Extended geometrically finite representations

Teddy Weisman University of Texas at Austin

March 10, 2022

Goal: introduce a notion of geometrically finite subgroups of higher rank Lie groups (e.g. $G = SL(d, \mathbb{R})$ for d > 2).

	$\operatorname{Isom}(\mathbb{H}^d)$	Higher rank
hyperbolic	convex cocompact	Anosov representations
relatively hyperbolic	geometrically finite	"relative Anosov" This talk: EGF

Definition

Let Γ be a discrete subgroup of SO(d, 1). We say Γ is *convex* cocompact if Γ acts with compact quotient on a nonempty Γ -invariant convex subset of \mathbb{H}^d .

Example: $\Gamma \simeq \pi_1 M$ for M a closed hyperbolic *d*-manifold.

Proposition (Gromov, Coornaert, Bourdon)

A discrete group $\Gamma \subset SO(d, 1)$ is convex cocompact if and only if Γ is (abstractly) word-hyperbolic, and its Gromov boundary $\partial \Gamma$ embeds equivariantly into $\partial \mathbb{H}^d$.

 $\begin{array}{c} S \text{ hyperbolic surface,} \\ \pi_1 S \to \mathrm{SO}(2,1) \hookrightarrow \mathrm{SO}(3,1) \end{array}$

Convex cocompactness in higher rank

Definition (Guéritaud-Guichard-Kassel-Wienhard, Kapovich-Leeb-Porti)

Let $\rho: \Gamma \to \mathrm{SL}(d,R)$ be a representation of a word-hyperbolic group. We say ρ is P_1 -Anosov if there are ρ -equivariant embeddings

 $\xi: \partial \Gamma \to \mathbb{R}P^{d-1}, \quad \xi^*: \partial \Gamma \to (\mathbb{R}P^{d-1})^*$

which are transverse and dynamics-preserving.

S hyperbolic surface $\rho: \pi_1 S \to \mathrm{SO}(2,1) \hookrightarrow \mathrm{SL}_3(\mathbb{R})$

 $\gamma \in \pi_1 S$ acts on $\partial \mathbb{H}^2 \subset \mathbb{R}P^2$

 ξ maps attracting fixed points to attracting fixed points

Theorem (Labourie, Guichard-Wienhard)

Let $\rho : \Gamma \to \operatorname{SL}_d \mathbb{R}$ be a P_1 -Anosov representation. Then an open neighborhood of ρ in $\operatorname{Hom}(\Gamma, \operatorname{SL}_d(\mathbb{R}))$ consists of P_1 -Anosov representations.

 $\begin{array}{c} S \text{ hyperbolic surface} \\ \pi_1 S \to \mathrm{SO}(2,1) \hookrightarrow \mathrm{SL}_3(\mathbb{R}) \end{array}$

Deform in Hom $(\Gamma, SL_3(\mathbb{R}))$:

Invariant under deformed action, quotient is *convex projective surface*

What about geometrically finite groups?

Definition

Let $\Gamma \subset SO(d, 1)$ be a *finitely generated* discrete group. We say Γ is *geometrically finite* if it acts with finite covolume on a convex Γ -invariant subset of \mathbb{H}^d with nonempty interior.

Example: M = complete finite-volume noncompact hyperbolic 3-manifold, $\Gamma = \pi_1 M \subset SO(3, 1)$.

 Γ is not a word-hyperbolic group.

Any geometrically finite group Γ is *relatively hyperbolic*, relative to its *cusp subgroups* $\mathcal{P} = \{\pi_1 C : C \text{ a cusp of } \mathbb{H}^d / \Gamma\}.$

The parabolic subgroup $A \simeq \mathbb{Z}^2$ is the fundamental group of the cusp $C \subset M$.

A is the stabilizer of a point in $\partial \mathbb{H}^3 = \partial(\Gamma, \mathcal{P})$, the Bowditch boundary of the pair (Γ, \mathcal{P})

Relative hyperbolicity in higher rank

Definition (Guéritaud-Guichard-Kassel-Wienhard, Kapovich-Leeb-Porti)

Let $\rho:\Gamma\to \mathrm{SL}(d,R)$ be a representation of a word-hyperbolic group. We say ρ is $P_1\text{-}Anosov$ if there are $\rho\text{-equivariant}$ embeddings

$$\xi: \partial \Gamma \to \mathbb{R}P^{d-1}, \quad \xi^*: \partial \Gamma \to (\mathbb{R}P^{d-1})^*$$

which are *transverse* and *dynamics-preserving*.

Definition (Kapovich-Leeb)

Let $\rho: \Gamma \to \mathrm{SL}(d, \mathbb{R})$ be a representation of a relatively hyperbolic group. We say ρ is *relatively asymptotically embedded* if there are ρ -equivariant embeddings

 $\xi: \partial(\Gamma, \mathcal{P}) \to \mathbb{R}P^{d-1}, \quad \xi^*: \partial(\Gamma, \mathcal{P}) \to (\mathbb{R}P^{d-1})^*$

which are *transverse* and *dynamics-preserving*.

Definition (Kapovich-Leeb)

Let $\rho : \Gamma \to \mathrm{SL}(d, \mathbb{R})$ be a representation of a relatively hyperbolic group. We say ρ is *relatively asymptotically embedded* if there are ρ -equivariant embeddings

 $\xi: \partial(\Gamma, \mathcal{P}) \to \mathbb{R}P^{d-1}, \quad \xi^*: \partial(\Gamma, \mathcal{P}) \to (\mathbb{R}P^{d-1})^*$

which are *transverse* and *dynamics-preserving*.

M finite-vol. hyp. 3-manifold $\pi_1 M \to \mathrm{SO}(3,1) \hookrightarrow \mathrm{SL}_4(\mathbb{R})$

Cusp group $A \subset \pi_1 M$ acts on $\partial(\Gamma, \mathcal{P}) = \partial \mathbb{H}^3 \subset \mathbb{R}P^3$

Deforming relative Anosov representations in $SL_d(\mathbb{R})$ $\pi_1 M \to SO(3,1) \hookrightarrow SL_4(\mathbb{R})$

 $\begin{array}{c}
\text{deform} \\
\text{in} \\
\text{SL}_4(\mathbb{R}) \\
\xrightarrow{} \\
\end{array}$

(image from Ballas-Danciger-Lee)

 $A \simeq \mathbb{Z}^2 \subset \{ \text{upper triangular} \}$

 $A' \subset \{ \text{diagonalizable} \}$

Get convex projective 3-manifd.

Bowditch boundary $\partial \mathbb{H}^3$ is *not* equivariantly embedded into $\mathbb{R}P^3$!

Definition (W.)

Let $\rho: \Gamma \to \mathrm{SL}(d, \mathbb{R})$ be a representation of a relatively hyperbolic group. We say that ρ is *extended geometrically finite* if there are Γ -invariant subsets $\Lambda \subset \mathbb{R}P^{d-1}$, $\Lambda^* \subset (\mathbb{R}P^{d-1})^*$ and surjective transverse maps

 $\phi: \Lambda \to \partial(\Gamma, \mathcal{H}), \quad \phi^*: \Lambda^* \to \partial(\Gamma, \mathcal{H})$

which extend convergence dynamics.

Extended geometrically finite representations are relatively stable.

Theorem (W.)

Let $\rho: \Gamma \to G$ be EGF, and let $W \subseteq \operatorname{Hom}(\Gamma, G)$ be a peripherally stable subspace at ρ . Then an open subset of W containing ρ consists of EGF representations.

In particular, the deformation of $\pi_1 M \to \mathrm{SO}(3,1) \hookrightarrow \mathrm{SL}_4 \mathbb{R}$ shown previously is peripherally stable.

This works for any relatively hyperbolic group Γ and semisimple Lie group G.

