Topological stability for (relatively) hyperbolic boundary actions

Teddy Weisman
University of Michigan

Joint work and joint work in progress with Katie Mann and Jason Manning

Basic stability question: if a group Γ acts on a space X, how much does a "nearby" action look like the original one?

In this talk:

- Γ is a (relatively) hyperbolic group
- X is the Gromov (Bowditch) boundary $\partial \Gamma$
- Action is the standard boundary action $\Gamma \rightarrow \operatorname{Homeo}(\partial \Gamma)$.

Example: $\Gamma=\pi_{1} M$ for M closed (finite volume) hyperbolic, $X=\partial \mathbb{H}^{n}$.

In this context: this question is relevant for Mostow rigidity, hyperbolic Dehn filling, (higher) Teichmuller theory...

Consider nearby actions in $\operatorname{Hom}(\Gamma, \operatorname{Homeo}(\partial \Gamma))$.

Assuming $\partial \Gamma$ has a C^{1} structure:

Theorem (Sullivan 1985, Kapovich-Kim-Lee 2021)

Let $\rho: \Gamma \rightarrow \operatorname{Homeo}(\partial \Gamma)$ be standard boundary action, and suppose Γ acts by C^{1} maps. Any action $\rho^{\prime}: \Gamma \rightarrow \operatorname{Homeo}(\partial \Gamma)$ which is sufficiently close to ρ in the C^{1} topology to ρ is conjugate to ρ : for any $\gamma \in \Gamma$,

$$
\rho^{\prime}(\gamma)=\phi \circ \rho(\gamma) \circ \phi^{-1}
$$

for $\phi \in \operatorname{Homeo}(\partial \Gamma)$.
Also a version where $\partial \Gamma$ does not have C^{1} structure. But, this version also restricts to Lipschitz-close deformations.

What happens if we just perturb in the C^{0} topology on Homeo $(\partial \Gamma)$?

Semi-conjugacy

If $\partial \Gamma=S^{1}$, can blow up points to intervals:

This can be done equivariantly with respect to Γ-action.

Definition

Γ acts on two topological spaces X, Y. A map $\phi: X \rightarrow Y$ is a semi-conjugacy if it is surjective and Γ-equivariant: for every $x \in X$,

$$
\gamma \cdot \phi(x)=\phi(\gamma \cdot x)
$$

The action of Γ on X "loses no information" from the action of Γ on Y.

Theorem (Mann-Manning-W, 2022)

Let $\rho: \Gamma \rightarrow \operatorname{Homeo}(\partial \Gamma)$ be standard boundary action. Any action $\rho^{\prime} \in \operatorname{Hom}(\Gamma, \operatorname{Homeo}(\partial \Gamma))$ sufficiently close to ρ is semi-conjugate to ρ.
(also see: Gromov 1987)

- Bowden-Mann, 2020: when $\Gamma=\pi_{1} M$ for M closed negatively curved Riemannian manifold
- Mann-Manning, 2021: when $\partial \Gamma$ homeomorphic to S^{n} (Uses different proof strategy)

In progress: relative version (needs stronger hypotheses on perturbation)

Idea (Sullivan 1985): use expansion dynamics of action to find symbolic coding for points in $\partial \Gamma$.

Given a point x in $\partial \Gamma$, how can I find a (uniform) quasi-geodesic ray in Γ limiting to x ?

Pick "expanding" neighborhood W_{z} about each $z \in \partial \Gamma$.
Unlike in Sullivan, "expansion" is measured topologically (visual metric is not essential).

Choose a finite cover $\left\{W_{z}\right\}_{z \in I}$ of $\partial \Gamma$ by expanding neighborhoods W_{z}.
Sets in cover $=$ vertices of a directed graph \mathcal{G}, with edges labeled by expanding elements $\alpha \in \Gamma$.

Rule: if there is an edge

$$
y \xrightarrow{\alpha} z,
$$

then $\alpha^{-1} W_{y}$ contains $\overline{W_{z}}$.

Constructing codings

Path in \mathcal{G} gives strictly nested sequence of subsets of $\partial \Gamma$, "coding" the unique point x in intersection.

If the cover $\left\{W_{z}\right\}$ and graph \mathcal{G} are constructed carefully:

- Every $x \in \partial \Gamma$ has a coding.
- The sequence $g_{k}=\alpha_{1} \cdots \alpha_{k}$ is a uniform quasigeodesic with endpoint x.

Constructing a semi-conjugacy

$$
\begin{gathered}
\left\{\begin{array}{c}
\text { Points in } \\
\partial \Gamma
\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}
\text { Infinite } \\
\text { paths in } \mathcal{G}
\end{array}\right\} \\
\text { Semi-conjugacy } \phi
\end{gathered} \rightarrow\left\{\begin{array}{c}
\text { Closed } \\
\text { subsets of } \partial \Gamma
\end{array}\right\}
$$

After perturbation, intersection may not be a singleton.
Verify: ϕ is well-defined, equivariant, surjective, continuous.

The relative case

Problem: action is not "expanding" around a parabolic point p in Bowditch boundary.

Still use an element of the parabolic subgroup to "expand" when coding points near p, but element to use depends on the point being coded.
\mathcal{G} still has finitely many vertices, but each pair can have zero, one, or infinitely many directed edges between them.

Explicit constructions for the figure-eight knot group

This automaton has 1023 vertices and 628,771 directed edges (identifying multiple edges between the same pair of vertices).

Explicit constructions for the figure-eight knot group

Vertex of automaton with 273 neighbors

