Group actions on boundaries of convex divisible domains

Theodore Weisman
University of Texas - Austin

November 2, 2019

Definition

Closed convex projective manifold: quotient $M=\Omega / \Gamma$, where:
$-\Omega \subset \mathbb{R} P^{d}$ is open and properly convex ("convex domain")

- $\Gamma \subset \operatorname{PGL}(d+1, \mathbb{R})$ is discrete and torsionfree
- The quotient Ω / Γ is compact

We say Γ divides Ω.
Koszul \Longrightarrow deformations of Γ in $\operatorname{PGL}(d+1)$ are still discrete, and give a family of real projective structures on M.

$$
\mathbb{H}^{2} \subset \mathbb{R} P^{2}
$$

$$
d_{\mathbb{H}}(x, y)=\frac{1}{2} \log [a, x ; y, b]
$$

Question: If a subgroup $\Gamma \subset \operatorname{PGL}(d+1)$ preserves a convex domain $\Omega \subset \mathbb{R} P^{d}$, when does it divide Ω ?

Theorem (Benoist, 2004)

Let Γ divide Ω. Then Ω is strictly convex $\Longleftrightarrow \Gamma$ is Gromov-hyperbolic.

Define: Hilbert metric on Ω, so that Γ acts by isometries.

Ω divisible and strictly convex $\Longrightarrow d_{\Omega}$ is a hyperbolic metric space.

When a Gromov-hyperbolic group Γ divides Ω, get equivariant homeomorphism $\phi: \partial \Gamma \rightarrow \partial \Omega$.

$$
\begin{aligned}
& c \in \partial \Gamma \\
& c: \mathbb{N} \rightarrow \Gamma
\end{aligned}
$$

Theorem (Benoist)

Let Ω be a strictly convex domain with C^{1} boundary, and $\Gamma \subset \operatorname{PGL}(d+1)$ preserve Ω.
If there exists an equivariant homeomorphism $\partial \Gamma \rightarrow \partial \Omega$, then Γ divides Ω.

Any Gromov hyperbolic Γ acts properly discontinuously and cocompactly on triples:

$$
\partial \Gamma^{(3)}=\left\{(x, y, z) \in \partial \Gamma^{3}: x, y, z \text { distinct }\right\}
$$

In \mathbb{H}^{d} case, there's an equivariant projection map $c: \partial \Omega^{(3)} \rightarrow \Omega$.

When does Γ divide Ω when Ω is not strictly convex?

Γ does not in general act properly discontinuously on triples in $\partial \Omega$!

Definition

$\partial_{\mathcal{F}} \Omega=\{(x, w): x \in \partial \Omega, w$ supporting hyperplane of Ω at $x\}$

Consider transverse triples $T=\left\{\left(x_{i}, w_{i}\right)\right\}_{i=1,2,3}$ in $\partial_{\mathcal{F}} \Omega$:

Projective invariants of T :

- Triple ratio: pick lifts for $x_{i} \in \mathbb{R} P^{d}, w_{j} \in\left(\mathbb{R} P^{d}\right)^{*}$.

$$
\rho(T)=\frac{w_{1}\left(x_{2}\right) w_{2}\left(x_{3}\right) w_{3}\left(x_{1}\right)}{w_{1}\left(x_{3}\right) w_{2}\left(x_{1}\right) w_{3}\left(x_{2}\right)}
$$

- Center of $T: c(T)=$ unique point in span of x_{i} 's left invariant by projective transformations permuting the flags of T.

Triples in $\partial_{\mathcal{F}} \Omega$:

Theorem (W)

Let $\Gamma \subset \mathrm{PGL}(d+1)$ preserve a convex domain Ω. Then Γ divides Ω if and only if for all sufficiently large $k \in \mathbb{R}^{+}, \Gamma$ acts properly discontinuously and cocompactly on the space of triples T in Γ satisfying $1 / k<\rho(T)<k$ and $c(T) \in \Omega$.

Proof sketch

Show that the map

$$
c:\{\text { triangles with triple ratio } \leq k\} \rightarrow \Omega
$$

is proper and quasisurjective (with respect to Hilbert metric). Properness: a degenerating sequence of transverse triples in $\partial \Omega$ has center converging to $\partial \Omega$.

Proof sketch (continued)

Suppose not quasisurjective: there's $x_{n} \in \Omega$ far away from the center of every triangle with triple ratio k.
We can find group elements $g_{n} \in \mathrm{PGL}(d+1)$ such that
$g_{n} x_{n} \rightarrow x_{\infty}$ and $g_{n} \Omega \rightarrow \Omega_{\infty}$.
(Benzecri compactness theorem)

Must be a transverse triple in $\partial \Omega_{\infty}$, whose center is finitely far from $x_{\infty} \Longrightarrow$ contradiction.

Further questions

- Does a similar criterion imply a notion of convex cocompactness in convex projective domains?
- What abstract conditions on the group Γ does this action on the boundary imply?

