strictly convex if and only if the

boundary of Ω∗ is C1 (and vice versa, since Ω∗∗ is naturally identified with Ω). We

also note that duality reverses inclusions of convex sets.
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If Γ is a subgroup of PGL(V ) preserving Ω, the dual action of Γ on P(V ∗)

preserves the dual domain Ω∗. So we can simultaneously view Γ as a subgroup of

Aut(Ω) and Aut(Ω∗).

2.1.6 Dynamics of Aut(Ω)

When G is a semisimple Lie group, we say that a sequence gn ∈ G is divergent

if it leaves every compact subset of G. A divergent sequence always has a P+-

divergent subsequence for some parabolic P+ ⊂ G (see Section 2.3). By taking a

further subsequence, we can find P±-limit points (Definition 2.3.5) for gn and g−1
n in

the flag manifolds G/P+ and G/P−, for P− opposite to P+.

When G = PGL(V ), we can interpret this in terms of attracting and repelling

subspaces.

Proposition 2.1.17. Let gn ∈ PGL(V ) be a divergent sequence. Up to subsequence,

there exist subspaces E+, E− in V such that

dim(E+) + dim(E−) = dim(V ),

and for any open set U ⊂ P(V ) containing P(E+) and any compact set K ⊂ P(V )−

P(E−), for all sufficiently large n we have

gn ·K ⊂ U.

Proof. For each k with 1 ≤ k < d, we let Pk ⊂ PGL(V ) be the subgroup preserving

a k-dimensional subspace of V . The maximal parabolic subgroups of PGL(V ) are

exactly the subgroups conjugate to some Pk. So any divergent sequence in PGL(V )

is Pk-divergent for some k, and the result follows.
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The subspaces E+, E− are respectively referred to as attracting and repelling

subspaces. They are uniquely determined once a subsequence of gn is chosen and

their dimensions are specified. They are not necessarily transverse.

The faces of Ω inform the limiting dynamical behavior of divergent sequences

in Aut(Ω). The following two results are likely well-known, but for convenience we

provide proofs.

Proposition 2.1.18. Let γn be a divergent sequence in Aut(Ω) for a properly convex

domain Ω, and suppose that for some x ∈ Ω, the sequence γnx accumulates on a face

F+ of Ω. Then, after extracting a subsequence, there is an attracting subspace E+ of

γn such that P(E+) ⊆ supp(F+).

Proof. Let x∞ ∈ F+ be an accumulation point of the point of the sequence γnx.

Using a diagonal argument, we can replace γn with a subsequence so that for every y

in a countable dense subset of BΩ(x, 1), the sequence γn · y has a well-defined limit

in the compact space P(V ). Proposition 2.1.12 then implies that for every point

y ∈ BΩ(x, 1), the sequence γny converges to a unique point in F+.

Let B∞ be the set of accumulation points of γn ·BΩ(x, 1), and let W∞ be the

subspace span(B∞) ⊂ V .

Proposition 2.1.12 implies that B∞ is a subset of the face F = FΩ(x∞), so

P(W∞) is a projective subspace of supp(F ). Let k = dim(W∞). We claim that there

is an open subset U of the Grassmannian Gr(k, V ) so that

γn · U → {W∞}.
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This implies the desired result by Proposition 2.3.7.

To see the claim, fix k points z1, . . . , zk ∈ BΩ(x, 1) so that the limits of

the sequences γnz1, . . . γnzk span the projective subspace P(W∞). Proposition 2.1.12

implies that for some fixed ε > 0, if z′i lies in BΩ(zi, ε), then the limits of the sequences

γnz
′
1, . . . , γnz

′
k

are in general position, and therefore also span P(W∞).

Then, if U is the open set

{W ∈ Gr(k, V ) : W = u1 ⊕ . . .⊕ uk, ui ∈ BΩ(zi, ε)},

we have that γnU → {W∞}, as required.

We also have a closely related lemma:

Lemma 2.1.19. Let Ω be a properly convex domain in P(V ), let Γ be a subgroup of

Aut(Ω), and let Λ be any closed Γ-invariant subset of ∂Ω with nonempty convex hull

in Ω.

If E+ and E− are attracting and repelling subspaces for some divergent sequence

{γn} ⊂ Γ, then P(E+) and P(E−) are supporting subspaces of Ω that intersect Λ

nontrivially.

Proof. It suffices to show the claim for E+, because a repelling subspace for the

sequence γn is an attracting subspace for the sequence γ−1
n .

Since Ω is open, it is not contained in P(E−). So, for some x ∈ Ω, the limit of

γn · x is contained in P(E+). Since Ω is Γ-invariant, P(E+) intersects Ω nontrivially.
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Let E∗+ be the subspace of V ∗ consisting of functionals which vanish on E+.

E∗+ is an attracting subspace for the sequence γn under the dual action of Γ on V ∗.

So, by the previous argument, P(E∗+) intersects Ω∗ nontrivially, which means P(E+)

cannot intersect Ω.

This shows that P(E+) is a supporting subspace of Ω (and therefore P(E−) is

as well). To see that P(E+) intersects Λ nontrivially, note that since Λ has nonempty

convex hull in Ω and P(E−) is a supporting subspace of Ω, Λ is not a subset of

P(E−) ∩ ∂Ω. So, for some x ∈ Λ, γn · x accumulates to a point y in P(E+); since Λ is

Γ-invariant and closed, y is in Λ also.

2.2 Relatively hyperbolic groups

In this section we discuss some of the basic theory of relatively hyperbolic

groups, mostly to establish the notation and conventions we will use throughout the

thesis. We refer to [BH99], [Bow12], [DS05] for background on hyperbolic groups and

relatively hyperbolic groups. See also section 3 of [KL18] for an overview (which we

follow in part here).

Notation 2.2.1. Throughout this thesis, if X is a metric space, A is a subset of X,

and r ≥ 0, we let NX(A, r) denote the open r-neighborhood in X about A. For a

point x ∈ X, we let BX(x, r) denote the open r-ball about x.

When the metric space X is implied from context, we will often just write

N(A, r) or B(x, r).
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2.2.1 Geometrically finite actions

Recall that a finitely generated group Γ is hyperbolic (or word-hyperbolic or

δ-hyperbolic or Gromov-hyperbolic) if and only if it acts properly discontinuously and

cocompactly on a δ-hyperbolic proper geodesic metric space Y .

A relatively hyperbolic group is also a group with an action by isometries on a

δ-hyperbolic proper geodesic metric space Y , but instead of asking for the action to

cocompact, we ask for the action to be in some sense “geometrically finite.”

To be precise, this means that Y has a Γ-invariant decomposition into a thick

part Yth and a countable collection B of horoballs, invariant under the action of Γ

on Y . For a horoball B, we let ctr(B) denote the center of B in ∂Y , and we let Γp

denote the stabilizer of any p ∈ ∂Y .

Definition 2.2.2. Let Γ be a group acting on a hyperbolic metric space Y , and let

B be a countable collection of horoballs in Y . If:

1. The action of Γ on the closure of Yth = Y −
⋃
B∈B B is cocompact, and

2. for each B ∈ B, the stabilizer of ctr(B) in Γ is finitely generated and infinite,

then we say that Γ is a relatively hyperbolic group, relative to the collection H = {Γp :

p = ctr(B) for B ∈ B}.

Definition 2.2.3. Let Γ be a relatively hyperbolic group, relative to a collection of

subgroups H.

• The centers of the horoballs in B are called parabolic points for the Γ-action on

∂Y . The set of parabolic points in ∂Y is denoted ∂parY .
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• The parabolic point stablizers H = {StabΓ(p) : p ∈ ∂parY } are called peripheral

subgroups. We often write Γp for StabΓ(p).

A group Γ might be hyperbolic relative to different collections H, H′ of

peripheral subgroups. The collection H of peripheral subgroups is sometimes called a

peripheral structure for Γ.

Definition 2.2.4. Let Γ be a finitely generated group, and let H be a collection of

subgroups. We say that (Γ,H) is a relatively hyperbolic pair if Γ is hyperbolic relative

to H.

Remark 2.2.5. Whenever (Γ,H) is a relatively hyperbolic pair, there are always

only finitely many conjuacy classes of groups lying in the collection H. Often, it will

be convenient to consider a finite subset P ⊂ H containing exactly one subgroup in

each conjugacy class in H.

In fact, many authors adopt the convention that a relatively hyperbolic group

Γ is hyperbolic relative to a finite collection of subgroups P, and work with the

conjugates of P as needed. In this thesis, however, if (Γ,H) is a relatively hyperbolic

pair, then H is invariant under conjugacy. In particular, H is always either empty or

infinite.

Our convention is somewhat more natural when considering the action of a

relatively hyperbolic group Γ on various spaces. However, the tradeoff is that it is

a little more unwieldy when we want to consider the metric geometry of either Γ

itself, a Gromov model, or some other associated metric space (e.g. Definition 2.2.17

below).
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2.2.2 The Bowditch boundary

Definition 2.2.6. Let (Γ,H) be a relatively hyperbolic pair, so that H is the set

of stabilizers of parabolic points for an action of Γ on a metric space Y as in

Definition 2.2.2. We say that Y is a Gromov model for the pair (Γ,H).

In general there is not a unique choice of Gromov model for a given relatively

hyperbolic pair (Γ,H), even up to quasi-isometry. There are various “canonical”

constructions for a preferred quasi-isometry class of Gromov model, with certain

desirable metric properties (see e.g. [Bow12], [GM08]).

Given any two Gromov models Y , Y ′ for (Γ,H), there is always a Γ-equivariant

homeomorphism ∂Y → ∂Y ′ [Bow12]. The Γ-space ∂Y is the Bowditch boundary

of (Γ,H). We will denote it by ∂(Γ,H), or sometimes just ∂Γ when the collection

of peripheral subgroups is understood from context. Since a Gromov model Y is a

proper hyperbolic metric space, ∂(Γ,H) is always compact and metrizable.

Definition 2.2.7. We say a relatively hyperbolic pair (Γ,H) is elementary if Γ is

finite or virtually cyclic, or if H = {Γ}.

Whenever (Γ,H) is nonelementary, its Bowditch boundary contains at least

three points. The convergence properties of the action of Γ on ∂(Γ,H) (see below)

imply that in this case, ∂(Γ,H) is perfect (i.e. contains no isolated points).

2.2.2.1 Cocompactness on pairs

Let Y be a Gromov model for a relatively hyperbolic pair (Γ,H). Since Y

is hyperbolic, proper, and geodesic, for any compact subset K ⊂ Y , the space of
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bi-infinite geodesics passing through K is compact.

Given any distinct pair of points u, v ∈ ∂Y , there is a bi-infinite geodesic c in

Y joining u to v. This geodesic must pass through the thick part Yth of Y , so up to

the action of Γ it passes through a fixed compact subset K ⊂ Yth.

This implies:

Proposition 2.2.8. The action of Γ on the space of distinct pairs in ∂(Γ,H) is

cocompact.

2.2.3 Convergence group actions

If a group Γ acts on a proper geodesic hyperbolic metric space Y , we can

characterize the geometrical finiteness of the action entirely in terms of the topological

dynamics of the action on ∂Y . In particular, we can understand geometrical finiteness

by studying properties of convergence group actions. See [Tuk94], [Tuk98], [Bow99]

for further detail on such actions, and justifications for the results stated in this

section.

Definition 2.2.9. Let Γ act on a Hausdorff space Z. We say that Γ acts as a

convergence group if for every sequence γn of pairwise distinct elements of Γ, there

exists a subsequence γnk and points a, b ∈ Z such that the restriction of γnk to Z−{a}

converges to the constant map b, uniformly on compacts in Z − {a}.

Definition 2.2.10. Let Γ act as a convergence group on a topological space Z.

1. A point z ∈ Z is a conical limit point if there exists a sequence γn ∈ Γ and

distinct points a, b ∈ Z such that γnz → a and γny → b for any y 6= z.
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2. An infinite subgroup H is a parabolic subgroup if it fixes a point p ∈ Z, and

every infinite-order element of H fixes exactly one point in Z.

3. A point p ∈ Z is a parabolic point if it is the fixed point of a parabolic subgroup.

4. A parabolic point p is bounded if its stabilizer Γp acts cocompactly on Z − {p}.

The name “conical limit point” makes more sense in the context of convergence

group actions on boundaries of hyperbolic metric spaces.

Definition 2.2.11. Let Y be a hyperbolic metric space, and let z ∈ ∂Y . We say

that a sequence yn ∈ Y limits conically to z if there is a geodesic ray c : R+ → Y

limiting to z and a constant D > 0 such that

dY (yn, c(tn)) < D

for some sequence tn →∞.

A bounded neighborhood of a geodesic in a hyperbolic metric space looks like

a “cone,” hence “conical limit.”

Proposition 2.2.12. Let Γ act properly discontinuously by isometries on a proper

geodesic hyperbolic metric space Y , and fix a basepoint y0 ∈ Y .

Γ acts on ∂Y as a convergence group. Moreover, a point z ∈ ∂Y is a conical

limit point (in the dynamical sense of Definition 2.2.10) if and only if there is a

sequence γn · y0 limiting conically to z (in the geometric sense of Definition 2.2.11).

In this case, there are distinct points a, b ∈ ∂Y such that γ−1
n · z → a and

γ−1
n z′ → b for any z′ 6= z in ∂Y .
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If γn · y0 limits conically to a point z ∈ ∂Y for some (hence any) basepoint

y0 ∈ Y , we just say that γn limits conically to z.

Theorem 2.2.13 ([Bow12]). Let Γ be a group acting by isometries on a hyper-

bolic metric space Y . Then Γ is a relatively hyperbolic group, acting on Y as in

Definition 2.2.2, if and only if:

• The induced action of Γ on ∂Y is a convergence group action, and

• Every point z ∈ ∂Y is either a conical limit point or a bounded parabolic point.

Whenever a group Γ acts as a convergence group on a perfect compact

metrizable space Z, and every point in Z is either a conical limit point or a bounded

parabolic point, we say the Γ-action on Z is geometrically finite. This is justified by

the following theorem of Yaman:

Theorem 2.2.14 ([Yam04]). Let Γ be a non-elementary group, and let H be the

collection of all conjugates of a finite collection of finitely-generated proper subgroups

of Γ.

Then Γ is hyperbolic relative to H if and only if Γ acts on a compact, perfect,

and metrizable space Z as a convergence group, every point in Z is either a conical

limit point or a bounded parabolic point for the Γ-action, and the parabolic points in

Z are exactly the fixed points of the groups in H.

In this case, the Bowditch boundary ∂(Γ,H) is equivariantly homeomorphic to

Z.
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Definition 2.2.15. Let (Γ,H) be a relatively hyperbolic pair. We write

∂(Γ,H) = ∂con(Γ,H) t ∂par(Γ,H),

where ∂con(Γ,H) and ∂par(Γ,H) are respectively the conical limit points and parabolic

points in ∂(Γ,H).

2.2.3.1 Compactification of Γ and divergent sequences

When (Γ,H) is a relatively hyperbolic pair, there is a natural topology on the

set

Γ = Γ t ∂(Γ,H)

making it into a compactification of Γ (i.e. Γ is compact, ∂(Γ,H) and Γ are both

embedded in Γ, and Γ is an open dense subset of Γ).

Definition 2.2.16. A sequence γn ∈ Γ is divergent if it leaves every bounded subset

of Γ (equivalently, if a subsequence of it consists of pairwise distinct elements).

Up to subsequence, a divergent sequence γn ∈ Γ converges to a point z ∈

∂(Γ,H).

2.2.4 The coned-off Cayley graph

Fix a finite set P of conjugacy representatives for the groups in H. The set P

corresponds to a finite set Π ⊂ ∂parΓ of parabolic points, such that

P = {Γp : p ∈ Π}.

Π contains exactly one point in each Γ-orbit in ∂parΓ.
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Definition 2.2.17. Let (Γ,H) be a relatively hyperbolic pair, and fix a finite gener-

ating set S for Γ and finite collection of conjugacy representatives P for H.

The coned-off Cayley graph Cay(Γ, S,P) is a metric space obtained from the

Cayley graph Cay(Γ, S) as follows: for each coset gPi for Pi ∈ P, we add a vertex

v(gPi). Then, we add an edge of length 1 from each h ∈ gPi to v(gPi).

The quasi-isometry class of Cay(Γ, S,P) is independent of the choice of gener-

ating set S. When (Γ,H) is a relatively hyperbolic pair, Cay(Γ, S,P) is a hyperbolic

metric space. It is not a proper metric space if H is nonempty. The Gromov boundary

of Cay(Γ, S,P) is equivariantly homeomorphic to the set ∂conΓ of conical limit points

in ∂(Γ,H).

2.3 Semisimple Lie groups: structure and dynamics

The last two chapters of this thesis are more general than the rest: we will

consider not just discrete subgroups of PGL(V ) acting on real projective space P(V ),

but discrete subgroups Γ of semisimple Lie groups G acting on flag manifolds G/P ,

where P is a parabolic subgroup of G.

In this section, we give an overview of the definitions and notation we will use

to describe the dynamical behavior such actions. We mostly follow the notation of

[GGKW17], but we will also identify the connection to the language of [KLP17].

For the most part, we will avoid using the technical theory of semisimple Lie

groups and their associated Riemannian symmetric spaces. In fact, in many cases, our

approach will be to use a representation of G to reduce to the case G = PGL(n,R).
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The most important part of this section is 2.3.6, which identifies the connection

between P -divergence (or equivalently τmod-regularity) and contracting dynamics in

G.

Standard references for the general theory are [Ebe96], [Hel01], and [Kna02].

See also section 3 of [Max21] for a careful discussion of the theory as it relates to

Anosov representations and the work of Kapovich-Leeb-Porti.

2.3.1 Parabolic subgroups

Let K be a maximal compact subgroup of the semisimple Lie group G, and

let X be the Riemannian symmetric space G/K. A subgroup P ⊂ G is a parabolic

subgroup if it is the stabilizer of a point in the visual boundary ∂∞X of X. Two

parabolic subgroups P,Q are opposite if there is a bi-infinite geodesic c in X so that

P is the stabilizer of c(∞) and Q is the stabilizer of c(−∞).

The compact homogeneous G-space G/P is called a flag manifold. If P and

Q are parabolic subgroups, then we say that two flags ξ+ ∈ G/P and ξ− ∈ G/Q are

opposite if the stabilizers of ξ+, ξ− are opposite parabolic subgroups. (In particular a

conjugate of Q must be opposite to P ).

2.3.2 Root space decomposition

Let g be the Lie algebra of G, and let k be the Lie algebra of the maximal

compact K. We can decompose g as k ⊕ p, and fix a maximal abelian subalgebra

a ⊂ p (the Cartan subalgebra). The restriction of the Killing form B to p is positive

definite, so any Cartan subalgebra a is naturally endowed with a Euclidean structure.
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Since a is abelian, it acts semisimply on g. So we let Σ ⊂ a∗ denote the set of

roots for this Cartan subalgebra. We have a root space decomposition

g = g0 ⊕
⊕
α∈Σ

gα,

where X ∈ a acts on gα by multiplication by α(X).

We choose a set of simple roots ∆ ⊂ Σ so that each α ∈ Σ can be uniquely

written as a linear combination of elements of ∆ with coefficients either all nonnegative

or all nonpositive. We let Σ+ denote the positive roots, i.e. roots which are nonnegative

linear combinations of elements of ∆.

The simple roots ∆ determine a Euclidean Weyl chamber

a+ = {x ∈ a : α(x) ≥ 0, for all α ∈ ∆}.

The kernels of the roots α ∈ ∆ are the walls of the Euclidean Weyl chamber.

Choosing a maximal compact K, a Cartan subalgebra a, and a Euclidean

Weyl chamber a+ determines a Cartan projection

µ : G→ a+,

uniquely determined by the equation g = k exp(µ(g))k′, where k, k′ ∈ K and µ(g) ∈

a+.
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2.3.3 P -divergence

Fix a subset θ of the simple roots ∆. We define a standard parabolic subgroup

P+
θ to be the normalizer of the Lie algebra

⊕
α∈Σ+

θ

gα,

where Σ+
θ is the set of positive roots which are not in the span of ∆− θ. The opposite

subgroup P− is the normalizer of ⊕
α∈Σ+

θ

g−α.

Every parabolic subgroup P ⊂ G is conjugate to a unique standard parabolic

subgroup P+
θ , and every pair of opposite parabolics (P+, P−) is simultaneously

conjugate to a unique pair (P+
θ , P

−
θ ).

For a fixed θ ⊂ ∆, the group P+
θ is the stabilizer of the endpoint of a geodesic

ray exp(tZ) · p, where p ∈ X is the image of the identity in G/K, and for any α ∈ ∆,

the element Z ∈ a+ satisfies

α(Z) = 0 ⇐⇒ α ∈ ∆− θ.

Definition 2.3.1. Let gn be a sequence in G. The sequence gn is P+
θ -divergent if for

every α ∈ θ, we have

α(µ(gn))→∞.

That is, the Cartan projections of the sequence gn drift away from the walls

of a determined by the subset θ ⊂ ∆.
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For a general parabolic subgroup P ⊂ G, we say that gn is P -divergent if gn

is P+
θ -divergent for P+

θ conjugate to P .

2.3.4 τmod-regularity

P -divergent sequences are equivalent to the τmod-regular sequences discussed

in the work of Kapovich-Leeb-Porti, where τmod is the unique face corresponding to

P in a spherical model Weyl chamber. We explain the connection here.

For any point p ∈ X, we let p be the uniquely determined subspace of g such

that g = k⊕ p, where k is the Lie algebra of the stabilizer of p in G.

Let z ∈ ∂∞X. There is a point p ∈ X, a maximal abelian subalgebra a ⊂ p,

a Euclidean Weyl chamber a+ ⊂ a, and a unit-length Z ∈ a+ such that z is the

endpoint of the geodesic ray c(t) = exp(tZ) · p.

Up to the action of the stabilizer of z, the point p, the Cartan subalgebra a,

the Euclidean Weyl chamber a+, and the unit vector Z ∈ a+ are uniquely determined.

In addition, the stabilizer in G of the triple (p, a, a+) acts trivially on a+.

This means that we can identify the space ∂∞X/G with the set of unit vectors

in any Euclidean Weyl chamber a+. This set has the structure of a spherical simplex.

We let σmod denote the model spherical Weyl chamber ∂∞X/G.

We let π : ∂∞X → σmod be the type map to the model spherical Weyl chamber.

For fixed z ∈ ∂∞X, we let Pz denote the parabolic subgroup stabilizing z.

After choosing a maximal compact K, a Cartan subalgebra a, and a Euclidean

Weyl chamber a+, the data of a face τmod of the spherical simplex σmod is the same

55



as the data of a subset of the simple roots of G: the set of roots identifies a collection

of walls of the Euclidean Weyl chamber a+. The intersection of those walls with the

unit sphere in a is uniquely identified with a face of σmod.

Definition 2.3.2. Let τmod be a face of the model spherical Weyl chamber σmod. We

say that a sequence gn ∈ G is τmod-regular if gn is Pz-divergent for some z ∈ ∂∞X

such that π(z) ∈ τmod.

For a fixed model face τmod ⊂ σmod, we let Pτmod
denote any parabolic subgroup

which is the stabilizer of a point z ∈ π−1(τmod). All such parabolic subgroups are

conjugate, so as a G-space the flag manifold G/Pτmod
depends only on the model face

τmod.

2.3.5 Affine charts

Definition 2.3.3. Let P+, P− be opposite parabolic subgroups in G. Given a flag

ξ ∈ G/P−, we define

Opp(ξ) = {η ∈ G/P+ : ξ is opposite to η}.

We call a set of the form Opp(ξ) for some ξ ∈ G/P− an affine chart in G/P+.

An affine chart is the unique open dense orbit of StabG(ξ) in G/P+. When

G = PGL(d + 1,R) and P+ is the stabilizer of a line ` ⊂ Rd+1, G/P+ is identified

with RPd and this notion of affine chart agrees with the usual one in RPd.
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2.3.6 Dynamics in flag manifolds

There is a close connection between P -divergence in the group G and the

topological dynamics of the action of G on the associated flag manifold G/P . Kapovich-

Leeb-Porti frame this connection in terms of a contraction property for P -divergent

sequences.

Definition 2.3.4 ([KLP17], Definition 4.1). Let gn be a sequence of group elements

in G. We say that gn is P+-contracting if there exist ξ ∈ G/P+, ξ− ∈ G/P− such

that gn converges uniformly to ξ on compact subsets of Opp(ξ−).

The flag ξ is the uniquely determined limit of the sequence gn.

Definition 2.3.5. For an arbitrary sequence gn ∈ G, a P+-limit point of gn in G/P+

is the limit point of some P+-contracting subsequence of gn.

The P+-limit set of a group Γ ⊂ G is the set of P+-limit points of sequences

in Γ.

The importance of contracting sequences is captured by the following:

Proposition 2.3.6 ([KLP17], Proposition 4.15). A sequence gn ∈ G is P+-divergent

if and only if every subsequence of gn has a P+-contracting subsequence.

Proposition 2.3.6 implies in particular that if gn ∈ G is P+-divergent, then up

to subsequence there is an open subset U ⊂ G/P+ such that gn · U converges to a

singleton in G/P+. It turns out that this “weak contraction property” is enough to

characterize P+-divergence.
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Proposition 2.3.7. Let gn be a sequence in G, and suppose that for some nonempty

open subset U ⊂ G/P+, we have gn ·U → {ξ} for ξ ∈ G/P+. Then gn is P+-divergent,

and has a unique P+-limit point ξ ∈ G/P+.

We provide a proof of this fact in Section 6.3.

2.3.6.1 Dynamics of inverses of P+-divergent sequences

When gn is a P+-divergent sequence, the inverse sequence is P−-divergent.

Kapovich-Leeb-Porti show that this can be framed in terms of the dynamical behavior

of the inverse sequence.

Lemma 2.3.8 ([KLP17], Lemma 4.19). For gn ∈ G and flags ξ− ∈ G/P−, ξ+ ∈

G/P+, the following are equivalent:

1. gn is P+-contracting and gn|Opp(ξ−) → ξ+ uniformly on compacts.

2. gn is P+-divergent, gn has unique P+-limit point ξ+, and g−1
n has unique P−-

limit point ξ−.

2.4 Anosov representations: working definitions

The notion of an Anosov representation is central to this thesis. In this section

we briefly review several equivalent definitions of Anosov representations. Proofs

of the various equivalences can be found in e.g. [GGKW17] and [KLP17]. For a

comprehensive overview of the topic, see the lecture notes [Can21].
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2.4.1 Definitions in terms of limit maps

Definition 2.4.1. Let G be a semisimple Lie group, let P± be a pair of opposite

parabolic subgroups, and let Z be a topological space. We say that a pair of maps

ξ± : Z → G/P± are antipodal if for any distinct z1, z2 ∈ Z, ξ+(z1) is opposite to

ξ−(z2).

When P is a symmetric parabolic subgroup (i.e. P is conjugate to some

opposite parabolic P−), then we say a map ξ : Z → G/P is antipodal if ξ(z1) is

opposite to ξ(z2) for distinct z1, z2 ∈ Z.

When G is a rank-one semisimple Lie group, then there is only one conjugacy

class of parabolic subgroup, and a map ξ : Z → G/P is antipodal if and only if it is

injective.

Definition 2.4.2. Let Γ be a word-hyperbolic group, let G be a semisimple Lie

group, and let P± ⊂ G be a pair of opposite parabolic subgroups. We say that a

representation ρ : Γ→ G is P -Anosov if ρ(Γ) is P+-divergent, and there exists a pair

of ρ-equivariant antipodal embeddings ξ± : ∂Γ→ G/P± such that the image of ξ+ is

the P+-limit set of ρ(Γ) and the image of ξ− is the P−-limit set of ρ(Γ).

In [KLP17], Kapovich-Leeb-Porti refer to representations satisfying Defini-

tion 2.4.2 as asymptotically embedded, and prove that asymptotic embedded represen-

tations are equivalent to Anosov representations. We will take Definition 2.4.2 as our

primary definition of Anosov representations.

It is immediate from the definition that a representation ρ : Γ → G is P+-

Anosov if and only if it is P−-Anosov, if and only if it is P -Anosov for the symmetric
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parabolic subgroup P = P+θ ∩ P−θ, where P±θ are the standard parabolic subgroups

conjugate to P+ and P−.

The end of the previous section shows how asymptotic embeddedness can also

be characterized via topological dynamics.

Proposition 2.4.3. Let Γ be a word-hyperbolic group, let G be a semisimple Lie group,

and let P± ⊂ G be a pair of opposite parabolics. A representation ρ : Γ→ G is P+-

Anosov if and only if there are ρ-equivariant antipodal embeddings ξ± : ∂Γ→ G/P±,

such that for any sequence γn ∈ Γ such that γ±1
n → z± ∈ ∂Γ, we have

ρ(γn)|Opp(ξ−(z−)) → ξ+(z+)

uniformly on compacts.

Proof. Suppose ρ : Γ → G is P+-Anosov, and let γn ∈ Γ be a sequence such that

γ±1
n → z±. Then since ρ(Γ) is P+-divergent, for any subsequence of γn, a further

subsequence satisfies ρ(γn)|Opp(F−) → F+ for flags F± in ξ±(∂Γ). And, since the

embeddings ξ± are ρ-equivariant and antipodal, ρ(γn)ξ+(z′) must converge to ξ+(z+)

for any z′ 6= z−. The only possibility is ξ+(z+) = F+ and ξ−(z−) = F−.

Conversely, suppose that ρ satisfies the hypotheses of the proposition. Any

infinite sequence γn ∈ Γ has a subsequence such that γ±1
n → z±. So, if F is a P+-limit

point of the sequence ρ(γn), it is the image of ξ+(z+). Thus, the image of ξ+ is

precisely the P+ limit set of Γ (and similarly for ξ−).

60



2.4.2 Expansion dynamics

Kapovich-Leeb-Porti have also shown that Anosov representations can be

understood in terms of asymptotic expansion behavior.

Definition 2.4.4. Let Γ be a group acting on a metric space (Z, dZ). Fix a constant

C > 1. We say that Γ is C-expanding at a point z ∈ Z if there exists an open subset

U ⊂ Z containing z and a group element γ ∈ Γ such that

dZ(γx, γy) ≥ C · dZ(x, y)

for all x, y ∈ U . If Γ is C-expanding at z for some constant C > 1, we just say Γ is

expanding at z.

If Λ ⊂ Z is a closed subset, we say that Γ is expanding at Λ if Γ is expanding

at every z ∈ Λ.

Note that if a group Γ is expanding on a compact set Λ, then an iterative

argument shows that for any constant C > 1, Γ is C-expanding at every z ∈ Λ.

In particular, this means that if Γ is expanding at a closed subset Λ of a

compact smooth manifold Z equipped with some smooth metric, then Γ is also

expanding at Λ with respect to the distance induced by any smooth metric on Z

(because all such metrics are bilipschitz equivalent).

Proposition 2.4.5 ([KLP17]). Let Γ be discrete subgroup of a semisimple Lie group

G, and let P be a symmetric parabolic subgroup. The inclusion Γ ↪→ G is P -Anosov

if and only if Γ is P -divergent, any two distinct points of the P -limit set ΛP (Γ) are

opposite, and Γ is expanding at ΛP (Γ) in G/P .
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Remark 2.4.6. We do not need to assume that Γ is an abstract word-hyperbolic

group to apply Proposition 2.4.5: part of the statement of the proposition is that

word-hyperbolicity of Γ follows from the other assumptions.

2.4.3 Reduction to the projective Anosov case

When G = PGL(d,R), and P = P1 is the stabilizer in PGL(d,R) of the line

spanned by the first standard basis vector, then G/P is identified (via the orbit-

stabilizer theorem) with real projective space RPd−1. An opposite parabolic Pd−1 is

the stabilizer of a hyperplane in Rd, so G/Pd−1 is identified with the dual projective

space (RPd−1)∗, thought of as the space of hyperplanes in Rd.

In this special case, we can combine Definition 2.4.2 and Proposition 2.4.3 to

give the following definition:

Definition 2.4.7. Let ρ : Γ→ PGL(d,R) be a representation of a word-hyperbolic

group Γ. The representation ρ is P1-Anosov (or projective Anosov) if there exist

equivariant embeddings

ξ : ∂Γ→ RPd−1, ξ∗ : ∂Γ→ (RPd−1)∗

such that for any sequence γn ∈ Γ with γ±n → z± ∈ ∂Γ, we have

ρ(γn)|RPd−1−ξ∗(z−) → ξ(z+)

uniformly on compacts.

It turns out that understanding P1-Anosov representations into PGL(d,R) is

enough to understand any P -Anosov representation into any semisimple Lie group
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G. Explicitly, we have the following theorem, due to Guéritaud-Guichard-Kassel-

Wienhard:

Theorem 2.4.8 ([GGKW17], Proposition 3.5). Let G be a semisimple Lie group,

and let P be a parabolic subgroup of G. There exists d ≥ 1 and a representation

ζ : G→ PGL(d,R) such that a representation ρ : Γ→ G is P -Anosov if and only the

composition ζ ◦ ρ : Γ→ PGL(d,R) is P1-Anosov.

This theorem is part of the reason that much of this thesis focuses on general-

izing properties of P1-Anosov representations in particular.
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Chapter 3

Expansion dynamics for projectively convex

cocompact groups

3.1 Projective convex cocompactness

The goal of this chapter is to prove a dynamical characterization of projective

convex cocompactness. Material from this chapter appeared previously in the arXiv

preprint “Dynamical properties of convex cocompact groups in projective space”

[Wei20].

Before stating the theorem, we need to give the precise definition of projective

convex cocompactness. We let V be a real vector space.

Definition 3.1.1. Let Ω be a properly convex domain in P(V ). Recall that the

automorphism group Aut(Ω) is the group {γ ∈ PGL(V ) : γ · Ω = Ω}.

For a subgroup Γ ⊆ Aut(Ω), the full orbital limit set ΛΩ(Γ) is the set of

accumulation points in ∂Ω of sequences of the form γn · x, for x ∈ Ω and γn ∈ Γ.

The hull of Γ, denoted HullΩ(Γ), is the convex hull in Ω of the full orbital

limit set.

Using Proposition 2.1.12, one can check that when Ω is a strictly convex

domain, then the full orbital limit set ΛΩ(Γ) is the same as the accumulation set of

any Γ-orbit in Ω. In general, however, this is smaller than ΛΩ(Γ).
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Definition 3.1.2 ([DGK17]). Let Ω ⊂ P(V ) be a properly convex domain, and let

Γ ⊆ Aut(Ω) be discrete. We say that Γ acts convex cocompactly on Ω if Γ acts

cocompactly on HullΩ(Γ), the convex hull of the full orbital limit set of Γ.

If Γ is a discrete subgroup of PGL(V ) acting convex cocompactly on some

properly convex domain Ω ⊂ P(V ), we say that Γ acts convex cocompactly in P(V )

or is projectively convex cocompact.

If Γ is an abstract group, and ρ : Γ→ PGL(V ) is a representation with finite

kernel such that ρ(Γ) is projectively convex cocompact, we say that ρ is a projectively

convex cocompact representation.

In [DGK17], Danciger-Guéritaud-Kassel proved the following theorem, which

shows that projectively convex cocompact representations are closely related to

Anosov representations. Zimmer independently proved a related result in [Zim21].

Theorem 3.1.3 ([DGK17]). Let ρ : Γ → PGL(V ) be a representation of a word-

hyperbolic group, and suppose that ρ(Γ) preserves some properly convex domain

Ω ⊂ P(V ). Let P1 ⊂ PGL(V ) be the parabolic subgroup preserving a line in V .

Then the representation ρ is P1-Anosov if and only if ρ is projectively convex

cocompact. In this case, the image of the Anosov boundary embedding ξ : ∂Γ→ P(V )

is precisely the full orbital limit set ΛΩ(Γ) ⊂ ∂Ω.

Remark 3.1.4. On its face, Theorem 3.1.3 does not give a general characterization

of Anosov representations in terms of convex projective structures: it only applies to

P1-Anosov representations which preserve a properly convex domain in RPd−1. In
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light of Theorem 2.4.8, however, any P -Anosov representation ρ : Γ → G can be

viewed as a P1-Anosov representation in some PGL(V ) after composing ρ with an

appropriate representation ζ : G→ PGL(V ).

The composition ζ ◦ ρ might still not preserve a properly convex set in P(V ).

However, one can further compose ζ ◦ ρ with the symmetric square τ 2 : PGL(V )→

PGL(Sym2 V ). The image of PGL(V ) in PGL(Sym2 V ) preserves the projectivization

of the set of positive definite symmetric bilinear forms in Sym2 V , which is a properly

convex open subset of P(Sym2 V ). Altogether, this implies the following:

Corollary 3.1.5. Let G be a semisimple Lie group, and let P be a parabolic subgroup.

There exists d ≥ 1 and a representation τ : G→ PGL(d,R) such that a representation

ρ : Γ → G is P -Anosov if and only if the composition τ ◦ ρ : Γ → PGL(d,R) is

projectively convex cocompact.

The goal of this chapter of the thesis is to prove a version of Theorem 3.1.3 for

non-word-hyperbolic groups, inspired by the characterization of Anosov representations

in terms of expansion dynamics (see Proposition 2.4.5). To that end, we make the

following

Definition 3.1.6. Let Γ be a discrete subgroup of PGL(V ) preserving a properly

convex domain Ω, and let Λ be a closed Γ-invariant subset of ∂Ω. Fix a Riemannian

metric dk on each Grassmannian Gr(k, V ). We say that Γ is expanding at the faces

of Λ if for each x ∈ Λ, there is a constant C > 1, an open neighborhood U of

supp(FΩ(x)) in the Grassmannian Gr(k, V ) and a group element γ ∈ Γ such that for
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all W1,W2 ∈ U , we have

dk(γW1, γW2) ≥ C · dk(W1,W2).

If the constant C can be chosen uniformly for all x ∈ Λ, then we say that Γ is

C-expanding or uniformly expanding at the faces of Λ.

Before we can state our main theorem, we need to define two more technical

conditions on subsets of boundaries of properly convex domains.

Definition 3.1.7. Let Λ be a subset of a properly convex domain Ω. We say that Λ

contains all of its faces if for each x ∈ Λ, we have FΩ(x) ⊂ Λ.

We say that Λ is boundary-convex if any supporting hyperplane of Ω intersects

Λ in a convex set.

The following is a consequence of Lemma 4.1 (1) in [DGK17]:

Lemma 3.1.8. Let Ω be a properly convex domain, and let Γ act convex cocompactly

on Ω. The full orbital limit set ΛΩ(Γ) is closed and boundary-convex, and contains

all of its faces.

Theorem 3.1.9. Let Ω be a properly convex domain in P(V ), and let Γ be a discrete

subgroup of Aut(Ω). The following are equivalent:

1. Γ acts convex cocompactly on Ω.

2. There is a closed, Γ-invariant, and boundary-convex subset Λ ⊂ ∂Ω with

nonempty convex hull such that Λ contains all of its faces and Γ is uniformly

expanding at the faces of Λ.
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Λ1

Λ2

Figure 3.1: Left: Λ1 ⊂ ∂Ω does not contain all of its faces. Right: Λ2 ⊂ ∂Ω contains
all of its faces, but is not boundary-convex: a line segment joining two points of Λ2

intersects ∂Ω− Λ2.

In this case, the set Λ is the full orbital limit set ΛΩ(Γ).

Remark 3.1.10. (a) When we prove the implication (2) =⇒ (1) of Theorem

3.1.9, we will not actually need to assume that the expansion at the faces of Λ

is uniform—only that the expansion occurs with respect to a particular choice

of Riemannian metric on Gr(k, V ). See Remark 3.2.2.

(b) The uniform expansion we get at the faces of ΛΩ(Γ) will also allow us to give a

description of the Cartan projection of certain sequences in Γ. See Proposition

3.4.14 for an exact statement.

A special case of convex cocompactness is when a discrete group Γ ⊂ Aut(Ω)

acts cocompactly on all of Ω. In this case, we say that Ω is divisible, and the group Γ

divides the domain. As ∂Ω is always boundary convex and contains all of its faces,

when Λ = ∂Ω, Theorem 3.1.9 can be stated as the following:

Corollary 3.1.11. Let Γ be a discrete subgroup of PGL(d,R) preserving a properly
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convex domain Ω. Then Γ divides Ω if and only if Γ is uniformly expanding at the

faces of ∂Ω.

3.1.1 Outline of the chapter

Section 3.2 is devoted to the proof of the implication (2) =⇒ (1) in The-

orem 3.1.9, using a modified version of an analogous argument in [DGK17]. In

Section 3.3, we recall the statement of the Benzécri cocompactness theorem for

properly convex domains in RPd−1, and prove a version of it relative to a direct sum

decomposition of Rd. Then in Section 3.4, we use the results of Section 3.3 to prove

the implication (1) =⇒ (2) of Theorem 3.1.9. We also prove some auxiliary technical

results about certain divergent sequences in convex cocompact groups, which will be

useful later in Chapter 4.

3.2 Expansion implies convex cocompactness

The goal of this section is to prove the implication (2) =⇒ (1) of Theorem

3.1.9.

Lemma 3.2.1. Fix a metric dP on RPd−1. Let x be a point in a convex domain Ω,

and let W ∈ Gr(k, d) be a supporting subspace of Ω. For every y ∈ P(W ), we have

dP(x, y) ≥ dP(x, ∂Ω).

We emphasize that we do not need to assume that Ω is properly convex—only

that it is convex in the sense of Definition 2.1.3.
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Proof. Since P(W ) is a supporting subspace, we can write

P(W ) = (P(W ) ∩ ∂Ω) ∪ (P(W ) ∩ (RPd−1 − Ω)).

If y ∈ ∂Ω, then the inequality is immediate. Otherwise, we can choose lifts Ω̃, x̃, ỹ of

Ω, x and y to the projective sphere Sd−1 so that dS(x̃, ỹ) = dP(x, y), where dS is the

metric on Sd−1 induced by dP.

We can fix a closed hemisphere H of Sd−1 containing both x̃ and ỹ. The

intersection Ω̃ ∩H contains (at least) one lift of every point in Ω. Its closure is a

closed ball in H with nonempty interior, whose boundary separates x̃ and ỹ.

Thus, the distance from x̃ to some point z̃ lifting z ∈ ∂Ω is smaller than

dS(x̃, ỹ) = dP(x, y), implying dP(x, z) < dP(x, y).

Any (Riemannian) metric on RPd−1 induces a (Riemannian) metric on each

Gr(k, d), by viewing each W ∈ Gr(k, d) as closed subsets P(W ) of RPd−1, and taking

Hausdorff distance. From this point forward, we will only work with the angle metric

on projective space, which is induced by a choice of inner product on Rd.

Remark 3.2.2. It is possible that a group action could be expanding at the faces of

Λ with respect to some choice of Riemannian metric on Gr(k, d), but not with respect

to another.

However, if Γ is C-expanding with respect to d for a uniform constant C, the

choice of metric does not matter: since Gr(k, d) is compact, all Riemannian metrics

on Gr(k, d) are bilipschitz-equivalent, and when Γ is C-expanding at the faces of Λ,
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one can apply expanding elements iteratively to see that Γ is also C ′-expanding for

an arbitrary constant C ′.

When the set of supports of (k − 1)-dimensional faces of Λ is compact in

Gr(k, d) for each k, then a Γ-action is expanding at faces with respect to some choice

of metric d if and only if it is uniformly expanding at faces with respect to that metric

(and hence to every metric). For instance, this is the case when Λ is compact and

does not contain any nontrivial segments (so the set of faces is the same as the set of

points).

In our context, however, we will not be able to assume this kind of compactness.

So, when we discuss expansion, we need to either specify the Riemannian metric or

assume that the expansion is uniform.

Lemma 3.2.3. Let x ∈ RPd−1, and let W ∈ Gr(k, d). There exists V ∈ Gr(k, d) so

that x ∈ P(V ) and

dP(x,P(W )) = dH(V,W ),

where dP is the angle metric on projective space, and dH is the metric induced on

Gr(k, d) by Hausdorff distance.

Proof. If x ∈ P(W ), then we can just take V = W , so assume that dP(x,P(W )) > 0.

The definition of Hausdorff distance immediately implies that for any P(V ) containing

x, dH(V,W ) ≥ dP(x,P(W )), so we only need to find some V satisfying the other

bound. The diameter of projective space in the angle metric is π/2, which gives an

upper bound on the Hausdorff distance between any two closed subsets of RPd−1. So

we only need to consider the case where dP(x,P(W )) < π/2.
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In this case, we let W ′ = x⊥ ∩W , and then let V = W ′ ⊕ x. Let z ∈ RPd−1

be the orthogonal projection of x onto W , so that dP(x, z) = dP(x,P(W )). Let z̃ and

x̃ be unit vector representatives of z and x, respectively, chosen so that if

λ = 〈x̃, z̃〉,

then

dP(x, z) = cos−1(λ).

Let v ∈ V . We want to show that dP([v],P(W )) ≤ cos−1(λ), i.e. that for some

w ∈ W ,

〈v, w〉
||v|| · ||w||

≥ λ.

If v ∈ W , then we can choose w = v. Otherwise, we can rescale v in order to

write it as w′ + x̃, for w′ ∈ W ′. Then let w = w′ + z̃. Note that

||w|| = ||v|| =
√

1 + ||w′||2.

Now we just compute:

〈v, w〉
||v|| · ||w||

=
〈w′ + x̃, w′ + z̃〉
||v|| · ||w||

=
〈x̃, z̃〉+ 〈w′, w′〉

1 + ||w′||2

≥ 〈x̃, z̃〉+ 〈x̃, z̃〉||w′||2

1 + ||w′||2
= 〈x̃, z̃〉 = λ.

Remark 3.2.4. Lemma 3.2.3 still holds if we replace dP with any metric on projective

space which is an increasing function of the angle metric. In particular, the conclusion

holds for any metric on projective space in which projective lines are geodesics and a

maximal compact in PGL(d,R) acts by isometries.
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Most of the work of proving the implication (2) =⇒ (1) in Theorem 3.1.9 is

contained in the following:

Proposition 3.2.5. Let Ω be a convex domain preserved by a group Γ ⊂ PGL(d,R).

Let C be a Γ-invariant subset of Ω, closed in Ω, with ideal boundary ∂iC. Suppose that

Γ is expanding at the faces of ∂iC, with respect to the metrics on Gr(k, d) specified in

Lemma 3.2.3.

If either

1. Γ is discrete and Ω is properly convex, or

2. Γ is uniformly expanding at the faces of ∂iC,

then Γ acts cocompactly on C.

Proof. Danciger-Guéritaud-Kassel [DGK17] give a proof of this fact in the case where

∂iC contains no segments, which is itself based on an argument of Kapovich, Leeb,

and Porti in [KLP14] inspired by Sullivan [Sul85]. Our proof will be based on similar

ideas.

We let dP denote the angle metric on projective space, and we let dH denote

the metric on Gr(k, d) induced by Hausdorff distance.

For any ε > 0, the set

Sε = {x ∈ C : dP(x, ∂Ω) ≥ ε}

is compact. So, supposing for a contradiction that the action of Γ on C is not

cocompact, for a sequence εn → 0, there exists xn so that Γ · xn lies in C − Sεn .
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For any fixed constant E > 1, we can replace each xn with an element in its

orbit so that

dP(γxn, ∂Ω) ≤ E · dP(xn, ∂Ω) (3.1)

for all γ ∈ Γ. If Γ is discrete and Ω is properly convex, then Γ · xn is a discrete subset

of Ω and we can actually take E = 1. Otherwise, if the expansion at the faces of ∂iC

is uniform, we pick E to be less than the uniform expansion constant.

Up to a subsequence, xn converges in RPd−1 to some x ∈ ∂iC. Let F be the

open face of ∂Ω at x, and let P(V ) be the support of F , for V ∈ Gr(k, d).

Let U ⊂ Gr(k, d) be an expanding neighborhood of V in Gr(k, d), with

expanding element γ ∈ Γ expanding by a constant E(γ) > E on U .

Since ∂iC is compact and Γ-invariant, there is some zn ∈ ∂Ω so that

dP(γxn, γzn) = dP(γxn, ∂Ω).

Since xn → x, and the distance from γxn to γzn is at most εn, zn converges

to x as well.

Proposition 2.1.5 implies that there is some supporting hyperplane of Ω which

intersects zn. Any such sequence of supporting hyperplanes must subconverge to a

supporting hyperplane of Ω at x. This supporting hyperplane contains P(V ), so there

is a sequence Vn ∈ Gr(k, d) with P(Vn) supporting Ω at zn and Vn subconverging to

V .

Since we know γ · zn realizes the distance from γ · xn to ∂Ω, we must have

dP(γxn, ∂Ω) ≥ dP(γxn, γP(Vn)). (3.2)
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Then, Lemma 3.2.3 implies that we can choose subspaces Wn ∈ Gr(k, d), with

P(Wn) containing xn, so that

dP(γxn, γP(Vn)) = dH(γWn, γVn). (3.3)

Since dP(γxn, γP(Vn)) converges to 0, dH(γWn, γVn) does as well. Since γ is

fixed, and Vn converges to V , Wn also converges to V . So eventually, both Vn and

Wn lie in the E(γ)-expanding neighborhood U of V , meaning that we have

dH(γWn, γVn) > E · dH(Wn, Vn). (3.4)

The trivial bound on Hausdorff distance implies that

dH(Wn, Vn) ≥ dP(xn,P(Vn)), (3.5)

and Lemma 3.2.1 implies that

dP(xn,P(Vn)) ≥ dP(xn, ∂Ω). (3.6)

Putting (3.2), (3.3), (3.4), (3.5), and (3.6) together, we see that

dP(γxn, ∂Ω) > E · dP(xn, ∂Ω),

which contradicts (3.1) above.

We need one more lemma before we can show the main result of this section.

The statement is closely related to [DGK17, Lemma 6.3], and gives a condition for

when a Γ-invariant convex subset of a properly convex domain Ω contains HullΩ(Γ).

(The result in [DGK17] is stated for a cocompact action of a group Γ on a convex set

C, but the proof only uses Γ-invariance.)
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Lemma 3.2.6. Let C be a nonempty convex set in Ω whose ideal boundary contains

all of its faces, and suppose that Γ ⊆ Aut(Ω) preserves C. Then ∂iC contains ΛΩ(Γ),

the full orbital limit set of Γ.

In particular, if Γ is discrete, and the Γ action on C is cocompact, then the

action of Γ on Ω is convex cocompact and ∂iC = ΛΩ(Γ).

Proof. We follow the proof of Lemma 6.3 in [DGK17].

Let z∞ ∈ ΛΩ(Γ), which is by definition the limit of a sequence γn · z for some

z ∈ Ω and a sequence γn ∈ Γ. Fix y ∈ C, and consider the sequence γny. Since

d(γnz, γny) = d(z, y) for all n, Proposition 2.1.11 implies that up to a subsequence,

γnz and γny both converge to points in the same face of ∂Ω. But any accumulation

point of γny in ∂Ω lies in ∂iC and ∂iC contains its faces, so z∞ ∈ ∂iC.

Since ∂iC contains ΛΩ(Γ), C must contain HullΩ(Γ). [DGK17, Lemma 4.10

(3)] then implies that ΛΩ(Γ) = ∂iC is closed in C, which means that HullΩ(Γ) is

closed in C and the action on HullΩ(Γ) is cocompact.

Proof of (2) =⇒ (1) in Theorem 3.1.9. Let Ω be a properly convex domain, let Γ

be a discrete subgroup of Aut(Ω), and Λ be a Γ-invariant, closed and boundary-convex

subset of ∂Ω with nonempty convex hull, such that Λ contains all of its faces and Γ

is uniformly expanding at the faces of Λ.

Since Λ is boundary-convex and has nonempty convex hull, Λ is exactly the

ideal boundary of HullΩ(Λ). So, Proposition 3.2.5 implies that Γ acts cocompactly on
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HullΩ(Λ). Since Λ also contains its faces, applying Lemma 3.2.6 with C = HullΩ(Λ)

completes the proof.

3.3 A relativized Benzécri theorem

In this section we recall the statement of Benzécri’s cocompactness theorem

for convex projective domains, as well as prove a version of it (Proposition 3.3.4) that

applies relative to a direct sum decomposition of Rd.

3.3.1 The space of projective domains

Good references for this material include [Gol88] and [Mar14].

Let V be a real vector space. We denote the set of properly convex open

subsets of P(V ) by C(V ). We topologize C(V ) via the metric:

d(Ω1,Ω2) := dHaus(Ω1,Ω2),

where dHaus(·, ·) is the Hausdorff distance induced by any metric on P(V ) (the choice

of metric on P(V ) does not affect the topology on C(V )).

Definition 3.3.1. A pointed properly convex domain in P(V ) is a pair (Ω, x), where

Ω ∈ C(V ) and x ∈ Ω. We denote the set of pointed properly convex domains in P(V )

by C∗(V ), and topologize C∗(V ) by viewing it as a subspace of C(V )× P(V ).

PGL(V ) acts on both C(V ) and C∗(V ) by homeomorphisms. We have the

following important result:

Theorem 3.3.2 (Benzécri, [Ben60]). The action of PGL(V ) on C∗(V ) is proper and

cocompact.
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3.3.2 Benzécri relative to a direct sum

We now let Va, Vb be subspaces of V so that Va ⊕ Vb = V . The decomposition

induces natural projection maps πVa : V → Va and πVb : V → Vb, as well as a

decomposition of the dual V ∗ into V ∗a ⊕ V ∗b . Here V ∗a , V ∗b are respectively identified

with the linear functionals on V which vanish on Vb, Va.

When Ω is a convex subset of P(V ) which is disjoint from P(Vb), we let πVa(Ω)

be the projectivization of πVa(Ω̃), where Ω̃ is a cone over Ω. A priori this is only a

convex subset of P(Va), although we will see (Proposition 3.3.6) that if Ω is properly

convex and open, and Ω is disjoint from P(Vb), then πVa(Ω) is properly convex and

open in P(Va).

Ω ∩ P(Va)

P(Vb)

P(Va) πVa(Ω)

Ω

Figure 3.2: The domains Ω ∩ P(Va) and πVa(Ω). In this case, πVa(Ω) is properly
convex even though Ω intersects P(Vb).

We remark that if Ω∩P(Vb) is nonempty, then πVa(Ω) is not even well-defined.

On the other hand, if Ω ∩ P(Vb) is nonempty, but Ω ∩ P(Vb) is empty, then πVa(Ω)

does exist, and may or may not be a properly convex subset of P(Va).

Definition 3.3.3. Let V = Va ⊕ Vb, and let Ka be a subset of C∗(Va). We define the
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subset C∗(Va, Vb,Ka) by

C∗(Va, Vb,Ka) :=

(Ω, x) ∈ C∗(V ) :
P(Vb) ∩ Ω = ∅,
(Ω ∩ P(Va), x) ∈ Ka,
(πVa(Ω), x) ∈ Ka

 .

The groups GL(Va) and GL(Vb) both have a well-defined action on C∗(V ): we

take g ∈ GL(Va) and h ∈ GL(Vb) to act by the projectivizations of g ⊕ idVb , idVa ⊕ h

respectively, on P(Va ⊕ Vb).

Since the GL(Vb)-action on P(V ) fixes P(Va) pointwise and commutes with

projection to P(Va), for any Ka ⊂ C∗(Va), GL(Vb) acts on the subset C∗(Va, Vb,Ka).

The main result of this section is the following:

Proposition 3.3.4. Let Va, Vb be subspaces of a real vector space V such that

Va ⊕ Vb = V . For any compact subset Ka ⊂ C∗(Va), the action of GL(Vb) on

C∗(Va, Vb,Ka) is proper and cocompact.

3.3.3 Convex cones in direct sums

Before proving Proposition 3.3.4, we explore some of the properties of convex

cones in a vector space V which splits as a direct sum V = Va ⊕ Vb.

3.3.3.1 Duality

Suppose that Ca is a convex cone in V −{0}, for V = Va⊕Vb. The intersection

C∗a ∩ V ∗a consists of functionals in C∗a which vanish on Vb. If we know that Ca lies

inside of Va, then any functional on Va which does not vanish anywhere on Ca − {0}

can be extended by zero on Vb to get an element of C∗a ∩ V ∗a . So in this case, C∗a ∩ V ∗a
is canonically indentified with the dual of the cone Ca viewed as a cone in Va.
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This view allows us to understand projection and intersection as dual operations

on convex cones in V = Va ⊕ Vb, in the following sense:

Lemma 3.3.5. Let V be a real vector space with V = V1⊕ V2, and let C be a convex

cone intersecting V2 trivially. Then C∗ ∩ V ∗1 ⊆ πV1(C)∗ ∩ V ∗1 and

πV1(C)∗ ∩ V ∗1 ⊆ C∗ ∩ V ∗1 .

Moreover, if C − {0} intersects V2 trivially, then in fact

πV1(C)∗ ∩ V ∗1 = C∗ ∩ V ∗1 .

Proof. First let α ∈ C∗ ∩ V ∗1 . Let v be any nonzero element of the closure of πV1(C),

so that v + v2 ∈ C for some v2 ∈ V2. We know that α(v + v2) 6= 0 and α(v2) = 0, so

α(v) 6= 0. This shows that α is in πV1(C)∗.

Now let α ∈ πV1(C)∗ ∩ V ∗1 − {0}, and let v ∈ C. We can write v = v1 + v2 for

v1 ∈ V1, v2 ∈ V2; since we assume C does not intersect V2, v1 is nonzero. Then since

α ∈ V ∗1 , α(v) = α(v1) 6= 0. So, α ∈ C∗.

If we further assume that C ∩ V2 = {0}, a similar argument shows that any

α ∈ πV1(C)∗ ∩ V ∗1 is nonzero on any v ∈ C − {0}, implying α ∈ C.

As a consequence of the above, we note:

Proposition 3.3.6. Let C be a sharp (Definition 2.1.2) open convex cone in a vector

space V = V1 ⊕ V2. If C − {0} intersects V2 trivially, then the projection πV1(C) is

sharp and open in V1.

80



Proof. Openness is immediate since projection is an open map. Since C is sharp, if

C does not intersect V2, then there is some α ∈ V ∗ whose kernel contains V2 and

does not intersect C, i.e. α ∈ C∗ ∩ V ∗1 . Since non-intersection with C is an open

condition, C∗ ∩ V ∗1 is a nonempty open subset of V ∗1 . Then Lemma 3.3.5 implies that

πV1(C)∗ ∩ V ∗1 is nonempty and open in V ∗1 . So its dual in V ∗∗1 = V1 is sharp.

3.3.3.2 Convex hulls

If Ω1, Ω2 are properly convex subsets of P(V ), we cannot always find a minimal

properly convex subset Ω ⊂ P(V ) which contains Ω1 ∪ Ω2 (that is, convex hulls do

not always exist). Here we describe some circumstances under which this is possible.

Definition 3.3.7. Let Ω1, Ω2 be properly convex sets in P(V ). For each W ∈

Ω∗1 ∩Ω∗2, we let HullW (Ω1,Ω2) denote the convex hull of Ω1 and Ω2 in the affine chart

P(V )− P(W ).

The set HullW (Ω1,Ω2) is minimal among all convex subsets of P(V )− P(W )

containing Ω1 ∪ Ω2. However, it is possible that for some other W ′ ∈ Ω∗1 ∩ Ω∗2,

HullW ′(Ω1,Ω2) is not contained in P(V )− P(W ). So, to guarantee minimality among

all convex subsets of P(V ), we need a little more:

Lemma 3.3.8. If Ω1 ∩ Ω2 is nonempty, then for any W ∈ Ω∗1 ∩ Ω∗2, HullW (Ω1,Ω2)

is the unqiue minimal properly convex subset of P(V ) containing Ω1 ∪ Ω2.

Proof. Let A be the affine chart P(V )− P(W ), and let H be any properly convex set

containing Ω1 ∪ Ω2. Since Ω1 ∩ Ω2 is nonempty, Ω1 ∪ Ω2 is a connected subset of A,
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so it is contained in a single connected component C of H ∩ A. This component is a

convex subset of A, so by definition C (hence H) contains HullW (Ω1,Ω2).

Lemma 3.3.8 allows us to define the convex hull of a pair of properly convex

sets without reference to a particular affine chart.

Definition 3.3.9. When Ω1, Ω2 are properly convex sets such that Ω1 ∩ Ω2 and

Ω∗1 ∩ Ω∗2 are both nonempty, we let Hull(Ω1,Ω2) denote the minimal properly convex

set containing Ω1 ∪ Ω2.

3.3.4 Proving Benzécri for direct sums

We can now begin proving Proposition 3.3.4. As a first step, we consider the

case where dimVa = 1, i.e. P(Va) is identified with a single point in P(V ).

Lemma 3.3.10. Let V = Vb ⊕ x for a point x ∈ P(V ). GL(Vb) acts cocompactly on

the set of domains

C∗(x, Vb) := {(Ω, x) ∈ C∗(V ) : P(Vb) ∩ Ω = ∅}.

Proof. Let (Ωn, x) be a sequence of domains in C∗(x, Vb). The Benzécri cocompactness

theorem (Theorem 3.3.2) implies that we can find group elements gn ∈ PGL(V ) so

that the sequence of pointed domains

(gnΩn, gnx)

subconverges to a pointed domain (Ω, x′). We want to show that these group elements

can be chosen to preserve the decomposition Vb ⊕ x.
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We view Vb as a point in Ω∗n, so gnVb lies in gnΩ∗n for all n, and a subsequence

of gnVb converges to some W ∈ Ω∗. In particular, P(W ) does not contain x′. This

means that we can find a sequence of group elements g′n, lying in a fixed compact

subset of PGL(V ), so that

g′n · gnVb = Vb, g′n · gnx = x.

Since the g′n lie in a compact subset of PGL(Vb), the domains

g′ngnΩn

must also subconverge to some properly convex domain Ω′, which contains x. So we

can replace gn with g′ngn to get the desired sequence of group elements.

Lemma 3.3.10 gets us partway to proving Proposition 3.3.4. We see that

if Ω is any domain in C∗(Va, Vb,Ka), we can always find some h ∈ GL(Vb) so that

hΩ ∩ P(Vb ⊕ x) lies in a fixed compact set of domains in C(Vb ⊕ x). This is almost

enough to ensure that hΩ itself lies in a fixed compact set of domains in C(V ). The

exact condition we’ll need is the following:

Lemma 3.3.11. Let V be a real vector space, and suppose V = Wa ⊕ Vb ⊕ x, for a

point x ∈ P(V ).

Let Ωa,Ω
′
a be properly convex domains in P(Wa⊕x), and let Ωb,Ω

′
b be properly

convex domains in P(Vb ⊕ x), such that

x ∈ Ωa ⊂ Ω′a,

x ∈ Ωb ⊂ Ω′b.
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There exist properly convex domains Ω1, Ω2 in P(V ) such that any Ω ∈ C(V )

disjoint from P(Wa) and P(Vb) which satisfies:

1. Ω′a ⊃ πWa⊕x(Ω),

2. Ωa ⊂ Ω ∩ P(Wa ⊕ x),

3. Ω′b ⊃ πVb⊕x(Ω)

4. Ωb ⊂ Ω ∩ P(Vb ⊕ x),

also satisfies x ∈ Ω1 and Ω1 ⊂ Ω ⊂ Ω2.

Ω

Ω1

Ω2

x

Vb

Wa

Figure 3.3: Ω fits between a pair of domains Ω1 and Ω2, which depend only on the
intersections and projections between Ω and P(Wa ⊕ x), P(Vb ⊕ x).

Proof. We know Ωa∩Ωb = {x}. If necessary, we can slightly shrink Ωa and Ωb so that

Ωa ∩ P(Va) = ∅ and Ωb ∩ P(Vb) = ∅, which means that P(Wa ⊕ Vb) can be identified
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with an element of Ω∗a ∩ Ω∗b . So, the convex hull (Definition 3.3.9) of Ωa,Ωb exists,

and we can take

Ω1 = Hull(Ωa,Ωb).

This is a well-defined convex domain containing x. Ω1 is open because Wa ⊕ x and

Vb ⊕ x span V .

To build Ω2, we consider the relative dual domains

D(Ω′a) = (Ω′a)
∗ ∩ P((Wa ⊕ x)∗), D(Ω′b) = (Ω′b)

∗ ∩ P((Vb ⊕ x)∗).

D(Ω′a), D(Ω′b) can also be obtained by taking the duals of Ω′a and Ω′b viewed as convex

subsets of P(Wa ⊕ x), P(Vb ⊕ x). Since Ω′a and Ω′b are properly convex subsets of

P(Wa⊕x) and P(Vb⊕x), D(Ω′a) and D(Ω′b) are open in P((Wa⊕x)∗) and P((Vb⊕x)∗).

We also know that x lies in D(Ω′a)
∗ ∩D(Ω′b)

∗. So we can define the convex

open set Ω∗2 to be the interior of

Hullx(D(Ω′a), D(Ω′b)),

using Definition 3.3.7. The interior of this hull is nonempty because (Wa ⊕ x)∗ and

(Vb ⊕ x)∗ span V ∗.

Let Ω be any domain satisfying the hypotheses of the lemma. Since duality

reverses inclusions, we know D(Ω′a) ⊆ πWa⊕x(Ω)∗ and D(Ω′b) ⊆ πVa⊕x(Ω)∗. Then,

Lemma 3.3.5 implies

D(Ω′a) ⊆ πWa⊕x(Ω)∗ ∩ P((Wa ⊕ x)∗) ⊆ Ω∗ ∩ P((Wa ⊕ x)∗),

D(Ω′b) ⊆ πVa⊕x(Ω)∗ ∩ P((Vb ⊕ x)∗) ⊆ Ω∗ ∩ P((Vb ⊕ x)∗).
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In particular, D(Ω′a) and D(Ω′b) are both contained in Ω∗. Since Ω∗∗ = Ω contains x,

Ω∗ is contained in the affine chart P(V ∗)− P(x). So, Ω∗ contains the closure of

Hullx(D(Ω′a), D(Ω′b)),

meaning Ω∗ contains Ω∗2 and Ω is contained in the properly convex set Ω2 = Ω∗∗2 .

Remark 3.3.12. If Ωb does not intersect P(Vb) and Ωa does not intersect P(Wa), we

can work in the affine chart P(V )− P(Wa ⊕ Vb), and Lemma 3.3.11 is equivalent to

the fact that if a convex subset C of an affine space has open and bounded projections

to and intersections with a pair of complementary affine subspaces, C is itself open

and bounded in terms of the size of the projections and intersections.

We do not take this approach because we do not want to assume that Ωb and

P(Vb) are disjoint.

Our next task is to show that we can sometimes replace assumption (3) in

Lemma 3.3.11 with:

(3a) Ω′b ⊃ Ω ∩ P(Vb ⊕ x).

This will be done in Proposition 3.3.14 below. We start with some Euclidean

geometry.

We endow Rd with its standard inner product. For a subspace W ⊆ Rd, we

let πW : Rd → W denote the orthogonal projection, and for R > 0, let B(R) denote

the open ball around the origin of radius R.
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Lemma 3.3.13. Let Ω be a convex subset of Rd containing the origin, and let W be

a subspace of Rd.

Suppose that there are R1, R2 > 0 so that:

• B(R1) ∩W⊥ ⊂ Ω ∩W⊥,

• πW⊥(Ω) ⊂ B(R2).

Then there exists a linear map f : Rd → Rd, depending only on R1 and R2, so that

πW (Ω) ⊂ f(Ω ∩W ).

Proof. Let p be any point in πW (Ω), and let z be some point in Ω so that πW (z) = p.

We can write z = p+ y for y ∈ πW⊥(Ω).

p

y−αy
p′

W

W⊥

z

Figure 3.4: Illustration for the proof of Lemma 3.3.13. The ratio ||p||/||p′|| is bounded
in terms of α.

Let ` be the line through the origin passing through y. For some α > 0, we

know that ` intersects (Ω ∩W⊥)−B(R1) at y′ = −αy. Note that

α =
||y′||
||y||

>
R1

R2

.
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Since Ω is convex and contains Ω ∩W⊥, it contains the open line segment

{t(−αy) + (1− t)(y + p) : t ∈ (0, 1)}.

This line segment passes through W when t = 1
1+α

, meaning that Ω must contain the

point

p′ =

(
1− 1

1 + α

)
p.

Since Ω contains the origin, it also contains(
1− 1

1 +R1/R2

)
p =

R1

R1 +R2

p.

This point lies in Ω ∩W , meaning that p lies in R3 · (Ω ∩W ) where

R3 :=
R1 +R2

R1

.

So we can take our map f to be the linear rescaling about the origin by R3.

Proposition 3.3.14. Let V = Wa ⊕ Vb ⊕ x, for x ∈ P(V ).

Let Ωa,Ω
′
a be properly convex domains in P(Wa ⊕ x), and let Ω′′b be a properly

convex domain in P(Vb ⊕ x) such that

x ∈ Ωa ⊂ Ω′a, x ∈ Ω′′b .

If Ω′a does not intersect P(Wa), then there exists a properly convex domain Ω′b in

P(Vb ⊕ x) so that any Ω ∈ C(V ) which satisfies Ω ∩ P(Vb) = ∅ and

1. Ω′a ⊃ πWa⊕x(Ω),

2. Ωa ⊂ Ω ∩ P(Wa ⊕ x),
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(3a) Ω′′b ⊃ Ω ∩ P(Vb ⊕ x)

also satisfies

(3) Ω′b ⊃ πVb⊕x(Ω).

Proof. Let H = Wa ⊕ Vb, and consider the affine chart A = P(V )− P(H). We can

choose coordinates and a Euclidean metric on this affine chart so that Wa ⊕ x and

Vb ⊕ x map to complementary orthogonal subspaces Wa, Vb of A, meeting at the

origin. In these coordinates, the projectivizations of the projection maps πWa⊕x, πVb⊕x

correspond to the orthogonal projections to Wa and Vb, respectively.

Since P(Wa) does not intersect Ω′a, the images of Ω′a and Ωa in A are both

bounded open convex subsets of Wa.

Let Ω be a properly convex domain not intersecting P(Vb) and satisfying

assumptions (1), (2), (3a). Since πWa⊕x(Ω) is contained in A, Ω cannot intersect

P(Wa⊕ Vb), so Ω is contained in the affine chart A (although its closure need not be).

In particular, Ω ∩ P(Vb ⊕ x) is contained in the unique connected component

of Ω′′b ∩ A which contains x. So, by replacing Ω′′b with this connected component, we

may assume that the image of Ω′′b in A is a convex open subset of Vb.

Lemma 3.3.13 then implies that there is an affine map f : A→ A, depending

only on Ωa and Ω′a, so that

πVb⊕x(Ω) ⊆ f(Ω′′b ).

So, we can take Ω′b to be the properly convex domain f(Ω′′b ).
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We are now ready to prove Proposition 3.3.4.

Proof of Proposition 3.3.4. Properness follows immediately from the standard Benzécri

theorem (Theorem 3.3.2), since the restriction of a proper action of a group G on X

to a closed subgroup H and an H-invariant subset of X is always proper.

We let Va, Vb, and Ka ⊂ C∗(Va) be as in the statement of the theorem. Let

(Ωn, xn) be a sequence of properly convex domains in C∗(Va, Vb,Ka). We can choose a

subsequence so that xn → x. Our goal is to find a pair of properly convex domains

Ω1,Ω2 (with x ∈ Ω1) and hn ∈ GL(Vb), so that up to a subsequence,

Ω1 ⊂ hn · Ωn ⊂ Ω2.

This will be sufficient, because xn ∈ P(Va), so hnxn = xn converges to x and

hnΩn subconverges to some properly convex domain Ω containing Ω1 3 x.

Vb

Wa
xVa

hn

Wa

Vb

x

Figure 3.5: Applying an element hn ∈ GL(Vb) “rescales” in P(Vb ⊕ x) about x; if
the size of the intersection Ω ∩ P(Vb ⊕ x) is bounded, then the size of the projection
to Vb ⊕ x (with respect to the decomposition V = Wa ⊕ Vb ⊕ x) is also bounded
(Proposition 3.3.14).

Consider the sequence of domains Ω′n = Ωn ∩ P(Vb ⊕ x). We know P(Vb) is

disjoint from Ωn for all n. So, Lemma 3.3.10 implies that we can find hn ∈ GL(Vb) so
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that the domains hnΩ′n subconverge in C(Vb ⊕ x) to some domain Ω′ in P(Vb ⊕ x). In

particular, up to a subsequence, we can find fixed domains Ωb,Ω
′′
b ⊂ P(Vb ⊕ x) such

that for all n,

x ∈ Ωb ⊂ hnΩ′n ⊂ Ω′′b .

Since the intersections Ωn ∩ P(Va) and projections πVa(Ωn) both lie in a fixed

compact set in C(Va), we can also assume that there are domains Ωa,Ω
′
a ∈ C(Va) so

that for all n,

Ωa ⊂ Ωn ∩ P(Va), Ω′a ⊃ πVa(Ωn).

Since the action of any hn ∈ GL(Vb) fixes Va pointwise and commutes with projection

to Va, this immediately implies that for all n,

Ωa ⊂ hnΩn ∩ P(Va), Ω′a ⊃ πVa(hnΩn).

Fix a subspace Wa ⊂ Va so that Va = Wa ⊕ x and P(Wa) does not intersect

the closure of Ω′a. This allows us to define a projection map πVb⊕x : V → Vb ⊕ x,

whose kernel is Wa. Proposition 3.3.6 implies that πVb⊕x(hnΩn) is a properly convex

open subset of P(Vb ⊕ x), and Proposition 3.3.14 implies that for all n, πVb⊕x(hnΩn)

is contained in a properly convex domain Ω′b ⊂ P(Vb ⊕ x), depending only on Ωa, Ω′a,

and Ω′′b . Then we can apply Lemma 3.3.11 to the domains Ωa,Ω
′
a,Ωb, Ω′b to finish the

proof.

3.4 Cocompactness implies expansion

The main goal of this section is to prove the implication (1) =⇒ (2) of

Theorem 3.1.9. In fact we will prove a slightly more general statement:
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Proposition 3.4.1. Let C be a convex subset of a properly convex domain Ω, and

suppose that Γ ⊆ Aut(Ω) acts cocompactly on C. Then Γ is uniformly expanding at

the faces of the ideal boundary of C.

Afterwards, we will use some of the ideas arising in the proof to show that a

version of “north-south dynamics” holds for certain sequences of elements in a convex

cocompact group (Proposition 3.4.13). We also describe the behavior of the Cartan

projection of those sequences.

3.4.1 Pseudo-loxodromic elements

Our main inspiration comes from an observation in Sullivan’s study [Sul79] of

conformal densities on Hd: if γ is any isometry of Hd, and x is any point in Hd, then

γ expands a small ball in ∂Hd at the endpoint of the geodesic ray from x to γ−1x,

with expansion constant related to d(x, γ−1x).

This observation relies on the fact that, given distinct points x, y ∈ Hd, there

is a loxodromic isometry taking x to y whose axis is the geodesic joining x and y.

The exact analogue of this fact for properly convex domains does not hold in general,

since there is no reason to expect even the full automorphism group of a properly

convex domain to act transitively on the domain. However, instead of looking for

actual automorphisms of the domain, we can instead look for elements of PGL(d,R)

that don’t perturb the domain “too much.” We make this precise below.

Definition 3.4.2. Let Ω ⊂ RPd−1 be a properly convex domain, and let K be a

compact subset of C(Rd) containing Ω. An element g ∈ PGL(d,R) is a K-pseudo-

automorphism of Ω if gΩ ∈ K.
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Definition 3.4.3. Let Ω ⊂ RPd−1 be a properly convex domain. For a compact

subset K ⊂ C(Rd) containing Ω, we say that a K-pseudo-automorphism g ∈ PGL(d,R)

is K-pseudo-loxodromic if there is a g-invariant direct sum decomposition

Rd = V− ⊕ V0 ⊕ V+,

where V−, V+ are positive eigenspaces of g and supporting subspaces of Ω, and

P(V− ⊕ V+) intersects every Ω′ ∈ K.

The subspaces V− and V+ are referred to as endpoints of g. The projective

subspace P(V− ⊕ V+) is the axis of the pseudo-loxodromic, and V0 is the neutral

subspace.

A pseudo-loxodromic element preserves its axis P(V− ⊕ V+). When V− and V+

are points in RPd−1, this axis is an actual projective line.

We do not assume that an individual pseudo-loxodromic element attracts

points on its axis towards either of its endpoints, since we are only interested in the

dynamics of sequences of pseudo-loxodromics.

If gn is a sequence of K-pseudo-loxodromic elements with common endpoints,

then, up to a subsequence, the domains gnΩ converge to a domain Ω∞ in K which

intersects the common axis. In fact, we observe:

Proposition 3.4.4. Let gn be a sequence of K-pseudo-loxodromic elements with

common endpoints V+, V−. If gnΩ converges to Ω∞, then Ω∞ contains the relative

interior of the convex hull (in Ω) of V+ ∩ ∂Ω and V− ∩ ∂Ω.
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Proof. This convex hull is invariant under gn, so it is contained in Ω∞, and since Ω∞

intersects the axis P(V+ ⊕ V−) the conclusion follows.

Definition 3.4.5. Let Ω be a properly convex domain, and let gn be a sequence of

K-pseudo-loxodromic elements with common endpoints V+, V− and common neutral

subspace V0. We say that V− is a repelling endpoint of the sequence gn if there is a

sequence

xn ∈ Ω ∩ P(V− ⊕ V+)

such that gnxn = x for some x ∈ Ω, and xn → x− ∈ ∂Ω with

V− = suppFΩ(x−).

3.4.2 Existence of repelling pseudo-loxodromics

We will use pseudo-loxodromics to state an analogue (Lemma 3.4.7) of the

fact that any two points in Hd can be joined by the axis of a loxodromic isometry.

First, we need a lemma:

Lemma 3.4.6. Let x+, x− be a pair of points in the boundary of a properly convex do-

main Ω ⊂ P(V ) such that (x−, x+) ⊆ Ω. Let P(H+),P(H−) be supporting hyperplanes

of Ω at x+, x−. Let V− = supp(FΩ(x−)), and let W = V− ⊕ x+.

There exists a subspace H0 ⊂ H+ ∩H− such that

1. H− = H0 ⊕ V−, and

2. πW (Ω) is properly convex, where πW : V → W is the projection with kernel H0.
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Note that while P(H0) does not intersect Ω, the intersection P(H0) ∩ Ω may

be nonempty.

Proof. First suppose that V− = x−. In this case, we take H0 = H+ ∩H−, and πW (Ω)

is exactly the line segment (x−, x+).

So now suppose that V− is not a single point, and consider the properly convex

set Ω− = ∂Ω∩H−. H+∩H− is a codimension-one projective subspace of H−. Because

(x−, x+) ⊆ Ω, H+ ∩H− does not contain V−.

H+∩H− intersects Ω− in a (possibly empty) properly convex set. So, since the

projective subspace V− has dimension k ≥ 1, there exists a codimension-k projective

subspace of P(H+ ∩H−) which does not intersect Ω− or V−. Let P(H0) be such a

subspace; since P(H0) is disjoint from Ω, we are done by Proposition 3.3.6.

The following lemma is the main technical result in this section. It implies in

particular that every open face in the boundary of a properly convex domain is the

repelling endpoint of some sequence of K-pseudo-loxodromics.

Lemma 3.4.7. Let Ω be a properly convex domain, let x− ∈ ∂Ω, and let L be

a projective line intersecting Ω, joining x− with some x+ ∈ ∂Ω, x+ 6= x−. Let

F− = FΩ(x−).

For any sequence {xn} ⊂ L, with xn → x−, up to a subsequence, there exists a

compact set K ⊂ C(Rd), a subspace H0 ⊂ Rd, and a sequence of K-pseudo-loxodromic

elements gn in PGL(d,R), with endpoints supp(F−) and x+ and neutral subspace H0,

such that gnxn = x for a fixed x ∈ L ∩ Ω.
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Proof. Our strategy is to start with the case that F− is codimension-one (so the

neutral subspace H0 is trivial), and then use Proposition 3.3.4 to extend to the general

case.

F− is codimension-one

Let V− be the support of F−. For each n, we let sn ∈ GL(d,R) be the diagonal

map

λnidx+ ⊕ idV− =

[
λn

idV−

]
acting on x+ ⊕ V−, where λn →∞ is chosen so that snxn = x for a fixed x ∈ L ∩ Ω.

x+

V−

xnx

Ω

snΩ

F−
x−

Figure 3.6: Since sn attracts towards x+ and repels from V−, snΩ converges to the
convex hull of F− and x+.

The sequence of domains sn · Ωn converges to a cone over F−, with a cone

point at x+ (see Figure 3.6). Since F− is a codimension-one face of Ω, this cone is a

properly convex domain containing x in its interior.
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xn
x+ V−

H0

W

H−H+

sn hn

x

Figure 3.7: To build the sequence of pseudo-loxodromic elements gn, we push xn away
from x− with sn ∈ GL(W ), ensuring that snΩ ∩ P(W ) and πW (snΩ) converge, and
then use a “correcting” element hn ∈ GL(H0) to keep the domain from degenerating.
Both sn and hn preserve the decomposition Rd = x+ ⊕H0 ⊕ V−.

The general case

Let V− be the support of F−, and let P(H+), P(H−) be supporting hyperplanes

of Ω at x+, F−. Let W = V− ⊕ x+. We choose a projective subspace P(H0) ⊂

P(H+) ∩ P(H−) as in Lemma 3.4.6 so that H− = V− ⊕ H0 and πW (Ω) is properly

convex, where πW : V → W is the projection with kernel H0.

The domains

Ω ∩ P(W ), πW (Ω)

are both properly convex open subsets of P(W ) containing F− as a codimension-one

face in their boundaries. Using the argument from the previous case, we can find

group elements sn ∈ GL(W ) so that

sn · (Ω ∩ P (W )), sn · πW (Ω)

both converge to properly convex domains in P(W ) containing a fixed x = snxn in Ω.

We extend sn linearly to the map sn⊕ idH0 on W ⊕H0. Consider the sequence
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of properly convex domains

Ωn = (sn ⊕ idH0) · Ω.

Since sn⊕idH0 commutes with projection to W and intersection with W , the sequences

of pointed properly convex domains

(Ωn ∩ P(W ), x), (πW (Ωn), x)

both converge in C∗(W ). In particular, both of these sequences are contained in a

fixed compact KW ⊂ C∗(W ), and the pointed domains (Ωn, x) all lie in the subset

C∗(W,H0,KW )

from Definition 3.3.3.

Then, Proposition 3.3.4 (applied to the decomposition Rd = W ⊕H0) tells

us that there is a sequence of group elements hn ∈ GL(H0) such that the pointed

properly convex domains

(idW ⊕ hn) · (Ωn, x)

lie in a fixed compact K in C∗(Rd).

Then, we can take our sequence of K-pseudo-loxodromic elements gn to be

the projectivizations of (idW ⊕ hn) · (sn ⊕ idH0) = (sn ⊕ hn).

Next we examine some of the dynamical behavior of pseudo-loxodromic se-

quences that have a repelling endpoint. Let V be a normed vector space. For any

g ∈ GL(V ), recall that the norm and conorm of g on V are defined by

||g|| = sup
v∈V−{0}

||gv||
||v||

, m(g) = inf
v∈V−{0}

||gv||
||v||

.
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Proposition 3.4.8. Let gn be a sequence of K-pseudo-loxodromic elements with

common endpoints V+, V− and common neutral subspace V0, and suppose that V− is

a repelling endpoint (Definition 3.4.5) of the sequence gn. Let E+ = V+ ⊕ V0. The

sequence gn satisfies

m(gn|E+)

||gn|V−||
→ ∞. (3.7)

The ratio (3.7) can be computed by fixing a norm on Rd, and then choosing a

lift of each gn in GL(d,R). The value of (3.7) does not depend on the choice of lift,

and the asymptotic behavior does not depend on the choice of norm.

Proof. We can fix lifts g̃n of gn in GL(d,R) which restrict to the identity on V−. Our

goal is then to show that

m(g̃n|E+)→∞,

or equivalently, that

||g̃−1
n |E+|| → 0.

Suppose otherwise, so that for a sequence vn ∈ E+ with ||vn|| = 1, there is

some ε > 0 so that

||g̃−1
n · vn|| ≥ ε.

Let xn ∈ Ω ∩ P(V+ ⊕ V−) be a sequence so that gnxn = x for some x ∈ Ω and

xn → x−, where V− is the support of FΩ(x−). We can choose a subsequence so that

gnΩ converges to some properly convex domain Ω∞. Ω∞ contains x by Proposition

3.4.4, so let U be an open neighborhood of x whose closure is contained in Ω∞. We
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can find a lift x̃ of x in Rd so that the projectivizations of each vector

x̃± vn

lie in U , and thus in Ωn for all sufficiently large n. Since g̃n restricts to the identity

on V−, the sequence g̃−1
n x̃ converges to a lift x̃− of x−.

Then, up to a subsequence, the sequence of pairs of vectors

g̃−1
n · (x̃± vn)

lies in a lift Ω̃ of Ω, and converges in Rd to x̃−±v∞, where v∞ ∈ E+ has norm at least

ε. This pair of points spans a nontrivial projective line segment in Ω whose interior

intersects the face FΩ(x−) only at x−, contradicting the definition of FΩ(x−).

Proposition 3.4.8 implies in particular that a sequence of K-pseudo-loxodromic

elements with repelling subspace V− attracts generic points in RPd−1 to the projective

subspace P(E+), and repels points away from P(V−). It also implies that the sequence

gn has expansion behavior on the Grassmannian in a neighborhood of V−:

Corollary 3.4.9. Let gn be a sequence of K-pseudo-loxodromic elements with common

endpoints V+, V− and common neutral subspace V0, and suppose that V− is a repelling

endpoint of the sequence, lying in Gr(k, d).

Then for any Riemannian metric dk on Gr(k, d), and any E > 1, there

exists N ∈ N such that if n ≥ N , gn is E-expanding (with respect to dk) on some

neighborhood of V− in Gr(k, d).
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Proof. This follows from Proposition 3.4.8 via a computation in an appropriate

metric on the Grassmannian, which is explicitly carried out in e.g. [BPS19, Lemma

A.10].

3.4.3 Expansion

Before we proceed, we fix some additional terminology:

Definition 3.4.10. Given a properly convex domain Ω and a point x ∈ ∂Ω, we say

that a sequence xn ∈ Ω limits to x along a line L if xn → x in RPd−1, L is an open

projective line segment (x, x′) ⊆ Ω, and there exists a constant R > 0 such that

dΩ(xn, L) < R

for all n.

If the specific line L is implied (or not relevant), we will just say that xn limits

to x along a line.

If F is some open face of ∂Ω, we say that xn limits to F along a line L if every

subsequence of xn has a subsequence limiting to some x ∈ F along L.

Remark 3.4.11. If Γ is a group acting on a properly convex domain Ω, and there

are γn ∈ Γ so that γnx0 limits to x along a line for some x0 ∈ Ω, the point x is often

referred to as a conical limit point for the action of Γ on ∂Ω. We will avoid this

terminology, since we will need to discuss conical limit points later in a way that is

not exactly equivalent.

Proposition 3.4.12. Let Ω be a properly convex domain and let Γ ⊆ Aut(Ω). Let

F− be an open face of ∂Ω, and let xn be a sequence in Ω limiting to F− along a line.
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If there exists γn ∈ Γ so that γnxn is relatively compact in Ω, then:

(a) There exists a compact set K ⊆ PGL(d,R) such that γn = kngn, where kn ∈ K

and gn ∈ PGL(d,R) is a sequence of K-pseudo-loxodromics with repelling

endpoint supp(F−).

(b) For any Riemannian metric dk on Gr(k, d), and any E > 1, for all sufficiently

large n there is a neighborhood U of supp(F−) in Gr(k, d) such that γn is

E-expanding (with respect to dk) on U .

Proof. Fix a compact C ⊂ Ω so that γnxn ∈ C for all n. We can move each xn by a

bounded Hilbert distance so that it lies on a fixed line segment L with an endpoint

on F−. So, by enlarging C if necessary, we can assume that the points xn actually lie

on the line L.

Let K′ ⊂ C∗(Rd) be the compact set {Ω} × C. By assumption we know that

for all n, we have

(Ω, γnxn) ∈ K′.

Using Lemma 3.4.7, we can find a compact subset K ⊂ C(Rd) and a sequence

gn of K-pseudo-loxodromic elements with repelling endpoint supp(F−) taking xn to

x, for some x ∈ Ω ∩ L. The gn can be chosen so that the axis contains L, implying

that the set

K × {x} ⊂ C∗(Rd)

is compact.
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Each group element kn = γng
−1
n takes a pointed domain in the compact set

K × {x} to a pointed domain in the compact set K′. But then, because PGL(d,R)

acts properly on C∗(Rd), the kn lie in a fixed compact subset of PGL(d,R). This

proves part (a).

Let V− be the support of F−, and let k = dimV−. The elements kn can be

viewed as lying in a compact subset of the diffeomorphisms of the compact manifold

Gr(k, d). So, for any fixed Riemannian metric d on Gr(k, d), there is a constant

M > 0 so that for all n and all W1,W2 ∈ Gr(k, d),

dk(knW1, knW2) > M · dk(W1,W2).

Fix E > 1. Since gn has repelling endpoint V−, Corollary 3.4.9 implies that

for some sufficiently large n, there is a neighborhood U of V− in Gr(k, d) so that gn

satisfies

dk(gnW1, gnW2) >
E

M
· dk(W1,W2)

for all W1,W2 ∈ U . But then we have

dk(γnW1, γnW2) > E · dk(W1,W2)

giving us the required expansion.

Proof of Proposition 3.4.1. Let Γ act cocompactly on some convex C ⊂ Ω. Fix a

Riemannian metric on Gr(k, d) and a constant E > 1.

For every face F of ∂iC, there is a sequence xn in C limiting to F along a line.

Then part (b) of Proposition 3.4.12 implies that if γnxn is relatively compact in C for

γn ∈ Γ, γn is E-expanding on a neighborhood of supp(F ) for sufficiently large n.
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Proof of (1) =⇒ (2) in Theorem 3.1.9. We apply Proposition 3.4.1 to HullΩ(Γ),

whose ideal boundary is the full orbital limit set ΛΩ(Γ). Lemma 3.1.8 implies

that ΛΩ(Γ) contains all of its faces and is closed and boundary-convex, so it is the

Γ-invariant subset required by the theorem.

3.4.4 North-south dynamics

In Section 4.3, it will be useful to apply a consequence of part (a) of Proposition

3.4.12. The following can be thought of as a kind of weak version of north-south

dynamics on the limit set of a group acting on a convex projective domain.

Proposition 3.4.13. Let Ω be a properly convex domain, let Γ ⊂ Aut(Ω), and let

Λ be a closed Γ-invariant subset of ∂Ω. Let F be an open face of Λ, and let xn be a

sequence limiting to F along a line.

For any sequence γn such that γnxn is relatively compact in Ω, there exist

subspaces E+ and E−, with E+ ⊕ E− = Rd, so that:

1. P(E+), P(E−) are supporting subspaces of Ω, intersecting Λ,

2. for every compact K ⊂ ∂Ω− F , a subsequence of γnK converges uniformly to

a subset of P(E+), and a subsequence of γnF converges to a subset of P(E−),

3. for every x ∈ F and every z ∈ ∂Ω− F , the sequence of line segments

γn · [x, z]

subconverges to a line segment intersecting Ω.
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Proof. Using Proposition 3.4.12, we decompose each γn as kngn, for a sequence gn of

K-pseudo-loxodromic elements with repelling endpoint V− = supp(F ), and kn lying

in a fixed compact in PGL(d,R). Taking a subsequence, we may assume that kn

converges to k ∈ PGL(d,R), so that

γnV− = kngnV− = knV− → kV−.

Let E− = kV−. We let V+ be the other endpoint of the sequence gn, let V0 be

the neutral subspace, and let E+ := k(V+ ⊕ V0). Since Λ is closed and Γ-invariant,

both P(E+) and P(E−) intersect Λ.

Fix a compact subset K in ∂Ω − F . Proposition 3.4.8 implies that gnK

converges uniformly to a subset of P(V+ ⊕ V0). So, kngnK converges uniformly to a

subset of P(E+).

This shows parts (1) and (2). To see part (3), let L be the line segment [x, z].

By Proposition 2.1.11, we can find R > 0 and x′n ∈ L such that

dΩ(xn, x
′
n) ≤ R.

We know that γnxn lies in a fixed compact subset C of Ω. So, γnx
′
n lies in a closed

and bounded Hilbert neighborhood of C. This is also a compact subset of Ω, so up

to a subsequence, γnx
′
n converges to some x′0 ∈ Ω.

The limit of the line segment [γnx−, γnx
′
n] is nontrivial, intersects Ω, and is a

subsegment of the limit of [γnx−, γnz], so this implies the desired result.
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3.4.5 Cartan projections of sequences in Γ

The decomposition given by part (a) of Proposition 3.4.12 also allows us to

describe the behavior of the Cartan projection of certain sequences in a group Γ which

acts convex cocompactly on a properly convex domain.

First we briefly review the definition of the Cartan projection. Recall that

GL(d,R) has a Cartan decomposition

GL(d,R) = K exp(a+)K,

where K = O(d) and a+ ⊂ gl(d,R) is the set of diagonal matrices with nonincreasing

entries. That is, each g ∈ GL(d,R) can be uniquely written

g = k · exp(diag(µ1(g), . . . , µd(g))) · k′,

for k, k′ ∈ K and µ1(g) ≥ µ2(g) ≥ . . . ≥ µd(g).

µi(g) is the logarithm of the ith singular value of g. The map GL(d,R)→ Rd

given by

g 7→ µ(g) = (µ1(g), . . . , µd(g))

is the Cartan projection.

While the map µ is not defined on PGL(d,R), the gaps

µi(g)− µi+k(g)

still make sense for any g ∈ PGL(d,R). A sequence gn ∈ PGL(d,R) is divergent (i.e.,

leaves every compact set in PGL(d,R)) if and only if the gaps

µ1(gn)− µd(gn)
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tend to infinity.

Proposition 3.4.14. Let Ω be a properly convex domain, let Γ act convex cocompactly

on Ω, and let F be an open face of ΛΩ(Γ), dim(F ) = k − 1.

Fix a basepoint x0 ∈ Ω. For any sequence of group elements γn ∈ Aut(Ω) such

that γnx0 limits to F along a line, the Cartan projections µi satisfy:

1.

µk(γn)− µk+1(γn)→∞.

2. For a constant D independent of n, we have

µ1(γn)− µk(γn) < D.

Proof. Using part (a) of Proposition 3.4.12, we can write

γ−1
n = kngn,

where gn is a sequence of K-pseudo-loxodromics with repelling endpoint V− = supp(F ).

The singular values of the sequence γn depend on a choice of inner product on

Rd, but changing the inner product only changes the singular values by a bounded

amount. So, we may assume that the endpoints V+, V− and neutral subspace V0 of

the sequence gn are orthogonal to each other.

Proposition 3.4.8 then implies that the smallest k singular values of gn are

identically the eigenvalue of gn on V−, and that gn has an unbounded singular value

gap at index d− k.
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The Cartan projection µ : GL(d,R)→ Rd satisfies the inequality

||µ(gh)− µ(g)|| ≤ ||µ(h)||

for all g, h ∈ GL(d,R). So, since the group elements k−1
n lie in a fixed compact subset

of PGL(d,R), and γn = g−1
n k−1

n , we can find lifts γ̃n, g̃n in GL(d,R) so that the

differences

||µ(γ̃n)− µ(g̃−1
n )||

are bounded. So γn has an unbounded singular value gap at index k and bounded

singular value gaps at indices 1, . . . , k − 1.
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Chapter 4

Projective convex cocompactness and relative

hyperbolicity

4.1 Results in this chapter

In this chapter, we will use the dynamical properties of projective convex

cocompactness studied in Chapter 3 to prove the projectively convex cocompact

representations are characterized by the existence of a certain equivariant Bowditch

boundary embedding into a quotient of the boundary of some projective domain. Ma-

terial from this chapter previously appeared as part of the arXiv preprint “Dynamical

properties of convex cocompact groups in projective space” [Wei20].

Definition 4.1.1. Let H = {Hi} be a collection of subgroups of PGL(d,R), each

acting convex cocompactly on a fixed properly convex domain Ω with pairwise disjoint

full orbital limit sets ΛΩ(Hi).

We denote by [∂Ω]H the space obtained from ∂Ω by collapsing all of the full

orbital sets ΛΩ(Hi) to points. Similarly, for x ∈ ∂Ω, or a subset Λ ⊆ ∂Ω, we use [x]H

and [Λ]H to denote the images of x and Λ in [∂Ω]H.

WhenH is a conjugacy-invariant collection of subgroups of a group Γ ⊆ Aut(Ω),

the action of Γ on ∂Ω descends to an action on [∂Ω]H. More generally, if Λ ⊆ ∂Ω is

Γ-invarant, Γ also acts on [Λ]H.
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We show the following:

Theorem 4.1.2. Let Γ ⊆ PGL(d,R) act on a properly convex domain Ω, and suppose

that Γ is hyperbolic relative to a family of subgroups H = {Hi}, such that the Hi each

act convex cocompactly on Ω with pairwise disjoint full orbital limit sets.

If there is a boundary-convex Γ-invariant subset Λ ⊆ ∂Ω containing all of its

faces, and a Γ-equivariant embedding ∂(Γ,H)→ [∂Ω]H with image [Λ]H, then Γ acts

convex cocompactly on Ω and Λ is the full orbital limit set ΛΩ(Γ).

Remark 4.1.3. In Theorem 4.1.2, we do not need to assume that Γ is discrete

in PGL(d,R): this will also follow from the existence of the equivariant boundary

embedding.

There are two special cases of Theorem 4.1.2 worth considering, which we

state separately as corollaries. The first is when the subset Λ is the entire boundary

∂Ω.

Corollary 4.1.4. Let Γ,Ω, and H be as in Theorem 4.1.2, and suppose that ∂(Γ,H)

is equivariantly homeomorphic to [∂Ω]H. Then Γ divides Ω.

The second corollary is when the set of peripheral subgroups is empty, i.e. Γ

is hyperbolic.

Corollary 4.1.5. Let Γ be a word-hyperbolic group in PGL(d,R) acting on a properly

convex domain Ω, and suppose that the Gromov boundary of Γ embeds equivariantly

into ∂Ω with image Λ.
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If Λ is boundary-convex and contains all of its faces, then Γ acts convex

cocompactly on Ω and Λ = ΛΩ(Γ).

When a hyperbolic group acts convex cocompactly on a domain Ω, its full

orbital limit set contains no segments. So in this case, Λ contains all of its faces

whenever no point of Λ lies in the interior of any segment in ∂Ω.

We also can phrase this corollary in terms of Anosov boundary maps. Recall

that Theorem 3.1.3 (proved as [DGK17, Theorem 1.15]; see also [Zim21, Theorem

1.10]) states that if a word-hyperbolic group Γ acts convex cocompactly on some

domain Ω, then the inclusion map Γ ↪→ PGL(d,R) is a P1-Anosov representation

preserving Ω, and in this case the full orbital limit set is the image of the Anosov

boundary map ∂Γ→ RPd−1. Thus Corollary 4.1.5 implies:

Corollary 4.1.6. Let Γ be a word-hyperbolic subgroup of PGL(d,R) preserving a

properly convex domain Ω, and suppose that there exists a Γ-equivariant embedding

ξ : ∂Γ→ ∂Ω whose image is boundary-convex and contains all of its faces. Then the

inclusion Γ ↪→ PGL(d,R) is a P1-Anosov representation with RPd−1 boundary map ξ.

Note that it is not true in general that the RPd−1-boundary map ξ of a P1-

Anosov representation always embeds into the boundary of some properly convex

domain Ω ⊂ RPd−1. Moreover even if ξ does embed into ∂Ω for some Ω, it does not

necessarily follow that the image of the embedding is boundary-convex. However, as

mentioned in Remark 3.1.4, if ρ : Γ→ G is any Anosov representation, there is always

a representation τ : G→ PGL(n,R) for some large n so that the composition τ ◦ ρ is
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P1-Anosov, and the P1 limit map embeds ∂Γ into the boundary of some projective

domain Ω ⊆ RPn−1 as a boundary-convex closed subset containing its faces.

During the proof of Theorem 4.1.2, we will see the following (see Proposition

4.2.1):

Proposition 4.1.7. In the setting of Theorem 4.1.2, every nontrivial segment in the

set Λ is contained in the full orbital limit set of some Hi ∈ H.

This leads us to a converse to Theorem 4.1.2.

Theorem 4.1.8. Let Γ be a group acting convex cocompactly on a properly convex

domain Ω, and suppose that Γ has a conjugacy-invariant collection of subgroups

H = {Hi}, such that the groups in H lie in finitely many conjugacy classes and each

Hi acts convex cocompactly on Ω.

Then Γ is hyperbolic relative to H if and only if

(i) the full orbital limit sets ΛΩ(Hi), ΛΩ(Hj) are disjoint for distinct Hi, Hj ∈ H,

(ii) every nontrivial segment in ΛΩ(Γ) is contained in ΛΩ(Hi) for some Hi ∈ H,

and

(iii) each Hi ∈ H is its own normalizer in Γ.

Moreover, in this case, ∂(Γ,H) equivariantly embeds into [∂Ω]H with image [ΛΩ(Γ)]H.

Remark 4.1.9. If conditions (i) and (ii) hold for a conjugacy-closed collection

of subgroups H of Γ, then they also hold for the collection of normalizers, since

g · ΛΩ(Hi) = ΛΩ(gHig
−1) for any Hi ∈ H.
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Moreover, condition (iii) of Theorem 4.1.8 is always true for the peripheral

subgroups of a relatively hyperbolic group, because then each Hi ∈ H can be exactly

realized as the stabilizer of its unique fixed point in the Bowditch boundary ∂(Γ,H)

(see Theorem 2.2.14).

Work of Islam-Zimmer [IZ19a] [IZ19b] implies that if Γ is hyperbolic relative

to H, all of the groups in H are virtually abelian, and ρ is a projectively convex

cocompact representation, then in fact ρ automatically restricts to a projectively

convex cocompact representation on each group H ∈ H. In fact, since our results

first appeared, Islam-Zimmer have also shown that this is true even without the

assumption that each H ∈ H is virtually abelian. This implies the following:

Corollary 4.1.10 (See [IZ22], Theorem 1.6). Let Ω be a properly convex domain,

and let (Γ,H) be a relatively hyperbolic pair. If Γ acts convex cocompactly on Ω, then

there is an equivariant embedding from ∂(Γ,H) to [∂Ω]H whose image is [ΛΩ(Γ)]H.

We remark that Islam-Zimmer have also subsequently shown that versions of

Theorem 4.1.8 and Corollary 4.1.10 hold in the more general context of naive convex

cocompact groups.

4.1.1 Outline of the chapter

In Section 4.2, we use Yaman’s dynamical characterization of relative hyper-

bolicity (Theorem 2.2.14), together with some of the results of the previous chapter,

to prove Theorem 4.1.2.
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In Section 4.3, we extend a result of Islam-Zimmer [IZ19b], showing that when

Γ is a group acting on a properly convex domain Ω, and Γ is hyperbolic relative to a

collection of subgroups acting convex cocompactly on Ω, conditions (i) and (ii) of

Theorem 4.1.8 hold. Then, we prove the rest of Theorem 4.1.8, again using Yaman’s

dynamical definition of relative hyperbolicity.

4.2 Bowditch boundary embedding implies convex cocom-
pactness

Our goal in this section is to prove Theorem 4.1.2. Our first step is the

following:

Proposition 4.2.1. Let Ω be a properly convex domain, and let Γ ⊂ Aut(Ω) be hy-

perbolic relative to a collection of subgroups H = {Hi} each acting convex cocompactly

on Ω with disjoint full orbital limit sets ΛΩ(Hi).

Suppose Λ is a Γ-invariant subset of ∂Ω containing all of its faces and con-

taining ΛΩ(Hi) for every Hi. If [Λ]H is the image of a Γ-equivariant embedding

φ : ∂(Γ,H)→ [∂Ω]H, then the set

Λc = Λ−
⋃
Hi∈H

ΛΩ(Hi)

contains only extreme points in ∂Ω.

Proof. The equivariant homeomorphism φ : ∂(Γ,H) → [Λ]H means that Γ acts on

[Λ]H as a convergence group as in Theorem 2.2.14. In particular, we can classify the

points of [Λ]H as either bounded parabolic points or conical limit points, where the

parabolic points are exactly the points corresponding to ΛΩ(Hi).
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So, if x is a point in Λc, it represents a conical limit point in [Λ]H. Suppose for

a contradiction that x is not an extreme point, i.e. x lies in the interior of a nontrivial

segment [a, b] ⊂ ∂Ω. Since Λ contains all of its faces, (a, b) ⊂ Λ, and we can find

w, z ∈ Λ such that w, x, z are pairwise distinct points lying on (a, b) in that order.

Lemma 3.1.8 tells us that each ΛΩ(Hi) contains its faces, so we know that w

and z cannot lie in any ΛΩ(Hi). So w, x, and z represent three distinct points in

[Λ]H.

This means that there exist group elements γn ∈ Γ so that γn[x]H → a, and

γn[z]H, γn[w]H both converge to some b ∈ [Λ]H, with a, b distinct.

This convergence is only in [Λ]H. However, since the Bowditch boundary

∂(Γ,H) is always compact, [Λ]H is as well, and therefore its preimage Λ in the

compact set ∂Ω is compact too. So, up to a subsequence, we can assume that

γnx→ u, and γnz → v1, γnw → v2, with

[u]H = a, [v1]H = [v2]H = b.

The line segment [w, z] must converge to the line segment [v1, v2], which must

contain u. If v1 = v2, this is clearly impossible without having u = v1 = v2. If v1 6= v2,

then v1, v2 both lie in ΛΩ(Hi) for some Hi. Since each ΛΩ(Hi) is boundary-convex

(Lemma 3.1.8 again), u must lie in ΛΩ(Hi) as well, a contradiction.

The above is important partly because of the following proposition, which we

will use repeatedly in the proof of both Theorem 4.1.2 and its converse.
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Proposition 4.2.2. Let Ω be a properly convex domain, and let Λ be a boundary-

convex subset of ∂Ω containing all of its faces. Let H be a collection of subgroups of

Aut(Ω) acting convex cocompactly with disjoint full orbital limit sets in Ω.

If every point in Λc = Λ −
⋃
Hi∈H ΛΩ(Hi) is an extreme point, then for any

x, y ∈ Λ with [x]H 6= [y]H, the segment (x, y) lies in Ω.

Proof. Let x, y be distinct points in Λ. Boundary-convexity means that if the segment

(x, y) is in ∂Ω, it is also in Λ. Since we know Λc only contains extreme points, some

u ∈ (x, y) lies in ΛΩ(Hi) for some Hi ∈ H. Since Hi acts convex cocompactly on Ω,

Lemma 3.1.8 implies that [x, y] lies in ΛΩ(Hi), which means that [x]H = [y]H.

The following proposition explains why we do not need to assume that Γ is

discrete in the statement of Theorem 4.1.2.

Proposition 4.2.3. If Ω, Γ, Λ are as in Theorem 4.1.2, and Γ is non-elementary,

then Γ is discrete.

Proof. Γ acts as a convergence group on [Λ]H, so it acts properly discontinuously on

the space of distinct triples in [Λ]H, which we denote T ([Λ]H).

The map

Γ× T ([Λ]H)→ T ([Λ]H)

given by the Γ-action is continuous, so Γ is discrete.

We are now able to prove Theorem 4.1.2.
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Proof of Theorem 4.1.2. Let Ω, Γ, Λ, H be as in the hypotheses for Theorem 4.1.2.

We can assume that H 6= {Γ} and that Γ is infinite (if not then the theorem is trivial).

This means that ∂(Γ,H) contains at least two points, and Proposition 4.2.2 implies

that HullΩ(Γ) is nonempty.

If Γ is virtually infinite cyclic, the hypotheses of the theorem imply that the

generator γ of a finite-index cyclic subgroup fixes a pair of points {x, y} in ∂Ω with

(x, y) ⊂ Ω; γ acts as a translation in the Hilbert metric along the axis (x, y). This

action is properly discontinuous (so Γ is discrete) and cocompact. Further, since x

and y are extreme points, γnz converges to either x or y as n→ ±∞ for all z ∈ Ω,

so ΛΩ(Γ) = {x, y}.

So we may assume Γ is non-elementary. Owing to Theorem 3.1.9, we only

need to show that Γ is expanding at the faces of Λ; in fact we will show directly that

the expansion is uniform.

Since each Hi acts convex cocompactly on Ω, Theorem 3.1.9 means that Γ is

expanding in a neighborhood of the support of any face of ΛΩ(Hi) for some Hi. In

fact, we can assume that the expansion constants are uniform over all Hi ∈ H (see

Remark 3.2.2), so we only need to consider the faces in

Λc = Λ−
⋃
Hi∈H

ΛΩ(Hi).

Proposition 4.2.1 implies that each of these faces is actually just a point in ∂Ω, whose

support is equal to itself.

Let x be a point in Λc. We will build a sequence of points xn in Ω limiting to

x along a line (Definition 3.4.10), and show that the orbits Γ · xn intersect a fixed
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compact set.

Since Γ is non-elementary, its Bowditch boundary contains at least three

distinct conical limit points, so we can find y, z ∈ Λc so that [x]H, [y]H, [z]H are

pairwise distinct.

Fix supporting hyperplanes W,V of Ω at x and z, respectively. Proposition

4.2.2 implies that W ∩ V does not contain x, y, or z, and that the line segment (x, z)

is in Ω. The projective hyperplane spanned by W ∩ V and y intersects (x, z) at a

point w ∈ Ω.

Since [x]H is a conical limit point, we can find a sequence γn ∈ Γ so that

γn[x]H → a

and

γn[z]H, γn[y]H → b

for a, b distinct. As in the proof of Proposition 4.2.1, we can pick subsequences so

that γnx, γny, and γnz all converge to points x∞, y∞, z∞ in Λ, and γnW and γnV

converge to supporting hyperplanes W∞, V∞ of Ω at x∞ and z∞.

Since x∞ and z∞ represent distinct points of [Λ]H, Proposition 4.2.2 implies

that W∞∩V∞ must not contain x∞ or z∞; for the same reason y∞ is also not contained

in W∞ ∩ V∞.

While [z∞]H = [y∞]H, it is not necessarily true that y∞ = z∞. However, we

do know that the segment (y∞, x∞) cannot lie in ∂Ω. So, the sequence

γn · (H ∩ (x, z)) = γnw
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cannot approach x∞.

Propositon 4.2.3 means that we know Γ is discrete, and so its action on Ω is

properly discontinuous. Thus γnw must accumulate to an endpoint of [x∞, z∞]—and

therefore to z∞.

γnx

γnzγny

γnw

x∞

z∞
v0

γnW
γnV

γnH

Figure 4.1: The sequence γnw limits to z∞, so the sequence γ−1
n v0 limits to x along a

line.

Let ` be the line segment [x, z]. This segment has a well-defined total order,

where a < b if a is closer to x than b. If `n = [γnx, γnz], then γn is an order-preserving

isometry from ` to `n, where the metric is the restricted Hilbert metric dΩ.

Fix a basepoint v0 on the line segment `∞ = [x∞, z∞], and choose vn ∈ `n

converging to v0. Since γnw converges to z∞, we see that vn < γnw and

dΩ(vn, γnw)→∞.

Thus we must have γ−1
n vn → x.

But now we can apply part (b) of Proposition 3.4.12 to the sequence γ−1
n vn ⊂ `

to see that γn is eventually expanding in a neighborhood of x in RPd−1.
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4.3 Convex cocompact groups which are relatively hyper-
bolic

The goal of this section is to prove Theorem 4.1.8.

4.3.1 Non-peripheral segments in the boundary

We start by showing that conditions (i) and (ii) of Theorem 4.1.8 are satisfied

whenever Γ is a convex cocompact group hyperbolic relative to a collection of convex

cocompact subgroups. That is, we will show:

Proposition 4.3.1. Let Γ be a group hyperbolic relative to a collection H of subgroups,

and suppose that Γ and each Hi ∈ H act on a properly convex domain Ω convex

cocompactly.

Then:

(i) The full orbital limit sets ΛΩ(Hi) are disjoint for distinct Hi, Hj ∈ H.

(ii) Every nontrivial segment in ΛΩ(Γ) is contained in the full orbital limit set of

some peripheral subgroup Hi.

We will closely follow the proof of a similar result of Islam and Zimmer [IZ19b,

Theorem 1.8 (7) ]. The main idea is that a nontrivial segment ` in the full orbital

limit set ΛΩ(Γ) of a convex cocompact group Γ is accumulated to by segments in

the boundary of some maximal properly embedded simplices in HullΩ(Γ). When Γ is

hyperbolic relative to a collection A of virtually abelian subgroups of rank ≥ 2, Islam

and Zimmer show that A is in one-to-one correspondence with the set of maximal
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properly embedded simplices in HullΩ(Γ), and then use a coset separation property

due to Druţu and Sapir [DS05] to see that these maximal properly embedded simplices

are isolated. This ends up implying that ` lies in the boundary of one of the simplices

that accumulate to it.

When we do not assume the peripheral subgroups are virtually abelian, we

need to modify this approach slightly. First, we need to assume that the peripheral

subgroups act convex cocompactly on Ω ([IZ19b] implies that this assumption is

always satisfied in the virtually abelian case). Second, in our situation, the maximal

properly embedded simplices in HullΩ(Γ) do not need to be isolated. However, it is

true that the convex cores HullΩ(Hi) of the peripheral subgroups in H are isolated.

So the desired result ends up following from the fact that every maximal properly

embedded k-simplex (k ≥ 2) in HullΩ(Γ) lies in HullΩ(Hi) for some Hi ∈ H; this is

Lemma 4.3.3 below.

4.3.1.1 Cosets and convex cores of peripheral subgroups

Let Γ be hyperbolic relative to a collection of subgroups H, and suppose that

Γ and each Hi ∈ H act convex cocompactly on a fixed properly convex domain Ω.

We fix a basepoint x ∈ Ω, and fix a finite set P of conjugacy representatives for H.

The Švarc-Milnor lemma implies that Γ is finitely generated and that, under

the word metric induced by any finite generating set, Γ is equivariantly quasi-isometric

to the convex core HullΩ(Γ) equipped with the restricted Hilbert metric dΩ. The

quasi-isometry can be taken to be the orbit map γ 7→ γ · x.

Since each Pi also acts convex cocompactly on Ω, each Pi is also finitely
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generated, and Pi is quasi-isometric to HullΩ(Pi), which isometrically embeds into

HullΩ(Γ). We may assume that the quasi-isometry constants are uniform over all

Pi ∈ P , and fix a finite generating set for Γ containing generating sets for each Pi.

Since g · HullΩ(Pi) = HullΩ(gPig
−1), if we fix a Γ-equivariant quasi-isometry

φ : HullΩ(Γ)→ Γ,

we know φ restricts to a quasi-isometry

HullΩ(gPig
−1)→ gPi,

with uniform quasi-isometry constants over all g ∈ Γ, Pi ∈ P .

The cosets gPi have a separation property : distinct cosets cannot stay “close”

to each other over sets of large diameter. The precise statement is as follows. For

any metric space X, and any A ⊆ X, recall that NX(A, r) denotes the open r-

neighborhood of A in X with respect to the metric dX , and BX(x, r) denotes the

open r-ball about x ∈ X. When X = Ω for a properly convex domain Ω, we assume

that Ω is equipped with the Hilbert metric.

Theorem 4.3.2 ([DS05, Theorem 4.1 (α1)]). Let Γ be hyperbolic relative to H, and

let P be a finite set of conjugacy representatives. For every r > 0, there exists R > 0

such that for every distinct pair of left cosets g1P1, g2P2, the diameter of the set

NΓ(g1P1, r) ∩NΓ(g2P2, r)

is at most R.
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In addition, Theorem 1.7 of [DS05] implies that if k ≥ 2, any quasi-isometrically

embedded k-flat in a relatively hyperbolic group Γ is contained in the D-neighborhood

of a coset gPi of some peripheral subgroup Pi ∈ P . This allows us to see the following:

Lemma 4.3.3. Suppose Γ acts convex cocompactly on Ω, and that Γ is hyperbolic

relative to a collection of subgroups H also acting convex cocompactly on Ω. Every

properly embedded k-simplex (k ≥ 2) in Ω with boundary in ΛΩ(Γ) is contained in

HullΩ(Hi) for some Hi ∈ H.

Proof. Each such embedded k-simplex ∆ is a quasi-isometrically embedded k-flat in

HullΩ(Γ), so φ(∆) is a quasi-isometrically embedded k-flat in Γ. [DS05], Theorem 1.7

implies that φ(∆) is contained in a uniform neighborhood of gP for some P ∈ P .

Applying a quasi-inverse of φ tells us that ∆ is in a uniform Hilbert neighbor-

hood of HullΩ(gPg−1) in Ω. So the boundary of ∆ is contained in ∂iHullΩ(gPg−1),

and ∆ itself lies in HullΩ(gPg−1).

We now quote:

Lemma 4.3.4 ([IZ19b, Lemma 15.4]). Let (u, v) be a nontrivial line segment in

ΛΩ(Γ), let m ∈ (u, v) and p ∈ HullΩ(Γ), and let V be the span of (u, v) and p.

For any r > 0, ε > 0, there exists a neighborhood U of m in P(V ) such that if

x ∈ U ∩HullΩ(Γ), then there is a properly embedded simplex Sx ⊂ HullΩ(Γ) such that

BΩ(x, r) ∩ P(V ) ⊂ NΩ(Sx, ε).

Now we can prove Proposition 4.3.1. The proof of part (ii) is nearly identical

to the proof of Lemma 15.5 in [IZ19b].

123



Proof of Proposition 4.3.1. (i). Let Hi, Hj be a pair of peripheral subgroups in H,

and suppose that ΛΩ(Hi) ∩ ΛΩ(Hj) contains a point x ∈ ∂Ω. We can find a pair

of projective-line geodesic rays in HullΩ(Hi) and HullΩ(Hj) with one endpoint at x.

Proposition 2.1.11 implies that the images of these rays have finite Hausdorff distance.

Thus, in Γ, a uniform neighborhood of the coset giPi corresponding to Hi

contains an infinite-diameter subset of the coset gjPj corresponding to Hj. So

Theorem 4.3.2 implies that Hi = Hj.

(ii). Consider any nontrivial segment [u, v] in ΛΩ(Γ), and fix m ∈ (u, v) and p ∈

HullΩ(Γ). Theorem 4.3.2 implies that for some R > 0, there exists r > 0 such that

the diameter of

NΩ(HullΩ(Hi), r) ∩NΩ(HullΩ(Hj), r)

is less than R whenever Hi and Hj are distinct.

Let V be the span of u, v, and p. Lemma 4.3.4 implies that for some

neighborhood U of m in P(V ), for every x ∈ U , there is some properly embedded

simplex Sx such that

BΩ(x,R) ∩ P(V ) ⊂ NΩ(Sx, r).

Lemma 4.3.3 means that the simplex Sx is contained in the convex hull HullΩ(Hx) of

some peripheral subgroup Hx, and part (i) implies that this peripheral subgroup is

unique.

We can shrink U so that it is convex, and claim that in this case Hx = Hy for

all x, y ∈ U ∩ HullΩ(Γ). By convexity, it suffices to show this when dΩ(x, y) ≤ R/2.
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Then

BΩ(x,R/2) ∩ P(V ) ⊂ BΩ(y,R) ∩ P(V ) ⊂ NΩ(Sy, r)

so the diameter of

NΩ(HullΩ(Hx), r) ∩NΩ(HullΩ(Hy), r)

is at least the diameter of BΩ(x,R/2) = R. Thus Hx = Hy.

Fix H = Hx for some x ∈ U ∩HullΩ(Γ). Then, if xn is a sequence in HullΩ(Γ)

approaching m, there is a sequence x′n ∈ HullΩ(H) such that

dΩ(xn, x
′
n) ≤ k,

for k independent of n. Up to a subsequence, x′n converges to some x′ ∈ ΛΩ(H).

Proposition 2.1.11 implies that

FΩ(x′) = FΩ(m) ⊇ (u, v).

ΛΩ(H) contains x′. It is also closed and contains all of its faces (Lemma 3.1.8). So

[u, v] ⊂ ΛΩ(H).

4.3.2 Convex cocompact and no relative segment implies relatively hy-
perbolic

We now turn to the rest of Theorem 4.1.8. As in our proof of Theorem 4.1.2,

the main tool will be Yaman’s dynamical characterization of relative hyperbolicity

(Theorem 2.2.14). If Γ is virtually cyclic, Yaman’s theorem does not apply, but in

this case Γ is hyperbolic and the result follows from [DGK17].
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Throughout the rest of this section, we assume (as in the hypotheses to

Theorem 4.1.8) that Ω is a properly convex domain preserved by a discrete non-

elementary group Γ acting convex cocompactly with full orbital limit set ΛΩ(Γ), and

H is a conjugacy-invariant set of subgroups of Γ lying in finitely many conjugacy

classes, with each Hi ∈ H acting convex cocompactly on Ω. We also assume H 6= {Γ},

since the result is trivial in this case.

We will prove the following:

Proposition 4.3.5. Suppose that conditions (i), (ii), and (iii) of Theorem 4.1.8 hold

for the collection of subgroups H. Then:

1. Γ acts as a convergence group on [ΛΩ(Γ)]H,

2. [ΛΩ(Γ)]H is compact, metrizable, and perfect,

3. the groups Hi are parabolic subgroups, and their fixed points are bounded

parabolic,

4. every point in

[ΛΩ(Γ)]H − {[ΛΩ(Hi)]H : Hi ∈ H}

is a conical limit point for the Γ-action on [ΛΩ(Γ)]H.

Since convex cocompact groups are always finitely generated, Theorem 4.1.8

is a direct consequence of Proposition 4.3.5, Proposition 4.3.1, and Theorem 2.2.14.
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4.3.2.1 Dynamics of the Γ-action on ΛΩ(Γ)

We start by proving part (1) of Proposition 4.3.5, using the theory of attracting

and repelling subspaces of sequences in Γ discussed at the end of Section 2.1.

Proposition 4.3.6. Γ acts as a convergence group on [ΛΩ(Γ)]H.

Proof. Let γn be an infinite sequence in Γ. Since Γ is discrete, γn is divergent, and

there is a subsequence of γn and projective subspaces E+, E− so that for any compact

K ⊂ RPd−1 − E−, γn ·K converges to a subset of E+.

Lemma 2.1.19 implies that E+ and E− are both supporting subspaces of Ω and

both intersect ΛΩ(Γ) nontrivially. The intersections E+ ∩ ΛΩ(Γ) and E− ∩ ΛΩ(Γ) are

respectively the closures of subsets of a pair of faces F+, F− ⊂ ΛΩ(Γ). By assumption,

every face in ΛΩ(Γ) containing a nontrivial projective segment lies in some ΛΩ(Hi),

so each face in ΛΩ(Γ) represents a single point of [ΛΩ(Γ)]H. So we have

[E− ∩ ΛΩ(Γ)]H = a, [E+ ∩ ΛΩ(Γ)]H = b

for (not necessarily distinct) points a, b ∈ [ΛΩ(Γ)]H.

Let [K]H be a compact subset of [ΛΩ(Γ)]H − {a}, where K is the preimage of

[K]H in ΛΩ(Γ). K is compact since ΛΩ(Γ) is compact. Moreover, K cannot intersect

E−. So, γn ·K converges to a subset of E+ ∩ΛΩ(Γ), and γn · [K]H converges to b.

4.3.2.2 Topological properties of [ΛΩ(Γ)]H

Next, we will check that [ΛΩ(Γ)]H satisfies each of the properties in part (2)

of Proposition 4.3.5. The first, compactness, is immediate from the compactness of

ΛΩ(Γ).
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Showing that [ΛΩ(Γ)]H is metrizable is equivalent to showing that it is Haus-

dorff, since it is a quotient of a compact metrizable space.

Let

πH : ΛΩ(Γ)→ [ΛΩ(Γ)]H

be the quotient map. We will show that if a is a point in [ΛΩ(Γ)]H, then we can

find arbitrarily small open neighborhoods of π−1
H (a) in ΛΩ(Γ) which are of the form

π−1
H (U) for U ⊂ [ΛΩ(Γ)]H.

Our first step is the following:

Lemma 4.3.7. Fix any metric dP on projective space. Let a ∈ [ΛΩ(Γ)]H.

For any ε > 0, there exists a subset W (a, ε) ⊂ ΛΩ(Γ) satisfying:

1. W (a, ε) = π−1
H (V ) for some V ⊂ [ΛΩ(Γ)]H,

2. W (a, ε) contains an open neighborhood of π−1
H (a) in ΛΩ(Γ), and

3. For every z ∈ W (a, ε), we have

dP(z, π−1
H (a)) < ε.

Proof. Let Xa = π−1
H (a). For any open set U in ΛΩ(Γ) containing Xa, we let W (U)

be the set

π−1
H ([U ]H) = U ∪ {x ∈ ΛΩ(Hi) : ΛΩ(Hi) ∩ U 6= ∅}.

W (U) is a subset of ΛΩ(Γ) satisfying conditions (1) and (2). We claim that for any

given ε > 0, W (U) also satisfies condition (3) as long as U is sufficiently small.
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We proceed by contradiction. Suppose otherwise, so that there is some ε > 0

so that for a shrinking sequence of open neighborhoods Un of Xa, there is some

Hn ∈ H such that

ΛΩ(Hn) ∩ Un 6= ∅,

and ΛΩ(Hn) contains a point zn such that dP(zn, Xa) ≥ ε.

We write Λn = ΛΩ(Hn). We can choose a subsequence so that in the topology

on nonempty closed subsets of projective space, Λn converges to some closed subset of

ΛΩ(Γ), which we denote Λ∞, and zn converges to z∞ ∈ Λ∞ such that dP(z∞, Xa) ≥ ε.

Λ∞ intersects every open subset of ΛΩ(Γ) containing Xa, and since Xa is a

closed subset of a metrizable space, this means Λ∞ intersects Xa. We will get a

contradiction by showing that in fact z∞ ∈ Xa.

We consider two cases:

Case 1: HullΩ(Λ∞) is nonempty. Since the groups in H lie in only finitely many

conjugacy classes, up to a subsequence, the Hn are all conjugate to each other, and

we may assume that Λn = γnΛ0 for a sequence γn ∈ Γ.

We can find a sequence xn ∈ HullΩ(Λn) converging to some x∞ ∈ HullΩ(Λ∞).

Since the action of H0 on HullΩ(Λ0) is cocompact, there is some fixed R > 0 so that

every H0-orbit in HullΩ(Λ0) intersects the Hilbert ball of radius R about x0. Since

Hn is a conjugate of H0 by an isometry of the Hilbert metric on Ω, the same is true

(with the same R) for every xn, Hn, and Λn.

So, we can find a sequence

µn ∈ γnHnγ
−1
n
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so that µnγn · x0 lies in the Hilbert ball of radius R about xn. Since xn converges to

x∞ ∈ Ω, and Γ acts properly discontinuously on Ω, this means that a subsequence

of µnγn is eventually constant. Because µnγnΛ0 = γnΛ0, this means we can assume

there is some fixed γ ∈ Γ so that

Λ∞ = γΛ0 = ΛΩ(γH0γ
−1).

But then since the limit sets ΛΩ(Hi) are disjoint, we must have Xa = Λ∞, which

means z∞ ∈ Xa.

Case 2: HullΩ(Λ∞) is empty. In this case, Λ∞ lies in the closure F of some face F of

∂Ω; without loss of generality we can assume that F intersects Λ∞. ΛΩ(Γ) contains

its faces, so it contains all of F .

If F is a single point, we must have Λ∞ = {z∞}, so z∞ lies in Xa. If F is not

a single point, it contains a nontrivial segment. By assumption, this segment lies

in ΛΩ(Hi) for some Hi; since ΛΩ(Hi) is closed and contains its faces, all of F lies in

ΛΩ(Hi) as well. But then ΛΩ(Hi) intersects both Xa and z∞, so Xa = ΛΩ(Hi) = [z∞]H

and z∞ ∈ Xa in this case as well.

Proposition 4.3.8. [ΛΩ(Γ)]H is Hausdorff.

Proof. Let a, a′ be distinct points in [ΛΩ(Γ)]H, and let Xa, X
′
a be the preimages of a

and a′ in ΛΩ(Γ).

130



Since Xa and X ′a are closed disjoint subsets of the metrizable space ΛΩ(Γ),

there is some ε > 0 such that for any x ∈ Xa, x
′ ∈ X ′a,

d(x, x′) > 2ε.

For each n ∈ N, we define a sequence of sets Un containing Xa as follows. We

let U0 = Xa. Then, for each n > 0, we take Un to be the set

⋃
b∈[Un−1]H

W (b, ε/2n),

where W (b, ε/2n) is the set given by Lemma 4.3.7. Note that each Un is a set of the

form π−1
H (V ) for some V ⊂ [ΛΩ(Γ)]H; moreover, if z ∈ Un, then

d(z, Un−1) < ε/2n.

Consider the set U =
⋃
n∈N Un. U is the preimage of some V ⊂ [ΛΩ(Γ)]H, and

it must be contained in an ε-neighborhood of Xa. In addition, U is open in ΛΩ(Γ):

if z is in Un, then Un+1 contains W ([z]H, ε/2
n+1), which in turn contains an open

neighborhood of z.

This means that [U ]H is an open set in [ΛΩ(Γ)]H containing a. We can

similarly construct an open set [U ′]H containing a′ such that U ′ is contained in an

ε-neighborhood of X ′a. U and U ′∞ are disjoint, so [U ]H and [U ′]H separate a and

a′.

Next we show that the space [ΛΩ(Γ)]H is perfect, i.e. [ΛΩ(Γ)]H contains no

isolated points.
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Proposition 4.3.9. [ΛΩ(Γ)]H is perfect.

Proof. Fix a ∈ [ΛΩ(Γ)]H and a representative x of a. Let F = FΩ(x).

Let xn be a sequence of points in HullΩ(Γ) converging to x in RPd−1. Convex

cocompactness means that for some γn ∈ Γ, γ−1
n xn ∈ C for a fixed compact C ⊂ Ω.

This means that (up to a subsequence) for fixed x0 ∈ Ω, γnx0 converges to a

point in F . And since γn acts by Hilbert isometries, Proposition 2.1.11 implies that

if B is any open ball with finite Hilbert radius about x0, γnB converges uniformly to

a subset of F .

γn is divergent in PGL(d,R), so let E+ and E− be a pair of attracting and

repelling projective subspaces for the sequence γn. We know that E+ and E− are

supporting subspaces of Ω, and that

[E− ∩ ΛΩ(Γ)]H, [E+ ∩ ΛΩ(Γ)]H

are single points in [ΛΩ(Γ)]H. Moreover, since an open subset of projective space

converges under γn to F , E+ intersects F , and [E+ ∩ ΛΩ(Γ)]H = a. Let b =

[E− ∩ ΛΩ(Γ)]H.

Since we assume H 6= {Γ}, [ΛΩ(Γ)]H cannot be a single point, and since Γ

is non-elementary, [ΛΩ(Γ)]H contains at least three points. So, we can find a pair

of points c1, c2 ∈ [ΛΩ(Γ)]H such that {b, c1, c2} are pairwise distinct. Both c1 and c2

have a representative which does not lie in E−, so both γn · c1 and γn · c2 converge to

a; since c1 6= c2, a cannot be isolated.
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4.3.2.3 Parabolic points in [ΛΩ(Γ)]H

Our next task is to verify part (3) of Proposition 4.3.5—that is, to show that

points stabilized by our candidate peripheral subgroups are bounded parabolic points.

Proposition 4.3.10. Each point [ΛΩ(Hi)]H in [ΛΩ(Γ)]H is a parabolic point for the

action of Γ, with stabilizer Hi.

Proof. The fact that Hi is self-normalizing implies that Hi is exactly the stabilizer of

[ΛΩ(Hi)]H in Γ: for general g ∈ Aut(Ω),

g · ΛΩ(Hi) = ΛΩ(gHig
−1),

and since we assume that the full orbital limit sets of distinct groups in H are disjoint,

g ∈ Γ preserves ΛΩ(Hi) if and only if g normalizes Hi.

So we just need to check that the groups Hi are parabolic. Let γ ∈ Hi be an

infinite-order element, so that γn is a divergent sequence in PGL(d,R). We want to

show that γ does not fix any point in [ΛΩ(Γ)]H other than [ΛΩ(Hi)]H.

Let E+ and E− be attracting and repelling subspaces for the sequence γn.

Lemma 2.1.19 implies that both E+ and E− support Ω and intersect ΛΩ(Hi) nontriv-

ially.

Let b ∈ [ΛΩ(Γ)]H−{[ΛΩ(Hi)]H}, let y ∈ ΛΩ(Hi)∩E−, and let x ∈ ΛΩ(Γ) be a

representative of b. Proposition 4.2.2 implies that x cannot lie in E−, so γnx converges

to a point in ΛΩ(Γ)∩E+. Then γnb converges to [ΛΩ(Hi)]H, and in particular γ does

not fix b.
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We still need to show that the parabolic points [ΛΩ(Hi)]H are bounded parabolic

points, i.e. that Hi acts cocompactly on

[ΛΩ(Γ)]H − {[ΛΩ(Hi)]H}.

Our strategy is to show that the set

Λi = ΛΩ(Γ)− ΛΩ(Hi)

is a closed subset of the interior of some convex open set ΩHi , such that the ideal

boundary of Λi in ΩHi is exactly ΛΩ(Hi). Then, we can use the fact that Hi is

uniformly expanding in supports at ΛΩ(Hi) to see that the action of Hi on Λi is

cocompact.

If Hi is irreducible (or more generally, if we know that Hi contains a proximal

element), then as a consequence of [Ben00, Proposition 3.1] (or [DGK17, Proposition

4.5]), we can simply take ΩHi to be the unique Hi-invariant maximal properly convex

domain Ωmax in RPd−1. Since we do not know if Hi contains a proximal element in

general, we do not know if such a maximal domain exists. So, we will construct ΩHi

directly.

To do so, we consider the dual full orbital limit set ΛΩ∗(Γ) of a group Γ acting

on a properly convex domain Ω. i.e. the full orbital limit set in Ω∗ of Γ viewed as a

subgroup of Aut(Ω∗). Each element w ∈ ΛΩ∗(Γ) is an element of ∂Ω∗, so P(w) is a

supporting hyperplane of Ω.

Proposition 4.3.11. Let Γ be any subgroup of Aut(Ω).

1. For every x ∈ ΛΩ(Γ) there exists w ∈ ΛΩ∗(Γ) such that w(x) = 0.
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2. For every w ∈ ΛΩ∗(Γ) there exists x ∈ ΛΩ(Γ) such that w(x) = 0.

The statement follows from e.g. Proposition 5.6 in [IZ19a]; we provide an

alternative proof for convenience.

Proof. The two statements are dual to each other, so we only need to prove (1).

Given a point x ∈ Ω, and W ∈ Ω∗, we consider a quantity

δΩ(x,W )

defined in [DGK17] as follows:

δΩ(x,W ) = inf
z∈P(W )

{min{|[az, x; bz, z]|, |[bz, x; az, z]|},

where az and bz are the points in ∂Ω such that az, x, bz, z lie on a projective line.

δΩ(x,W ) can be thought of as an Aut(Ω)-invariant measure of how “close” x is to

∂Ω, relative to the projective hyperplane W : it takes on nonzero values for x ∈ Ω,

W ∈ Ω∗, and for fixed W ∈ Ω∗ and xn converging to ∂Ω, δΩ(xn,W ) converges to 0.

We now take z ∈ ΛΩ(Γ), and choose γn ∈ Γ, z0 ∈ Ω so that γn · z0 → z.

Fix some W0 ∈ Ω∗, and consider the sequence γn ·W0. Up to a subsequence, this

converges to some W ∈ Λ∗Ω(Γ).

Since δΩ(x,W ) is Γ-invariant, for any sequence

yn ∈ γn · P(W0),

both of the cross-ratios

[ayn , γn · z0; byn , yn], [byn , γn · z0; ayn , yn]
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ayn

yn

γnz0

γnW0

byn

Figure 4.2: If γnz0 approaches the boundary of Ω, and δΩ(γnz0, γnW0) is bounded
away from 0, γnW0 must limit to a hyperplane containing the limit of γnz0.

remain bounded away from 0 as n → ∞. But since γn · z0 approaches z ∈ ∂Ω, we

can choose yn so that exactly one of ayn , byn also approaches z. Thus, yn approaches

z as well, and so P(W ) contains z.

Next, we consider the dual convex core for the Γ-action on Ω.

Definition 4.3.12. Let Ω ⊂ RPd−1 be a properly convex domain, and let Γ ⊆ Aut(Ω).

The dual convex hull Hull∗Ω(Γ) is the convex set

[HullΩ∗(ΛΩ∗(Γ))]∗.

Equivalently, Hull∗Ω(Γ) is the unique connected component of

RPd−1 −
⋃

W∈ΛΩ∗ (Γ)

W

which contains Ω.
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Figure 4.3: Part of the limit set and dual limit set for a group Γ acting convex
compactly on the projective model for H2 (the interior of the white circle). HullΩ(Γ)
is the light region, and Hull∗Ω(Γ) is the dark region.

As long as ΛΩ∗(Γ) contains at least two points, Hull∗Ω(Γ) does not contain all

of RPd−1. It can be viewed as an intersection of convex subspaces, so it is convex in

the sense of Definition 2.1.3, but in general it is not properly convex.

We can use the dual convex core to finish proving part (3) of Proposition 4.3.5.

Proposition 4.3.13. The stabilizer of [ΛΩ(Hi)]H acts cocompactly on

Λi = [ΛΩ(Γ)]H − {[ΛΩ(Hi)]H}.

Proof. Let ΩHi = Hull∗Ω(Hi) be the dual convex hull of Hi in Ω. Proposition 4.3.11

implies that ΛΩ(Hi) lies in the boundary of ΩHi .

Moreover, the set ΛΩ(Γ)− ΛΩ(Hi) lies in the interior of ΩHi—for, every point

in the boundary of ΩHi is contained a projective hyperplane P(W ) for W ∈ ΛΩ∗(Hi),
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and each such hyperplane supports some x ∈ ΛΩ(Hi). Since P(W ) is also a supporting

hyperplane of Ω, Proposition 4.2.2 implies that no y ∈ ΛΩ(Γ)− ΛΩ(Hi) lies in P(W ).

ΛΩ(Γ) is thus a closed subset of ΩHi whose ideal boundary in ΩHi is contained

in ΛΩ(Hi). Since Hi acts convex cocompactly on Ω, it is uniformly expanding in

supports at ΛΩ(Hi) by Theorem 3.1.9. Then Proposition 3.2.5 (applied to the convex

domain ΩHi) implies that the action of Hi on ΛΩ(Γ)− ΛΩ(Hi) is cocompact—which

means that the Hi-action on the quotient [ΛΩ(Γ)]H − {[ΛΩ(Hi)]H} is cocompact as

well.

4.3.2.4 Conical limit points in [ΛΩ(Γ)]H

Finally we check part (4) of Proposition 4.3.5—that the remaining points in

our candidate Bowditch boundary are indeed conical limit points. We will do this in

two steps.

Lemma 4.3.14. Let Hi ∈ H, let

xn ∈ ΛΩ(Γ)− ΛΩ(Hi)

be a sequence approaching x ∈ ΛΩ(Hi), and let F = FΩ(x). If hn is a sequence such

that hn[xn]H is relatively compact in

[ΛΩ(Γ)]H − {[ΛΩ(Hi)]H},

then for any compact

K ⊂ ∂Ω− F ,

hn subconverges on [K]H to the constant map [ΛΩ(Hi)]H.
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Proof. Any such sequence hn must be divergent, so using Proposition 2.1.17, we

can find nontrivial projective subspaces E+, E− so that if K is any compact subset

of RPd−1 − E−, hn ·K subconverges uniformly to a subset of E+. E+ and E− are

supporting subspaces of Ω, and E+ ∩ ∂Ω and E− ∩ ∂Ω are both subsets of ΛΩ(Hi).

E− must contain x, since otherwise hnxn would subconverge to a point in

E+ ∩ ∂Ω ⊆ ΛΩ(Hi).

But then E− ∩ ∂Ω is a subset of F and the desired condition holds.

Proposition 4.3.15. Every element of the set

[ΛΩ(Γ)]H − {[ΛΩ(Hi)]H : Hi ∈ H}

is a conical limit point for the action of Γ on ΛΩ(Γ).

Proof. By assumption, any point in this set has a unique representative x ∈ ΛΩ(Γ)

which is an extreme point in ∂Ω. Fix a sequence xn ∈ Ω limiting to x along a line,

and let γn ∈ Γ be group elements taking xn back to some fixed compact in Ω.

Proposition 3.4.13 implies that there is a supporting subspace E+ of Ω, inter-

secting ΛΩ(Γ), so that γnx limits to some x′ ∈ ΛΩ(Γ) not intersecting E+, and if K is

any compact subset of ΛΩ(Γ)− x, a subsequence of γnK converges uniformly to a

subset of E+ ∩ ΛΩ(Γ). In particular, γn converges uniformly on compacts in

[Λ]H − {[x]H}

to the constant map [E+ ∩ ΛΩ(Γ)]H.
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If [x′]H 6= [E+∩ΛΩ(Γ)]H, then we are done. However, it is also possible that x′

and E+ ∩ ΛΩ(Γ) both lie in the same full orbital limit set of some convex cocompact

subgroup Hi.

In this case, we use the fact that [ΛΩ(Hi)]H is a bounded parabolic fixed point

(Proposition 4.3.13) to find a sequence hn ∈ Hi such that hn · [γnx]H lies in a fixed

compact set C in

[ΛΩ(Γ)]H − {[ΛΩ(Hi)]H},

and consider the sequence of group elements hnγn.

Fix a compact subset [K]H of

[ΛΩ(Γ)]H − {[x]H},

where K is the (compact) preimage of [K]H in ΛΩ(Γ)− {x}.

After taking a subsequence, γnK must converge to a compact subset of

E+∩ΛΩ(Γ), which does not intersect x′. In fact, part (3) of Proposition 3.4.13 implies

that γnK converges to a compact subset of ΛΩ(Γ)− F ′, where F ′ = FΩ(x′). So there

is a fixed compact

K ′ ⊂ ΛΩ(Γ)− F ′

so that for sufficiently large n, γnK ⊂ K ′. Then Lemma 4.3.14 implies that

hnγn[K]H ⊆ hn[K ′]H

subconverges to [ΛΩ(Hi)]H. But on the other hand,

[(hnγn) · xn]H ∈ C
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subconverges to some b 6= [ΛΩ(Hi)]H, so hnγn gives us the sequence of group elements

we need.
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Chapter 5

EGF representations

Material from this chapter and the next previously appeared in the arXiv

preprint “An extended definition of Anosov representation for relatively hyperbolic

groups” [Wei22].

In this chapter, we introduce another generalization of Anosov dynamics for

non-hyperbolic groups: extended geometrically finite (EGF) representations. EGF

representations generalize the topological dynamical behavior of Anosov representa-

tions, so their definition is based on the convergence dynamics definition of Anosov

representations (Proposition 2.4.3).

Definition 5.0.1. Let (Γ,H) be a relatively hyperbolic pair, with Γ acting on a

connected compact metrizable space M by homeomorphisms. Let Λ ⊂M be a closed

Γ-invariant set.

We say that an equivariant surjective map φ : Λ → ∂(Γ,H) extends the

convergence dynamics of Γ if for each z ∈ ∂(Γ,H), there exists an open set Cz ⊂M

containing Λ− φ−1(z), satisfying the following:

If γn is a sequence in Γ with γ±1
n → z± for z± ∈ ∂(Γ,H), then for any compact

set K ⊂ Cz− and any open set U containing φ−1(z+), for sufficiently large n, γn ·K

lies in U .
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EGF representations are defined with respect to a parabolic subgroup P of a

semisimple Lie group G. For convenience, when working with EGF representations,

we will always assume that P is a symmetric parabolic subgroup—i.e. P is conjugate

to a subgroup P− which is opposite to P .

When P = P+ is symmetric, we can identify G/P+ with G/P−, so that it

makes sense to say that two flags ξ1, ξ2 ∈ G/P are opposite.

Definition 5.0.2. Let P be symmetric, and let A,B be two subsets of G/P . We say

that A and B are opposite if every ξ ∈ A is opposite to every ν ∈ B.

Definition 5.0.3. Let (Γ,H) be a relatively hyperbolic pair, and let Λ ⊂ G/P . We

say that a continuous surjective map φ : Λ→ ∂(Γ,H) is antipodal if for every pair of

distinct points z1, z2 ∈ ∂(Γ,H), φ−1(z1) is opposite to φ−1(z2).

The main definition of this chapter is:

Definition 1.5.6. Let (Γ,H) be a relatively hyperbolic pair, and let P be a symmetric

parabolic subgroup of a semisimple Lie group G. We say that a representation

ρ : Γ→ G is extended geometrically finite with respect to P if there exists a closed

ρ(Γ)-invariant subset Λ ⊂ G/P and a continuous ρ-equivariant surjective antipodal

map φ : Λ→ ∂(Γ,H) which extends the convergence dynamics of Γ.

Remark 5.0.4. Unfortunately, the boundary set Λ ⊂ G/P is not necessarily uniquely

determined by the representation ρ. In many contexts, we will be able to make a

natural choice, but we do not give a procedure for doing so in general.
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The main result of this chapter (Theorem 5.6.2) is that EGF representations

satisfy a relative stability property, similar to the stability property for Anosov

representations.

5.0.1 Outline of the chapter

In Section 5.1, we explain the precise relationship between EGF representations

and the relatively asymptotically embedded representations defined by Kapovich-Leeb

in [KL18]. In the same section, we also prove an Anosov relativization theorem, which

says (roughly) that “EGF relative to Anosov is Anosov.”

The results in Section 5.1 rely on some facts about EGF representations which

are only proved later in the chapter. In Section 5.2 and Section 5.3, we introduce the

main technical tools needed to prove these results: a relative quasigeodesic automaton

associated to the action of any non-elementary relatively hyperbolic group on its

Bowditch boundary. In Section 5.4, we relate relative quasigeodesic automata to

the action of a relatively hyperbolic group on a flag manifold. We use these tools to

develop an alternative characterization of EGF representations in Section 5.5, and

finally prove our main theorem in Section 5.6.

5.0.2 Proof strategy

The general approach to our proof of Theorem 5.6.2 is loosely inspired by

Sullivan’s proof of stability for convex cocompact groups in rank-one [Sul85]. Sullivan

shows that a discrete group Γ ⊂ PO(d, 1) is convex cocompact if and only if the

action of Γ on its limit set Λ in ∂Hd satisfies an expansion property. Then, he uses
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this expansion property to give a symbolic coding for infinite quasigeodesic rays in Γ.

This coding gives a way to see that the correspondence between geodesic rays in Γ

and points in Λ is stable under small perturbations of the representation. Notably, in

[KKL19], Kapovich-Kim-Lee follow Sullivan’s basic procedure to provide a detailed

proof of his result in a much more general setting, in particular showing stability

properties of uniform lattices in higher-rank Lie groups. The ideas in that paper

guide some of our approach below.

In [BPS19], Bochi-Potrie-Sambarino use a related technique to prove that

Pk-Anosov representations of hyperbolic groups into PGL(d+ 1,R) are stable. They

consider the geodesic automaton for a hyperbolic group Γ. This is a finite directed

graph G whose edges are labelled with generators of Γ. Bochi-Potrie-Sambarino show

that a representation ρ : Γ → PGL(d + 1,R) is Pk-Anosov if and only if there is a

way to assign an open subset Uv of RPd to each vertex v of G so that each edge (a, b)

of G corresponds to an inclusion

ρ(γa,b) · Ub ⊂ Ua. (5.1)

This shows that it is possible to verify if a small deformation of an Anosov represen-

tation is Anosov by checking a finite set of open conditions.

In a sense, this approach can be thought of as a kind of generalized ping-pong

argument for non-free groups. Indeed, when Γ is actually a free group, the inclusions

in (5.1) are exactly the inclusions of sets needed to set up ping-pong.

We take a somewhat similar approach to prove our relative stability theorem.

Given an extended geometrically finite representation ρ, we construct a relative
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quasigeodesic automaton G, and open subsets Uv ⊂ G/P for each vertex v of G,

satisfying certain inclusions corresponding to the edges of G. We show that if such a

system of open subsets also exists for a nearby representation ρ′, then ρ′ must also

be extended geometrically finite.

It is helpful to keep an important special case in mind. If A,B are finitely

generated groups, then A ∗B is hyperbolic relative to the collection of conjugates of

A and B. In this case, the inclusions of sets determined by a relative quasigeodesic

automaton are nothing more than the inclusions of sets required to set up a ping-pong

argument proving that a representation of A ∗B is discrete and faithful.

For a general relatively hyperbolic group Γ, we essentially use the convergence

dynamics of Γ to encode points in ∂(Γ,H) using infinite paths in the graph G. This is

closely related to the idea of describing the geodesic flow of the group with symbolic

dynamics; see for instance [Ser81].

Our approach only yields a relative stability result because, unlike in the

non-relative case, some of the edges of the relative automaton G correspond to an

infinite number of inclusions of open sets. The proof shows that if ρ is EGF, any

deformation ρ′ which respects the conditions imposed by these “parabolic edges” must

also be EGF.

5.1 Basic properties

In this section we cover some basic properties of EGF representations. We then

show that they generalize a notion of relative Anosov representation due to Kapovich-
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Leeb (Theorem 5.1.7), and prove an Anosov relativization theorem (Theorem 5.1.10).

5.1.1 Discreteness and finite kernel

We first observe that EGF representations are always discrete with finite kernel.

When ρ : Γ → G is an EGF representation, the action of ρ(Γ) on the boundary

set Λ is by definition an extension of the topological dynamical system (Γ, ∂(Γ,H)).

Convergence dynamics imply that the homomorphism Γ→ Homeo(∂(Γ,H)) has finite

kernel and discrete image. So the map Γ→ Homeo(Λ) must also have discrete image

and finite kernel, and therefore so does the representation ρ : Γ→ G.

5.1.2 Shrinking the sets Cz

Let ρ : Γ→ G be an EGF representation with boundary map φ : Λ→ ∂(Γ,H).

By assumption, we know there exists an open subset Cz ⊂ G/P for each z ∈ ∂(Γ,H),

satisfying the extended convergence dynamics conditions (Definition 5.0.1). In general,

there is not a canonical choice for the set Cz. We are able to make some assumptions

about the properties of the Cz, however.

Proposition 5.1.1. Let ρ : Γ→ G be an EGF representation with boundary extension

φ. For any z ∈ ∂(Γ,H), we can choose the set Cz to be a subset of

Opp(φ−1(z)) := {ξ ∈ G/P : ξ is opposite to ν for every ν ∈ φ−1(z)}.

Proof. Since φ−1(z) is closed, Opp(φ−1(z)) is an open subset of G/P . And, transver-

sality of φ implies that Opp(φ−1(z)) contains Λ − φ−1(z). So the intersection

Cz ∩ Opp(φ−1(z)) is open and nonempty, meaning we can replace Cz with this
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intersection.

5.1.3 An equivalent characterization of EGF representations

Let ρ : Γ→ G be a representation of a relatively hyperbolic group. It turns

out than in order to check that ρ is an EGF representation, it suffices to look at the

dynamics of the ρ(Γ)-action along conical limit sequences and sequences lying entirely

in peripheral subgroups of Γ.

Proposition 5.1.2. Let ρ : Γ→ G be a representation of a relatively hyperbolic group,

and let Λ ⊂ G/P be a closed ρ(Γ)-invariant set, where P ⊂ G is a symmetric parabolic

subgroup. Suppose that φ : Λ→ ∂(Γ,H) is a surjective ρ-equivariant antipodal map.

Then ρ is an EGF representation if and only if for each z ∈ ∂(Γ,H), there

exists Cz ⊂ G/P , with Cz ⊂ Opp(φ−1(z)) and Λ− φ−1(z) ⊂ Cz, such that:

1. For any sequence γn ∈ Γ limiting conically to z (with γ−1
n → z−), any compact

K ⊂ Cz−, and any neighborhood U containing φ−1(z), we have ρ(γn) ·K ⊂ U

for all sufficiently large n.

2. For any parabolic point p, any compact K ⊂ Cp, and any open set U containing

φ−1(p), for all but finitely many γ ∈ Γp, we have ρ(γ) ·K ⊂ U .

In practice, Proposition 5.1.2 gives a criterion for extended geometrical finite-

ness which is much easier to check than the full definition, so we will use it throughout

this chapter and the next. However, the proof requires the technical machinery of

relative quasigeodesic automata, so we defer it to Section 5.5.
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5.1.4 Properties of Λ

Proposition 5.1.3. Let (Γ,H) be a relatively hyperbolic pair, and let ρ : Γ→ G be a

representation which is EGF with respect to a symmetric parabolic P , with boundary

extension φ : Λ→ ∂(Γ,H). Then Λ contains the P -limit set of ρ(Γ).

Proof. Let ξ ∈ G/P be a flag in the P -limit set of ρ(Γ). Then there is a P -contracting

sequence ρ(γn) for γn ∈ Γ and a flag ξ− ∈ G/P such that ρ(γn)η converges to ξ for

any η in Opp(ξ−). Up to subsequence γ±1
n converges to z± ∈ ∂(Γ,H), so for any flag

η ∈ Cz− , the sequence ρ(γn)η subconverges to a point in φ−1(z+). But since Opp(ξ−)

is open and dense, for some η ∈ Cz− we have ρ(γn)η → ξ and hence ξ ∈ φ−1(z+).

In particular, Proposition 5.1.3 implies that the EGF boundary set Λ ⊂ G/P

of an EGF representation ρ : Γ→ G must always contain the P -proximal limit set

of ρ(Γ). (Recall that g ∈ G is P -proximal if it has a unique attracting fixed point

in G/P ; the P -proximal limit set of a subgroup of G is the closure of the set of

attracting fixed points of P -proximal elements).

We will see that most of the power of EGF representations lies in the fact

that their associated boundary extensions φ : Λ → ∂(Γ,H) do not have to be

homeomorphisms (so the Bowditch boundary of Γ does not need to be equivariantly

embedded in any flag manifold). However, it turns out that it is always possible to

choose the boundary extension φ so that it has a well-defined inverse on conical limit

points in ∂(Γ,H). In fact, we can even get a somewhat precise description of all the

fibers of φ. Concretely, we have the following:
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Proposition 5.1.4. Let ρ : Γ → G be an EGF representation, with boundary

extension φ : Λ→ ∂(Γ,H). There is a ρ(Γ)-invariant closed subset Λ′ ⊂ G/P and a

ρ-equivariant map φ′ : Λ′ → ∂(Γ,H) such that:

1. φ′ : Λ′ → ∂(Γ,H) is also a boundary extension for ρ,

2. for every z ∈ ∂con(Γ,H), φ′−1(z) is a singleton, and

3. for every p ∈ ∂par(Γ,H), φ′−1(p) is the closure of the set of all accumulation

points of orbits γn · x for γn a sequence of distinct elements in Γp and x ∈ Cp.

We will prove Proposition 5.1.4 at the end of Section 5.6, where it will follow

as a consequence of the proof of the relative stability theorem for EGF representations

(Theorem 5.6.2)—see Remark 5.6.20.

We will rely on both Proposition 5.1.2 and Proposition 5.1.4 to prove the rest

of the results in this section (which are not needed anywhere else in this chapter).

5.1.5 Relatively asymptotically embedded representations

EGF representations give a strict generalization of the relatively asymptotically

embedded representations of Kapovich and Leeb. We recall the definition here.

Definition 5.1.5 ([KL18], Definition 7.1). Let Γ be a subgroup of G and suppose

(Γ,H) is a relatively hyperbolic pair. Let Pτmod
⊂ G be a symmetric parabolic

subgroup.

The subgroup Γ is relatively τmod-asymptotically embedded if it is Pτmod
-

divergent, and there is a Γ-equivariant antipodal embedding ∂(Γ,H)→ Λτmod
⊂ G/P ,
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where Λτmod
is the Pτmod

-limit set of Γ.

Here, we say an embedding ψ : ∂(Γ,H)→ G/P is antipodal if for every distinct

ξ1, ξ2 in ∂(Γ,H), ψ(ξ1) and ψ(ξ2) are opposite flags.

Remark 5.1.6. When Γ is a hyperbolic group (and the collection of peripheral

subgroups H is empty), then the Bowditch boundary ∂(Γ,H) is identified with the

Gromov boundary ∂Γ. In this case, a relatively asymptotically embedded representa-

tion is just called an asymptotically embedded representation. τmod-asymptotically

embedded representations are exactly the same as Pτmod
-Anosov representations (see

[KLP17], Theorem 1.1).

In general, it is possible to define P -Anosov representations for a non-symmetric

parabolic subgroup P . However, there is no loss of generality in assuming that P is

symmetric: a representation ρ : Γ→ G is P -Anosov if and only if it is P ′-Anosov for

a symmetric parabolic subgroup P ′ ⊂ G depending only on P .

The relationship between EGF representations and asymptotically embedded

representations is given by the following

Theorem 5.1.7. Let (Γ,H) be a relatively hyperbolic pair. A representation ρ : Γ→

G is relatively τmod-asymptotically embedded if and only if ρ is EGF with respect to

Pτmod
and has a boundary extension φ : Λ→ ∂(Γ,H) which is a homeomorphism.

To prove this theorem, the main thing we need to show is:

Proposition 5.1.8. Let ρ : Γ→ G be an EGF representation with respect to Pτmod
,

and suppose that the boundary extension φ : Λ→ ∂(Γ,H) is a homeomorphism. Then:
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1. ρ(Γ) is Pτmod
-divergent, and Λ is the Pτmod

-limit set of ρ(Γ).

2. The sets Cz for z ∈ ∂(Γ,H) can be taken to be

Opp(φ−1(z)) = {ν ∈ G/P : ν is opposite to φ−1(z)}.

Proof. (1). Let γn be any infinite sequence of elements in Γ. After extracting a

subsequence, we have γ±1
n → z±, and since φ is a homeomorphism, ρ(γn) converges to

the point φ−1(z+) uniformly on compacts in the open set Cz− . Then Proposition 2.3.7

implies that ρ(γn) is Pτmod
-divergent, with unique Pτmod

-limit point φ−1(z+) ∈ Λ.

(2). The fact that φ is antipodal is exactly the statement that the sets

Opp(φ−1(z)) contain Λ− φ−1(z) for every z ∈ ∂(Γ,H), so we just need to see that

the appropriate dynamics hold for these sets. Let γn be an infinite sequence in Γ with

γ±1
n → z± for z± ∈ ∂(Γ,H).

We know that for open subsets U± ⊂ G/P , we have ρ(γn) · U+ → φ−1(z+)

and ρ(γ−1
n )U− → φ−1(z−), uniformly on compacts. Proposition 2.3.7 implies that

ρ(γn) and ρ(γ−1
n ) are both P -divergent with unique P -limit points φ−1(z+), φ−1(z−).

So in fact by Lemma 2.3.8 ρ(γn) converges to φ−1(z+) uniformly on compacts in

Opp(φ−1(z−)).

Proof of Theorem 5.1.7. Proposition 5.1.8 ensures that if ρ is an EGF representation,

and the boundary extension φ is a homeomorphism, then ρ is Pτmod
-divergent and

φ−1 is an antipodal embedding whose image is the Pτmod
-limit set.
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On the other hand, if ρ is relatively τmod-asymptotically embedded, with

boundary embedding ψ : ∂(Γ,H)→ Λ, for each z ∈ ∂(Γ,H), we can take

Cz = Opp(ψ(z)).

Antipodality means that Cz contains Λ−ψ(z), and Pτmod
-divergence and Lemma 2.3.8

imply that ρ(Γ) has the approriate convergence dynamics.

When Γ is a hyperbolic group (i.e. if Γ is relatively hyperbolic relative to

an empty collection of peripheral subgroups), then the Bowditch boundary of Γ is

identified with its Gromov boundary, and relative τmod-asymptotic embeddedness

is the same as the notion of τmod-asymptotic embeddedness defined in [KLP17].

A representation ρ : Γ → G is τmod-asymptotically embedded if and only if it is

Pτmod
-Anosov (see [KLP17], Theorem 1.1).

In particular, Theorem 5.1.7 implies:

Corollary 5.1.9. Let ρ : Γ → G be a representation of a hyperbolic group. Then,

when Γ is equipped with the trivial peripheral structure H = ∅, ρ is EGF with respect

to P if and only if ρ is P -Anosov.

5.1.6 Relativization

We now turn to the situation where we have an EGF representation of a

hyperbolic group Γ with a nonempty collection of peripheral subgroups. That is, for

some invariant set Λ ⊂ G/P , we have an EGF boundary extension φ : Λ→ ∂(Γ,H),

where ∂(Γ,H) is the Bowditch boundary of Γ with peripheral structure H.

We want to prove the following theorem:
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Theorem 5.1.10. Let Γ be a hyperbolic relative to a collection of subgroups H, and

suppose that each H ∈ H is hyperbolic.

If ρ : Γ → G is an EGF representation with respect to P for the peripheral

structure H, and ρ restricts to a P -Anosov representation on each H ∈ H, then ρ is

a P -Anosov representation of Γ.

For the rest of this section, we assume that Γ is a hyperbolic group, and H is

a collection of subgroups of Γ so that the pair (Γ,H) is relatively hyperbolic. We let

ρ : Γ→ G be an EGF representation for the pair (Γ,H) with respect to a symmetric

parabolic subgroup P ⊂ G, and we assume that for each H ∈ H, ρ|H : H → G is

P -Anosov, with Anosov limit map ψH : ∂H → G/P .

The main step in the proof is to observe that it is always possible to choose

the boundary extension φ : Λ→ ∂(Γ,H) so that Λ is equivariantly homeomorphic to

the Gromov boundary of Γ (which we here denote ∂Γ).

Whenever Γ is a hyperbolic group and H is a collection of subgroups so that

(Γ,H) is a relatively hyperbolic pair, there is an explicit description of the Bowditch

boundary ∂(Γ,H) in terms of the Gromov boundary ∂Γ of Γ—see [Ger12], [GP13],

or [Tra13]. Specifically, we can say:

Proposition 5.1.11. There is an equivariant surjective map φΓ : ∂Γ→ ∂(Γ,H) such

that for each conical limit point z in ∂(Γ,H), φ−1
Γ (z) is a singleton, and for each

parabolic point p ∈ ∂(Γ,H) with H = StabΓ(p), φ−1
Γ (p) is an embedded copy of ∂H in

∂Γ.
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In our situation, we can see that the boundary extension φ : Λ → ∂(Γ,H)

satisfies similar properties.

Lemma 5.1.12. There is a closed ρ(Γ)-invariant subset Λ′ ⊂ G/P and an EGF

boundary extension φ′ : Λ′ → ∂(Γ,H) such that:

1. For each conical limit point z ∈ ∂(Γ,H), φ′−1(z) is a singleton.

2. For each parabolic point p ∈ ∂(Γ,H), with H = StabΓ(p), we have φ′−1(p) =

ψH(∂H).

Proof. We choose Λ′ as in Proposition 5.1.4. The only thing we need to check is that for

H = StabΓ(p), the set ψH(∂H) is exactly the closure of the set of accumulation points

of ρ(H)-orbits in Cp. But since we may assume Cp is contained in Opp(ψH(∂H)),

this follows immediately from the fact that ρ(H) is P -divergent and the closed set

ψH(∂H) is the P -limit set of ρ(H).

Next we need a lemma which will allow us to characterize the Gromov boundary

of Γ as an extension of the Bowditch boundary ∂(Γ,H). First recall that if Γ acts as

a convergence group on a space Z, the limit set of Γ is the set of points z ∈ Z such

that for some y ∈ Z and some sequence γn ∈ Γ, we have

γn|Z−{y} → z

uniformly on compacts.
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Lemma 5.1.13. Let Γ act on compact metrizable spaces X and Y , and let φX : X →

∂(Γ,H), φY : Y → ∂(Γ,H) be equivariant surjective maps such that for every conical

limit point z ∈ ∂(Γ,H), φ−1
X (z) and φ−1

Y (z) are both singletons, and for every parabolic

point p ∈ ∂(Γ,H), H = StabΓ(p) acts as a convergence group on X and Y , with limit

sets φ−1
X (p), φ−1

Y (p) equivariantly homeomorphic to ∂H.

Then for any sequences zn, z
′
n ∈ ∂con(Γ,H), we have

lim
n→∞

φ−1
X (zn) = lim

n→∞
φ−1
X (z′n)

if and only if

lim
n→∞

φ−1
Y (zn) = lim

n→∞
φ−1
Y (z′n).

Proof. We proceed by contradiction, and suppose that for a pair of sequences zn, z
′
n ∈

∂con(Γ,H), we have

lim
n→∞

φ−1
X (zn) = lim

n→∞
φ−1
X (z′n) = x,

but

lim
n→∞

φ−1
Y (zn) 6= lim

n→∞
φ−1
Y (z′n).

After taking a subsequence we may assume zn converges to z ∈ ∂(Γ,H), and that

yn = φ−1
Y (zn) converges to y and y′n = φ−1

Y (z′n) converges to y′ for y 6= y′. By

continuity, we have

φY (y) = φY (y′) = φX(x) = z.

Since φX and φY are bijective on φ−1
X (∂con(Γ,H)) and φ−1

Y (∂con(Γ,H)) respec-

tively, we must have z = p for a parabolic point p ∈ ∂par(Γ,H). Let H = StabΓ(p).
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Since p is a bounded parabolic point, we can find sequences of group elements

hn, h
′
n ∈ H so that for a fixed compact subset K ⊂ ∂(Γ,H)− {p}, we have

hnzn ∈ K, h′nz
′
n ∈ K. (5.2)

This implies that no subsequence of hnyn or h′ny
′
n converges to a point in φ−1

Y (p).

Then, since H acts as a convergence group on Y with limit set φ−1
Y (p), up to

subsequence there are points u, u′ ∈ φ−1
Y (p) so that hn converges to a point in φ−1

Y (p)

uniformly on compacts in Y − {u}, and h′n converges to a point in φ−1
Y (p) uniformly

on compacts in Y − {u′}. So, we must have u = y and u′ = y′.

This means that the sequences h−1
n and h′−1

n have distinct limits in the com-

pactification H = H t ∂H. So, there are distinct points v, v′ ∈ φ−1
X (p) so that (again

up to subsequence) hn converges to a point in φ−1
X (p) uniformly on compacts in

X − {v}, and h′n converges to a point in φ−1
X (p) uniformly on compacts in X − {v′}.

Without loss of generality, we can assume x 6= v.

But then φ−1
X (zn) lies in a compact subset of X − {v}, so hnφ

−1
X (zn) converges

to a point in φ−1
X (p) and hnzn converges to p. But this contradicts (5.2) above.

Proposition 5.1.14. If the set Λ satisfies the conclusions of Lemma 5.1.12, then Λ

is equivariantly homeomorphic to the Gromov boundary of Γ.

Proof. Let φΓ : ∂Γ → ∂(Γ,H) denote the quotient map identifying the limit set of

each H ∈ H to the parabolic point p with H = StabΓ(p). For each conical limit point

z ∈ ∂(Γ,H), the fiber φ−1
Γ (z) is a singleton. So, there is an equivariant bijection f

from φ−1
Γ (∂con(Γ,H)) to φ−1(∂con(Γ,H)).
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Moreover, since φ−1
Γ (∂con(Γ,H)) is Γ-invariant, and the action of Γ on its

Gromov boundary ∂Γ is minimal, φ−1
Γ (∂con(Γ,H)) is dense in ∂Γ. We claim that f

extends to a continuous injective map ∂Γ→ Λ by defining f(x) = lim f(xn) for any

sequence xn → x.

To see this, we can apply Lemma 5.1.13, taking ∂Γ = X and Λ = Y . We

know that Γ always acts on its own Gromov boundary as a convergence group (so in

particular each H ∈ H acts on ∂Γ as a convergence group with limit set ∂H). And,

since ρ restricts to a P -Anosov representation on each H ∈ H, for any infinite sequence

hn ∈ H, up to subsequence there are u, u− ∈ ψH(∂H) so that ρ(hn) converges to u

uniformly on compacts in Opp(u−). Antipodality of φ implies that ρ(hn) converges

to u uniformly on compacts in Λ− ψH(∂H). The other hypotheses of Lemma 5.1.13

follow from Proposition 5.1.11 and Lemma 5.1.12.

We still need to check that f is actually surjective. We know that f restricts to

a bijection on φ−1
Γ (∂con(Γ,H)), and that f takes φ−1

Γ (p) to φ−1(p) for each parabolic

point p in ∂(Γ,H). So we just need to check that for every H ∈ H, f restricts to a

surjective map ∂H → ψH(∂H). If H is non-elementary, this must be the case because

the action of H on ∂H is minimal and f maps ∂H into ψH(∂H) as an invariant closed

subset. Otherwise, H is virtually cyclic and ∂H, ψH(∂H) both contain exactly two

points. Then injectivity of f implies surjectivity.

So we conclude that there is a continuous bijection f : ∂Γ→ Λ, and since ∂Γ

is compact and Λ is metrizable, f is a homeomorphism.

We let f : Λ → ∂Γ denote the equivariant homeomorphism from Proposi-
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tion 5.1.14. The final step in the proof of Theorem 5.1.10 is the following:

Proposition 5.1.15. The equivariant homeomorphism f : Λ → ∂Γ extends the

convergence dynamics of Γ on its Gromov boundary ∂Γ.

Proof. By Proposition 5.1.2, we just need to show that if γn ∈ Γ is a conical limit

sequence with γ±1
n → z± for z± ∈ ∂Γ, then ρ(γn) converges to φ−1(z+) uniformly on

compacts in Opp(φ−1(z−)).

We consider two cases:

Case 1: φ ◦ f(z+) is a parabolic point p in ∂(Γ,H). In this case, γn lies along a

quasigeodesic ray in Γ limiting to some z+ ∈ ∂H. This means that for a bounded

sequence bn ∈ Γ, we have γnbn ∈ H. Since ρ restricts to a P -Anosov representation

on H, this means that ρ(γnbn) is P -divergent with unique P -limit point ψH(z+). But

then ρ(γn) is also P -divergent with unique P -limit point ψH(z+).

Since p is a parabolic point (in particular, not a conical limit point), and γn

limits to p, the sequence γ−1
n must also limit to p. So we apply the same reasoning to

see that ρ(γ−1
n ) is also P -divergent with unique P -limit point ψH(z−). Then we are

done by Lemma 2.3.8.

Case 2: φ ◦ f(z+) is a conical limit point in ∂(Γ,H). In this case, subsequences

of both γn and γ−1
n are conical limit sequences for the action of Γ on ∂(Γ,H). So,

φ ◦ f(z−) is also a conical limit point in ∂(Γ,H). So the desired result follows directly

from the fact that ρ is an EGF representation.
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Proof of Theorem 5.1.10. Let Γ be hyperbolic, let H be a collection of subgroups

such that (Γ,H) is a relatively hyperbolic pair, and let ρ : Γ → G be an EGF

representation with respect to P , for the peripheral structure H.

Suppose that ρ restricts to a P -Anosov representation on each H ∈ H. Propo-

sition 5.1.15 implies that ρ is also an EGF representation of Γ for its empty peripheral

structure, whose boundary extension can be chosen to be a homeomorphism. Then

Theorem 5.1.7 says that ρ is relatively asymptotically embedded (again for the empty

peripheral structure on Γ). Then we apply Corollary 5.1.9 to complete the proof.

5.2 Relative quasigeodesic automata

In the next three sections, we develop the technical tools needed to prove

the main results of the chapter: namely, a relative quasigeodesic automaton for a

relatively hyperbolic group Γ acting on a flag manifold G/P , and a system of open

sets in G/P which is in some sense compatible with both the relative quasigeodesic

automaton and the action of Γ on G/P .

The basic idea is motivated by the computational theory of hyperbolic groups.

Given a hyperbolic group Γ with finite generating set S, it is always possible to find

a finite directed graph G, with edges labeled by elements of S, so that directed paths

on G starting at a fixed vertex vid ∈ G are in one-to-one correspondence with geodesic

words in Γ. The graph G is called a geodesic automaton for Γ.

Geodesic automata are really a manifestation of the local-to-global principle

for geodesics in hyperbolic metric spaces: the fact that the automaton exists means
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that it is possible to recognize a geodesic path in a hyperbolic group just by looking

at bounded-length subpaths.

In this section, we consider a relative version of a geodesic automaton. This is

a finite directed graph G which encodes the behavior of quasigeodesics in the coned-off

Cayley graph of a relatively hyperbolic group Γ. Eventually, our goal is to build such

an automaton by looking at the dynamics of the action of Γ on its Bowditch boundary

∂(Γ,H). The main result of this section is Proposition 5.2.13, which says that we

can construct such a relative quasigeodesic automaton for a relatively hyperbolic

pair (Γ,H) using an open covering of the Bowditch boundary ∂(Γ,H) which satisfies

certain technical conditions.

In this section and the next, we will work in the general context of a relatively

hyperbolic group Γ acting by homeomorphisms on a connected compact metrizable

space M , before returning to the case where M is a flag manifold G/P for the rest of

the chapter.

Throughout the rest of this section, we fix a non-elementary relatively hyper-

bolic pair (Γ,H), and let Π ⊂ ∂par(Γ,H) be a finite set, containing exactly one point

from each Γ-orbit in ∂par(Γ,H). We also fix a finite generating set S for Γ, which

allows us to refer to the coned-off Cayley graph Cay(Γ, S,P) (Definition 2.2.17).

Definition 5.2.1. A Γ-graph is a finite directed graph G where each vertex v is

labelled with a subset Tv ⊂ Γ, which is either:

• A singleton {γ}, with γ 6= id, or

• A cofinite subset of a coset gΓp for some p ∈ Π, g ∈ Γ.
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A sequence {αn} ⊂ Γ is a G-path if αn ∈ Tvn for a vertex path {vn} in G.

Remark 5.2.2. We will often refer to “the” vertex path {vn} corresponding to a

G-path {αn}, although we will never actually verify that such a vertex path is uniquely

determined by the sequence of group elements {αn} in Γ.

A vertex of a Γ-graph which is labeled by a cofinite subset of a (necessarily

unique) coset gΓp is a parabolic vertex. If v is a parabolic vertex, we let pv = g · p

denote the corresponding parabolic point in ∂par(Γ,H).

Remark 5.2.3. It will be convenient to allow parabolic vertices to be labeled by

cofinite subsets of peripheral cosets (instead of just the entire coset) when we construct

Γ-graphs using the convergence dynamics of the Γ-action on ∂(Γ,H).

Definition 5.2.4. Let z ∈ ∂(Γ,H). We say that a G-path {αn} limits to z if either:

• z ∈ ∂con(Γ,H), {αn} is infinite, and the sequence

{γn = α1 · · ·αn}∞n=1

limits to z in the compactification Γ = Γ t ∂(Γ,H), or

• z ∈ ∂par(Γ,H), {αn} is a finite G-path whose corresponding vertex path {vn}

ends at a parabolic vertex vN , and

z = α1 · · ·αN−1pvN .

Definition 5.2.5. Let G be a Γ-graph. The endpoint of a finite G-path {αn}Nn=1 is

α1 · · ·αN .
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Definition 5.2.6. A Γ-graph G is a relative quasigeodesic automaton if:

1. There is a constant D > 0 so that for any infinite G-path αn, the sequence

{γn = α1 · · ·αn} ⊂ Γ

lies Hausdorff distance at most D from a geodesic ray in Cay(Γ, S,P), based at

the identity.

2. For every z ∈ ∂(Γ,H), there exists a G-path limiting to z.

One way to think of a relative quasigeodesic automaton is that it gives us a

system for finding quasigeodesic representatives of every element in the group. More

concretely, we have the following:

Lemma 5.2.7. Let G be a relative quasigeodesic automaton. There is a constant

R > 0 so that set of endpoints of G-paths is R-dense in Γ.

Proof. If Γ is hyperbolic and H is empty, then this is a consequence of the Morse

lemma and the fact that the union of the images of all infinite geodesic rays based at

the identity in Γ is coarsely dense in Γ (see [Bog97]).

If H is nonempty, there is some R > 0 so that the union of all of the cosets

g · Γp for p ∈ Π is R-dense in Γ. So it suffices to show that for each p ∈ Π, there

is some R > 0 so that all but R elements in any coset g · Γp are the endpoints of a

G-path.
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For any such coset g · Γp, we can find a finite G-path {αn}N−1
n=1 limiting to the

vertex g · p. That is,

g · p = α1 · · ·αN−1pvN .

By definition pvN = g′ · p with TvN a cofinite subset of the coset g′Γp That is,

g · Γp = α1 · · ·αN−1g
′Γp,

so for all but finitely many γ ∈ g · Γp (depending only on the size of the complement

of TvN in g′ · Γp), we can find αN ∈ g′Γp with

α1 · · ·αN = γ.

Remark 5.2.8. In general, we do not require the set of elements in Γ labelling the

vertices of a relative quasigeodesic automaton G to generate the group Γ (although

the proposition above implies that they at least generate a finite-index subgroup).

5.2.1 Compatible systems of open sets

A relative quasigeodesic automaton always exists for any relatively hyperbolic

group (although we will not prove this fact in full generality). We will give a way to

construct a relative quasigeodesic automaton using the convergence group dynamics

of a group acting on its Bowditch boundary.

Definition 5.2.9. Suppose that Γ acts on a metrizable space M by homeomorphisms,

and let G be a Γ-graph. A G-compatible system of open sets for the action of Γ on M
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is an assignment of an open subset Uv ⊂M to each vertex v of G such that for each

edge e = (v, w) in G, for some ε > 0, we have

α ·NM(Uw, ε) ⊂ Uv (5.3)

for all α ∈ Tv.

Remark 5.2.10. If G has no parabolic vertices (so each set Tv contains a single

group element αv ∈ Γ), then (5.3) is equivalent to requiring αv · Uw ⊂ Uv for every

edge (v, w) in G. When G has parabolic vertices (so Tv may be infinite), (5.3) is in

general a stronger condition.

Proposition 5.2.11. Let G be a Γ-graph, and let {Uv : v vertex of G} be a G-

compatible system of subsets of ∂(Γ,H) for the action of Γ on ∂(Γ,H).

There is a constant D > 0 satisfying the following: let {αn} be an infinite G-

path, corresponding to a vertex path {vn}, and suppose the sequence {γn = α1 · · ·αn}

is divergent in Γ. Then for any point z in the intersection

U∞ =
∞⋂
n=1

α1 · · ·αnUvn+1 ,

the sequence γn lies within Hausdorff distance D of a geodesic ray in Cay(Γ, S,P)

tending towards z.

Proof. Fix a point z ∈ U∞, and write z = z+ and Un = Uvn . We first claim that there

is a uniform ε > 0 and a point z− ∈ ∂(Γ,H) such that

d(γ−1
n z+, γ

−1
n z−) > ε (5.4)
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for all n ≥ 0.

To prove the claim, choose a uniform ε > 0 so that for every vertex v in G, we

have N(Uv, ε) 6= ∂(Γ,H), and for every edge (v, w) in G and every α ∈ Tv, we have

α ·N(Uw, ε) ⊂ Uv. Then we choose some z− ∈ ∂(Γ,H)−N(U1, ε).

By the G-compatibility condition, we know that for any n, γnUn+1 ⊂ . . . ⊂

γ1U2 ⊂ U1, so we know that d(z+, z−) > ε.

Then, for any n ≥ 1, we have

γ−1
n z+ ∈ Un+1.

Moreover since γnN(Un+1, ε) ⊂ U1, we also have

γ−1
n z− ∈ ∂(Γ,H)−N(Un+1, ε).

So for all n we have d(γ−1
n z+, γ

−1
n z−) > ε, which establishes that (5.4) holds for all n.

Now, consider a bi-infinite geodesic c in a Gromov model Y for Γ joining

z+ and z−. The sequence of geodesics γ−1
n · c has endpoints in ∂Y = ∂(Γ,H) lying

distance at least ε apart, so each geodesic in the sequence passes within a uniformly

bounded neighborhood of a fixed basepoint y0 ∈ Y . Therefore γn ·y0 lies in a uniformly

bounded neighbood of the geodesic c.

Since γn is divergent, γny0 can only accumulate at either z+ or z−. But in fact

γny0 can only accumulate at z+—for in the construction of c above, we could have

chosen any z− in the nonempty open set ∂(Γ,H) − N(U1, ε), and since ∂(Γ,H) is

perfect there is at least one such z′− 6= z−.
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This implies that γn is a conical limit sequence in Γ, limiting to z+. Since

the distance between γn and γn+1 is bounded in Cay(Γ, S,P), the desired conclusion

follows.

Definition 5.2.12. Let G be a Γ-graph. An infinite G-path {αn} is divergent if the

sequence {γn = α1 · · ·αn} leaves every bounded subset of Γ.

We say that a Γ-graph G is divergent if every infinite G-path is divergent.

Whenever {Uv} is a G-compatible system of open sets for a Γ-graph G, one

can think of a G-path {αn} as giving a symbolic coding of a point in the intersection

α1 · · ·αnUn+1.

The following proposition gives a way to construct such a coding for a given point

z ∈ ∂(Γ,H), given an appropriate pair of open coverings of the Bowditch boundary

∂(Γ,H) compatible with a Γ-graph G.

Proposition 5.2.13. Let G be a divergent Γ-graph. Suppose that for each vertex

a ∈ G, there exist open subsets Va,Wa of ∂(Γ,H) such that the following conditions

hold:

1. The sets {Wa} give a G-compatible system of sets for the action of Γ on ∂(Γ,H).

2. For all vertices a, we have Va ⊂ Wa and Wa 6= ∂(Γ,H).

3. The sets Va give an open covering of ∂(Γ,H).

4. For every z ∈ ∂(Γ,H) and every non-parabolic vertex a such that z ∈ Va, there

is an edge (a, b) in G such that α−1
a · z ∈ Vb for {αa} = Ta.
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5. For every z ∈ ∂(Γ,H) and every parabolic vertex a such that z ∈ Va − {pa},

there is an edge (a, b) in G and α ∈ Ta such that α−1 · z ∈ Vb.

Then G is a relative quasigeodesic automaton for Γ.

zn

Wan+1

Van+1

Wan

Van

αn

an an+1

Figure 5.1: Illustration for the proof of Proposition 5.2.13. The group element αn
nests an ε-neighborhood of Wan+1 inside of Wan whenever αn · Van+1 intersects Van .

W0 W1 W2

α1 α2z0 z1 z2

a0

a1
a2

. . .

Figure 5.2: By iterating the nesting procedure backwards, we produce an infinite
G-path and a sequence of subsets intersecting in the initial point z = z0.

Proof. Proposition 5.2.11 implies that any infinite G-path lies finite Hausdorff distance

from a geodesic ray in Cay(Γ, S,P). So, we just need to show that every z ∈ ∂(Γ,H)

is the limit of a G-path.
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The idea behind the proof is to use the fact that the sets Va cover ∂(Γ,H) to

show that we can keep “expanding” a neighborhood of z in ∂(Γ,H) to construct a

path in G limiting to z. The {Va} covering tells us how to find the next edge in the

path, and the {Wa} cover gives us the G-compatible system we need to show that

the path is a geodesic.

We let A denote the vertex set of G. When a ∈ A is not a parabolic vertex,

we write Ta = {γa}.

Case 1: z is a conical limit point. Fix a ∈ A so that z ∈ Va. We take z0 = z, a0 = a,

and define sequences {zn}∞n=0 ⊂ ∂conΓ, {an}∞n=0 ⊂ A, and {αn}∞n=1 ⊂ Γ as follows:

• If an is not a parabolic vertex, then we choose αn+1 = γan . Let zn+1 = α−1
n+1 · zn.

Since conical limit points are invariant under the action of Γ, zn+1 is a conical

limit point. By condition 4, there is a vertex an+1 satisfying zn+1 ∈ Van+1 with

(an, an+1) an edge in G.

• If an is a parabolic vertex, then since zn is a conical limit point, zn 6= p for

p = pan . Then condition 5 implies that there exists some αn+1 ∈ Tan so that

α−1
n+1 · zn ∈ Van+1 for an edge (an, an+1) in G. Again, zn+1 = α−1

n+1 · zn must be a

conical limit point since ∂conΓ is Γ-invariant.

The sequence {αn} necessarily gives a G-path. By assumption the sequence

γn = α1 · · ·αn

is divergent. And by construction z = γnzn lies in γnWan for all n. So, Proposi-

tion 5.2.11 implies that γn is a conical limit sequence, limiting to z. See Figure 5.2.
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Case 2: z is a parabolic point. As before fix a ∈ A so that z ∈ Va, and take z0 = z,

a0 = a. We inductively define sequences zn, an, αn as before, but we claim that for

some finite N , aN is a parabolic vertex with zN = paN . For if not, we can build an

infinite G-path (as in the previous case) limiting to z. But then, Proposition 5.2.11

would imply that z is actually a conical limit point. So, we must have

z = γNaN = α1 · · ·αNaN

as required.

Remark 5.2.14. In a typical application of Proposition 5.2.13, it will not be possible

to construct the open coverings {Va} and {Wa} so that Va = Wa for all vertices a. In

particular we expect this to be impossible whenever ∂(Γ,H) is connected.

To conclude this section, we make one more observation about systems of

G-compatible sets as in Proposition 5.2.13.

Lemma 5.2.15. Let Γ be a relatively hyperbolic group, let G be a Γ-graph, and let

{Va}, {Wa} be an assignment of open subsets of ∂(Γ,H) to vertices of G satisfying

the hypotheses of Proposition 5.2.13.

Fix z ∈ ∂conΓ and N ∈ N. There exists δ > 0 so that if d(z, z′) < δ, then there

are G-paths {αn}, {βn} limiting to z, z′ respectively, with αi = βi for all i < N .

Proof. Let {αn} be a G-path limiting to z coming from the construction in Propo-

sition 5.2.13, passing through vertices vn. We choose δ > 0 small enough so that if
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d(z, z′) < δ, then z′ lies in the set

α1 · · ·αNVvn+1 .

Then for every i < N , we have

α−1
i α−1

i−1 · · ·α−1
1 z′ ∈ Vvi+1

.

As in Proposition 5.2.13, we can then extend {αn}N−1
n=1 to a G-path limiting to z′.

5.3 Extended convergence dynamics

Let Γ be a relatively hyperbolic group acting on a connected compact metrizable

space M . In this section, we will show that if the action of Γ on M extends the

convergence dynamics of Γ (Definition 5.0.1), then we can construct a relative

quasigeodesic automaton G and a G-compatible system of open subsets of M which

are in some sense reasonably well-behaved with respect to the group action.

To give the precise statement, we let Λ ⊂M be a closed Γ-invariant subset,

and let φ : Λ→ ∂(Γ,H) be an equivariant, surjective, and continuous map satisfying

the following: for each z ∈ ∂(Γ,H), there is an open set Cz ⊂M containing Λ−φ−1(z)

such that:

1. For any sequence γn ∈ Γ limiting conically to z, with γ−1
n → z−, any open set

U containing φ−1(z), and any compact K ⊂ Cz− , we have γn ·K ⊂ U for all

sufficiently large n.

2. For any parabolic point p, any compact K ⊂ Cp, and any open set U containing

φ−1(p), for all but finitely many γ ∈ Γp, we have γ ·K ⊂ U .
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Note that in particular, any map extending convergence dynamics satisfies

these conditions. For the rest of this section, however, we only assume that (1) and

(2) both hold for our map φ. In this context, we will show:

Proposition 5.3.1. For any ε > 0, there is a relative quasigeodesic automaton G

for Γ, a G-compatible system of open sets {Uv} for the action of Γ on M , and a

G-compatible system of open sets {Wv} for the action of Γ on ∂(Γ,H) such that:

1. For every vertex v, there is some z ∈ Wv so that

φ−1(Wv) ⊂ Uv ⊂ NM(φ−1(z), ε).

2. For every p ∈ Π, there is a parabolic vertex a with pa = p. Moreover, for every

parabolic vertex w with pw = g · p, (a, b) is an edge of G if and only if (w, b) is

an edge of G.

3. If q = g · p for p ∈ Π, a is a parabolic vertex with pa = q, and (a, b) is an edge

of G, then q ∈ Wa, Ub ⊂ Cp and gΓp ·Wb contains ∂(Γ,H)− {q}.

Remark 5.3.2. By equivariance of φ, for each p ∈ ∂parΓ, we can replace Cp with

Γp · Cp and assume that Cp is Γp-invariant (and that if q = g · p, then Cq = g · Cp).

The proof of Proposition 5.3.1 involves some technicalities, so we first outline

the general approach:

1. For each z ∈ ∂(Γ,H), we construct a pair Vz, Wz of small open neighborhoods

of z and a subset Tz ⊂ Γ so that for each α ∈ Tz, α−1 is “expanding” about
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some point in Vz. When z is a conical limit point, then we can choose a single

element αz ∈ Γ which expands about every point in Vz. When z is a parabolic

point, we may use a different element of Γ to “expand” about each u ∈ Vz−{z}.

We choose Vz, Wz, and Tz so that if α−1 is “expanding” about u ∈ Vz, and

α−1u ∈ Vy, then α−1Wz ⊃ Wy. See Figure 5.3.

α−1u
u

Wz

Vz

Wy

Vy

α−1

Figure 5.3: The group element α−1 is “expanding” about u ∈ Vz. We will construct
Vz, Wz and Vy,Wy so that if α−1u lies in Vy, then α−1Wz contains Wy. Equivalently,
we get the containment αWy ⊂ Wz illustrated earlier in Figure 5.1.

2. Using compactness of ∂(Γ,H), we pick a finite set of points a ∈ ∂(Γ,H) so that

the sets {Va} give an open covering of ∂(Γ,H). These points in ∂(Γ,H) are

identified with the vertices of a Γ-graph G. We define the edges of G in such

a way so that if, for some α ∈ Ta, α−1 expands about u ∈ Va and α−1u ∈ Vb,

then there is an edge from a to b. This ensures that {Wa} is a G-compatible

system of open subsets of ∂(Γ,H).

3. Simultaneously, we construct a G-compatible system {Ua} of open sets in M

by taking Ua to be a small neighborhood of φ−1(a). The idea is to use the

extended convergence dynamics to ensure that if, for some α ∈ Tz, α−1 “expands”
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about some u ∈ Vz and the point α−1u lies in Vy, then α−1Uz contains Uy. See

Figure 5.6 below.

4. Finally, we use Proposition 5.2.13 to prove that G is actually a relative quasi-

geodesic automaton. The open sets Va,Wa are constructed exactly to satisfy

the conditions of the proposition, so the main thing to check in this step is that

the graph G is actually divergent (using the action of Γ on M).

Throughout the rest of the section, we will work with fixed metrics on both

∂(Γ,H) and M . Critically, none of our “expansion” arguments will depend sensitively

on the precise choice of metric. That is, in the sketch above, when we say that some

group element α ∈ Γ “expands” on a small open subset U of a metric space X, we

just mean that αU is quantifiably “bigger” than U , and not that for any x, y ∈ U ,

we have d(α · x, α · y) ≥ C · d(x, y) for some expansion constant C. Lemma 5.3.5 and

Lemma 5.3.7 below describe precisely what we mean by “bigger.” The general idea is

captured by the following example.

Example 5.3.3. We consider the group PGL(2,Z). While PGL(2,Z) is virtually a

free group (and therefore word-hyperbolic), it is also relatively hyperbolic, relative to

the collection H of conjugates of the parabolic subgroup

{(
±1 t
0 1

)
: t ∈ Z

}
.

Since PGL(2,Z) acts with finite covolume on the hyperbolic plane H2, the

Bowditch boundary of the pair (PGL(2,Z),H) is equivariantly identified with ∂H2,

the visual boundary of H2. Given a non-parabolic point w ∈ ∂H2, we can find an

element of PGL(2,Z) which “expands” a neighborhood of w. There are two distinct

possibilities:
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1. Suppose w is in a small neighborhood Vz of a conical limit point z ∈ ∂H2. Then

choose some loxodromic element γ ∈ PGL(2,Z) whose attracting fixed point is

close to z. Then, if Wz is a slightly larger neighborhood of z, γ−1 ·Wz is large

enough to contain a uniformly large neighborhood of γ−1 · w. See Figure 5.4.

2. On the other hand, suppose w is in a small neighborhood Vq of a parabolic fixed

point q ∈ ∂H2, but w 6= q. We can find some element γ ∈ Γq = StabΓ(q) so

that γ−1 takes w into a fundamental domain for the action of Γq on ∂H2 − {q}.

Then, if Wq is a slightly larger neighborhood of q, γ−1 ·Wq is again large enough

to contain a uniformly large neighborhood of γ−1 · w. See Figure 5.5.

There is a slight issue with this approach: in the second case above (when w is close to

a parabolic point q), it is actually not quite good enough to “expand” a neighborhood

of w by using Γq to push w into a fundamental domain for Γq on ∂H2 − {q}. The

reason is that there might be no such fundamental domain which is actually far away

from ∂H2 − {q}. We resolve this issue by instead choosing γ to lie in a coset gΓp,

where q = gp for some p ∈ Π. Then γ−1 · w lies in a fundamental domain for Γp

on ∂H2 − {p}, which allows us to get uniform control on the size of the expanded

neighborhood γ−1Wq.

The two technical lemmas below (Lemma 5.3.5 and Lemma 5.3.7) essentially

say that one can set up this kind of expansion simultaneously on the Bowditch

boundary of our relatively hyperbolic group Γ and in a neighborhood of the Γ-

invariant set Λ ⊂ M . The precise formulation of the expansion condition found in

these two lemmas is best motivated by the proof of Proposition 5.3.10 below, which
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γ−1

z
w

γ−1w

Figure 5.4: For any point w in a sufficiently small neighborhood Vz (pink) of z, the
expanded neighborhood γ−1Wz (red) contains a uniform neighborhood of γ−1w.

shows that the “expanding” open sets we construct give rise to a G-compatible system

of open sets on a Γ-graph G.

Lemma 5.3.4. There exists ε > 0 (depending on φ and D) so that for any a, b ∈

∂(Γ,H) with d(a, b) > D, the ε-neighborhood of φ−1(a) in M is contained in Cb.

Proof. Since φ−1(z) is closed in M , such an ε > 0 exists for any fixed pair of distinct

(a, b) ∈ ∂(Γ,H)2. Then the result follows, since the space of pairs (a, b) ∈ (∂(Γ,H))2

satisfying d(a, b) > D is compact.

Lemma 5.3.5. There exists εcon > 0, δcon > 0 satisfying the following: for any ε > 0,

δ > 0 with ε < εcon, δ < δcon, and every conical limit point z, we can find:

• A group element γz ∈ Γ

• Open subsets Wz, Vz ⊂ ∂(Γ,H) with z ∈ Vz ⊂ Wz
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γ−1

qw

Kq

γ−1w

Figure 5.5: For any point w 6= q in a neighborhood Vq (pink) of the parabolic point q,
we find some γ ∈ Γq so that γ−1w lies in Kq (dark gray), a fundamental domain for
the action of Γq on ∂H2 − {q}. The expanded neighborhood γ−1Wq (red) contains a
uniform neighborhood of Kq, so γ−1Wq contains a uniform neighborhood of γ−1w.

such that:

1. diam(Wz) < δ,

2. In ∂(Γ,H), we have

N∂Γ(γ−1
z Vz, δ) ⊂ γ−1

z Wz.

3. In M we have

NM(γ−1
z φ−1(Wz), 2ε) ⊂ γ−1

z NM(φ−1(z), ε).

Remark 5.3.6. Conditions (1) and (2) together imply that for any y, z ∈ ∂conΓ, if

γ−1
z Vz intersects Vy, then γzWy ⊂ Wz. Later, we will see that condition (3) implies

that if γ−1
z Vz intersects Vy, then also γzNM(φ−1(y), 2ε) ⊂ NM(φ−1(z), ε) (giving us

the inclusion indicated by Figure 5.3).
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2ε

Wz

δ

φ

φ

γ−1
z

< δ

M

∂(Γ,H)

ε

Vz

z

Figure 5.6: The group element γ−1
z is “expanding” about Vz ⊂ ∂(Γ,H): while Wz has

diameter < δ, γ−1
z Wz contains a δ-neighborhood of γ−1

z Vz. At the same time, γ−1
z

enlarges an ε-neighborhood of φ−1(z) in M , so that it contains a 2ε-neighborhood of
γ−1
z φ−1(Wz).

Proof. For a conical limit point z, we choose a sequence γn so that for distinct

a, b ∈ ∂(Γ,H), we have γ−1
n z → a and γ−1

n w → b for any w 6= z. That is, γn limits

conically to z in Γ, and γ−1
n limits conically to b. Since the Γ-action on distinct pairs

in ∂(Γ,H) is cocompact (Proposition 2.2.8), we may assume that d(a, b) > D for a

uniform constant D > 0.

We choose εcon > 0 from Lemma 5.3.4 so that if a, b ∈ ∂(Γ,H) satisfy

d(a, b) > D/2, then a 2εcon-neighborhood of φ−1(a) is contained in Cb. Let ε > 0

satisfy ε < εcon, and let δ satisfy δ < δcon := D/4.

By the triangle inequality, we have d(c, b) > D/2 for all c ∈ B∂Γ(a, 2δ), so the

closed 2ε-neighborhood of φ−1(B∂Γ(a, 2δ)) is contained in Cb. This means that we
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can choose n large enough so that

γn ·NM(φ−1(B(a, 2δ)), 2ε)

is contained in NM(φ−1(z), ε) and

γn ·B∂Γ(a, 2δ)

is contained in B∂Γ(z, δ/2). We let γz = γn for this large n, and take

Wz = γz ·B∂Γ(a, 2δ)

and

Vz = γz ·B∂Γ(a, δ).

The next lemma is a version of Lemma 5.3.5 for parabolic points. As before, we

want to show that for a point q in the Bowditch boundary, we can find a neighborhood

Wq of q in ∂(Γ,H) with uniformly bounded diameter δ, and group elements γ ∈ Γ so

that γ−1 enlarges Wq enough to contain a 2δ-neighborhood of γ−1z, for some z close

to q. Simultaneously we want to choose γ so that γ−1 enlarges an ε-neighborhood of

φ−1(q) in a similar manner. This case is more complicated, because we need to allow

γ to depend on the point z ∈ Wq: if q is a parabolic point in ∂(Γ,H), then in general

there is not a single group element in Γ which expands distances in a neighborhood

of q.

Lemma 5.3.7. For each point p ∈ Π, there exist constants εp > 0, δp > 0 such that

for any q = g · p ∈ Γ · p, any ε < εp, and any δ < δp, we can find:
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• A cofinite subset Tq of the coset gΓp,

• Open neighborhoods Vq,Wq of ∂(Γ,H), with q ∈ Vq ⊂ Wq,

• Open neighborhoods V̂q, Ŵq of ∂(Γ,H) with V̂q ⊂ Ŵq

such that:

1. diam(Wq) < δ, and φ−1(Wq) ⊂ N(φ−1(q), ε).

2. in ∂(Γ,H), we have

N∂Γ(V̂q, δ) ⊂ Ŵq.

3. For every z ∈ Vq − {q}, there exists γ ∈ Tq with γ−1 · z ∈ V̂q.

4. For every γ ∈ Tq, we have

NM(φ−1(Ŵq), 2ε) ⊂ γ−1NM(φ−1(q), ε)

and

Ŵq ⊂ γ−1Wq.

5. NM(φ−1(Ŵq), 2ε) is contained in Cp and gΓp · V̂q contains ∂(Γ,H)− {q}.

Remark 5.3.8. If z ∈ Vq − {q} and γ−1z ∈ V̂q for some γ ∈ Tq, we think of γ−1 as

“expanding” about z. Conditions (1) and (2) imply that if γ−1z ∈ Vy for some γ ∈ Tq,

then Ŵq contains Wy, and by condition (4), γ−1Wq contains Wy. Here Vy,Wy are the

sets from either Lemma 5.3.5 or Lemma 5.3.7.
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q = g · pVq

Wq

z

p

V̂q

Ŵq

γ−1

Figure 5.7: The behavior of sets in ∂(Γ,H) described by Lemma 5.3.7. Given z ∈ Vq,
we pick an element γ ∈ gΓp so that a uniformly large neighborhood of γ−1z is
contained in γ−1Wq. We cannot pick γ−1 to expand the metric everywhere close to
q—some points in Vq get contracted close to p.

Proof. Pick a compact set K ⊂ ∂(Γ,H)− {p} so that Γp ·K covers ∂(Γ,H)− {p}.

Choose δp small enough so that the closure of N∂Γ(K, 2δp) does not contain p. Then,

for any δ < δp, we can pick

V̂q = N∂Γ(K, δ), Ŵq = N∂Γ(K, 2δ).

We can choose εp sufficiently small so that a 2εp-neighborhood of φ−1(N∂Γ(K, 2δp))

is contained in Cp. Now, fix ε < εp. We claim that for a cofinite subset Tq ⊂ g · Γp,

for any γ ∈ Tq, we have

γ · Ŵq ⊂ B∂Γ(q, δ/2) (5.5)

γ ·NM(φ−1(Ŵq), 2ε) ⊂ NM(φ−1(q), ε) (5.6)

To see that this claim holds, it suffices to verify that for any infinite sequence γn of

distinct group elements in gΓp, (5.5) and (5.6) both hold for all sufficiently large n.

We write γn = g · γ′n for γ′n ∈ Γp. Then γ′n converges uniformly to p on

compact subsets of ∂(Γ,H)−{p}, so γn converges uniformly to q on compact subsets
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of ∂(Γ,H)− {p}, implying that (5.5) eventually holds. And by our assumptions, we

know that

γ′n ·NM(φ−1(Ŵq), 2ε) ⊂ g−1 ·NM(φ−1(q), ε)

for sufficiently large n, implying that (5.6) also eventually holds.

So we can take Wq to be the set

{q} ∪
⋃
γ∈Tq

γ · Ŵq,

and Vq to be the set

{q} ∪
⋃
γ∈Tq

γ · V̂q.

To see that Wq and Vq are open we just need to verify that they each contain a

neighborhood of q. Since V̂q and Ŵq each contain K, and Γp ·K covers ∂(Γ,H)−{p},

Vq and Wq each contain the set

∂(Γ,H)−
⋃

γ∈gΓp−Tq

γK.

Since Tq is cofinite in gΓp this is an open set containing q.

5.3.1 Construction of the relative automaton

We will construct the relative automaton G satisfying the conditions of Proposi-

tion 5.3.1 by choosing a suitable open covering of ∂(Γ,H), and then using compactness

to take a finite subcover. The subsets of this subcover will be the vertices of G.

We choose constants ε > 0, δ > 0 so that ε < εcon, δ < δcon (where εcon, δcon

are the constants coming from Lemma 5.3.5) and ε < εp, δ < δp for each p ∈ Π

(where εp, δp are the constants coming from Lemma 5.3.7).
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Then:

• For each z ∈ ∂conΓ, we define Wz, Vz, γz as in Lemma 5.3.5, with parameters ε,

δ.

• For each q ∈ ∂parΓ, we define Vq,Wq, V̂q, Ŵq, and Tq as in Lemma 5.3.7, again

with parameters ε, δ.

The collections of sets {Vz : z ∈ ∂conΓ} and {Vq : q ∈ ∂parΓ} together give an open

covering of the Bowditch boundary ∂(Γ,H). So we choose a finite subcover V , which

we can write as

V = {Va : a ∈ A}

where A is a finite subset of ∂(Γ,H). We can in particular ensure that A contains

the finite set Π.

We identify the vertices of our Γ-graph G with A. For each a ∈ A, the set Ta

is either {γa} (if a is a conical limit point) or Tq (if a = q for a parabolic point q).

Then, for each a ∈ A, we define the open sets Ua by

Ua = NM(φ−1(a), ε).

The edges of the Γ-graph G are defined as follows:

• For a, b ∈ A with a ∈ ∂conΓ, there is an edge from a to b if (γ−1
a · Va) ∩ Vb is

nonempty.

• If a, b ∈ A with a ∈ ∂parΓ, there is an edge from a to b if V̂a ∩ Vb is nonempty.
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Since V is an open covering of ∂(Γ,H), and the sets V̂a and γ−1
a Va are nonempty,

every vertex of G has at least one outgoing edge. Moreover, for any parabolic point a,

the set V̂a depends only on the orbit of a in ∂(Γ,H), so G must satisfy condition (2)

in Proposition 5.3.1.

Proposition 5.3.9. For each a ∈ A, we have

φ−1(Wa) ⊂ Ua.

Proof. When a is not a parabolic vertex, Part (3) of Lemma 5.3.5 implies:

φ−1(Wa) = γaγ
−1
a φ−1(Wa) ⊂ γaN(γ−1

a φ−1(Wa), 2ε) ⊂ NM(φ−1(a), ε) = Ua.

When a is a parabolic vertex, then the claim follows directly from Part (1) of

Lemma 5.3.7.

Next we verify:

Proposition 5.3.10. The collection of sets {Wv} and {Uv} are both G-compatible

systems of open sets for the Γ-graph G.

Proof. First fix an edge (a, b) with a ∈ ∂conΓ. Since (γ−1
a Va) ∩ Vb is nonempty, part

2 of Lemma 5.3.5 implies that γ−1
a ·Wa contains the δ-neighborhood of some point

z ∈ Vb. Since diam(Wb) < δ and Vb ⊂ Wb, we can find a small ε′ > 0 so that

γaN∂Γ(Wb, ε
′) ⊂ Wa.

In particular, γ−1
a · Wa contains b, which means that NM(γ−1

a φ−1(Wa), 2ε)

contains NM(φ−1(b), 2ε), which contains NM(Ub, ε). Then, part 3 of Lemma 5.3.5

implies that γa ·NM(Ub, ε) is contained in NM(φ−1(a), ε) = Ua.
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Next fix an edge (q, b) with q ∈ ∂parΓ. From part 2 of Lemma 5.3.7, we know

that Ŵq contains the δ-neighborhood of a point z ∈ V̂q ∩ Vb. Since diam(Wb) < δ and

Vb ⊂ Wb, this means that Ŵq contains an ε′-neighborhood of Wb for some small ε′ > 0.

So part 4 of Lemma 5.3.7 implies that for any γ ∈ Tq, we have γ ·N(Wb, ε
′) ⊂ Wq.

In particular Ŵq contains b, so NM(φ−1(Ŵq), 2ε) contains NM(φ−1(b), 2ε),

which contains NM(Ub, ε). Then, part 4 of Lemma 5.3.7 implies that

γNM(Ub, ε) ⊂ NM(φ−1(q), ε) = Uq

for any γ ∈ Tq.

We observe:

Proposition 5.3.11. The G-compatible systems of open subsets {Uv} and {Wv}

satisfy (1) - (3) in Proposition 5.3.1.

Proof. Part (1) follows directly from Proposition 5.3.9, and the fact that we defined

each Ua to be the ε-neighborhood of φ−1(a). Part (2) is true by the construction of

the open covering V and the graph G. Part (3) follows by construction and from part

5 of Lemma 5.3.7.

To finish the proof of Proposition 5.3.1, we now just need to show:

Proposition 5.3.12. G is a relative quasigeodesic automaton for the pair (Γ,H).

Proof. We apply Proposition 5.2.13, using the G-compatible system {Wa} and the

sets {Va} we defined in the construction of G.
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The first three conditions of Proposition 5.2.13 are satisfied by construction.

To see that conditions 4 and 5 hold, first observe that if z ∈ Va for a non-parabolic

vertex a, then γ−1
a · z lies in some Vb and (a, b) is an edge in G. And if z ∈ Va − {pa}

for a parabolic vertex a, then part (3) of Lemma 5.3.7 says that there is some γ ∈ Ta

such that γ−1 · z ∈ V̂a. If Vb contains γ−1 · z, the edge (a, b) must be in G.

It only remains to check that G is a divergent Γ-graph. Let {αn} be an infinite

G-path, following a vertex path {vn}. The G-compatibility condition implies that

γnU vn+1 is a subset of γn−1Uvn for every n. Since M is connected and each Uv is a

proper subset of M , this inclusion must be proper. This implies that in the sequence

γn, no element can appear more than #A times and therefore γn is divergent.

Remark 5.3.13. This last step is the only part of the proof of Proposition 5.3.1 which

uses the connectedness of M . This hypothesis is likely unnecessary, but omitting it

would involve introducing additional technicalities in the construction of the sets Va,

Wa—and as stated, the proposition is strong enough for our purposes.

Note that with this hypothesis removed, Proposition 5.3.1 would imply that any

non-elementary relatively hyperbolic group has a relative quasigeodesic automaton (by

taking M = ∂(Γ,H)). As stated, the proposition only shows that such an automaton

exists when ∂(Γ,H) is connected.

We conclude this section by observing that one can slightly refine the con-

struction in Proposition 5.3.1 as follows:

Proposition 5.3.14. Fix a compact subset Z of the Bowditch boundary ∂(Γ,H).

Then, for any open set U ⊂M containing φ−1(Z), there is a relative quasigeodesic
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automaton G and a pair of G-compatible systems of open sets {Ua}, {Wa} as in

Proposition 5.3.1, additionally satisfying the following: any z ∈ Z is the limit of a

G-path {αn} (with corresponding vertex path {vn}) such that Uv1 ⊂ U .

Proof. We choose ε > 0 so that U contains NM(φ−1(Z), ε). We then construct our

relative quasigeodesic automaton G as in the proof of Proposition 5.3.1, but we also

choose a finite subset AZ ⊂ Z so that the sets Va for a ∈ AZ give a finite open

covering of Z. We can ensure that the vertex set A of G contains AZ .

Then, for any z ∈ Z, by the construction in Proposition 5.2.13, we can find a

G-path limiting to z whose first vertex is some a ∈ AZ . The corresponding open set

for this vertex is Ua = NM(φ−1(a), ε) ⊂ U .

5.4 Contracting paths in flag manifolds

Let Γ ⊂ G be a discrete relatively hyperbolic group, and let G be a Γ-graph.

Fix a pair of opposite parabolic subgroups P+, P−. Our goal in this section is to

show that under certain conditions, if {Uv} is a G-compatible system of open subsets

of G/P+ for the action of Γ on G/P+, then the sequence of group elements lying

along an infinite G-path is P+-divergent.

5.4.1 Contracting paths in Γ-graphs

Definition 5.4.1. Let Γ be a discrete subgroup of G, let G be a Γ-graph, and let

{Uv}v∈V (G) be a G-compatible system of open subsets of G/P+. We say that a G-path
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{αn}n∈N is contracting if the decreasing intersection

∞⋂
n=1

α1 · · ·αn · Uvn+1 (5.7)

is a singleton in G/P+.

Definition 5.4.2. We say that an open set Ω ⊂ G/P+ is a proper domain if the

closure of Ω lies in an affine chart Opp(ξ) ⊂ G/P+ for some ξ ∈ G/P−.

Here is the main result in this section:

Proposition 5.4.3. Let G be a Γ-graph for (Γ,H), and let {Uv}v∈V (G) be G-compatible

system of open subsets of G/P+.

If the set Uv is a proper domain for each vertex v of the automaton, then every

infinite G-path is contracting.

5.4.2 A metric property for bounded domains in flag manifolds

To prove Proposition 5.4.3, we consider a metric CΩ defined by Zimmer [Zim18]

on any proper domain Ω ⊂ G/P+. CΩ is defined so that it is invariant under the

action of G on G/P+: for any x, y in some proper domain Ω ⊂ G/P+, and any g ∈ G,

we have

CΩ(x, y) = CgΩ(gx, gy). (5.8)

In general, CΩ is not a complete metric. However, CΩ induces the standard

topology on Ω as an open subset of G/P . We will show that for a G-path {αn}, the

diameter of

α1 · · ·αnUvn+1
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with respect to CUv1 tends to zero as n→∞.

Zimmer’s construction of CΩ depends on an irreducible representation ζ :

G → PGL(V ) for some real vector space V . This is provided by a theorem of

Guéritaud-Guichard-Kassel-Wienhard.

Theorem 5.4.4 ([GGKW17], see also [Zim18], Theorem 4.6). There exists a real

vector space V , an irreducible representation ζ : G→ PGL(V ), a line ` ⊂ V , and a

hyperplane H ⊂ V such that:

1. `+H = V .

2. The stabilizer of ` in G is P+ and the stabilizer of H in G is P−.

3. gP+g−1 and hP−h−1 are opposite if and only if ζ(g)` and ζ(h)H are transverse.

The representation ζ determines a pair of embeddings ι : G/P+ → P(V ) and

ι∗ : G/P− → P(V ∗) by

ι(gP+) = ζ(g)`, ι∗(gP−) = ζ(g)H.

In this section, we will identify P(V ∗) with the space of projective hyperplanes in P(V ),

by identifying the projectivization of a functional w ∈ V ∗ with the projectivization

of its kernel.

Definition 5.4.5. Let Ω be an open subset of G/P+. The dual domain Ω∗ ⊂ G/P−

is

Ω∗ = {ν ∈ G/P− : ν is opposite to ξ for every ξ ∈ Ω}.

Note that Ω∗ is open if and only if Ω is a proper domain.
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Definition 5.4.6. Let w1, w2 ∈ P(V ∗), and let z1, z2 ∈ P(V ). The cross-ratio

[w1, w2; z1, z2] is defined by

w̃1(z̃2)w̃2(z̃1)

w̃1(z̃1)w̃2(z̃2)
,

where w̃i, z̃i are respectively lifts of wi and zi in V ∗ and V .

Remark 5.4.7. When V is two-dimensional, we can identify the projective line

P(V ∗) with P(V ) by identifying each [w] ∈ P(V ∗) with [ker(w)] ∈ P(V ). In that case,

the cross-ratio defined above agrees with the standard four-point cross-ratio on RP1,

given by

[a, b; c, d] :=
(d− a)(c− b)
(c− a)(d− b)

. (5.9)

The differences in (5.9) can be measured in any affine chart in RP1 containing

a, b, c, d. Our convention is chosen so that if we identify RP1 with R ∪ {∞}, we have

[0,∞; 1, z] = z.

Definition 5.4.8. Let Ω ⊂ G/P+ be a proper domain. We define the function

CΩ : Ω× Ω→ R by

CΩ(x, y) = sup
ξ1,ξ2∈Ω∗

log |[ι∗(ξ1), ι∗(ξ2); ι(x), ι(y)]|.

For any g ∈ G and any proper domain Ω ⊂ G/P+, we have (gΩ)∗ = (gΩ∗).

So CΩ must satisfy the G-invariance condition (5.8).

If Ω is a properly convex subset of P(V ), and ζ, ι, ι∗ are the identity maps on

PGL(V ), P(V ), and P(V ∗) respectively, then CΩ agrees with the Hilbert metric on Ω

(see Definition 2.1.9). More generally we have:
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Theorem 5.4.9 ([Zim18], Theorem 5.2). If Ω is open and bounded in an affine chart,

then CΩ is a metric on Ω which induces the standard topology on Ω as an open subset

of G/P+.

Remark 5.4.10. This particular result in [Zim18] is stated only for noncompact

simple Lie groups, but the proof only assumes that G is semisimple with no compact

factor.

Since taking duals of proper domains reverses inclusions, it follows that if

Ω1 ⊂ Ω2, then CΩ1 ≥ CΩ2 . Our goal now is to sharpen this inequality, and show:

Proposition 5.4.11. Let Ω1, Ω2 be proper domains in G/P+, such that Ω1 ⊂ Ω2.

There exists a constant λ > 1 (depending on Ω1 and Ω2) so that for all

x, y ∈ Ω1,

CΩ1(x, y) ≥ λ · CΩ2(x, y).

A consequence is the following, which in particular implies Proposition 5.4.3.

Corollary 5.4.12. Let G be a Γ-graph for a relatively hyperbolic group Γ, and let

{Uv} be a G-compatible system of open subsets of G/P+. If each Uv is a proper

domain, then there are constants λ1, λ2 > 0 so that for any G-path {αn} in the

Γ-graph G, the diameter of

α1 · · ·αn · Uvn+1

with respect to CUv1 is at most

λ1 · exp(−λ2 · n).
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Proof. For any open set U ⊂ G/P+ and A ⊂ U , we let diamU (A) denote the diameter

of A with respect to the metric CU . We choose a uniform ε > 0 so that in some fixed

metric on G/P+, every edge (v, w) in G, and every α ∈ Tv, we have

αN(Uw, ε) ⊂ Uv.

Then for each vertex set Uv, we write U ε
v = N(Uv, ε).

We take

λ1 = max{diamUεv (Uv)}.

Proposition 5.4.11 implies that there exists λv > 0 such that for all x, y ∈ Uv, we have

CUv(x, y) ≥ exp(λv) · CUεv (x, y).

Take λ2 = minv{λv}. We claim that for all n ≥ 1, we have

diamUε1
(α1 · · ·αnUvn) ≤ λ1 exp(−λ2 · (n− 1)).

We prove the claim via induction on the length of the G-path {αn}. For n = 1, the

claim is true because α1Uv2 ⊂ Uv1 . For n > 1, we can assume

λ1 exp(−λ2(n− 2)) ≥ diamUεv2
(α2 · · ·αn · Uvn+1).

Then we have

diamUεv2
(α2 · · ·αn · Uvn+1) = diamα1Uεv2

(α1 · · ·αn · Uvn+1)

≥ diamUv1
(α1 · · ·αn · Uvn+1)

≥ exp(λ2) · diamUεv1
(α1 · · ·αn · Uvn+1).
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Finally, the claim implies the corollary because we know that

diamU1(α1 · · ·αnUn+1) ≤ diamα1Uε2
(α1 · · ·αnUn+1)

= diamUε2
(α2 · · ·αnUn+1)

≤ λ1 exp(λ2(n− 2)).

So, we can replace λ1 with λ1 exp(−2λ2) to get the desired result.

We now proceed with the proof of Proposition 5.4.11. We first observe that

in the special case where Ω1,Ω2 are properly convex subsets of real projective space,

one can show the desired result essentially via the following:

Proposition 5.4.13. Let a, b, c, d be points in RP1, arranged so that a < b < c <

d ≤ a in a cyclic ordering on RP1. Then there exists a constant λ > 1, depending

only on the cross-ratio [a, b; c, d], so that for all distinct x, y ∈ (b, c), we have

| log[b, c;x, y]| ≥ λ · | log[a, d;x, y]|.

Proposition 5.4.13 is a standard fact in real projective geometry and can be

verified by a computation. Note that we allow the degenerate case a = d: in this

situation the right-hand side is identically zero for distinct x, y ∈ (b, c). We allow no

other equalities among a, b, c, d, so the cross-ratio [a, b; c, d] lies in R− {1}.

To apply Proposition 5.4.13 to our situation, we need to get some control on

the behavior of the embeddings ι : G/P+ → P(V ) and ι∗ : G/P− → P(V ∗). We do

so in the next three lemmas below.
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Lemma 5.4.14. Let x, y be distinct points in G/P+. There exists a one-parameter

subgroup gt ⊂ G such that ζ(gt) fixes ι(x) and ι(y), and acts nontrivially on the

projective line Lxy spanned by ι(x) and ι(y).

Proof. We can write x = gP+ for some g ∈ G. Let a denote a Cartan subalgebra of

the Lie algebra g of G. There is a conjugate a′ of a such that the action of exp(a′)

on G/P+ fixes both x and y (see [Ebe96], Proposition 2.21.14). So, up to the action

of G on G/P+, we can assume that x is fixed by a standard parabolic subgroup P+
θ

conjugate to P+, and that x, y are both fixed by the Cartan subgroup exp(a).

We choose Z ∈ a+ so that α(Z) 6= 0 for all α ∈ θ. Then gt = exp(tZ) is a

1-parameter subgroup of G fixing x. As t → +∞, gt is P+
θ -divergent, with unique

attracting fixed point x.

Then [GGKW17], Lemma 3.7 implies that ζ(gt) is P1-divergent, where P1 is

the stabilizer of a line in V , and ι(x) is the unique one-dimensional eigenspace of

ζ(gt) whose eigenvalue has largest modulus. And, since ζ(gt) fixes ι(x) and ι(y), ζ(gt)

preserves Lxy, and acts nontrivially since the eigenvalues of ζ(gt) on ι(x) and ι(y)

must be distinct.

Lemma 5.4.15. Let L be any projective line in P(V ) tangent to the image of the

embedding ι : G/P+ → P(V ) at a point ι(x) for x ∈ G/P+. There exists a one-

parameter subgroup gt of G so that ζ(gt) acts nontrivially on L with unique fixed

point ι(x).

Proof. Fix a sequence yn ∈ G/P+ such that yn 6= x and the projective line Ln
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spanned by ι(x) and ι(yn) converges to L. By Lemma 5.4.14, there exists Zn ∈ g so

that ζ(exp(tZn)) acts nontrivially on Ln, with fixed points ι(x) and ι(yn).

In the projectivization P(g), [Zn] converges to some [Z]. Since ζ : G→ PGL(V )

has finite kernel, there is an induced map ζ : P(g)→ P(sl(V )), which satisfies

ζ([Zn])→ ζ([Z]).

A continuity argument shows that the one-parameter subgroup ζ(exp(tZ)) acts

nontrivially on the line L, and has unique fixed point at ι(x).

Lemma 5.4.16. Let Ω ⊂ G/P+ be a proper domain, and let L be a projective line

in P(V ) which is either spanned by two points in ι(Ω), or is tangent to ι(G/P+) at a

point ι(x) for x ∈ Ω. Then

WL = {v ∈ L : v = ι∗(ξ) ∩ L for ξ ∈ Ω∗}

is a nonempty open subset of L.

Proof. WL is nonempty since Ω∗ is nonempty. So let v ∈ WL, and choose ξ ∈ Ω∗ so

that ι∗(ξ) ∩ L = v. We need to show that an open interval I ⊂ L containing v is

contained in WL.

If L is spanned by x, y ∈ ι(Ω), then Lemma 5.4.14 implies that we can find a

one-parameter subgroup gt ∈ G such that ζ(gt) fixes x and y, and acts nontrivially

on L. Since Ω∗ is open, we can find ε > 0 so that gt · ξ ∈ Ω∗ for t ∈ (−ε, ε). Since x

and y are in ι(Ω), ι∗(ξ) is transverse to both x and y, so we have v 6= x, v 6= y. Then

as t varies from −ε to ε,

ι∗(gt · ξ) ∩ L = ζ(gt) · v
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gives an open interval in WL containing v.

A similar argument using Lemma 5.4.15 shows that the claim also holds if L

is tangent to ι(Ω).

We can now prove a slightly weaker version of Proposition 5.4.11, which we

will then use to show the stronger version.

Lemma 5.4.17. Let Ω1,Ω2 be proper domains in G/P+, with Ω1 ⊂ Ω2, and let

K ⊂ Ω1 be compact. There exists a constant λ > 1 such that for all x, y ∈ K,

CΩ1(x, y) ≥ λ · CΩ2(x, y).

Proof. Since K is compact, it suffices to show that for fixed x ∈ Ω1, the ratio

CΩ1(x, y)

CΩ2(x, y)

is bounded below by some λ > 1 as y varies in K − {x}.

Let y ∈ K − {x}, and let Lxy denote the projective line spanned by ι(x) and

ι(y). Choose ξ, η ∈ Ω∗2 so that

CΩ2(x, y) = log |[ι∗(ξ), ι∗(η); ι(x), ι(y)]|.

That is, if v = ι∗(ξ) ∩ Lxy, w = ι∗(η) ∩ Lxy, we have

CΩ2(x, y) = log |[v, w; ι(x), ι(y)]| = log
|v − ι(y)| · |w − ι(x)|
|v − ι(x)| · |w − ι(y)|

,

where the distances are measured in any identification of Lxy with RP1 = R ∪ {∞}.
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We can choose an identification of Lxy with R∪{∞} so that either v < ι(x) <

ι(y) < w or v < ι(x) < w < ι(y). In either case, for any v′ ∈ (v, ι(x)) ⊂ Lxy, we have

log |[v′, w; ι(x), ι(y)]| > log |[v, w; ι(x), ι(y)]|.

We know that Ω∗2 ⊂ Ω∗1, so ξ, η lie in Ω∗1. Then Lemma 5.4.16 implies that

there exists ξ′ ∈ Ω∗1 so that v′ = ι∗(ξ′) ∩ Lxy lies in the interval (v, ι(x)) ⊂ Lxy. See

Figure 5.8.

ι(x)
ι(y)

ι∗(ξ)

ι∗(η)

ι∗(ξ′)

Lxy

v
w

v′

ι(Ω1)

ι(Ω2)
ι(x)

ι(y)

ι∗(ξ)

ι∗(η)

ι∗(ξ′)

Lxy

v

w

v′

ι(Ω1)

ι(Ω2)

Figure 5.8: We can always find ξ′ ∈ Ω∗1 close to ξ so that the absolute value of the
cross-ratio [ι∗(ξ), ι∗(ν); ι(x), ι(y)] increases when we replace ξ with ξ′. In particular
this is possible even when the sets ι(Ω1), ι(Ω2) fail to be convex (left) or even
connected (right).

Then, we have

CΩ1(x, y) ≥ log |[ι∗(ξ′), ι∗(η); ι(x), ι(y)]|

= log |[v′, w; ι(x), ι(y)]

> log |[v, w; ι(x), ι(y)]

= CΩ2(x, y).
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This shows that
CΩ1

(x,y)

CΩ2
(x,y)

> 1 for all y ∈ K − {x}. We still need to find some uniform

λ > 1 so that
CΩ1

(x,y)

CΩ2
(x,y)
≥ λ for all y ∈ K − {x}. To see this, suppose for the sake of a

contradiction that for a sequence yn ∈ K − {x}, we have

CΩ1(x, yn)

CΩ2(x, yn)
→ 1. (5.10)

Since K is compact, yn must converge to x. Up to subsequence, the sequence of

projective lines Ln spanned by ι(x) and ι(yn) converges to a line L tangent to ι(G/P+)

at ι(x).

For each yn, choose ξn, ηn ∈ Ω∗2 so that

CΩ2(x, yn) = log |[ι∗(ξn), ι∗(ηn); ι(x), ι(yn)]|.

Let vn = ι∗(ξn) ∩ Ln, wn = ι∗(ηn) ∩ Ln. Then up to subsequence ξn converges to

ξ ∈ Ω∗2, ηn converges to η ∈ Ω∗2, and vn, wn respectively converge to v = ι∗(ξ) ∩ L,

w = ι∗(η) ∩ L.

Since x is in Ω2, ι∗(ξ) and ι∗(η) are both transverse to ι(x)—so in particular

x 6= w and x 6= v (although a priori we could have v = w).

Since ξ ∈ Ω∗2 ⊂ Ω∗1, Lemma 5.4.16 implies that there exist ξ′, η′ ∈ Ω∗1 so that

for some identification of L with R ∪ {∞}, we have

v < ι∗(ξ′) ∩ L < ι(x) < ι∗(η′) ∩ L < w.

Note that this is possible even if v = w, because then we can just identify both v and

w with ∞. Let v′n = ι∗(ξ′) ∩ Ln, and let w′n = ι∗(η′) ∩ Ln. Respectively, v′n and w′n

converge to v′ = ι∗(ξ′) ∩ L and w′ = ι∗(η′) ∩ L.
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This means that the cross-ratios [vn, v
′
n;w′n, wn] converge to [v, v′;w′, w] ∈

R− {1}, and in particular are bounded away from both ∞ and 1 for all n.

We choose identifications of Ln with R ∪ {∞} so that vn < v′n < ι(x) < w′n <

wn. Since yn converges to x, for all sufficiently large n, we have v′n < ι(yn) < w′n.

Then, Proposition 5.4.13 implies that for all n, we have

log |[v′n, ι(x), ι(yn), w′n]| ≥ λ · log |[vn, ι(x), ι(yn), wn]|

for some λ > 1 independent of n. But then since

CΩ1(x, yn) ≥ log |[ι∗(ξ′), ι∗(η′); ι(x), ι(yn)]|,

we have CΩ1(x, yn)/CΩ2(x, yn) ≥ λ for all n, contradicting (5.10) above.

Proof of Proposition 5.4.11. We fix an open set Ω1.5 such that Ω1 ⊂ Ω1.5 and Ω1.5 ⊂

Ω2. Since CΩ1(x, y) ≥ CΩ1.5(x, y) for all x, y ∈ Ω1, we just need to see that there is

some λ > 1 so that

CΩ1.5(x, y)

CΩ2(x, y)
≥ λ

for all x, y ∈ Ω1. This follows from Lemma 5.4.17.

5.4.3 Contracting paths are P+-divergent

Proposition 5.4.18. Let G be a Γ-graph for a group Γ ⊂ G, and let {Uv} be a

G-compatible system of open sets of G/P+ with each Uv a proper domain.

If αn is a contracting G-path, then the sequence

γn = α1 · · ·αn

is P+-divergent with unique limit point ξ, where {ξ} =
⋂∞
n=1 γnUn+1.
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Proof. Consider the sequence of open sets

γn · Uvn+1 .

Up to subsequence, Uvn+1 is a fixed open set U ⊂ G/P+. By assumption {αn}

is a contracting path, so γn · Uvn+1 converges to a singleton {ξ}. So, we apply

Proposition 2.3.7.

5.5 A weaker criterion for EGF representations

We have now developed enough tools to be able to prove our weaker charac-

terization of EGF representations, which we restate here:

Proposition 5.1.2. Let ρ : Γ→ G be a representation of a relatively hyperbolic group,

and let Λ ⊂ G/P be a closed ρ(Γ)-invariant set, where P ⊂ G is a symmetric parabolic

subgroup. Suppose that φ : Λ→ ∂(Γ,H) is a surjective ρ-equivariant antipodal map.

Then ρ is an EGF representation if and only if for each z ∈ ∂(Γ,H), there

exists Cz ⊂ G/P , with Cz ⊂ Opp(φ−1(z)) and Λ− φ−1(z) ⊂ Cz, such that:

1. For any sequence γn ∈ Γ limiting conically to z (with γ−1
n → z−), any compact

K ⊂ Cz−, and any neighborhood U containing φ−1(z), we have ρ(γn) ·K ⊂ U

for all sufficiently large n.

2. For any parabolic point p, any compact K ⊂ Cp, and any open set U containing

φ−1(p), for all but finitely many γ ∈ Γp, we have ρ(γ) ·K ⊂ U .

Proof. The “only if” part is immediate from the definition of EGF representations
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and Proposition 5.1.1, so assume that we have a map φ : Λ→ ∂(Γ,H) satisfying the

conditions given.

Let γn be an infinite sequence in Γ, and suppose that in the compactification

Γ = Γt∂(Γ,H), we have γn → z+ and γ−1
n → z− for z± ∈ ∂(Γ,H). It suffices to show

that for any subsequence of γn, any compact K ⊂ Cz− , and any open U containing

φ−1(z+), we can find a further subsequence such that γnK ⊂ U . So, we can freely

extract subsequences throughout this proof.

We consider two cases:

Case 1: γn is unbounded in the coned-off Cayley graph Cay(Γ, S,P). Our assumptions

imply that we can construct a relative quasigeodesic automaton G, together with

a G-compatible system of open sets {Uv} for the action of Γ on G/P satisfying the

conditions of Proposition 5.3.1. Since the map φ : Λ → ∂(Γ,H) is antipodal, and

antipodality is an open condition, the first condition of Proposition 5.3.1 means we

can ensure that each Uv is a proper domain in G/P .

By Lemma 5.2.7, we may assume that for a bounded sequence bn ∈ Γ, γnbn

is the endpoint of a finite G-path {α(n)
m }Mn

m=1. Up to subsequence bn is a constant b,

independent of n.

Let {vnm} be the vertex path associated to {α(n)
m }. Up to subsequence vnMn+1

is a fixed vertex v, and vn1 is a fixed vertex v′. Let U ε
v′ be an ε-neighborhood of Uv′ .

Since the sequence Mn is unbounded, Corollary 5.4.12 implies that the diameter

of

ρ(γnb) · Uv = ρ(α
(n)
1 ) · · · ρ(α

(n)
Mn

)Uv
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with respect to the metric CUε
v′

tends to zero, exponentially in n. Since this sequence

of sets lies in the compact set Uv′ ⊂ U ε
v′ , up to subsequence it must converge to a

singleton {ξ} in G/P . In fact ξ must lie in Λ, because Λ is compact and ξ is the

limit of a sequence of points in the sequence of nonempty closed sets (ρ(γnb) ·Uv)∩Λ.

Then, since ρ(γn) · ρ(b)Uv converges to {ξ}, Proposition 2.3.7 implies that ρ(γn) is

P -divergent with unique P -limit ξ. The exact same agument applied to γ−1
n implies

that ρ(γ−1
n ) is also P -divergent, with unique P -limit ξ− ∈ Λ.

Then, Lemma 2.3.8 implies that ρ(γn) converges to ξ uniformly on compacts in

Opp(ξ−). But, since γn converges to z+ uniformly on compacts in ∂(Γ,H)−{z−}, and

φ is equivariant and surjective, the only possibility is ξ ∈ φ−1(z+) and ξ− ∈ φ−1(z−).

Then we are done, since by assumption Cz− is contained in Opp(ξ−).

Case 2: γn is bounded in Cay(Γ, S,P). We can write γn as an alternating product

γn = g
(n)
1 h

(n)
1 · · · g

(n)
k h

(n)
k g

(n)
k+1,

where g
(n)
i is bounded in Γ, and h

(n)
i lies in Γpni for a parabolic point pni ∈ Π. Without

loss of generality, the h
(n)
i are unbounded in Γ as n→∞. Up to subsequence we can

assume that g
(n)
i = gi and pni = pi (independent of n). Since Π contains exactly one

representative of each parabolic orbit, we can also assume that gi+1pi+1 6= pi for any

i.

We claim that γn converges to z+ = g1p1, γ−1
n converges to z− = g−1

k+1pk, and

for any compact K ⊂ Cz− and open U containing φ−1(z+), for large n, we have

γn ·K ⊂ U .
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Fix such a compact K and open U . We will prove the claim by inducting on k.

When k = 1, then p = p1 = pk, and γn = g1hng2 for hn ∈ Γp and g1, g2 ∈ Γ fixed. The

distance between hng2 and hn is bounded in any word metric on Γ, so hng2 converges

to p in Γ and g1hng2 converges to g1p = z+. We also know that K ⊂ Cz− = Cg−1
2 p,

so hng2K eventually lies in a small neighborhood of φ−1(p) by condition (2) of our

hypotheses. Then g1hng2K lies in any small neighborhood of φ−1(g1p) = φ−1(z+).

When k > 1, we consider the sequence

γ′n = g2h
(n)
2 · · · gkh

(n)
k gk+1.

Inductively we can assume that for large n, γ′n → g2p2 and ρ(γ′n) ·K is a subset of an

arbitrarily small neighborhood of φ−1(g2p2). Then since p1 6= g2p2, for large enough

n, ρ(γ′n) ·K is a compact subset of Cp1 . So our hypotheses imply that for large n,

ρ(γn) ·K = ρ(g1h
(n)
1 )ρ(γ′n) ·K ⊂ U.

5.6 Relative stability

In this section we prove the main relative stability property for EGF represen-

tations (Theorem 5.6.2).

5.6.1 Deformations of EGF representations

In general, the set of EGF representations is not an open subset of Hom(Γ, G).

However, it is relatively open in a subspace of Hom(Γ, G) where we restrict the
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deformations of the peripheral subgroups appropriately. Roughly speaking, we

want to consider subspaces W ⊂ Hom(Γ, G) where the dynamical behavior of the

peripheral subgroups changes continuously under deformation. That is, if ρt is a

small deformation of a representation ρ0, where ρ0(Γp) attracts points towards Λp at a

particular “speed,” then we want ρt(Γp) to attract points towards a small deformation

of Λp at a similar “speed.”

The precise condition is the following:

Definition 5.6.1. Let ρ0 : Γ→ G be an EGF representation with boundary extension

φ : Λ→ ∂(Γ,H), and let W ⊂ Hom(Γ, G) contain ρ0.

We say that W is peripherally stable at (ρ0, φ) if for every p ∈ Π, every open

set U containing φ−1(p), every compact set K ⊂ Cp, and every cofinite set T ⊂ Γp

such that

ρ0(T ) ·K ⊂ U,

there is an open set W ′ ⊂ W containing ρ0, such that for every ρ′ ∈ W ′, we have

ρ′(T ) ·K ⊂ U.

The following is the main result of this section.

Theorem 5.6.2. Let ρ : Γ→ G be EGF with respect to P , let φ : Λ→ ∂(Γ,H) be a

boundary extension, and let W ⊆ Hom(Γ, G) be peripherally stable at (ρ, φ). For any

compact subset Z of ∂(Γ,H) and any open set V ⊂ G/P containing φ−1(Z), there is

an open subset W ′ ⊂ W containing ρ such that each ρ′ ∈ W ′ is EGF with respect to

P , and has an EGF boundary extension φ′ satisfying φ′−1(Z) ⊂ V .
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Remark 5.6.3. In [Bow98], Bowditch explored the deformation spaces of geomet-

rically finite groups Γ ⊂ PO(d, 1), and gave an explicit discription of semialgebraic

subspaces of Hom(Γ,PO(d, 1)) in which small deformations of Γ are still geometrically

finite.

Bowditch’s deformation spaces are peripherally stable, so it seems desirable to

find a general algebraic description of peripherally stable subspaces.

Even in PO(d, 1), the question is subtle, however. Bowditch also gives examples

of geometrically finite representations ρ : Γ→ PO(d, 1) (for d ≥ 4) and deformations

ρt of ρ in Hom(Γ,PO(d, 1)) such that the restriction of ρt to each cusp group in Γ is

discrete, faithful, and parabolic, but ρt is not even discrete; further examples exist

where the deformation is discrete, but not geometrically finite.

The simplest examples of peripherally stable deformations are cusp-preserving

deformations.

Definition 5.6.4. Let (Γ,H) be a relatively hyperbolic pair, and let ρ : Γ→ G be a

representation. The space of cusp-preserving representations

Homcp(Γ, G,H, ρ)

is the set of representations ρ′ : Γ→ G such that for each peripheral subgroup H ∈ H,

we have

ρ′|H = g · ρ|H · g−1

for some g ∈ G (which may depend on H).
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It is immediate from the definition that if ρ = ρ0 is EGF, and ρt : Γ→ G is a

continuous family of representations such that ρt(Γp) = gtρ0(Γp)g
−1
t for a path gt ∈ G

with g0 = id, then the set {ρt} is peripherally stable at ρ0. So one consequence of

Theorem 5.6.2 is the following:

Corollary 5.6.5. Let ρ : Γ → G be an EGF representation. Then there is a

neighborhood of ρ in

Homcp(Γ, G,H, ρ)

consisting of EGF representations.

There are also often examples of peripherally stable deformations which are

not cusp-preserving.

Example 5.6.6. Let B ∈ SL(d,R) be a d-dimensional Jordan block with eigenvalue

1 and eigenvector v, and let A ∈ SL(d+ 2,R) be the block matrix
(
B

1
1

)
.

Although [v] is not quite an attracting fixed point of A, it is still an “attracting

subspace” in the sense that if K is any compact subset of RPd+1 which does not

intersect a fixed hyperplane of A, then An·K converges to {[v]} (see Proposition 2.1.17).

Via a ping-pong argument, one can use this “attracting” behavior to show that for

some k ≥ 1 and some M ∈ SL(d + 2,R), the group Γ generated by α = Ak and

β = MAkM−1 is a discrete free group with free generators α, β. The group Γ is

hyperbolic relative to the subgroups 〈α〉, 〈β〉, and the inclusion Γ ↪→ SL(d+ 2,R) is

EGF with respect to P1,d+1 (the stabilizer of a line in a hyperplane in Rd+2).

Here, there are peripherally stable deformations of Γ which change the Jordan

block decomposition of A. For instance, consider a continuous path At : [0, 1] →
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SL(d+ 2,R) given by At =
(
Bt

1
1

)
, where B0 = B and Bt is a diagonalizable matrix

in SL(d,R). For small values of t, the group Γt generated by αt = Akt and β is still

discrete and freely generated by αt and β—since the “attracting” fixed points of

At deform continuously with t, the same exact ping-pong setup works for all small

t ≥ 0. And indeed the path in Hom(Γ, SL(d+ 2,R)) determined by the path At is a

peripherally stable subspace.

On the other hand, consider the path A′t =
(
B
et

e−t

)
, and let α′t = A′kt . In

this case the corresponding subspace of Hom(Γ, SL(d + 2,R)) is not peripherally

stable: while the group generated by α′t is still discrete, the attracting fixed points of

A′t do not deform continuously in t. So, there is no way to use the ping-pong setup

for Γ to ensure that Γ′t = 〈α′t, β〉 is a discrete group.

Example 5.6.7. Here is a somewhat more interesting example of a non-peripherally

stable deformation. Let M be a finite-volume noncompact hyperbolic 3-manifold,

with holonomy representation ρ : π1M → PSL(2,C) (so there is an identification

M = H3/ρ(π1M)). Then π1M is hyperbolic relative to the collection C of conjugates

of cusp groups (each of which is isomorphic to Z2), and the representation ρ is

geometrically finite (in particular, EGF).

In this case, for any sufficiently small nontrivial deformation ρ′ of ρ in the

character variety Hom(π1M,PSL(2,C))/PSL(2,C), the restriction of ρ′ to some cusp

group C ∈ C either fails to be discrete or has infinite kernel. So Hom(π1M,PSL(2,C))

is not peripherally stable, because any sufficiently small deformation of ρ inside of a

peripherally stable subspace must have discrete image and finite kernel on each C ∈ C.
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This is true despite the fact that arbitrarily small deformations of ρ are associated to

complete hyperbolic structures on Dehn fillings of M .

The main ingredient in the proof of Theorem 5.6.2 is the relative quasigeodesic

automaton G and the associated G-compatible system of open sets {Uv} we constructed

in Proposition 5.3.1. The following proposition is immediate from the definition of

peripheral stability:

Proposition 5.6.8. Let ρ : Γ→ G be an EGF representation with boundary extension

φ, and let W ⊂ Hom(Γ, G) be a subspace which is peripherally stable at (ρ, φ).

If G is a relative quasigeodesic automaton for Γ, and {Uv} is a G-compatible

system of open subsets of G/P for ρ(Γ), then there is an open subset W ′ ⊂ W

containing ρ such that for every ρ′ ∈ W ′, {Uv} is also a G-compatible system of open

sets for ρ′(Γ).

Theorem 5.6.2 then follows from a kind of converse to Proposition 5.3.1: we

will show that we can reconstruct a map extending the convergence dynamics of Γ

from the G-compatible system {Uv}.

5.6.2 An equivariant map on conical limit points

For the rest of this section, we let ρ : Γ→ G be a representation which is EGF

with respect to a symmetric parabolic subgroup P ⊂ G. We let φ : Λ→ ∂(Γ,H) be a

boundary extension for ρ, and assume that W ⊂ Hom(Γ, G) is peripherally stable at

(ρ, φ). We also let Z be a compact subset of ∂(Γ,H), and let V ⊂ G/P be an open
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subset containing φ−1(Z). We again fix a finite subset Π ⊂ ∂par(Γ,H), containing

one point from every Γ-orbit in ∂par(Γ,H).

Using Proposition 5.3.1, we can find a relative quasigeodesic automaton G and

G-compatible system {Uv} of open subsets of G/P for ρ(Γ). Using Proposition 5.3.14,

we can ensure that for any z ∈ Z, there is a G-path {αn} limiting to z (with vertex

path {vn}) so that Uv1 is contained in V .

Antipodality of the map φ implies that for each z ∈ ∂(Γ,H), each fiber φ−1(z)

is a closed subset of some affine chart in G/P . So, we can also assume that Uv is a

proper domain for each vertex v of G. In fact, by way of the following lemma, we can

assume even more:

Lemma 5.6.9. Let ρ be an EGF representation with boundary map φ : Λ→ ∂(Γ,H).

For any δ > 0, we can find a relative quasigeodesic automaton G with G-

compatible system {Uv} of open sets in G/P as in Proposition 5.3.1, so that for any

x, y ∈ ∂(Γ,H) with d(x, y) > δ, if φ−1(x) ⊂ Uv and φ−1(y) ⊂ Uw, then Uv and Uw

are opposite.

Proof. We choose ε > 0 so that if d(v, w) > δ/2 for v, w ∈ ∂(Γ,H), then the closed

ε-neighborhoods of

φ−1(v), φ−1(w)

are opposite. This is possible for a fixed pair v, w ∈ ∂(Γ,H) since antipodality is an

open condition, and φ−1(v), φ−1(w) are opposite compact sets. Then we can pick a

uniform ε for all pairs since the the subset {(u, v) ∈ (∂(Γ,H))2 : d(u, v) > δ/2} is

compact.
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Consider G-compatible systems of open subsets {Uv} and {Wv} for the action

of Γ on G/P and ∂(Γ,H), coming from Proposition 5.3.1. We can ensure that for

each vertex a, the diameter of Wa is at most δ/4, and Ua ⊂ N(φ−1(w), ε) for some

w ∈ Wa.

If x, y ∈ ∂(Γ,H) satisfy d(x, y) > δ, and x ∈ Wa, y ∈ Wb, we have

d(v, w) > δ/2

for all v ∈ Wa, w ∈ Wb.

Then, if φ−1(x) ⊂ Ua and φ−1(y) ⊂ Ub, we have

Ua ⊂ N(φ−1(v), ε), Ub ⊂ N(φ−1(w), ε)

for v ∈ Wa, w ∈ Wb with d(v, w) > δ/2. By our choice of ε, the closures of

N(φ−1(w), ε) and N(φ−1(v), ε) are opposite.

Using cocompactness of the action of Γ on the space of distinct pairs in ∂(Γ,H),

we know that there exists some fixed δ > 0 such that for any distinct z1, z2 ∈ ∂(Γ,H),

we can find some γ ∈ Γ such that d(γz1, γz2) > δ. Then, in light of Lemma 5.6.9, we

can make the following assumption:

Assumption 5.6.10. For any z1, z2 ∈ ∂(Γ,H) satisfying d(z1, z2) > δ, if φ−1(z1) ⊂

Uv and φ−1(z2) ⊂ Uw for v, w vertices of G, then Uv and Uw are opposite.

With our relative quasigeodesic automaton G and compatible system of open

sets {Uv} fixed, we now choose an open subset W ′ ⊂ W so that for any ρ′ ∈ W ′,
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{Uv} is also a G-compatible system for the action of ρ′(Γ) on G/P . Our main goal

for the rest of this section is to show that any ρ′ ∈ W ′ is an EGF representation. So,

we fix some ρ′ ∈ W ′.

Let Path(G) denote the set of infinite G-paths. Proposition 5.4.3 implies that

every path in Path(G) is contracting for the ρ′-action, so we have a map

ψρ′ : Path(G)→ G/P,

where the path {αn} maps to the unique element of

∞⋂
n=1

ρ′(α1) · · · ρ′(αn)Uvn+1 .

Lemma 5.6.11. The map ψρ′ : Path(G)→ G/P induces an equivariant map

ψρ′ : ∂conΓ→ G/P.

Proof. We first need to see that ψρ′ is well-defined, i.e. that if z is a conical limit

point and {αn}, {βn} are G-paths limiting to z, then ψρ′({αn}) = ψρ′({βn}).

Let

γn = α1 · · ·αn, ηm = β1 · · · βm.

We can use Proposition 5.2.11 to see that γn and ηm lie within bounded Hausdorff

distance of a geodesic in Cay(Γ, S,P) limiting to z, so there is a fixed D so that for

m,n tending to infinity,

d(γn, ηm) < D

in the Cayley graph of Γ. Proposition 5.4.18 implies that ρ′(γn) and ρ′(ηm) are

both P -divergent sequences and each have a unique P -limit point in G/P , given
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by ψρ′({αn}), ψρ′({βm}), respectively. Then, Lemma 4.23 in [KLP17] implies that

because ρ′(γn) = ρ′(ηm)gn for a bounded sequence gn ∈ G, the P -limit points of ρ′(γn)

and ρ′(ηn) must agree and therefore ψρ′({αn}) = ψρ′({βm}).

Next we observe that ψρ′ is equivariant. Fix a finite generating set S for Γ. It

suffices to show that ψρ′(s · z) = ρ′(s) · ψρ′(z) for all s ∈ S.

Let {αn} be a G-path limiting to some z ∈ ∂conΓ, and consider the sequence

γ′n = sα1 · · ·αn.

Again, Proposition 5.2.11 implies that γ′n lies bounded Hausdorff distance from

a geodesic in Cay(Γ, S,P), which must limit to s · z. So if we fix a G-path βn limiting

to s · z, the same argument as above shows that ψρ′({βn}) = ρ′(s) · ψρ′({αn}).

It will turn out that ψρ′ is also both continuous and injective. However, we do

not prove this directly.

5.6.3 Extending ψρ′ to parabolic points

We want to extend the map ψρ′ : ∂conΓ → G/P to the entire Bowditch

boundary ∂(Γ,H). To do so, we need to view ψρ′ as a map to the set of closed subsets

of G/P .

The first step is to define ψρ′ on the finite set Π ⊂ ∂parΓ. For any vertex v in

G, we consider the set

Bv =
⋃

(v,y) edge in G

Uy.
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Then, for each p ∈ Π, we pick a parabolic vertex w so that pw = p. We define Λ′p to

be the closure of the set of accumulation points of sequences of the form ρ′(γn) · x,

for x ∈ Bw and γn distinct elements of Γp. Part (3) of Proposition 5.3.1 guarantees

that Bw ⊂ Cp, and G-compatiblity of the system {Uv} for the ρ′(Γ)-action on G/P

implies that Λ′p ⊂ Uw. By construction, Λ′p is invariant under the action of ρ(Γp).

Next, given a parabolic point q ∈ ∂parΓ, we write q = g · p for p ∈ Π, and then

define

ψρ′(q) := ρ′(g)Λ′p.

Since Λ′p is Γp-invariant and Γp is exactly the stabilizer of p, this does not depend on

the choice of coset representative in gΓp. Moreover ψρ′ is still ρ′-equivariant.

In addition, if v is any parabolic vertex with parabolic point pv = g · p for

p ∈ Π, part (2) of Proposition 5.3.1 ensures that Bv = Bw for any parabolic vertex w

with pw = p. So, ρ′(g) · Λ′p is exactly the closure of the set of accumulation points of

the form ρ′(gγn) · x for sequences γn ∈ Γp and x ∈ Bv. Then G-compatibility implies

that ψρ′(pv) = ρ(g)Λ′p is a subset of Uv.

Remark 5.6.12. There is a natural topology on the space of closed subsets of G/P ,

induced by the Hausdorff distance arising from some (any) choice of metric on G/P .

We emphasize that the map ψρ′ is not necessarily continuous with respect to this

topology.

Ultimately we want to use ψρ′ to define a map extending the convergence

dynamics of Γ, so we will need to also define the sets C ′z for each z ∈ ∂(Γ,H). For
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now, we only define C ′p for p ∈ Π: this will be the set

⋃
γ∈Γp

ρ′(γ)Bw.

We can immediately observe:

Proposition 5.6.13. C ′p is ρ′(Γp)-invariant. Moreover, for any infinite sequence

γn ∈ Γp, any compact K ⊂ C ′p, and any open U ⊂ G/P containing Λ′p, for sufficiently

large n, ρ′(γn) ·K lies in U .

Proof. Γp-invariance follows directly from the definition.

Fix a compact K ⊂ C ′p and an open U ⊂ G/P containing Λ′p. K is contained

in finitely many sets ρ′(γ)Bw for γ ∈ Γp, so any accumulation point of ρ′(γn)x for

x ∈ K and γn ∈ Γp lies in Λ′p. In particular, for sufficiently large n, γnx lies in U , and

since K is compact we can pick n large enough so that γnx ∈ U for all x ∈ K.

We next want to use ψρ′ to define an antipodal extension from a subset of

G/P to ∂(Γ,H).

Lemma 5.6.14. For any z ∈ ∂(Γ,H), if {αn} is a G-path limiting to z with corre-

sponding vertex path {vn}, then φ−1(z) and ψρ′(z) are both subsets of Uv1.

Proof. If z is a conical limit point, then this follows immediately from Proposi-

tion 5.2.11 and the definition of ψρ′ . On the other hand, if z is a parabolic point,

then z = α1 · · ·αNpv, where v is a parabolic vertex at the end of the vertex path
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{vn}. By part (3) of Proposition 5.3.1, we have pv ∈ Wv and thus φ−1(pv) ⊂ Uv. By

ρ-equivariance of φ we have

φ−1(z) = ρ(α1 · · ·αN)φ−1(pv),

so by G-compatibility we have φ−1(z) ⊂ Uv1 . On the other hand, we have constructed

ψρ′ so that ψρ′(pv) ⊂ Uv, so ρ′-equivariance of ψρ′ and G-compatibility also show that

ψρ′(z) ⊂ Uv1 .

Lemma 5.6.15. For any two distinct points z1, z2 in ∂(Γ,H), the sets

ψρ′(z1), ψρ′(z2)

are opposite (in particular disjoint).

Proof. We know that for any distinct z1, z2 > 0, we can find γ ∈ Γ so that

d(γz1, γz2) > δ. So, since ψρ′ is ρ′-equivariant, we just need to show that if

z1, z2 ∈ ∂(Γ,H) satisfy d(z1, z2) > δ, then ψρ′(z1) is opposite to ψρ′(z2).

Let {αn}, {βn} be G-paths respectively limiting to points z1, z2 ∈ ∂(Γ,H) with

d(z1, z2) > δ, with corresponding vertex paths {vn} and {wn}. By Lemma 5.6.14, we

must have φ−1(z1) ⊂ Uv1 and φ−1(z2) ⊂ Uw2 , so under Assumption 5.6.10, we know

that Uv1 and Uw1 are opposite. But then we are done since Lemma 5.6.14 also implies

that ψρ′(z1) ⊂ Uv1 and ψρ′(z2) ⊂ Uw1 .

5.6.4 The boundary set of the deformed representation

We define our candidate boundary set Λ′ ⊂ G/P by

Λ′ =
⋃

z∈∂(Γ,H)

ψρ′(z).
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We then have an equivariant map

φ′ : Λ′ → ∂(Γ,H),

where φ′(x) = z if x ∈ ψρ′(z). Lemma 5.6.15 implies that φ′ is well-defined and

antipodal. It is necessarily both surjective and ρ′-equivariant, and its fibers are either

singletons or translates of the sets Λ′p for p ∈ Π.

Lemma 5.6.16. For any z ∈ Z, we have φ′−1(z) ⊂ V .

Proof. Recall that we used Proposition 5.3.14 to construct our automaton so that for

any z ∈ Z, there is a G-path limiting to z with vertex path {vn} such that Uv1 ⊂ V .

Then Lemma 5.6.14 implies φ′−1(z) ⊂ V .

Lemma 5.6.17. Λ′ is compact.

Proof. Fix a sequence yn ∈ Λ′, and let xn = φ′(yn). Since ∂(Γ,H) is compact, up to

subsequence xn → x. We want to see that a subsequence of yn converges to some

y ∈ Λ′. We consider two possibilities:

Case 1: x is a parabolic point. We can write x = g · p, where p ∈ Π. Let w be a

parabolic vertex with pw = p.

Choose an edge (w, v) in G. Part (3) of Proposition 5.3.1 implies that we can

find a compact subset K ⊂ Wv such that Γp ·K = ∂(Γ,H) − {p}. So, we can find

γn ∈ Γp so that

zn = γ−1
n g−1xn ∈ K.
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Then, since φ−1(Wv) ⊂ Uv, by definition C ′p contains φ′−1(K), and in particular

C ′p contains φ′−1(zn) for infinitely many zn.

Then using Proposition 5.6.13, we know that up to subsequence,

ρ′(γn)φ′−1(zn) = ρ′(γn)φ′−1(γ−1
n g−1xn)

converges to a compact subset of Λ′p, which means that

yn ∈ ρ′(g)ρ′(γn)φ′−1(γ−1
n g−1xn)

subconverges to a point in ρ′(g)Λ′p.

Case 2: x is a conical limit point. We want to show that any sequence in φ′−1(xn)

limits to φ′−1(x), so fix any ε > 0. Using Corollary 5.4.12, we can choose N so that

if {αm} is any G-path limiting to x, with corresponding vertex path {vm}, then the

diameter of

ρ′(α1 · · ·αN)UvN+1

is less than ε with respect to a metric on Uv1 . We fix such a G-path {αm}. Then, we

use Lemma 5.2.15 to see that for sufficiently large n, there is a G-path {βnm} limiting

to xn with βi = αi for i ≤ N . Thus the Hausdorff distance (with respect to CUv1 )

between φ′−1(xn) and φ′−1(x) is at most ε. Since φ′−1(xn) and φ′−1(x) both lie in the

compact set ρ′(α1)Uv2 ⊂ Uv1 , this proves the claim.

Lemma 5.6.18. φ′ is continuous and proper.
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Proof. Since Λ′ is compact, we just need to show continuity. Fix y ∈ Λ′ and a

sequence yn ∈ Λ′ approaching y. We want to show that φ′(yn) approaches φ′(y) = x.

Suppose otherwise. Since ∂(Γ,H) is compact, up to a subsequence zn = φ′(yn)

approaches z 6= x. Using the equivariance of φ′, and cocompactness of the Γ-action on

distinct pairs in ∂(Γ,H), we may assume that d(x, z) > δ. For sufficiently large n, we

have d(x, zn) > δ as well. Then, as in the proof of Lemma 5.6.15, by Assumption 5.6.10

we know that for any vertices v, w in G such that Uv contains ψρ′(x) and Uw contains

ψρ′(zn), the intersection Uv ∩ Uw is empty.

But by definition of φ′, we have

y ∈ ψρ′(x) ⊂ Uv, yn ∈ ψρ′(zn) ⊂ Uw

for vertices v, w in G. This contradicts the fact that yn → y.

5.6.5 Dynamics on the deformation

To complete the proof of Theorem 5.6.2, we just need to show:

Proposition 5.6.19. φ′ extends the convergence dynamics of Γ.

Proof. We will apply Proposition 5.1.2, and show separately that the required dy-

namics hold for conical limit sequences and sequences in peripheral subgroups.

For each conical limit point z, we define C ′z = Opp(φ′−1(z)). Antipodality of

φ′ implies that C ′z contains Λ′ − φ′−1(z) for all z ∈ ∂conΓ.

First suppose that γn is a sequence limiting conically to a point z ∈ ∂(Γ,H),

and that γ−1
n limits conically to some z− ∈ ∂(Γ,H).
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Up to subsequence, γn lies a bounded distance away from the image of a

G-path {αn} limiting to z. Proposition 5.4.18 implies that ρ′(γn) is P -divergent,

with unique P -limit φ′−1(z). Similarly, ρ′(γ−1
n ) is P -divergent, with unique P -limit

φ′−1(z−). Then Lemma 2.3.8 implies that ρ′(γn) converges uniformly to φ′−1(z) on

compacts in C ′z− .

For each parabolic point q, we write q = g · p for p ∈ Π, and then take

C ′q = ρ′(g) · C ′p. Proposition 5.6.13 says that for any p ∈ Π, any compact K ⊂ C ′p,

and any open U ⊂ G/P containing Λ′p, if γn is an infinite sequence in Γp, then

ρ′(γn) ·K ⊂ U for sufficiently large n. Then, since Γq = gΓpg
−1, the same is true for

any parabolic point q.

So, we just need to check that for each p ∈ Π, C ′p contains Λ′ − Λ′p. As in the

proof of Lemma 5.6.17, we can find a compact subset K ⊂ ∂(Γ,H) − {p} so that

ΓpK = ∂(Γ,H)− {p} and C ′p contains φ′−1(K). But then since C ′p is ρ′(Γp)-invariant

(by Proposition 5.6.13), we have

ρ′(Γp) · φ′−1(K) = φ′−1(∂(Γ,H)− {p}) ⊂ C ′p.

Remark 5.6.20. The definition of the set Λ′ and the map φ′ immediately imply

that the fibers of the deformed boundary extension φ′ : Λ′ → ∂(Γ,H) satisfy the

conclusions of Proposition 5.1.4: the fiber over each conical limit point is a singleton,

and the fiber over each parabolic point p is the closure of the accumulation sets of

Γp-orbits in C ′p. So, we obtain Proposition 5.1.4 by taking W to be the singleton {ρ},

and following the proof of Theorem 5.6.2 (using Cp for C ′p throughout).
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Chapter 6

Examples of EGF representations

The last chapter of the thesis is devoted to examples of EGF representations.

All of the examples we provide ultimately derive from convex real projective structures

on manifolds.

We provide three families of examples in this chapter. First, in Section 6.1, we

prove that convex cocompact projective structures give rise to EGF representations.

To be precise, we prove:

Theorem 6.0.1. Let (Γ,H) be a relatively hyperbolic pair, and let ρ : Γ→ SL(d+1,R)

be a group acting convex cocompactly on a properly convex domain Ω ⊂ RPd. Suppose

that each peripheral subgroup H ∈ H also acts convex cocompactly on Ω.

Then ρ is EGF with respect to P1,d, where P1,d is the stabilizer of a flag of

type (1, d) in Rd+1.

In Section 6.2, we show that convex projective manifolds with generalized

cusps also give rise to EGF representations.

Finally, in Section 6.3, we provide new examples of EGF representations by

taking symmetric powers of certain projectively convex cocompact representations.

We also show that for these examples, the entire space Hom(Γ, G) is peripherally
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stable. The main theorem of the previous chapter then implies that any sufficiently

small deformation of one of these representations is still EGF.

6.1 Projective convex cocompact representations

Our first goal is to prove the following theorem, which shows that the relatively

hyperbolic projectively convex cocompact groups explored in Chapter 4 fit into the

framework of EGF representations.

Theorem 6.1.1. Let (Γ,H) be a relatively hyperbolic pair, and let ρ : Γ→ SL(d+1,R)

be a group acting convex cocompactly on a properly convex domain Ω ⊂ RPd. Then ρ

is EGF with respect to P1,d, where P1,d is the stabilizer of a flag of type (1, d) in Rd+1.

The idea behind Theorem 6.1.1 is that the quotient map ΛΩ(Γ)→ [ΛΩ(Γ)]H '

∂(Γ,H) discussed in Section 4.3 should induce an EGF boundary extension. Since

EGF representations are defined for symmetric parabolic subgroups, we need to

augment this quotient map, and define it on an appropriate space of flags.

Definition 6.1.2. Let Γ ⊆ Aut(Ω).

1. The dual full orbital limit set Λ∗Ω(Γ) is the full orbital limit set of Γ∗ in ∂Ω∗.

2. The flag-valued full orbital limit set Λ̂Ω(Γ) is the set

Λ̂Ω(Γ) := {(x,w) ∈ F±(V ) : x ∈ ΛΩ(Γ), w ∈ Λ∗Ω(Γ)}.

3. The maximal domain Ωmax(Γ) is the unique connected component of

P(V )−
⋃

w∈Λ∗Ω(Γ)

P(w)
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containing Ω. Equivalently, Ωmax(Γ) is the dual of the convex hull of Λ∗Ω(Γ) in

Ω∗.

We emphasize that Ωmax(Γ) is not necessarily a properly convex set, which

means that we cannot always define a Hilbert metric on it (so we do not have a

guarantee that Γ acts properly discontinuously in general). However, when Γ acts

convex cocompactly on Ω, we do get a properly discontinuous action, thanks to the

following argument suggested by Jeff Danciger and Fanny Kassel:

Proposition 6.1.3. Let Γ act convex cocompactly on a properly convex comain Ω.

For any x ∈ Ωmax(Γ), every accumulation point of Γ · x lies in ΛΩ(Γ). In particular,

Γ acts properly discontinuously on Ωmax(Γ).

Proof. When Ωmax(Γ) is a properly convex domain, this follows immediately from

Proposition 4.18 in [DGK17], which says that whenever Γ acts convex cocompactly

on some domain Ω, and Ω′ is any Γ-invariant properly convex domain containing Ω,

then Γ acts convex cocompactly on Ω′ and ΛΩ(Γ) = ΛΩ′(Γ).

So, we consider the case where Ωmax(Γ) is not properly convex. We may

assume our domain Ω is chosen so that Γ acts convex cocompactly on both Ω and

Ω∗ ⊂ P(V ∗). Since Ωmax(Γ) is not properly convex, its dual Ωmax(Γ)∗ (given by the

convex hull of Λ∗Ω(Γ) in Ω∗) has empty interior (i.e. it spans a proper projective

subspace of P(V ∗)).

Given any ε > 0, we let Ω∗ε be the uniform ε-neighborhood of Ωmax(Γ)∗, with

respect to the Hilbert metric on Ω∗. We let Ωε ⊂ P(V ) denote the dual of Ω∗ε. Note

that Ωε is a Γ-invariant properly convex subset of Ωmax(Γ), containing Ω.
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Since duality reverses inclusions, and the intersection

⋂
ε→0

Ω∗ε

is exactly the set Ωmax(Γ)∗, the union

⋃
ε→0

Ωε

is the set Ωmax(Γ). So, if we fix x ∈ Ωmax(Γ), for some ε > 0 we have x ∈ Ωε. Then

we apply Proposition 4.18 in [DGK17] to the properly convex domain Ωε to see that

Γ · x must accumulate in the set ΛΩ(Γ).

We are almost ready to prove Theorem 6.1.1. We first observe that, using a

theorem of Danciger-Guéritaud-Kassel ([DGK17], Theorem 1.18), one can slightly

strengthen Theorem 4.1.8 to obtain the following:

Corollary 6.1.4. Let (Γ,H) be a relatively hyperbolic pair, and suppose that ρ :

Γ→ PGL(V ) is a projectively convex cocompact representation, with ρ|H projectively

convex cocompact for each H ∈ H.

Then there is a properly convex ρ(Γ)-invariant domain Ω ⊂ P(V ), with ρ(Γ)

acting convex cocompactly on Ω, such that every nontrivial projective segment in ∂Ω

is contained in ΛΩ(H) for some H ∈ H.

We also observe:

Proposition 6.1.5. Let ψ : ∂(Γ,H)→ [ΛΩ(Γ)]H be the equivariant homeomorphism

coming from Corollary 4.1.10.
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If z ∈ ∂(Γ,H) is a conical limit point, and γn is a sequence limiting to z in

Γ = Γt∂(Γ,H), then ψ(z) ∈ P(V ) is the unique attracting limit point for γn in P(V ).

Proof. It suffices to show that any subsequence of γn has a further subsequence whose

unique attracting limit point is ψ(z). So, using the convergence group property, we

can take a subsequence and assume that there is some point y ∈ ∂(Γ,H) so that γn

converges to z on every point in the set ∂(Γ,H)− {y}. We can further assume that

the pair (Γ,H) is not elementary, so ∂(Γ,H) contains infinitely many points.

So, by Corollary 6.1.4, we can find distinct points u, v ∈ ΛΩ(Γ) so that the

projective line segment (u, v) lies in Ω, and ρ(γn)u, ρ(γn)v both converge to ψ(z).

Lemma 4.1 in [DGK17] implies that FΩ(ψ(z)) ⊂ ΛΩ(Γ), and then Corollary 6.1.4

implies that FΩ(ψ(z)) = {ψ(z)}.

Then for any x ∈ (u, v), ρ(γn)x converges to ψ(z), and we are done by

Proposition 2.1.18.

Proof of Theorem 6.1.1. Fix a (d+ 1)-dimensional real vector space V , let (Γ,H) be

a relatively hyperbolic pair, and let ρ : Γ→ PGL(V ) be a representation such that

ρ(Γ) acts convex cocompactly on a properly convex domain Ω. This implies (see

[IZ22]) that each H ∈ H also acts convex cocompactly on Ω.

The first step in the proof is to define our boundary extension φ̂ : Λ̂→ ∂(Γ,H),

where Λ̂ is the flag-valued full orbital limit set Λ̂Ω(Γ). We use the equivariant

homeomorphism ψ : ∂(Γ,H) → [Λ]H coming from Corollary 4.1.10 to define an

equivariant surjection φ : Λ→ ∂(Γ,H), where the preimage of each parabolic point p

in ∂(Γ,H) is exactly ΛΩ(H) for H = StabΓ(p).
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Similarly, if Λ∗ is the dual full orbital limit set, we can find an equivariant

surjection φ∗ : Λ∗ → ∂(Γ,H), where φ∗−1(z) is a single hyperplane if z is a conical

limit point, and the dual full orbital limit set of StabΓ(z) if z is a parabolic point.

Each element of Λ∗ is a supporting hyperplane of the domain Ω. Corollary 6.1.4

implies that for every point (x,w) in the flag-valued full orbital limit set Λ̂ = Λ̂Ω(Γ),

either:

1. x = φ−1(z) and w = φ∗−1(z) for a conical limit point z ∈ ∂(Γ,H), or

2. x ∈ ΛH and w ∈ Λ∗H for a peripheral subgroup H ∈ H.

This allows us to combine φ and φ∗ to get a well-defined equivariant surjection

φ̂ : Λ̂→ ∂(Γ,H).

The next step is to define the open subsets Cz ⊂ F± for each z ∈ ∂(Γ,H). If

z ∈ ∂(Γ,H) is a conical limit point, we define the set Cz by

Cz = {ν ∈ F± : ν is opposite to φ−1(z)}.

Otherwise, if z is a parabolic point, we consider the maximal domain Ωmax(H) ⊂

P(V ) for H = StabΓ(z). Dually, we can define Ω∗max(H) ⊂ P(V ∗), viewing ΛΩ(H) as

the dual full orbital limit set of H∗ acting on Ω∗.

Then, we define

Cz = {(x,w) ∈ F±(V ) : x ∈ Ωmax(H), w ∈ Ω∗max(H)}.

For every z ∈ ∂(Γ,H), Cz is open, and Corollary 6.1.4 implies that Cz contains

φ̂−1(z′) for every z′ 6= z in ∂(Γ,H).
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The last step is to check that the map φ̂ actually extends convergence dynamics,

using the sets Cz. Because of Proposition 5.1.2, it suffices to verify that φ̂ has the

right dynamical behavior for conical limit sequences and sequences in peripheral

subgroups.

Fix a conical limit point z ∈ ∂(Γ,H), and let γn ∈ Γ be a sequence limiting

conically to z, with γ−1
n limiting conically to some point z−.

Proposition 6.1.5 implies that φ−1(z) is the unique attracting subspace for ρ(γn)

in P(V ), and φ−1(z−) is the unique attracting subspace for ρ(γ−1
n ) in P(V ). Dually,

(φ∗)−1(z−) is the unique attracting subspace for ρ(γ−1
n ) in P(V ∗), and (φ∗)−1(z) is the

unique attracting subspace for ρ(γn) in P(V ∗). Then Lemma 2.3.8 ensures that ρ(γn)

converges to φ̂−1(z) uniformly on compacts in Cz− .

On the other hand, if z is a parabolic point and γn is an infinite sequence in

StabΓ(z), Proposition 6.1.3 implies that for any compact K ⊂ Cz, the set ρ(γn) ·K

eventually lies in any given neighborhood of φ−1(z), as required.

6.2 Generalized cusps

In [CLT18], Cooper-Long-Tillmann studied relative stability properties for the

holonomy of certain noncompact convex projective orbifolds—those with generalized

cusps. They consider the situation of a convex projective manifold M (with strictly

convex boundary) which is a union of a compact piece and finitely many ends

homeomorphic to N × [0,∞), where N is a compact manifold with virtually abelian

fundamental group. The ends of such a manifold are called generalized cusps.
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In [BCL20], Ballas-Cooper-Leitner classified generalized cusps in RPd into

d+ 1 different cusp types. A type 0 cusp is projectively equivalent to a cusp in Hd and

has virtually unipotent holonomy, while a type d cusp has virtually diagonalizable

holonomy. The remaining cusp types “interpolate” between these two.

If M = Ω/Γ is a finite-volume convex projective d-manifold, and Ω ⊆ RPd is

a strictly convex domain, then work of Crampon-Marquis [CM14] (see also Cooper-

Long-Tillmann [CLT15]) shows that M decomposes into a union of a compact piece

and finitely many type 0 cusps, and π1M is hyperbolic relative to the collection of

cusp groups

C = {π1Ci : Ci a cusp in M}.

Corollary 6.2.5 implies that the holonomy ρ : π1M → SL(d+1,R) of such a manifold is

an EGF representation, and Theorem 5.6.2 says that peripherally stable deformations

of ρ are also EGF.

In this situation, we can give an explicit example of a subspace of Hom(π1M, SL(d+

1)) which is peripherally stable. Following Cooper-Long-Tillman, we let VFG(d+ 1)

denote the set of virtual flag groups : discrete subgroups of SL(d+ 1,R) which have a

finite-index subgroup which is conjugate to a group of upper-triangular matrices.

Definition 6.2.1. Let (Γ,H) be a relatively hyperbolic pair. We let

RepVFG(Γ,H)

denote the space

{ρ ∈ Hom(Γ, SL(d+ 1,R)) : ∀Hi ∈ H, ρ(Hi) ∈ VFG(d+ 1)}.
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Let ρ : π1M → SL(d + 1,R) be the holonomy of the manifold M . [CLT18,

Theorem 0.1] says that the image of the holonomy of each cusp ofM lies in VFG(d+1)—

i.e. ρ ∈ RepVFG(π1M, C). And, if ρ′ is any small deformation of ρ in RepVFG(π1M, C),

then ρ′ is the holonomy of a nearby convex projective structure on M .

Our goal in this section is to prove that these nearby representations are also

EGF:

Theorem 6.2.2. Let M = Ω/Γ be a finite-volume convex projective manifold, and

suppose that Ω is strictly convex (so the holonomy ρ : π1M → SL(d+ 1,R) is EGF

with boundary extension φ).

Then the space RepVFG(π1M, C) is peripherally stable at (ρ, φ). In particular,

due to Theorem 5.6.2, an open subset of RepVFG(π1M, C) containing ρ consists of

EGF representations.

In [Bob19], Bobb produced examples of convex projective d-manifolds with

cusps of any non-diagonalizable type for all dimensions d. These examples are all

small deformations of finite-volume hyperbolic d-manifolds. So, a consequence of

Theorem 6.2.2 is the following:

Corollary 6.2.3. In every dimension d and for every 0 < t < d, there exists a convex

projective manifold with a type t generalized cusp and EGF holonomy.

Remark 6.2.4. We expect that a version of Theorem 6.2.2 also holds with weaker

assumptions on M , which are more in line with the original assumptions in the

Cooper-Long-Tillmann stability result. For instance, we conjecture that whenever M
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is a convex projective manifold with strictly convex boundary, each end of M is a

generalized cusp, and π1M is relatively hyperbolic (relative to a collection of subgroups

H), then the holonomy of M is an EGF representation, and RepVFG(π1M,H) is a

peripherally stable subspace.

6.2.0.1 Geometrically finite strictly convex projective manifolds

In [CM14], Crampon-Marquis define a notion of geometrical finiteness for

groups acting on strictly convex domains in projective space. Zhu [Zhu19] showed

that these groups are always relatively dominated, a stronger condition than rel-

ative asymptotic embeddedness. So an immediate corollary of Zhu’s result and

Theorem 5.1.7 is:

Corollary 6.2.5. Let Ω ⊆ RPd be a strictly convex domain, and suppose that

Γ ⊆ Aut(Ω) acts on Ω geometrically finitely in the sense of Crampon-Marquis.

Then the inclusion Γ ↪→ SL(d+ 1,R) is EGF.

It is worth noting that unlike generalized cusps, the cusps in the geometrically

finite convex projective manifolds of Crampon-Marquis do not need to have compact

cross-section. It seems possible that there is a general theory of cusped convex

projective manifolds which incorporates both the examples of Crampon-Marquis and

the generalized cusps classified by Ballas-Cooper-Leitner discussed below. It would

be interesting to explore when such cusped convex projective manifolds have EGF

holonomy representation.
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6.2.1 Generalized cusps: definitions

Definition 6.2.6. Let Ω ⊂ RPd be a properly convex set with nonempty interior.

In general, Ω might not be either open or closed.

• The frontier of Ω is Fr(Ω) = Ω− int(Ω).

• The nonideal boundary of Ω is ∂nΩ = Fr(Ω) ∩ Ω.

• The ideal boundary of Ω is ∂iΩ = Fr(Ω)− ∂nΩ.

Some authors (e.g. [CLT18, BCL20]) just refer to the nonideal boundary of Ω

as the boundary ∂Ω. We avoid this since it conflicts with the notation used in the

previous section (where we use ∂Ω to denote the ideal boundary of a properly convex

domain Ω).

If M = Ω/Γ is a convex projective manifold with boundary, then ∂M is

identified with ∂nΩ/Γ. When ∂nΩ contains no nontrivial projective segments, then

we say that the manifold M has strictly convex boundary.

Definition 6.2.7. Let Ω ⊂ RPd be a properly convex set with nonempty interior,

and let Γ ⊆ Aut(Ω) be discrete. A manifold C = Ω/Γ is a generalized cusp if C

has compact and strictly convex boundary, Γ ' π1C is virtually abelian, and C is

homeomorphic to ∂C × [0,∞).

Recall that VFG(d + 1) is the set of virtual flag groups in PGL(d + 1,R),

i.e. the discrete groups which have a finite-index subgroup conjugate to a group of

upper-triangular matrices.
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Definition 6.2.8. Let C be a generalized cusp. We let

VFG(C) = {ρ : π1C → PGL(d+ 1,R) : ρ(π1C) ∈ VFG}.

Theorem 6.2.9 ([CLT18], Theorem 6.25). Let C be a generalized cusp, and let U

be the set of holonomies of convex projective structures on C with strictly convex

boundary. Then U is an open subset of VFG(C).

6.2.2 Generalized horospheres

In [CLT18], Cooper-Long-Tillmann show that if C is a generalized cusp with

holonomy ρ : π1C → PGL(d + 1,R), there is a finite-index subgroup Γ1 ⊆ π1C

(depending only on π1C and d) so that ρ(Γ1) is a lattice in a syndetic hull of ρ(Γ1):

a uniquely determined connected Lie group T (ρ) ⊂ PGL(d + 1,R), conjugate into

the group of upper triangular matrices. This group is called the translation group of

the cusp.

We may assume that Γ1 is free abelian, so it is a lattice in Γ1 ⊗Z R ' Rd−1.

The restriction

ρ|Γ1 : Γ1 → PGL(d+ 1,R)

extends uniquely to an embedding of Lie groups

ιρ : Rd−1 ↪→ PGL(d+ 1,R)

with image T (ρ).

We observe the following:
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Proposition 6.2.10. Let C be a generalized cusp. The embedding

ιρ : Rd−1 → PGL(d+ 1,R)

varies continuously with ρ ∈ VFG(C) in the compact-open topology on maps from

Rd−1 into PGL(d+ 1,R).

Proof. The Lie algebra of PGL(d+ 1,R) is identified with sl(d+ 1,R). Fix a finite

set S of generators for Γ1. The subspace sρ ⊂ sl(d+ 1,R) spanned by log(ρ(S)) varies

smoothly with ρ, and the induced map

Rd−1 → sl(d+ 1,R)

with image sρ varies continuously in the compact-open topology. The embedding ιρ

is given by composition with the exponential map.

When C = Ω/Γ is projectively equivalent to a cusp in some hyperbolic

manifold, we can assume that Ω is a closed horoball in Hd. The nonideal boundary

∂nΩ is a horosphere preserved by Γ, which carries a Γ-invariant Euclidean metric. In

this case the translation group is the group of Euclidean translations on ∂nΩ.

When C is a generalized cusp, we can always find some orbit of the translation

group T (ρ) in RPd which is a strictly convex hypersurface (see Proposition 6.22 in

[CLT18]). This hypersurface is called a generalized horosphere. Its convex hull in

RPd is a generalized horoball. We can always choose this horoball so that its quotient

by Γ is contained in the generalized cusp C.
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Now consider a convex projective manifold M = Ω/Γ with strictly convex

boundary which can be written as a union of a compact piece and finitely many

generalized cusps. It is always possible to choose the cusps so that each cusp C ⊂M

is a quotient C = ΩC/ΓC , where ΩC ⊂ Ω is a convex subset whose nonideal boundary

is a generalized horosphere, and ΓC = π1C is the cusp group. The boundary ∂nΩC is

homogeneous : the translation group T (ΓC) acts simply transitively on ∂nΩC .

6.2.3 The ideal boundary

The Ballas-Cooper-Leitner classification of generalized cusps allows us to get

a more explicit description of the ideal boundary of Ω. Given a generalized cusp

C = Ω/Γ, we let ΩC denote the “standard” Γ-invariant domain with homogeneous

nonideal boundary, alluded to above.

Proposition 6.2.11 (Lemmas 1.24 and 1.25 in [BCL20]). Let C = ΩC/Γ be a

generalized cusp. The ideal boundary of ΩC is a projective k-simplex ∆C. There is a

unique supporting hyperplane HC of ΩC containing ∆C, and the affine chart

AC = RPd −HC

is the unique affine chart containing ΩC as a closed subset.

The vertices of ∆C must be preserved by Γ, and in fact they are all eigenvectors

for the translation group T (Γ).

Each generalized horosphere SC for C is a strictly convex hypersurface con-

tained in the affine chart AC . The closure of this hypersurface in RPd is either

SC ∪ ∂∆C (if C is a “type d” cusp) or SC ∪∆C (if C is any other type of cusp).
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6.2.4 Deformations of convex hypersurfaces

The main ingredient in the proof of Theorem 6.2.2 is the following:

Lemma 6.2.12. Let C be a hyperbolic cusp with holonomy ρ. Let pC be the cusp

point, and let HC be the unique supporting hyperplane of ΩC at pC.

Let x ∈ AC = RPd −HC, let U ⊂ RPd be an open subset containing pC, and

let F ⊂ π1C be a cofinite subset such that ρ(F ) · x ⊂ U .

There exists a neighborhood W of ρ in VFG(C) so that for any ρ′ ∈ W, we

have

ρ′(F ) · x ⊂ U.

Proof. [CLT18], Theorem 6.25 implies that we can choose a neighborhood W of ρ

in VFG(C) consisting of holonomies of generalized cusps. For any ρ′ ∈ W, we let

Ω′ denote a “standard” properly convex set preserved by ρ′(π1C), whose non-ideal

boundary is a generalized horosphere.

Since pC and HC are respectively the unique eigenvector and fixed hyperplane

of ρ(π1C), we can choose our neighborhoodW so that for any ρ′ ∈ W , any eigenvectors

and fixed hyperplanes of ρ′(π1C) are close to pC , HC .

In particular, we can choose W so that the ideal boundary of Ω′ is a k-simplex

∆′ contained in U . And, by applying a small conjugation in PGL(d+ 1,R), we can

assume that HC is the unique supporting hyperplane of Ω′ containing ∆′.

Let T (ρ) be the translation group of ρ. The orbit T (ρ) · x is a paraboloid in

AC . We can write AC = Rd−1 × R, and then view this paraboloid as the graph of a
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function

fρ : Rd−1 → R.

The function fρ is determined by the condition

(u, fρ(u)) = ιρ(u) · x.

Here ιρ : Rd−1 → PGL(d+ 1,R) restricts to ρ on a finite-index subgroup Γ1 ⊂ π1C,

with Γ1 identified with Zd−1 ⊂ Rd−1.

If T (ρ′) is the translation group of ρ′, then Lemma 6.24 in [CLT18] implies

that T (ρ′) · x is a strictly convex hypersurface S ′ ⊂ AC . The hypersurface S ′ is the

graph of a map fρ′ : Rd−1 → R, satisfying

(u, fρ′(u)) = ιρ′(u) · x.

Proposition 6.2.10 implies that fρ′ varies continuously (in the compact-open topology

on continuous maps Rd−1 → R) as ρ′ varies in W .

We fix a norm || · || on Rd−1. There is a constant D so that for any (u, v) ∈ AC ,

if ||u|| > 1 and |v|/||u|| > D, then (u, v) is contained in the neighborhood U of pC .

fρ′ is a strictly convex function, which we can assume is nonnegative and

uniquely minimized at the origin. So, if fρ′(u)/||u|| > D on {u ∈ Rd−1 : ||u|| = M}

for some constant M , then fρ′(u)/||u|| > D for all u with ||u|| ≥M .

So, as long as W is sufficiently small, there is a fixed ball B ⊂ Rd−1 so that if

u ∈ Rd−1 −B, then

(u, fρ′(u)) ∈ U
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for any ρ′ ∈ W .

The ball B contains at most finitely many elements of Γ1 − F . So we can in

fact choose W small enough so that for any ρ′ ∈ W , every element of ρ′(Γ1 − F ) · x

lies in U . Then since |Γ1 : π1C| <∞ we can shrink W even further to guarantee that

for any ρ′ ∈ W ,

ρ′(π1C − F ) · x

lies in U as well.

6.2.5 Peripheral stability

Proof of Theorem 6.2.2. Let ρ : π1M → PGL(d+ 1,R) be the holonomy of a finite-

volume convex projective manifold M , and let Ω be a ρ-invariant strictly convex

domain such that M = Ω/ρ(π1M). Write Γ = π1M , and let H be the collection of

cusp groups, so (Γ,H) is a relatively hyperbolic pair, and for each H ∈ H, ρ|H is the

holonomy of a hyperbolic cusp.

Since Ω is strictly convex, [CLT15], Theorem 11.6 also implies that Ω has C1

boundary. So there is a ρ-equivariant homeomorphism ∂Ω→ ∂Ω∗ assigning the point

z ∈ ∂Ω to the unique supporting hyperplane of Ω at z. We let ∂Ω̂ denote the space

{(x,w) ∈ F± : x ∈ ∂Ω, w ∈ ∂Ω∗}.

There is an equivariant homeomorphism ψ : ∂(Γ,H)→ ∂Ω̂, with the parabolic

points in ∂(Γ,H) corresponding to the fixed flags of the cusp groups. The inverse

map φ : ∂Ω̂→ ∂(Γ,H) extends the convergence dynamics of Γ. For each parabolic
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point p ∈ ∂(Γ,H), the open set Cp is

Opp(ψ(p)) = {ξ ∈ F± : ξ is opposite to ψ(p)}.

Let π : F± → RPd be the canonical projection map. It suffices to show that

for any compact set K ⊂ π(Cp), any open neighborhood U of π(ψ(p)) in RPd, and

any cofinite subset F ⊂ Γp = StabΓ(p) such that

ρ(F ) ·K ⊂ U,

we can find a neighborhood W ⊂ VFG(Γp) containing ρ such that

ρ′(F ) ·K ⊂ U

for any ρ′ ∈ W . (The same argument applied dually will show that we can upgrade

K to a compact subset of Cp ⊂ F± and U to an open subset in F±).

For any x in such a compact set K ⊂ π(Cp), Lemma 6.2.12 implies that there

is an open neighborhood W ⊂ VFG(Γp), containing the restriction ρ|Γp , so that for

any ρ′ ∈ W , we have

ρ′(F ) · x ⊂ U.

But then by compactness of K, we can find a single neighborhood W ⊂ VFG(Γp) so

that ρ′(F ) ·K ⊂ U , as required.

6.3 Symmetric powers of convex cocompact groups

In this section, we construct new examples of extended geometrically finite

representations by taking symmetric powers of convex cocompact representations of
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groups which are hyperbolic relative to virtually abelian subgroups. We also prove

an absolute stability result for these representations.

6.3.1 Symmetric powers

Let V be a finite-dimensional real vector space. We let τm denote the symmetric

representation

SL(V )→ SL(Symm(V )).

Throughout this section, we will view Symm(V ) as a quotient of the space of homo-

geneous degree-m polynomials in elements of V . We will always leave this quotient

implicit. That is, if v1, . . . , vk ∈ V , and r1, . . . , rk ∈ N ∪ {0} with
∑
ri = m, we will

view the monomial vr11 · · · v
rk
k as an element of Symm(V ).

There is a τm-equivariant embedding

ι : P(V )→ P(Symm(V ))

given by [v] 7→ [vm]. There is also a corresponding dual embedding

ι∗ : P(V ∗)→ P(Symm(V )∗),

using the canonical identification Symm(V ∗) ' Symm(V )∗. We observe that v ∈ P(V )

and w ∈ P(V ∗) are transverse if and only if their respective images under ι and ι∗ are

also transverse. This means that the maps ι and ι∗ also give rise to a τm-equivariant

map

ι̂ : F±(V )→ F1,d′(Symm(V ))
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given by ι̂(v, w) = (ι(v), ι∗(w)). Here, d+ 1 is the dimension of V and d′ + 1 is the

dimension of Symm(V ). In this section we will mostly use will use F(Symm V ) to

denote F1,d′(Symm V ).

6.3.1.1 Dynamics in symmetric powers

The dynamics of divergent sequences in SL(V ) on P(V ) and P(V ∗) are respected

in P(Symm V ), in the following sense:

Proposition 6.3.1. Let {gn} be an infinite sequence in SL(V ) such that for some

w ∈ P(V ∗), x ∈ P(V ), we have gn|Opp(w) → x uniformly on compacts.

Then

τm(gn)|Opp(ι∗(w)) → ι(x)

uniformly on compacts.

6.3.2 Symmetric powers of relatively hyperbolic convex cocompact groups

Suppose that ρ : Γ→ PGL(V ) is a convex cocompact representation, so that

there is a properly convex domain Ω ⊂ P(V ) with ρ(Γ) acting convex cocompactly

on Ω. As mentioned in the introduction to this paper, we can always replace Γ with

a finite-index subgroup so that ρ lifts to a representation ρ : Γ→ SL(V ) with finite

kernel and discrete image. In this situation, we also say that ρ : Γ→ SL(V ) is convex

cocompact in P(V ).

Let (Γ,H) be a relatively hyperbolic pair such that each group in H is

virtually abelian, and let ρ : Γ → SL(V ) be a convex cocompact representation.
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Representations of this form have been studied extensively by Islam-Zimmer [IZ19b],

[IZ19a], who proved a number of strong structural results. In particular, Islam-Zimmer

showed that in this situation, for each H ∈ H, the image ρ(H) acts cocompactly

on a properly embedded k-simplex ∆H ⊂ Ω, with k = rank(H). (A simplex ∆ ⊂ Ω

is properly embedded if ∂∆ ⊂ ∂Ω.) Conversely, every properly embedded maximal

k-simplex in the convex hull of ΛΩ(Γ) always has a cocompact action by some H ∈ H

with rank k.

We let

ρm : Γ→ SL(Symm V )

denote the composition τm ◦ ρ. We have two main goals in this section. The first is

to prove the following:

Theorem 6.3.2. The representation ρm is EGF, with respect to the parabolic subgroup

P ⊂ SL(Symm V ) stabilizing a line in a hyperplane in Symm V .

Note that Theorem 6.3.2 does not follow directly from the fact that convex

cocompact representations in P(V ) are EGF (Theorem 6.1.1), because we do not

know that the representations ρm are convex cocompact in P(Symm V ). In fact, Jeff

Danciger and Fanny Kassel have indicated in personal communication to the author

that ρm should never be convex cocompact in P(Symm V ) unless the collection H

is empty: while ρm(Γ) does preserve a properly convex domain in P(Symm V ), the

convex hull of the full orbital limit set in any such domain seems “too big” for ρm(Γ)

to act cocompactly.

Our second goal is to show:
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Theorem 6.3.3. There is an open subset of ρm in

Hom(Γ, SL(SymmV ))

consisting of EGF representations.

We will prove Theorem 6.3.3 by proving that the entire space Hom(Γ, SL(Symm V ))

is peripherally stable about ρm, and applying Theorem 5.6.2. In particular this shows

that small perturbations of ρm still have finite kernel and discrete image, giving new

examples of discrete subgroups of higher-rank Lie groups which are stable (as discrete

groups).

6.3.2.1 Proof strategy

6.3.2.2 Proof strategy

To show that ρm is EGF, we will give an explicit description of the boundary set

Λ̂m ⊂ F(Symm V ). The naive choice is to just take Λ̂m to be ι̂(Λ̂Ω(Γ)), where Λ̂Ω(Γ)

is the flag-valued full orbital limit set giving the EGF boundary set for ρ : Γ→ SL(V )

(see Section 6.1). While there is a equivariant surjective map from this set to ∂(Γ,H),

it turns out that we will have to enlarge it in order to ensure that the relevant

dynamics hold.

The idea is the following: for each parabolic point p ∈ ∂(Γ,H), with stabilizer

H, we take the fiber over p in Λ̂m to be the space of flags in the boundary of a simplex

SH ⊂ P(Symm V ), constructed using the simplex ∆H ⊂ Ω on which H = StabΓ(p)

acts cocompactly. The simplex SH is chosen so that if γn is a sequence in Γ converging

to p, then a face of SH spans a minimal attracting subspace of ρm(γn). We also want
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to ensure that the simplex SH is stable, i.e. if ρmt is a small deformation of ρm in

Hom(Γ, SL(Symm V )), then ρmt (H) preserves a simplex StH close to SH . We verify

that SH has these properties by analyzing the relationship between the weights of ρ

and ρm on the virtually abelian group H.

The other main steps in the proof involve checking that the boundary set Λ̂m

we construct is actually a compact space surjecting continuously onto ∂(Γ,H), and

constructing the open sets Ĉp also required by the definition of an EGF representation.

For the latter, we make heavy use of the fact that the dual action of ρ(Γ) on P(V ∗)

is also projectively convex cocompact, which allows us to construct a stable dual

simplex S∗H for each H ∈ H. The vertices of S∗H are thought of as hyperplanes in

P(Symm(V )), cutting out a region Cp of P(Symm(V )) on which ρm(H) attracts points

towards SH .

6.3.2.3 Example: symmetric squares of convex projective 3-manifold
groups

We illustrate the general idea of our approach with a specific example. Let

Ω ⊂ RP3 be a properly convex domain, and let Γ ⊆ Aut(Ω) be a discrete group acting

cocompactly on Ω. In [Ben06], Benoist produced examples of such groups which

are hyperbolic relative to a nonempty collection H of virtually abelian subgroups

of rank 2. Further examples were constructed by Ballas-Danciger-Lee in [BDL15].

Up to finite index, each H ∈ H acts diagonalizably on RP3, preserving a projective

tetrahedron TH ⊂ RP3 and acting cocompactly on a properly embedded triangle

∆H ⊂ Ω. Each edge of ∆H is contained in a unique supporting hyperplane of Ω. The
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common intersection of these hyperplanes is the fourth vertex of TH .

More explicitly, up to finite index, each H acts diagonally on R4 in the basis

{v1, v2, v3, v4}, where the vi are the vertices of TH , and v1, v2, v3 are the vertices of

∆H . We can consider the situation where (in this basis) H is the discrete group{(
2a

2b
2c

1

)
: a, b, c ∈ Z, a+ b+ c = 0

}
.

The dual of H preserves the corresponding dual basis {v∗1, v∗2, v∗3, v∗4}, and

acts cocompactly on a projective triangle ∆∗H ⊂ (RP3)∗ with vertices v∗1, v
∗
2, v
∗
3. The

kernels P(v∗i ) for i = 1, 2, 3 give three supporting hyperplanes of Ω which cut out a

region RH of projective space containing Ω. In fact, RH also contains ∂Ω− ∂∆H .

Now let ρ2 : Γ → SL(Sym2(R4)) ' SL(10,R) be the composition of the

inclusion Γ ↪→ SL(4,R) with the symmetric square τ2 : SL(4,R) → SL(Sym2(R4)).

In this case, the induced map ι : RP3 → RP9 is the Veronese embedding.

For each H ∈ H, ρ2(H) preserves a 9-simplex in RP9, with vertices

{v2
1, v

2
2, v

2
3, v

2
4, v1v2, v1v3, v1v4, v2v3, v2v4, v3v4}.

In particular ρ2(H) also preserves the 5-simplex SH with vertices

{v2
1, v

2
2, v

2
3, v1v2, v2v3, v1v3}.

Any divergent sequence in ρ2(H) always has an attracting subspace spanned by a

face of SH , since the eigenvalues of elements of H on v4 are always dominated by

some eigenvalue of that element on either v1, v2, or v3. For instance, if we consider
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the sequence

an =

(
22n

2−n

2−n
1

)
,

then ρ2(an) attracts towards the subspace spanned by {v2
1}. On the other hand, if an

is the sequence (
2n

2n

2−2n

1

)
,

then ρ2(an) attracts towards the subspace spanned by {v2
1, v

2
2, v1v2}.

Moreover, the subspaces spanned by faces of SH are transverse to ι(∂Ω−∂∆H),

so large elements of H attract points in ι(∂Ω) that are “far from” ∂SH towards ∂SH .

In fact, this dynamical behavior extends to an entire open subset of RP9: namely, a

region cut out by the hyperplanes corresponding to the vertices of the dual 5-simplex

S∗H ⊂ (RP9)∗ with vertices

{(v∗1)2, (v∗2)2, (v∗3)2, v∗1v
∗
2, v
∗
2v
∗
3, v
∗
1v
∗
3}.

So, the simplex SH serves as the “parabolic point” for the action of the peripheral

subgroup H on RP9—and moreover, this behavior is stable under perturbations of

ρ2(H) in Hom(Γ, SL(Sym2 V )). This means that we can construct our candidate

boundary set for the representation ρm by taking

ι̂(Λ̂Ω(Γ)) ∪
⋃
H∈H

∂ŜH ,

where ∂ŜH ⊂ F(Sym2 R4) is a closed subset of the space of flags projecting to the

boundary of the simplex SH .

244



6.3.3 Generalized weight spaces

To carry out the general construction of the simplex SH identified in the

previous example, we need some description of attracting subspaces for the groups

ρm(H) ⊂ SL(Symm V ). We obtain this description by recalling some of the properties

of weights of representations of free abelian groups.

Definition 6.3.4. Let ρ : H → GL(V ) be a representation of a free abelian group

H, and let ρC : H → GL(V ⊗ C) be the complexification of ρ.

A complex weight of ρ is a homomorphism µC : H → C such that the weight

space

VµC = ker(ρC(h)− exp(µC(h))I)

is nontrivial for some (any) h ∈ H. A generalized complex weight is similarly a

homomorphism µC : H → C such that the generalized weight space

VµC =
dimV⋃
n=1

ker(ρC(h)− exp(µC(h))I)n

is nontrivial.

For any generalized weight µC, the nilpotence degree of µC is the minimal

` ∈ N such that VµC = ker(ρC(h)− exp(µC(h))I)`.

Given a representation ρ : H → GL(V ), the generalized complex weight spaces

of ρC give a ρC-invariant decomposition of V ⊗ C. This in turn gives a ρ-invariant

decomposition of V , since when µC is a weight which takes on complex values, the

direct sum VµC ⊕ VµC is a ρ-invariant real subspace of V . By a slight abuse of
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terminology we refer to this as the generalized weight space decomposition for the

representation ρ. The associated real weights of the representation are homomorphisms

µ : H → R of the form log | expµC|, where µC is a (generalized) complex weight. For

the rest of the section, unless otherwise indicated, when we refer to (generalized)

weights of a representation into SL(V ), we will mean the (generalized) real weights,

and similarly for weight spaces.

Generalized weight spaces of ρ are stable under deformations of ρ. To be

precise, we observe the following:

Proposition 6.3.5. Let ρ : Γ→ GL(V ) be a representation of a free abelian group,

and let

V 0
µ1
⊕ . . .⊕ V 0

µs

be the generalized weight space decomposition of V for ρ. Let ρt be a continuous family

of representations in Hom(Γ,GL(V )), with ρ = ρ0.

For all sufficiently small t, there is a ρt-invariant decomposition

V t
1 ⊕ . . .⊕ V t

s

such that V t
i is a sum of generalized weight spaces for ρt, with V t

i varying continuously

with t, and each of the weights associated to V t
i also varying continuously with t.

Proof. The weights vary continously as a set with multiplicity, because the roots of

the characteristic polynomial of ρ(γ) vary continuously in ρ for fixed γ ∈ Γ. And, if

µ is a complex weight with multiplicity k, then for small t there are complex weights
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µt1, . . . , µ
t
k of ρt (possibly with repeats) close to µ such that the sum of the kernels

ker(ρC(γ)− exp(µti(γ))I)dimV is close to ker(ρC(γ)− exp(µ(γ))I)dimV .

Definition 6.3.6. Let ρ : H → SL(V ) be a representation of a free abelian group H,

and let Φ be the set of generalized weights of ρ. For any subset θ ⊆ Φ, we let Vθ ⊆ V

denote the span of the generalized weight spaces Vµ for µ ∈ θ, and we let V opp
θ ⊆ V

denote the span of the generalized weight spaces Vµ′ for µ′ ∈ Φ− θ.

6.3.3.1 Faces in the convex hull of the weights

Whenever ρ : H → SL(V ) is a representation of a free abelian group with

rank k, we can extend any real (generalized) weight µ : H → R to a homomorphism

µ : H ⊗ R→ R, and view it as an element of (Rk)∗ ' Rk.

Definition 6.3.7. Let ρ : H → SL(V ) be a representation of a free abelian group,

and let Φ be the set of generalized weights of ρ. We denote the closed convex hull of

Φ in (H ⊗ R)∗ ' (Rk)∗ by C(ρ); since Φ is a finite subset of (Rk)∗, C(ρ) is a convex

polytope in (Rk)∗.

The convex polytope C(ρ) is important for our purposes because it tells us

how to find attracting subspaces for ρ(H). In particular, there is a correspondence

between the faces of C(ρ) and attracting subspaces of ρ(H).

Definition 6.3.8. Let ρ : H → SL(V ) be a represention of a free abelian group with

generalized weight set Φ. Let F be a closed face of C(ρ). We let Φ(F ) denote the set

of generalized weights of ρ lying in F .

For a face F of C(ρ), we write VF and V opp
F for VΦ(F ) and V opp

Φ(F ), respectively.
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Proposition 6.3.9. Let ρ : H → SL(V ) be a representation of a free abelian group.

For any divergent sequence hn ∈ H, there is a face F of C(ρ) such that VF and V opp
F

are respectively attracting and repelling subspaces for ρ(hn).

Conversely, for any face F of C(ρ), VF is an attracting subspace for some

sequence ρ(hn) with hn ∈ H divergent.

To prove Proposition 6.3.9, we first establish some estimates which will later

help us show that the convergence to the spaces VF is uniform and stable. To make

our estimates explicit, we choose an inner product on V , which induces a norm || · ||

on V and a smooth metric dP on P(V ). Specifically, for any transverse subspaces

W,W ′ ⊂ V , we define

∠(W,W ′) = inf
w∈W−{0},
w′∈W ′−{0}

∠(w,w′),

and then take dP([u], [v]) = sin(∠([u], [v])). We also choose a norm | · | on H⊗R ' Rk.

Lemma 6.3.10. Given a representation ρ : H → SL(V ) of a free abelian group H,

there exists a constant D = D(ρ) > 0 (varying continuously with ρ) satisfying the

following: for any generalized weight µ of ρ with nilpotence degree `, any h ∈ H ⊗ R,

and any v in Vµ, we have

1

D
(exp(µ(h))||v|| ≤ ||ρ(h)v|| ≤ (exp(µ(h)) ·D|h|`−1)||v||.

Proof. For any h ∈ H⊗R, we let I+Nρ(h) be the unipotent part of the (multiplicative)

Jordan-Chevalley decomposition of ρC(h). That is, if we fix a generalized weight µ,
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and let µC be an associated complex weight, we can write

ρC(h)v = exp(µC(h))(I +Nρ(h))v

for any v ∈ VµC . Moreover, for any v ∈ VµC , we have Nρ(h)`v = 0, where ` is the

nilpotence degree of µC.

By considering ρC(t · h), we see that for any fixed h ∈ H ⊗ R, Nρ(t · h) is

a polynomial in t of degree at most dimV , with coefficients varying continuously

with ρ and h, and a root at t = 0. Moreover, the restriction of Nρ(t · h) to VµC is a

polynomial in t with degree `− 1.

Then, since P(H⊗R) is compact, we can find D = D(ρ) (varying continuously

with ρ) so that for any h ∈ H ⊗ R and any v ∈ Vµ ⊗ C,

1

D
||v|| ≤ ||(I +Nρ(h))v|| ≤ D · |h|`−1||v||,

where || · || is the norm on V ⊗ C induced by our norm on V .

Then, for any v ∈ Vµ, we have

||ρ(h)v|| = ||ρC(h)v|| = || exp(µC(h)(I +Nρ(h))v||

≤ | exp(µC(h))| ·D|h|`−1||v||

= exp(µ(h)) ·D|h|`−1||v||.

The left-hand inequality follows similarly.

The lemma below gives us a uniform estimate for the amount a group element

ρ(h) “attracts” towards a direct sum of weight spaces of ρ, in terms of the weights of

ρ.
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Lemma 6.3.11. Fix a constant M ≥ 0, and let ρ : H → SL(V ) be a representation

of a free abelian group H. Let D = D(ρ) be the constant coming from Lemma 6.3.10,

and for any subset θ of the generalized weights Φ of ρ, let ` = `(θ) be the maximum

nilpotence degree of any weight in Φ− θ. Then, if h ∈ H ⊗ R satisfies

µ(h)− µopp(h) ≥M |h|

for any µ ∈ θ and µopp ∈ Φ− θ, we have

dP(ρ(h)x,P(Vθ))

dP(ρ(h)x,P(V opp
θ ))

≤ D2|h|`−1

exp(M |h|)
· dP(x,P(V opp

θ ))−1

sin2 ∠(Vθ, V
opp
θ )

.

for any x ∈ P(V )− P(V opp
θ ).

Proof. Fix a representation ρ : H → SL(V ) and a subset θ of the generalized

weights of ρ, giving us a pair of complementary subspaces Vθ, V
opp
θ ⊂ V . Let

x = [v] ∈ P(V ) − P(V opp
θ ). We can uniquely write v = vθ + vopp

θ for vθ ∈ Vθ and

vopp
θ ∈ V opp

θ , with vθ 6= 0. Then we have

||vopp
θ ||
||v||

sin∠(Vθ, V
opp
θ ) ≤ dP(x,P(Vθ)) ≤

||vopp
θ ||
||v||

,

where || · || is the norm on V induced by our choice of inner product. Similarly we

have

||vθ||
||v||

sin∠(Vθ, V
opp
θ ) ≤ dP(x,P(V opp

θ )) ≤ ||vθ||
||v||

.

So in particular, we have

sin(∠(Vθ, V
opp
θ ))

||vopp
θ ||
||vθ||

≤ dP(x,P(Vθ))

dP(x,P(V opp
θ ))

≤ 1

sin∠(Vθ, V
opp
θ )

· ||v
opp
θ ||
||vθ||

. (6.1)
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Now let h ∈ H ⊗ R satisfy µ(h) − µopp(h) ≥ M |h| for all µ ∈ θ and µopp ∈ Φ − θ.

Since Vθ and V opp
θ are ρ(H)-invariant, we have

dP(ρ(h)x,P(Vθ))

dP(ρ(h)x,P(V opp
θ ))

≤ 1

sin∠(Vθ, V
opp
θ )

· ||ρ(h)vopp
θ ||

||ρ(h)vθ||
. (6.2)

Since vθ and vopp
θ are respectively linear combinations of elements of Vµ for µ ∈ θ and

Vµopp for µopp ∈ Φ− θ, we can apply Lemma 6.3.10 to ||ρ(h)vθ|| and ||ρ(h)vopp
θ || to

see that

dP(ρ(h)x,P(Vθ))

dP(ρ(h)x,P(V opp
θ ))

≤ D2|h|`−1

exp(M |h|)
· 1

sin∠(Vθ, V
opp
θ )

||vopp
θ ||
||vθ||

.

Then, applying the left-hand inequality in (6.1) and using the fact that dP(x,P(Vθ)) ≤

1, we see that

dP(ρ(h)x,P(Vθ))

dP(ρ(h)x,P(V opp
θ ))

≤ D2|h|`−1

exp(M |h|)
· dP(x,P(V opp

θ ))−1

sin2 ∠(Vθ, V
opp
θ )

.

as required.

Proof of Proposition 6.3.9. Let ρ : H → SL(V ) be a representation of a free abelian

group, let Φ be the set of generalized weights, and let hn be a divergent sequence in

H. Up to subsequence, the sequence hn/|hn| converges to some h∞ ∈ H ⊗ R with

|h∞| = 1.

We can view h∞ as a linear functional on the space (H ⊗ R)∗. Since C(ρ) ⊂

(H ⊗ R)∗ is a convex polytope, this means there is a face F of C so that for any

µ ∈ Φ(F ) and any µopp ∈ Φ−Φ(F ), we have µ(h∞) > µopp(h∞). Then for sufficiently

large n we also have µ(hn/|hn|) > µopp(hn/|hn|). In fact, since Φ is finite, there is a

constant M > 0 such that µ(hn)− µopp(hn) > M |hn| for every µ ∈ Φ(F ) and every
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µopp ∈ Φ− Φ(F ). Applying Lemma 6.3.11 we see that for any x ∈ P(V )− P(V opp
F ),

the distance

dP(ρ(hn)x,P(VF )) ≤ dP(ρ(hn)x,P(VF ))

dP(ρ(hn)x,P(V opp
F ))

tends to 0 as n→∞, so VF and V opp
F must respectively be attracting and repelling

subspaces for ρ(hn).

Conversely, if F is any face of C(ρ), we can choose h ∈ H⊗R so that µ(h) > 0

and µ(h) > µopp(h) for any µ ∈ Φ(F ) and µopp ∈ Φ − Φ(F ). Then if hn ∈ H is

any divergent sequence with [hn] → [h] in the projectivization P(H ⊗ R), another

application of Lemma 6.3.11 shows that VF is an attracting subspace for hn.

6.3.4 Weights of peripheral subgroups in convex cocompact groups

For the rest of this section, we fix a relatively hyperbolic pair (Γ,H), where

each H ∈ H is virtually abelian with rank at least 2. We also fix a representation

ρ : Γ→ SL(V ) which is convex cocompact in P(V ), and let Ω ⊂ P(V ) be a properly

convex domain where ρ(Γ) acts convex cocompactly.

Our goal now is to describe the convex polytope in (H ⊗ R)∗ associated to

the restriction of ρ to each H ∈ H, which we can use to understand the dynamics of

both ρ(H) and ρm(H).

Definition 6.3.12. For each H ∈ H, we let VH ⊂ P(V ) denote the set of vertices of

∆H .

Proposition 6.3.13. Let H ∈ H be a peripheral subgroup of rank k ≥ 2, and let

H0 ⊆ H be a finite-index free abelian subgroup. Consider the restriction ρ0 = ρ|H0.
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Then, the convex polytope C(ρ0) is a k-simplex in (H0 ⊗R)∗, and each vertex of C(ρ0)

is a weight µ whose associated weight space is a vertex of ∆H .

Moreover, every weight of ρ0 which is not a vertex of C(ρ0) lies in the interior

of C(ρ0).

Proof. Each vertex v ∈ VH lies in a weight space of ρ0, with an associated weight µv.

Let Φ denote the weights of ρ0, and let Φ(VH) ⊆ Φ be the set of weights of the form

µv for v ∈ VH . We claim that for any µ ∈ Φ−Φ(VH) and any h ∈ H0 ⊗R, there is a

vertex v ∈ VH such that

µv(h) > µ(h).

Suppose for a contradiction that the claim does not hold, i.e. there exists h ∈ H0⊗R

and µ ∈ Φ − Φ(VH) such that µ(h) ≥ µv(h) for all v ∈ VH . Let WH = span(∆H),

and let V ′ be the ρ0-invariant subspace Vµ ⊕WH . Then ρ0 induces a representation

ρ′0 : H0 → SL(V ′).

Each vertex v ∈ VH is an eigenspace for ρ0, so the nilpotence degree of µv

(viewed as a weight of ρ′0) is 1. Then, we can apply Lemma 6.3.11 to ρ′0 (with θ = {µ})

to see that for any divergent sequence hn ∈ H with [hn]→ [h] in P(H0 ⊗R), and any

fixed x ∈ P(V ′)− P(WH), the ratio

dP(ρ(hn)x,P(Vµ))

dP(ρ(hn)x,P(WH))

does not tend to infinity as n→∞. In particular this is true for some x ∈ Ω, since

P(V ′) ∩ Ω is relatively open and nonempty. But since ∆H ⊂ P(WH), this contradicts

the fact that ∂∆H is the full orbital limit set of ρ(H0) in Ω.
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We have now proved our claim, which implies that any extreme point of

the convex polytope C(ρ0) is a weight µv for v ∈ VH . On the other hand, by

Corollary 6.1.4, we may assume that each vertex v ∈ VH is an extreme point in ∂Ω,

and by Proposition 2.1.18, this means that for each v ∈ VH , there is a sequence hn ∈ H0

such that v is an attracting subspace for ρ0(hn). Since ρ0(H0) acts diagonalizably

on WH , this implies that µv is an extreme point of C(ρ0). The last assertion of the

proposition follows directly from the claim.

Proposition 6.3.13 tells us that we can combinatorially identify the k-simplex

∆H and the k-simplex C(ρ0) for ρ0 = ρ|H0 . We write this identification explicitly:

Definition 6.3.14. Let H ∈ H, and let H0 be a finite-index free abelian subgroup.

For each face F of ∆H with vertices V(F ), we let F̃ denote the face of C(ρ0) whose

vertices are the weights µv for v ∈ V(F ).

6.3.5 Invariant simplices in the symmetric power

Our next step is to describe the simplices SH ⊂ P(Symm V ) which give rise to

the fibers in Λ̂m over parabolic points, for our EGF boundary extension Λ̂m → ∂(Γ,H).

Let H ∈ H have rank k, and let H0 ⊆ H be a finite-index free abelian subgroup.

We let ρ0, ρ
m
0 respectively denote the restrictions of ρ, ρm to H0, and let Φ,Φm denote

the sets of weights of ρ0 and ρm0 . We observe the following:

Lemma 6.3.15. The convex polytope C(ρm0 ) is the k-simplex mC(ρ0). Moreover,

for every face F̃ of C(ρ0), the weights in Φm ∩ mF̃ are exactly the vertices of the
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mth barycentric subdivision of mF̃ , and each such weight has a one-dimensional

generalized weight space.

Proof. The weights of ρm0 are exactly the set of homomorphisms of the form∑
µ∈Φ

aµµ,

where aµ ∈ N ∪ {0} and
∑
aµ = m. In particular, the set of rescaled weights 1

m
Φm

consists entirely of convex combinations of weights of ρ0, and contains every weight

in Φ. This (together with Proposition 6.3.13) implies that C(ρm0 ) is a k-simplex.

Further, every (rescaled) weight in the boundary of the rescaled simplex

1
m
C(ρm0 ) must be a convex combination of weights lying in a single face of the simplex

C(ρ0). But Proposition 6.3.13 says that every weight in Φ∩∂C(ρ0) is a vertex of C(ρ0).

So, if F is a face of the simplex ∆H with vertices V(F ), the weights in F̃ ∩ 1
m

Φm are

exactly the convex combinations of the form

1

m

∑
v∈V(F )

avµv, (6.3)

where av ∈ N ∪ {0} and
∑
av = m. These are exactly the vertices in the mth

barycentric subdivision of F̃ , and in fact each such vertex has unique expression of

the form (6.3). Since each weight µv for v ∈ V(F ) has a one-dimensional generalized

weight space, it follows that the weights in Φm ∩mF do as well.

6.3.5.1 The simplices SH ⊂ P(Symm V )

Using Lemma 6.3.15, we can define the vertices of the simplex SH : they are

exactly the weight spaces for the weights µ lying in Φm ∩ ∂C(ρm0 ).
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To define SH as a subset of P(Symm V ), we choose lifts in Symm V of each

vertex of SH , and then take convex combinations. Our lifts are chosen as follows: we

first pick a lift ṽ ∈ V of each vertex v ∈ VH , so that ∆H is the projectivization of

the convex hull in V of {ṽ : v ∈ VH}. The weight space of µ for each µ ∈ ∂C(ρm0 ) is

spanned by a unique vector in Symm V of the form

ṽµ =
∏
v∈VH

ṽav ,

where av ∈ N∪{0} and
∑
av = m. Then we can define SH to be the projectivization

of the convex hull in Symm V of the ṽµ’s.

6.3.5.2 Dynamics on the simplices SH

By definition, the vertices of SH are exactly the weight spaces for the weights

in the boundary of the simplex C(ρm0 ) ⊂ (H0⊗R)∗. So, Proposition 6.3.9 immediately

implies the following:

Corollary 6.3.16. Let H ∈ H. For every divergent sequence hn ∈ H, there is a face

F of SH which spans an attracting subspace for the sequence ρm(hn).

6.3.6 Dual simplices in symmetric powers

As discussed in Section 6.1, [DGK17], Proposition 5.6 says that since Γ →

SL(V ) is convex cocompact in P(V ), the dual representation Γ→ SL(V ∗) is convex

cocompact in P(V ∗), and in fact there is a domain Ω ⊂ P(V ) so that Γ acts convex

cocompactly on both Ω and the dual domain Ω∗. By the work of Islam-Zimmer

[IZ19b], each virtually abelian subgroup H ∈ H must act cocompactly on a properly
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embedded dual simplex ∆∗H ⊂ Ω∗. And, for each vertex w of ∆∗H , the projective

hyperplane P(w) is a supporting hyperplane of Ω at ∂∆H .

6.3.6.1 The simplices S∗H ⊂ P(Symm V ∗)

For each H ∈ H, we can define an H-invariant dual simplex S∗H ⊂ P(Symm V ∗),

by carrying out the construction we used to find SH (but this time for the dual

representation ρ∗ : Γ → SL(V ∗)). We can describe the relationship between the

simplices SH and S∗H a little more explicitly. For a finite-index free abelian subgroup

H0 ⊆ H, we let ρ∗0 : H0 → SL(V ∗) be the dual of the restriction of ρ to H0, and

similarly define (ρm0 )∗ : H0 → SL(V ∗). Then the weights of ρ∗0 are the negative weights

of ρ0, and the weights of (ρm0 )∗ are the negative weights of ρm0 .

Suppose µm is a weight of ρm0 with a one-dimensional generalized weight space

vm. Then, the negative weight −µm also has a one-dimensional generalized weight

space wm ∈ P(Symm V ∗), and P(wm) is the hyperplane spanned by the weight spaces

of the weights in Φm − {µm}. In particular, we can consider the case where µm is a

weight lying in the boundary of C(ρm0 ). In this case, vm is a vertex of SH , wm is a

vertex of S∗H , and P(wm) is a hyperplane intersecting SH in a codimension-1 face of

SH .

This allows us to define a simultaneous lift of the boundaries of the simplices

SH , S
∗
H in the space of flags F(Symm V ).

Definition 6.3.17. For a peripheral subgroup H ∈ H, we let ∂ŜH denote the set

∂ŜH = {(v, w) ∈ F(Symm(V )) : v ∈ ∂SH , w ∈ ∂S∗H}.
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The discussion above shows that ∂ŜH is a nonempty closed invariant subset of

F(Symm V ), projecting to ∂SH and ∂S∗H under the canonical maps F(Symm V )→

P(Symm V ) and F(Symm V ∗)→ P(V ∗).

6.3.7 Defining the boundary set

Using the sets ∂ŜH , we can define our candidate for the EGF boundary set

Λ̂m ⊂ F(Symm V ) as follows. We let φ̂ : Λ̂Ω(Γ) → ∂(Γ,H) denote the boundary

extension for the EGF representation ρ coming from Theorem 6.1.1. For each

z ∈ ∂(Γ,H), we define the set ψ̂m(z) ⊂ F(Symm(V )) by:

ψ̂m(z) =

{
ι̂(φ̂−1(z)), z ∈ ∂con(Γ,H)

∂ŜH , z ∈ ∂par(Γ,H).

We define

Λ̂m =
⋃

z∈∂(Γ,H)

ψ̂m(z),

and observe that ι̂(Λ̂Ω(Γ)) ⊂ Λ̂m.

The set Λ̂m is ρm(Γ)-invariant, since ι̂ is τm-equivariant and the construction

of the set ∂ŜH is invariant. Ultimately we want to see that Λ̂m is compact, and

that there is a well-defined antipodal map φ̂m : Λ̂m → ∂(Γ,H) giving us our EGF

boundary extension.

6.3.8 Defining the boundary extension

Our next immediate goal is to show:

Proposition 6.3.18. For distinct z1, z2 ∈ ∂(Γ,H), the sets

ψ̂m(z1), ψ̂m(z2)
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are opposite (in particular, disjoint). Consequently, the map φ̂m : Λ̂m → ∂(Γ,H)

given by

φ̂m(ξ) = z ⇐⇒ ξ ∈ ψ̂m(z)

is well-defined, equivariant, surjective, and antipodal.

Lemma 6.3.19. Let X be a closed subset of ΛΩ(Γ), and let HX ⊂ H be the set

{H ∈ H : ∂∆H ∩X 6= ∅}.

Then the set

XH = X ∪
⋃

H∈HX

∆H

is closed.

Proof. Let xn be a sequence in XH. By compactness of ΛΩ(Γ), we can choose a

subsequence so that xn → x ∈ ΛΩ(Γ). We wish to show that x ∈ XH. Since X is

closed and X ⊂ XH, we may assume that for each n, we have xn ∈ ∂∆Hn for some

Hn ∈ HX .

Up to subsequence, the sets ∂∆Hn converge to a closed set ∂∆∞ which is a

connected finite union of (possibly degenerate) projective simplices. We must have

x ∈ ∂∆∞ ⊂ ΛΩ(Γ). By definition, ∂∆Hn intersects X nontrivially, and since X is

closed we must also have ∂∆∞ ∩X 6= ∅.

Suppose for a contradiction that x /∈ XH. Then in particular x /∈ X. Since

∂∆∞ intersects X, it must contain at least two points, which means that every point

in ∂∆∞ lies in a nontrivial closed projective segment (since ∂∆∞ is a connected

finite union of projective simplices). But then by Corollary 6.1.4, ∂∆∞ ⊂ ∂∆H for
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some H ∈ H, and since ∂∆∞ ∩ X 6= ∅ we have H ∈ HX and therefore x ∈ XH,

contradiction.

Proposition 6.3.20. For each H ∈ H, there is a connected component CH of

Opp(∂S∗H) = {x ∈ P(Symm V ) : x ⊥ w for every w ∈ ∂S∗H}

such that for every closed subset X ⊂ ΛΩ(Γ)−∆H , CH contains the closure of

ι(X) ∪
⋃

H′∈HX

SH′ ,

where HX = {H ∈ H : ∂∆H ∩X 6= ∅}.

Proof. Let VH , V∗H denote the vertex sets of ∆H and ∆∗H , respectively. Using the

convexity of Ω, we can find lifts w̃ ∈ V ∗ for each vertex w ∈ V∗H , a continuous lift

Λ̃ ⊂ V of ΛΩ(Γ), and a continuous lift ∆̃H ⊂ V of ∆H so that

w̃(Λ̃− ∆̃H) > 0 (6.4)

for every w ∈ V∗H .

The lifts w̃ induce lifts w̃m ∈ (Symm V )∗ of each vertex wm of S∗H . We take

the set CH to be the projectivization of

{v ∈ Symm V : w̃m(v) > 0 for all vertices wm of S∗H}.

Every point in ∂S∗H is the projectivization of a convex combination of the lifts w̃m.

So, CH is a connected component of P(Symm V )−
⋃
w∈∂(S∗H) P(w).
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Now let X ⊂ ΛΩ(Γ)−∆H be closed and let Y be the set

ι(X) ∪
⋃

H′∈HX

SH′ .

We wish to show that Y ⊂ CH . Let XH be the set

XH = X ∪
⋃

H′∈HX

∆H′ .

By Lemma 6.3.19, we can find a compact lift X̃H of XH in V so that w̃(x̃) > 0 for

every x̃ ∈ X̃H and every w ∈ V∗H . We consider the set

Symm X̃H = {x̃m ∈ Symm V : x̃m =
m∏
i=1

x̃i for x̃i ∈ X̃H}.

This set is the image of the m-fold Cartesian product (X̃H)m under the continuous map

V m → Symm V given by (v1, . . . , vm) 7→ v1 · · · vm, so it is compact. Moreover, since

Symm X̃H contains a lift of every vertex of every SH′ for H ′ ∈ HX , the projectivization

of the convex hull of Symm X̃H contains Y , hence Y .

But from (6.4), we know that w̃m(x̃m) > 0 for every vertex wm of S∗H and

every x̃m ∈ X̃H, so we see that CH contains the projectivization of the convex hull of

Symm X̃H.

Proof of Proposition 6.3.18. Let z1, z2 ∈ ∂(Γ,H) be distinct. If both z1 and z2 are

conical limit points, the proposition follows from the antipodality of the EGF boundary

extension φ̂ : Λ̂Ω(Γ)→ ∂(Γ,H) and the fact that ι̂ preserves transversality. On the

other hand, if z1 is a parabolic point, this follows from Proposition 6.3.20 (and the

equivalent dual statement).
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6.3.9 Dynamics on SH

We have now defined an equivariant antipodal surjective map φ̂m : Λ̂m →

∂(Γ,H), but we do not yet know that the set Λ̂m is compact, or even that φ̂m is

continuous. However, it turns out that it is easier to verify these two facts after

proving that φ̂m has certain dynamical properties.

Lemma 6.3.21. For each H ∈ H, there exists an open set ĈH ⊂ F(Symm V )

containing Λ̂m − ∂ŜH , such that for any infinite sequence hn ∈ H and ξ ∈ ĈH , we

have

ρm(hn)ξ → ∂ŜH .

Proof. For each H ∈ H, we let CH ⊂ P(Symm V ) be the set coming from Propo-

sition 6.3.20. Let hn be a divergent sequence in some H ∈ H, and let H0 be a

finite-index free abelian subgroup. Corollary 6.3.16 says that some face F of SH

spans an attracting subspace for ρm(hn). The corresponding repelling subspace is a

direct sum of weight spaces for the restriction ρm|H0 , so it is contained in P(wm) for a

vertex wm of the dual simplex S∗H . So, for any x ∈ CH , any subsequence of ρm(hn)x

subconverges to a point in [span(F )]. In fact, ρm(hn)x subconverges to a point in

F ⊂ ∂SH , since CH is ρm(H)-invariant and CH ∩ supp(F ) = F .

Then, we can dually define a set C∗H ⊂ P(Symm V ∗), and take

ĈH = {(x,w) ∈ F(Symm V ) : x ∈ CH , w ∈ C∗H}.

262



6.3.10 Continuity and compactness

Lemma 6.3.22. The set Λ̂m is closed.

Proof. Let (xn, wn) be a sequence in Λ̂m, and let zn = φ̂m(xn, wn). Up to subsequence,

zn converges to z ∈ ∂(Γ,H).

If z is a conical limit point, let γn be a sequence limiting conically to z, chosen

so that for any z′ 6= z, we have γ−1
n z′ → b and lim γ−1

n zn = a 6= b.

Then φ̂−1(γ−1
n zn) converges to φ̂−1(a), and thus φ̂−1(γ−1

n zn) lies in a fixed

compact subset X of Opp(φ̂−1(b)) ∩ Λ̂Ω(Γ). By definition, this means that for every

n, φ̂−1
m (γ−1

n zn) lies in the set

ι(X) ∪
⋃

H′∈HX

SH′ ,

Arguing as in Proposition 6.3.20, we see that this set is compact. So by antipodality

of φ̂m, the sets of flags φ̂−1
m (γ−1

n zn) lie in a fixed compact subset of Opp(φ̂−1
m (b)) =

Opp(ι̂(φ̂−1(b))) and by Proposition 6.3.1,

(xn, wn) ∈ ρm(γn)φ̂−1
m (γ−1

n zn)

converges to ι̂(φ̂−1(z)).

If z is a parabolic point, we let H = StabΓ(z), and choose hn ∈ H so that

h−1
n zn ∈ K for a fixed compact K − {z}. By Proposition 6.3.20, we know that for all

n, φ̂−1
m (h−1

n zn) lies in a fixed compact subset of ĈH . Then, Lemma 6.3.21 implies that

(xn, wn) ∈ ρm(hn)φ̂−1
m (h−1

n zn)

subconverges to a point in ∂ŜH .
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Proposition 6.3.23. The map φ̂m is continuous.

Proof. Let (xn, wn) be a sequence in Λ̂m, converging to (x,w) (which we know lies in

Λ̂m by the previous proposition). Let zn = φ̂m(xn, wn), and suppose for a contradiction

that up to subsequence zn → z for z 6= φ̂m(x,w).

Proposition 6.3.20 then implies that zn lies in a compact subset K ⊂ ∂(Γ,H)

so that the closure of φ̂−1
m (K) is opposite to (x,w). This contradicts the fact that

(xn, wn) converges to (x,w).

At this point, we have shown that φ̂m : Λ̂m → ∂(Γ,H) is a continuous

equivariant surjective antipodal map, and that Λ̂m is a compact subset of F(Symm V ).

So, we can finish the proof of Theorem 6.3.2 by showing:

Proposition 6.3.24. The map φ̂m : Λ̂m → ∂(Γ,H) extends the convergence dynamics

of Γ.

Proof. We will use Proposition 5.1.2, and show that φ̂m has the required dynamics

on conical limit sequences and sequences in peripheral subgroups.

For each conical limit point z ∈ ∂(Γ,H), we define Ĉz ⊂ F(Symm V ) to be

the affine chart

Ĉz = {ξ ∈ F(Symm V ) : ξ is opposite to φ̂−1
m (z)}.

If γn is a sequence limiting conically to z, and γ−1
n limits conically to z−, then φ̂−1(z),

φ̂−1(z−) are respectively attracting flags for ρ(γn), ρ(γ−1
n ). It follows that ι̂(φ̂−1(z)),
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ι̂(φ̂−1(z−)) are respectively attracting flags for ρm(γn) and ρm(γ−1
n ), so the required

dynamics for the sequence are a consequence of Lemma 2.3.8.

On the other hand, for each parabolic point p, we take Ĉp to be the open set

ĈH considered in Lemma 6.3.21, for H = StabΓ(p). Lemma 6.3.21 implies that Ĉp

contains Λ̂m − φ̂−1
m (p) and that for any (x,w) ∈ Ĉp and any infinite sequence hn ∈ H,

ρm(hn)ξ subconverges to a point in ∂ŜH .

6.3.11 Stability

We have now shown that the representations ρm are all extended geometrically

finite. Theorem 5.6.2 says that small peripherally stable deformations of ρm are also

extended geometrically finite. So we want to show the following:

Proposition 6.3.25. The space Hom(Γ, SL(Symm V )) is peripherally stable at (ρm, φ̂m).

The main step in the proof is the following:

Lemma 6.3.26. Let H0 be a finite-index free abelian subgroup of some H ∈ H, with

H = StabΓ(p). For any open set U ⊂ P(Symm V ) containing SH and any x ∈ Cp,

there exists a cofinite subset T ⊂ H0 and an open set W ⊂ Hom(Γ, SL(Symm V ))

containing ρm such that for any σ ∈ W, we have σ(h) · x ∈ U for any h ∈ T .

Proof. We proceed by contradiction, and suppose that there exists a sequence of

distinct group elements hn ∈ H0 and a sequence of representations σn : Γ →

SL(Symm V ) such that σn → ρm and σn(hn)x /∈ U . We let Φm denote the set of

generalized weights of ρm|H0 , and we let Φm
n denote the generalized weights of σn|H0 .
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We choose a norm | · | on H0 ⊗ R. Then up to subsequence hn/|hn| converges

to h∞ ∈ H0 ⊗ R with |h∞| = 1.

Since Φm is finite, there is a face F̃ of the k-simplex C(ρm|H0) and a constant

M > 0, such that for every weight µ ∈ Φm(F ) = Φm ∩ F̃ , and every weight

µopp ∈ Φm − Φ(F ), we have

µ(h∞)− µopp(h∞) > M.

We let V m
F ⊂ Symm V denote the span of the weight spaces of the weights in Φm(F );

by definition P(V m
F ) is the projective span of a face of SH .

Proposition 6.3.5 implies that as a set with multiplicity, the weights Φm
n

converge to the weights Φm. So, for each n, there is a subset θn ⊂ Φm
n such that θn

converges to Φm ∩ ∂C(ρm|H0), and a subset θn(F ) ⊂ θn such that θn(F ) converges to

Φm(F ). Proposition 6.3.5 also implies that for sufficiently large n, all of the weights

in θn must have one-dimensional generalized weight spaces, converging to the vertices

of SH .

This means that for each n, there are simplices SnH and (SnH)∗, invariant under

the action of σn(H), such that SnH → SH and (SnH)∗ → S∗H . So, we can find a

sequence of group elements gn ∈ SL(V ), with gn converging to the identity, so that

σ′n = gnσng
−1
n preserves the simplices SH and S∗H . Moreover, the vertices of SH are

the weight spaces Vµ of σ′n for µ ∈ θn, and the space V m
F is spanned by weight spaces

Vµ(F ) of σ′n for µ(F ) ∈ θn(F ).

Now, since θn(F ) converges to Φm(F ), for sufficiently large n we must have

µn(h∞)− µopp
n (h∞) > M
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for every µn ∈ θn(F ) and every µopp
n ∈ Φm

n − θn(F ). This also means that for

sufficiently large n we have

µn(hn)− µopp
n (hn) > M |hn|.

Then Lemma 6.3.11 implies that for sufficiently large n, σ′n(hn)x lies in a small neigh-

borhood of P(VF ) (here we use the fact that the constant D = D(ρ) in Lemma 6.3.11

varies continuously with ρ, and that the nilpotence degree ` of any weight of σ′n is

bounded by dim Symm V ). Moreover, we know that the set Cp is σ′n(H)-invariant,

since the simplex S∗H is σ′n(H)-invariant. Since x lies in Cp, σ
′
n(hn)x lies in an arbi-

trarily small neighborhood of P(VF ) ∩ Cp. By definition this intersection is a face of

SH , so for large enough n, σn(hn)x must lie in an arbitrarily small neighborhood of

this face, giving a contradiction.

Proof of Proposition 6.3.25. We want to show that if H = StabΓ(p) for a parabolic

point p, K is a compact subset of Ĉp, U is a neighborhood of ŜH , and T ⊂ H is a

cofinite subset such that

ρm(T ) ·K ⊂ U, (6.5)

then we can find a neighborhood W of ρm|H in Hom(H, SL(Symm V )) so that for any

σ ∈ W ,

σ(T ) ·K ⊂ U. (6.6)

For simplicity, we will not work in the space of flags F(Symm V ). Instead we

will just show that that if (6.5) holds for a compact K ⊂ Cp ⊂ P(Symm V ) and an

open neighborhood U of SH in P(Symm V ), then (6.6) holds also.
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Fix a finite-index free abelian subgroup H0 ⊆ H. It suffices to show that we

can choose an open W ⊂ Hom(Γ, SL(Symm V )) so that

σ(T ∩H0) ·K ⊂ U

for all σ ∈ W . Using Lemma 6.3.26, we can find a cofinite set T ′ ⊂ H0 and an open

set W ⊂ Hom(Γ, SL(Symm V )) so that for all σ ∈ W ′, we have

σ(T ′) ·K ⊂ U.

But then since (T ∩ H0) − T ′ is finite, we can just shrink W to get the desired

result.
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Appendix

Let V be a real vector space, and let An be a sequence of matrices in PGL(V ).

It is sometimes possible to determine the global dynamical behavior of An on P(V )

by considering the action of An on a small open subset of P(V ): if there is an open

subset U ⊂ P(V ) such that An · U converges to a point in P(V ), then in fact there

is a dense open subset U− ⊂ P(V ) (the complement of a hyperplane) on which An

converges to the same point, uniformly on compacts.

A similar statement holds for the action of An on Grassmannians Gr(k, V ).

These claims can be proved by considering the behavior of the singular value gaps of

An as n→∞.

In this appendix we give a general result along these lines, where we take

sequences of group elements gn ∈ G for a semisimple Lie group G with no compact

factor and trivial center, and consider the limiting behavior of gn on open subsets of

some flag manifold G/P+, where P+ is a parabolic subgroup.

Proposition 2.3.7. Let gn be a sequence in G, and suppose that for some nonempty

open subset U ⊂ G/P+, we have gn ·U → {ξ} for ξ ∈ G/P+. Then gn is P+-divergent,

and has a unique P+-limit point ξ ∈ G/P+.
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We will prove Proposition 2.3.7 by reducing it to the case where G = PGL(d,R)

and P+ = P1 is the stabilizer of [e1] ∈ RPd−1 ' G/P1. In this situation, P+-divergence

can be understood in terms of the behavior of the singular value gaps of the sequence

gn.

Proposition 0.0.27. Suppose that G = PGL(d,R), and let P+ = P1 ⊂ G be the

stabilizer of a line in Rd. A sequence gn ∈ G is P1-divergent if and only if

σ1(gn)

σ2(gn)
→∞,

where σi(gn) is the ith-largest singular value of gn.

For convenience, we give a proof of Proposition 2.3.7 in this special case.

Lemma 0.0.28. Let gn be a sequence in PGL(d,R), and suppose that for a nonempty

open subset U ⊂ RPd−1, gnU converges to a point in RPd−1. Then, the singular value

gap

σ1(gn)

σ2(gn)

tends to ∞ as n→∞.

Proof. It suffices to show that any subsequence of gn has a subsequence which satisfies

the property. Using the Cartan decomposition of PGL(d,R), we can write

gn = knank
′
n,

for kn, k
′
n ∈ K = PO(d) and an a diagonal matrix whose diagonal entries are σ1, . . . , σd.

Up to subsequence kn and k′n converge respectively to k, k′ ∈ K. For sufficiently large
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n, k′nU ∩ k′U is nonempty, so by replacing U with k′U we can assume that k′n = id

for all n. Furthermore, if knanU converges to a point z ∈ RPd−1, then anU converges

to k−1z.

So, anU converges to a point, and since an is a diagonal matrix, the gap between

the moduli of its largest and second-largest eigenvalues must be unbounded.

To prove the general case of Proposition 2.3.7, we take an irreducible repre-

sentation ζ : G → PGL(V ) coming from Theorem 5.4.4, so that P+ maps to the

stabilizer of a point p in P(V ), P− maps to the stabilizer of a dual point q ∈ P(V ∗),

and gP+g−1, hP−h−1 are opposite if and only if ζ(g)p, ζ(h)q are transverse. As in

section 5.4, this determines embeddings ι : G/P → P(V ) and ι∗ : G/P− → P(V ∗) by

ι(gP+) = ζ(g)p, ι∗(gP−) = ζ(g)q.

The representation ζ additionally has the property that for any sequence

gn ∈ G, the singular value gaps

σ1(ζ(gn))/σ2(ζ(gn))

are unbounded if and only if gn is P+-divergent (see [GGKW17], Lemma 3.7).

Proof of Proposition 2.3.7. By [Zim18], Lemma 4.7, there exist flags ξ1, . . . , ξD ∈ U

so that lifts of ι(ξi) give a basis of V . Since gn · U converges to a point in G/P , the

set

{ζ(gn) · ι(ξi) : 1 ≤ i ≤ D}

converges to a single point in P(V ).
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This means that we can fix lifts ˜ι(ξi) ∈ V so that, up to a subsequence, ζ(gn)

takes the projective (D − 1)-simplex[
D∑
i=1

λi ˜ι(ξi) : λi > 0

]
⊂ P(V )

to a point. This simplex is an open subset of P(V ). Now we can apply Lemma 0.0.28

to see that the sequence gn is P+-divergent.

We now just need to check that ξ is the unique P+-limit point of gn. Choose

any subsequence of gn. Then any P+-contracting subsequence gm of this subsequence

satisfies

gm|Opp(ξ−) → ξ′

uniformly on compacts for some ξ− ∈ G/P− and ξ′ ∈ G/P+. But since Opp(ξ−) is

open and dense, it intersects U nontrivially and thus ξ′ = ξ.
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Strasbourg, 1990.

[CZZ21] Richard Canary, Tengren Zhang, and Andrew Zimmer. Cusped Hitchin

representations and Anosov representations of geometrically finite Fuch-

sian groups. arXiv e-prints, page arXiv:2103.06588, March 2021.

[DGK17] Jeffrey Danciger, François Guéritaud, and Fanny Kassel. Convex co-
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