Group actions on boundaries of convex divisible domains

Theodore Weisman University of Texas - Austin

November 2, 2019

Definition

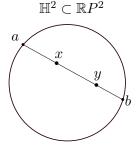
Closed convex projective manifold: quotient $M = \Omega/\Gamma$, where:

- ▶ $\Omega \subset \mathbb{R}P^d$ is open and properly convex ("convex domain")
- ▶ $\Gamma \subset \operatorname{PGL}(d+1, \mathbb{R})$ is discrete and torsionfree

• The quotient Ω/Γ is compact

We say Γ divides Ω .

Koszul \implies deformations of Γ in PGL(d+1) are still discrete, and give a family of real projective structures on M.



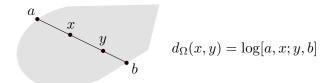
$$d_{\mathbb{H}}(x,y) = \frac{1}{2}\log[a,x;y,b]$$

Question: If a subgroup $\Gamma \subset \text{PGL}(d+1)$ preserves a convex domain $\Omega \subset \mathbb{R}P^d$, when does it divide Ω ?

Theorem (Benoist, 2004)

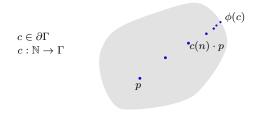
Let Γ divide Ω . Then Ω is strictly convex $\iff \Gamma$ is Gromov-hyperbolic.

Define: *Hilbert metric* on Ω , so that Γ acts by isometries.



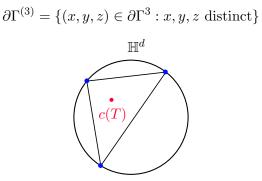
 Ω divisible and strictly convex $\implies d_{\Omega}$ is a hyperbolic metric space.

When a Gromov-hyperbolic group Γ divides Ω , get equivariant homeomorphism $\phi : \partial \Gamma \to \partial \Omega$.



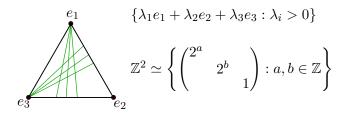
Theorem (Benoist)

Let Ω be a strictly convex domain with C^1 boundary, and $\Gamma \subset \mathrm{PGL}(d+1)$ preserve Ω . If there exists an equivariant homeomorphism $\partial\Gamma \to \partial\Omega$, then Γ divides Ω . Any Gromov hyperbolic Γ acts properly discontinuously and cocompactly on *triples*:



In \mathbb{H}^d case, there's an equivariant projection map $c: \partial \Omega^{(3)} \to \Omega$.

When does Γ divide Ω when Ω is not strictly convex?

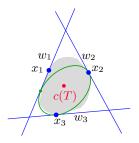


 Γ does not in general act properly discontinuously on triples in $\partial \Omega!$

Definition

 $\partial_{\mathcal{F}}\Omega = \{(x, w) : x \in \partial\Omega, w \text{ supporting hyperplane of } \Omega \text{ at } x\}$

Consider transverse triples $T = \{(x_i, w_i)\}_{i=1,2,3}$ in $\partial_{\mathcal{F}}\Omega$:



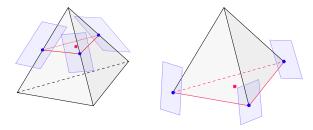
Projective invariants of T:

• Triple ratio: pick lifts for $x_i \in \mathbb{R}P^d, w_j \in (\mathbb{R}P^d)^*$.

$$\rho(T) = \frac{w_1(x_2)w_2(x_3)w_3(x_1)}{w_1(x_3)w_2(x_1)w_3(x_2)}$$

• Center of T: c(T) = unique point in span of x_i 's left invariant by projective transformations permuting the flags of T.

Triples in $\partial_{\mathcal{F}} \Omega$:



Theorem (W)

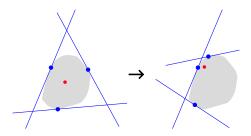
Let $\Gamma \subset \operatorname{PGL}(d+1)$ preserve a convex domain Ω . Then Γ divides Ω if and only if for all sufficiently large $k \in \mathbb{R}^+$, Γ acts properly discontinuously and cocompactly on the space of triples T in Γ satisfying $1/k < \rho(T) < k$ and $c(T) \in \Omega$.

Proof sketch

Show that the map

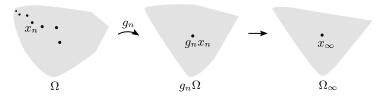
```
c: \{ \text{triangles with triple ratio } \leq k \} \rightarrow \Omega
```

is proper and quasisurjective (with respect to Hilbert metric). Properness: a degenerating sequence of transverse triples in $\partial \Omega$ has center converging to $\partial \Omega$.



Proof sketch (continued)

Suppose not quasisurjective: there's $x_n \in \Omega$ far away from the center of every triangle with triple ratio k. We can find group elements $g_n \in \text{PGL}(d+1)$ such that $g_n x_n \to x_\infty$ and $g_n \Omega \to \Omega_\infty$. (Benzecri compactness theorem)



Must be a transverse triple in $\partial \Omega_{\infty}$, whose center is *finitely far* from $x_{\infty} \implies$ contradiction.

Further questions

- Does a similar criterion imply a notion of *convex* cocompactness in convex projective domains?
- What abstract conditions on the group Γ does this action on the boundary imply?