Topological stability for (relatively) hyperbolic boundary actions

Teddy Weisman University of Michigan

Joint work and joint work in progress with Katie Mann and Jason Manning Basic stability question: if a group Γ acts on a space X, how much does a "nearby" action look like the original one?

In this talk:

- \blacktriangleright Γ is a (relatively) hyperbolic group
- X is the Gromov (Bowditch) boundary $\partial \Gamma$
- Action is the standard boundary action $\Gamma \to \text{Homeo}(\partial \Gamma)$.

Example: $\Gamma = \pi_1 M$ for M closed (finite volume) hyperbolic, $X = \partial \mathbb{H}^n$.

In this context: this question is relevant for Mostow rigidity, hyperbolic Dehn filling, (higher) Teichmuller theory...

Consider nearby actions in $\operatorname{Hom}(\Gamma, \operatorname{Homeo}(\partial\Gamma))$.

Assuming $\partial \Gamma$ has a C^1 structure:

Theorem (Sullivan 1985, Kapovich-Kim-Lee 2021)

Let $\rho: \Gamma \to \text{Homeo}(\partial \Gamma)$ be standard boundary action, and suppose Γ acts by C^1 maps. Any action $\rho': \Gamma \to \text{Homeo}(\partial \Gamma)$ which is sufficiently close to ρ in the C^1 topology to ρ is conjugate to ρ : for any $\gamma \in \Gamma$,

$$\rho'(\gamma) = \phi \circ \rho(\gamma) \circ \phi^{-1}$$

for $\phi \in \operatorname{Homeo}(\partial \Gamma)$.

Also a version where $\partial \Gamma$ does *not* have C^1 structure. But, this version also restricts to Lipschitz-close deformations.

What happens if we just perturb in the C^0 topology on Homeo $(\partial \Gamma)$?

Semi-conjugacy

If $\partial \Gamma = S^1$, can blow up points to intervals:

This can be done equivariantly with respect to $\Gamma\text{-action.}$

Definition

 Γ acts on two topological spaces X, Y. A map $\phi : X \to Y$ is a *semi-conjugacy* if it is surjective and Γ -equivariant: for every $x \in X$,

$$\gamma \cdot \phi(x) = \phi(\gamma \cdot x)$$

The action of Γ on X "loses no information" from the action of Γ on Y.

Theorem (Mann-Manning-W, 2022)

Let $\rho: \Gamma \to \text{Homeo}(\partial \Gamma)$ be standard boundary action. Any action $\rho' \in \text{Hom}(\Gamma, \text{Homeo}(\partial \Gamma))$ sufficiently close to ρ is semi-conjugate to ρ .

(also see: Gromov 1987)

- ► Bowden-Mann, 2020: when $\Gamma = \pi_1 M$ for M closed negatively curved Riemannian manifold
- ► Mann-Manning, 2021: when $\partial \Gamma$ homeomorphic to S^n (Uses different proof strategy)

In progress: relative version (needs stronger hypotheses on perturbation)

Idea (Sullivan 1985): use expansion dynamics of action to find symbolic coding for points in $\partial \Gamma$.

Given a point x in $\partial \Gamma$, how can I find a (uniform) quasi-geodesic ray in Γ limiting to x?

Pick "expanding" neighborhood W_z about each $z \in \partial \Gamma$.

Unlike in Sullivan, "expansion" is measured topologically (visual metric is *not* essential). Choose a finite cover $\{W_z\}_{z \in I}$ of $\partial \Gamma$ by expanding neighborhoods W_z . Sets in cover = vertices of a directed graph \mathcal{G} , with edges labeled by expanding elements $\alpha \in \Gamma$.

Rule: if there is an edge

 $y \xrightarrow{\alpha} z,$ then $\alpha^{-1}W_y$ contains $\overline{W_z}$.

Constructing codings

Path in \mathcal{G} gives strictly nested sequence of subsets of $\partial \Gamma$, "coding" the unique point x in intersection.

If the cover $\{W_z\}$ and graph \mathcal{G} are constructed carefully:

• Every
$$x \in \partial \Gamma$$
 has a coding.

• The sequence $g_k = \alpha_1 \cdots \alpha_k$ is a uniform quasigeodesic with endpoint x.

Constructing a semi-conjugacy

After perturbation, intersection may not be a singleton. Verify: ϕ is well-defined, equivariant, surjective, continuous.

The relative case

Problem: action is not "expanding" around a parabolic point p in Bowditch boundary.

Still use an element of the parabolic subgroup to "expand" when coding points near p, but element to use depends on the point being coded.

 \mathcal{G} still has finitely many vertices, but each pair can have zero, one, or infinitely many directed edges between them.

Explicit constructions for the figure-eight knot group

This automaton has 1023 vertices and 628,771 directed edges (identifying multiple edges between the same pair of vertices).

Explicit constructions for the figure-eight knot group

Vertex of automaton with 273 neighbors