Extended convergence Lynamics and relative Anosov representations

$$\frac{(\operatorname{Convex} \operatorname{Cocompactness} \operatorname{in} \operatorname{hyperbolic} \operatorname{Space}}{\operatorname{T_{Som}(H^3)}}$$

$$\frac{\operatorname{Def:} \Gamma \operatorname{cPO}(\partial, 1) \operatorname{discute.}}{\operatorname{Iinsted} \Lambda_{\Gamma} = \operatorname{accumulation} \operatorname{points} \operatorname{of} \Gamma \cdot x \operatorname{in} \partial H^{d}$$

$$f_{\theta \Gamma} x \in H^{d}.$$

$$\Gamma : s \operatorname{Convex} \operatorname{Cocompact} \quad \text{if} \Gamma \operatorname{acts} \text{ with compact Quotient on}$$

$$\operatorname{ConvHJII}(\Lambda_{\Gamma}).$$

$$\underbrace{\operatorname{Ex:} \operatorname{Clased} \operatorname{hyperbolic}}_{\operatorname{Maxii} F \cdot 1d}$$

Stability:
Thm (Sullivan):
Let
$$p: \Gamma \rightarrow PO(d, 1)$$
 be convex cocompact. Then an open
neighborhood of p in Hom (Γ , $PO(d, 1)$) consists of convex
Cocompact representations.

Let Γ be a hyperbolic group. A representation $\rho: \Gamma \to \mathrm{PGL}(d, \mathbb{R})$ is P_1 -Anosov if there exist equivariant embeddings

 $\xi: \partial \Gamma \to \mathbb{P}(\mathbb{R}^d), \qquad \xi^*: \partial \Gamma \to \mathbb{P}(\mathbb{R}^d)^*$ which are transverse, and preserve the dynamics of Γ .

?

$$\frac{\text{Def:}}{\text{if } \Gamma \text{ acts } \text{wf } finite \text{ covolume } \text{on } an \underline{\text{E-neighborhood } of \\ \text{CowHull}(\Lambda_{\Gamma}) \subseteq |\text{H}^{d}.\\ \text{Ex:} \Gamma \subset \text{PO}(J, V) \quad (\text{nonuniform}) \quad [attice \\ \hline \end{array}$$

Def: A convex projectine structure on a manifold
M is a diffeomorphism M ->
$$\Omega/r$$
 for $\Omega \subset RP^d$
properly convex and $\Gamma \subset PGL(J+1, R)$ discrete group
preserving Ω .
Ex: any hyperbolic manifold (view III^d as a convex subset of RP^d)
 $\Gamma \subset PO(J, i)$ outr on III^d, III^d/r is come proj. monifold.
Three: (Benositi)
 $T = \Omega/r$ closed, and $\pi_1 M \notin \Gamma$ und -hyperbolic.
 $\Gamma \simeq PGL(J+1, R)$ is P_1 -Anosov.
Three (Deneiger - Gvénibard - kassel, Zimmer): Γ word-hyperbolic.
"Any Anosov representation can be associated to a convex
 $Proj:$ Structure on a compart mfd in a mostly convanied may."

Let Γ be a hyperbolic group. A representation $\rho: \Gamma \to \mathrm{PGL}(d, \mathbb{R})$ is P_1 -Anosov if there exist equivariant embeddings

 $\xi: \partial \Gamma \to \mathbb{P}(\mathbb{R}^d), \qquad \xi^*: \partial \Gamma \to \mathbb{P}(\mathbb{R}^d)^*$

which are *transverse*, and *preserve the dynamics of* Γ .

Let Γ be a hyperbolic group. A representation $\rho: \Gamma \to \operatorname{PGL}(d, \mathbb{R})$ is P_1 -Anosov if there exist equivariant embeddings

$$\xi: \partial \Gamma \to \mathbb{P}(\mathbb{R}^d), \qquad \xi^*: \partial \Gamma \to \mathbb{P}(\mathbb{R}^d)^*$$

which are transverse, and preserve the dynamics of Γ .

Definition (kup.vich - Leed)

Let Γ be a relatively hyperbolic group. A representation $\rho: \Gamma \to \mathrm{PGL}(d, \mathbb{R})$ is *relatively asymptotically embedded* if there exist equivariant embeddings

$$\xi: \partial(\Gamma, \mathcal{P}) \to \mathbb{P}(\mathbb{R}^d), \quad \xi^*: \partial(\Gamma, \mathcal{P}) \to \mathbb{P}(\mathbb{R}^d)^*$$

which are transverse, and preserve the dynamics of Γ .

Let Γ be a relatively hyperbolic group. A representation $\rho: \Gamma \to \operatorname{PGL}(d, \mathbb{R})$ is *relatively asymptotically embedded* if there exist equivariant embeddings

$$\xi: \partial(\Gamma, \mathcal{P}) \to \mathbb{P}(\mathbb{R}^d), \quad \xi^*: \partial(\Gamma, \mathcal{P}) \to \mathbb{P}(\mathbb{R}^d)^*$$

which are *transverse*, and *preserve the dynamics of* Γ .

Definition (W.)

Let Γ be a relatively hyperbolic group. A representation $\rho: \Gamma \to \operatorname{PGL}(d, \mathbb{R})$ is extended geometrically finite if there exists a closed set $\Lambda \subset \mathcal{F}_{1,d}$ and a transverse equivariant extension

 $\phi:\Lambda\to\partial(\Gamma,\mathcal{P})$

8 militch bandary

which extends the convergence dynamics of Γ .

(not to scale)

(not to scale)

$$\Gamma$$
 is hyperbolic relative to subgroups $\mathcal{H} = \{\mathcal{H}; C\Gamma\}$.
 $Thm(W.):$
Let $\varrho: \Gamma \longrightarrow G$ be an EGF representation, and let
 $W \subseteq Hom(\Gamma, G)$ be a subspace which is peripherally stable
at ϱ . Then an open subset of W containing ϱ consists
of EGF representations.

Cor:
$$p: \Gamma \rightarrow G \notin GF$$
.
 $W = \{ l' \in Hovn(\Gamma, G) : l'|_{H} \text{ conjugate to } e|_{H} \quad \forall H \in \mathcal{H} \}$
Open subset of W consists of EGF reps.

Periphenal Stability:

H' C RP':

With parubolics:

