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Abstract

We extend the results of [5] to the execution of sequential orders.
Orders arrive at known times but their direction (sell, buy, empty) and
volume size are random. We study in detail the various kinds of im-
plementation slippages in both the conditional and uncondtional sense,
and also establish various properties of the admissible and optimal ex-
ecution strategies for general random decay functions. We also consider
other probabilistic quantities. Once we move beyond the conditional and
unconditional means, the dependence of all random characteristics of all
orders emerges. This creates various challenges which we discuss in detail.
Finally, we study the di¤erent kinds of market impacts and discuss issues
related to volume time and and to order aggregation.

1 Introduction

TBA

2 The model of sequential orders

We introduce the model for the execution of sequential orders and the objective
to be optimized. Throughout, various concepts, de�nitions and results are ex-
tensions of their single-order counterparts proposed in [3], and further extended
and modi�ed in [5]. To ease the presentation, we only highlight the main ideas
and steps of these extensions, focusing on the new elements that emerge from
the multiplicity of orders and their stochastic characteristics. To our knowledge,
optimal execution beyond a single order has only been examined in [2] where
the case of two orders was studied.
Let T0 = 0 < T1 < :::: < Tn = T be a sequence of times known at T0: Let

also
�

; (Ft)t2[0;T ] ;P

�
be a probability space on which we de�ne a Brownian

motion W; and random sequences (V0; :::; Vn�1) and ("0; "1; :::; "n�1) with

"i = �1; 0; 1 and Vi > 0; i = 0; :::; n� 1: (1)
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The �ltration (Ft)t2[0;T ] is such that, for i = 0; :::; n � 1; the random variables
"i and Vi are FTi�measurable.
For i = 0; :::; n�1; order i arrives at Ti and is represented by the product "iVi

in that, if "i > 0 (resp. "i < 0), the order is to buy (resp. sell) volume Vi while,
if "i = 0; the order is an empty one. Each order must be fully executed before
the next one arrives. For this, we assume that order i must be executed by
some T̂i+1 < Ti+1. Herein, we do not discuss how T̂i+1 is chosen; in section 6 we
provide some preliminary comments on the e¤ects of the lag �i+1 := Ti+1�T̂i+1,
i = 1; :::; n � 1 on market impact. For now, we only assume that, similarly to
knowning at T0 the times T0 = 0 < T1 < :::: < Tn = T ; we also know at T0
the e¤ective execution times T̂1; :::; T̂n, which satisfy T0 = 0 < T̂1 < T1 < T̂2 <
T2 < :::: < Tn�1 < T̂n < Tn = T:
We further assume that �ltration (Ft)t2[0;T ] is such that it can support a

sequence of positive random functions (G0; G1; :::; Gn�1) with Gi being FTi�
measurable. These functions will play the role of the decay function - introduced
in [3] for the single order case - during the execution of their respective order.
In analogy to [3], we assume that each Gi; i = 0; :::; n� 1; is represented as the
Fourier transform of a �nite positive measure  i;

Gi(jtj ; !) =
Z
eijzjd i (!) ; i = 0; :::; n� 1 and t 2 R, (2)

with  i now being FTi� measurable.
The admissibility set of execution strategies for order i; i = 0; 1; :::; n� 1; is

de�ned as

A[Ti;Ti+1] :=
�
Xi : Xi

t ; t 2 [Ti; Ti+1] with Xi
t 2 FTi ; monotone, (3a)

left continuous with right hand limits, Xi
Ti = 0 and X

i
T̂i+1+

= Vi; T̂i+1 < Ti+1

o
:

We recall that, as in the single order case, the condition T̂i+1 < Ti+1 is also
needed in order to properly de�ne the execution strategies within their respective
interval, given the above imposed continuity assumptions.
The implementation slippage IS

�
Xi
�
of order i; i = 0; 1; :::; n�1; is de�ned

as in the single order case. Similar calculations yield that

IS
�
Xi
�
=

Z
[Ti;T̂i+1]

StdX
i
t +

Gi (0)

2

X
Ti�t�T̂i+1

�
�Xi

t

�2 � "iViSTi ; (4)

where �Xi
t denotes possible jumps,

�Xi
t := Xi

t+ �Xi
t ; t 2

h
Ti; T̂i+1

i
:

The impacted stock price St; t 2 (Ti; Ti+1], is given (as in [3]) by

St := STi +

Z
[Ti;t)

Gi (t� s) dXi
s + � (Wt �WTi) ; t 2

�
Ti; T̂i+1

i
(5)
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and
St = ST̂i+ + �(Wt �WT̂i

); t 2
�
T̂i+1; Ti+1

i
; (6)

where � > 0 is a given constant; later on, we discuss the case of stochastic
volatility (see section 5.1.1. herein).
The main object of study is the aggregate implementation slippage, de�ned

next.

De�nition 1 The implementation slippage of a sequential execution strategy

X :=
�
X0; X1; :::; Xn�1� with Xi 2 A[Ti;Ti+1], i = 0; 1; :::; n� 1;

is de�ned as the sum of the individual slippages IS(Xi) (cf. (4)),

IS (X) :=
n�1X
i=0

IS
�
Xi
�

(7)

=
n�1X
i=0

 
1

2

Z
[Ti;T̂i+1]

Z
[Ti;T̂i+1]

Gi (jt� sj) dXi
sdX

i
t +

Z
[Ti;T̂i+1]

� (Wt �WTi) dX
i
t

!
:

The objective is to minimize the expected aggregate implementation slip-
page over admissible sequential strategies X =

�
X0; X1; :::; Xn�1� with Xi 2

A[Ti;Ti+1], i = 0; 1; :::; n� 1;

E (IS (X�)) = min
X

E (IS (X)) : (8)

When a single order arrives at T0 to be executed at T̂1 < T1; the above prob-
lem reduces to a deterministic problem which can be solved using Fredholm�s
alternative, or calculus of variations and optimal transport (see, respectively,
[3] and [2]). In this case, the order has no stochastic characteristics, like the
�rst order herein. Still, as we pointed out in detail in [5], there are various
open questions about the behavior of the model and how meaningful the above
objective is.
When sequential orders arrive at future times and, moreover, both their di-

rection and volume size are random, the situation becomes considerably more
complex. We stress that even the optimal execution of a single future order with
stochastic characteristics is not a mere extension of its non-stochastic counter-
part.
The �rst step in our analysis is to look at probabilistic properties of the

individiual and aggregate slippages. Because of the stochastic characteristics of
the orders, we need to study the various quantities in both the conditional and
unconditional sense.

2.1 Probabilistic properties of implementation slippages

We start with results on conditional and unconditional properties of the indi-
vidual slippages IS(Xi); i = 0; :::; n� 1; and the aggregate IS (X).
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2.2 Implementation slippage of a future single order

Consider a single order, say order i; which will arrive at future time Ti and
will be executed by T̂i+1 < Ti+1. For the conditional case, the calculations
follow along similar arguments as the ones used in Proposition 3 in [5]. For the
unconditional case, the mean follows directly but the variance is more involved.

Proposition 2 Let i = 0; 1; :::; n � 1: For each order i; the implementation
slippage IS(Xi) (cf. (4)) has the following properties:
i) IS(Xi) is FTi+1-measurable and its conditional on FTi distribution is

normal.
ii) Its conditional mean and variance are given by

E
�
IS
�
Xi
�
jFTi

�
=
1

2

Z
[Ti;T̂i+1]

Z
[Ti;T̂i+1]

Gi (jt� sj) dXi
sdX

i
t (9)

and

V ar
�
IS
�
Xi
�
jFTi

�
= �2

Z
[Ti;T̂i+1]

Z
[Ti;T̂i+1]

(t ^ s� Ti) dXi
sdX

i
t : (10)

The random variables

E
�
IS
�
Xi
�
jFTi

�
and Ui+1 :=

Z
[Ti;T̂i+1]

� (Wt �WTi) dX
i
t (11)

are uncorrelated.

Proof. The normality of the conditional distribution follows from (4), the
fact that Ti and T̂i+1 are FT0�measurable and basic properties of the Brownian
motion. To show (9), we use that

E

 Z
[Ti;T̂i+1]

� (Wt �WTi) dX
i
t jFTi

!
= 0:

For (10), observe that

E

0@ Z
[Ti;T̂i+1]

� (Wt �WTi) dX
i
t

!2
jFTi

1A
= �2E

 Z
[Ti;T̂i+1]

Z
[Ti;T̂i+1]

(Wt �WTi) (Ws �WTi) dX
i
tdX

i
s jFTi

!

= �2
Z
[Ti;T̂i+1]

Z
[Ti;T̂i+1]

E ((Wt �WTi) (Ws �WTi) jFTi ) dXi
tdX

i
s

= �2
Z
[Ti;T̂i+1]

Z
[Ti;T̂i+1]

(t ^ s� Ti) dXi
tdX

i
s:

The last statement follows easily.
Next, we compute the unconditional mean and variance of IS

�
Xi
�
:We also

look at its distribution, calculating the characteristic function.
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Proposition 3 The mean and variance of the unconditional distribution of the
individual implementation slippage IS

�
Xi
�
(cf. ((4)) are given by

E
�
IS
�
Xi
��
= E

�
E
�
IS
�
Xi
�
jFTi

��
(12)

=
1

2
E

 Z
[Ti;T̂i+1]

Z
[Ti;T̂i+1]

Gi (jt� sj) dXi
sdX

i
t

!
;

and
V ar

�
IS
�
Xi
��
= V ar

�
E
�
IS
�
Xi
�
jFTi

��
(13)

+E

 
�2
Z
[Ti;T̂i+1]

Z
[Ti;T̂i+1]

(t ^ s� Ti) dXi
tdX

i
s

!
:

The characteristic function of IS
�
Xi
�
is given by

EeitIS(X
i) = E

�
E
�
eitIS(X

i) jFTi
��

(14)

= E
�
eitE(IS(X

i)jFTi )� 1
2 t

2V ar(IS(Xi)jFTi )
�
;

with E
�
IS
�
Xi
�
jFTi

�
and V ar

�
IS
�
Xi
�
jFTi

�
as in (9) and (10).

Proof. We have

E

 �
E
�
IS
�
Xi
�
jFTi

�
� E

�
IS
�
Xi
��� Z

[Ti;T̂i+1]
� (Wt �WTi) dX

i
t

!

E

 �
E
�
IS
�
Xi
�
jFTi

�
� E

�
IS
�
Xi
���

E

 Z
[Ti;T̂i+1]

� (Wt �WTi) dX
i
t jFTi

!!
= 0;

and (12) follows. To derive (13), observe that

V ar
�
IS
�
Xi
��
= E

�
IS
�
Xi
�
� E

�
IS
�
Xi
���2

= E

 
E
�
IS
�
Xi
�
jFTi

�
+

Z
[Ti;T̂i+1]

� (Wt �WTi) dX
i
t � E

�
IS
�
Xi
��!2

= E
�
E
�
IS
�
Xi
�
jFTi

�
� E

�
IS
�
Xi
���2

+2E

 �
E
�
IS
�
Xi
�
jFTi

�
� E

�
IS
�
Xi
��� Z

[Ti;T̂i+1]
� (Wt �WTi) dX

i
t

!

+E

 Z
[Ti;T̂i+1]

� (Wt �WTi) dX
i
t

!2
= E

�
E
�
IS
�
Xi
�
jFTi

�
� E

�
IS
�
Xi
���2

+E

0@E
0@ Z

[Ti;T̂i+1]
� (Wt �WTi) dX

i
t

!2
jFTi

1A1A
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= E
�
E
�
IS
�
Xi
�
jFTi

�
� E

�
IS
�
Xi
���2

+E

 
�2
Z
[Ti;T�i+1]

Z
[Ti;T�i+1]

(t ^ s� Ti) dXi
tdX

i
s

!

= V ar
�
E
�
IS
�
Xi
�
jFTi

��
+ E

 
�2
Z
[Ti;T̂i+1]

Z
[Ti;T̂i+1]

(t ^ s� Ti) dXi
tdX

i
s

!
To derive (14), we use the conditional normality of IS(Xi):

The above results show that both the conditional on FTi and unconditional
probabilistic characteristics of order i depend solely on its own characteristics
"i; Vi; and the chosen random decay function Gi. In this sense, they resemble the
ones of the single order case in [3]. Moreover, the form of E

�
IS
�
Xi
�
jFTi

�
and

EIS
�
Xi
�
is not surprising (see [2]) and the V ar

�
E
�
IS
�
Xi
�
jFTi

��
is similar

to expression (14) in [5].
Note, however, that the unconditional variance V ar

�
IS(Xi

�
is quite di¤er-

ent. It consists of two terms, V ar
�
E
�
IS
�
Xi
�
jFTi

��
and E

�
�2
R
[Ti;T̂i+1]

R
[Ti;T̂i+1] (t ^ s� Ti) dX

i
tdX

i
s

�
:

The latter term resembles (14) in [5]. The former term disappears in the single
order model but not in the sequential orders case.
Furthermore, for a nonempty order we have that V ar

�
E
�
IS
�
Xi
�
jFTi

��
>

0; independently of the direction of the trade. Therefore, the arrival of non-
empty future orders always increases the unconditional variance.

2.3 Aggregate implementation slippage

The aggregate implementation slippage (cf. 7) is calculated at initial time T0. Its
mean follows easily from summing the individual means. Its variance, however,
is more complex as the second term in (16) indicates. As we will discuss later
on, the "cross-terms" appearing in (16) make the problem rather complex.

Proposition 4 The mean and variance of the implementation slippage IS(X)
(cf. (7)) are given, respectively, by

E (IS (X)) =
1

2

n�1X
i=0

E

 Z
[Ti;T̂i+1]

Z
[Ti;T̂i+1]

Gi (jt� sj) dXi
sdX

i
t

!
(15)

and

V ar (IS (X)) =
n�1X
i=0

V ar
�
IS
�
Xi
��
+
X
i 6=j

(E (ZiZj) + E (Zi_jUi^j+1)) ; (16)

where, for i = 0; :::; n� 1;

Zi :=
1

2

Z
[Ti;T̂i+1]

Z
[Ti;T̂i+1]

Gi (jt� sj) dXi
sdX

i
t
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�1
2
E

 Z
[Ti;T̂i+1]

Z
[Ti;T̂i+1]

Gi (jt� sj) dXi
sdX

i
t

!
and Ui+1 (cf. (11)) is given by

Ui+1 :=

Z
[Ti;T̂i+1]

� (Wt �WTi) dX
i
t :

Proof. Equality (15) follows easily. To show (16), observe that

V ar (IS (X)) = E (IS (X)� E (IS (X)))2

= E

 
n�1X
i=0

�
IS
�
Xi
�
� E

�
IS
�
Xi
���!2

= E

 
n�1X
i=0

(Zi + Ui+1)

!2

= E
n�1X
i=0

n�1X
j=0

(Zi + Ui+1) (Zj + Uj+1)

= E
X
i=j

(Zi + Ui+1)
2
+
X
i 6=j

(Zi + Ui+1) (Zj + Uj+1) :

For i < j;
E ((Zi + Ui+1) (Zj + Uj+1))

= E ((Zi + Ui+1)Zj) = E (ZiZj) + E (Ui+1Zj) ;

while, for i = j;
E (Zi + Ui+1)

2
= EZ2i + EU

2
i+1

and, for j < i;

E ((Zi + Ui+1) (Zj + Uj+1)) = EZi (Zj + Uj+1)

= E (ZiZj) + E (ZiUj+1) :

Consequently,

V ar (IS (X)) =
n�1X
i=0

V ar
�
IS
�
Xi
��
+
X
i 6=j

(E (ZiZj) + E (Zi_jUi^j+1)) :

The remaining statements follow easily.

We see that E (IS (X)) is calculated directly by E
�
IS
�
Xi
��
; i = 0; :::; n�1;

for which knowledge of each individual conditional distribution of ("i; Vi; Gi) on
FTi ; i = 0; :::; n � 1; su¢ ces. However, the variance V ar (IS (X)) requires
knowledge of the joint distribution of all random variables (V0; :::; Vn�1) and
("0; "1; :::; "n�1), as well as the chosen by the trader (G0; G1; :::; Gn�1) random
decay functions.
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3 Reformulation of the model

In [5], the authors proposed a new formulation of Gatheral�s model by mod-
eling the execution strategies through the cumulative distribution functions of
probability measures. These cdfs model the cumulative fraction of the traded
volume through time, which appears to be a more intuitive quantity to work
with. Furthermore, the fraction (instead of volume itself) is a unitless quantity
and this facilitates the analysis of various quantities of interest (see, for example,
the discussion in section 3 in [5])
Working with this version of the model also allows us to work with processes

that are aligned with the classical cadlag assumption in stochastic calculus.
Furthermore, we are able to derive universal properties for both the admissible
and the optimal policies for general random decay functions. For the optimal
policies, in particular, we are able to extend the results of section 6.2 in [5] where
we studied the density of the optimal measure in the interior of the execution
horizon, its symmetry, and its symmetric discontinuities at the end points. To
ease the presentation, we only recall some key lemmata from [5] and state most
of the results in the rest of the paper without detailed proofs.
To this end, for i = 0; 1; :::; n � 1; we introduce probability measures �i on

[Ti; Ti+1] ; by setting

dXi = "iVid�
i:

We denote by �it : [Ti; Ti+1]! [0; 1] the cumulative distribution function of �i;

�it = �i ([Ti; t)) ;

which - as mentioned above - represents the aggregate fraction of volume "iVi
that is being traded over [Ti; t) ; Ti � t � T̂i+1: We have �iTi� = 0 and �

i
t = 1;

for t 2
h
T̂i+1; Ti+1

i
: Furthermore, �it is right continuous, nondecreasing with

left limits (cadlag).
The individual implementation slippage IS(Xi); i = 0; :::; n�1; is expressed

as

IS
�
Xi
�
=
1

2
"2iV

2
i

Z
[Ti;T̂i+1]

Z
[Ti;T̂i+1]

Gi (jt� sj) d�isd�it (17)

+"iVi

Z
[Ti;T̂i+1]

� (Wt �WTi) d�
i
t:

Proposition 5 For i = 0; :::; n� 1; the conditional on FTi mean and variance
of IS

�
Xi
�
are given by

E
�
IS
�
Xi
�
jFTi

�
=
1

2
"2iV

2
i

Z
[Ti;T̂i+1]

Z
[Ti;T̂i+1]

Gi (jt� sj) d�isd�it

and

V ar
�
IS
�
Xi
�
jFTi

�
= �2"2iV

2
i

 Z
[Ti;T̂i+1]

Z
[Ti;T̂i+1]

t ^ sd�isd�it � Ti

!
:
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Respectively, the unconditional mean and variance are given by

E
�
IS
�
Xi
��
=
1

2
E

 
"2iV

2
i

Z
[Ti;T̂i+1]

Z
[Ti;T̂i+1]

Gi (jt� sj) d�isd�it

!

and
V ar

�
IS
�
Xi
��
= V ar

�
E
�
IS
�
Xi
�
jFTi

��
+E

 
�2"2iV

2
i

 Z
[Ti;T̂i+1]

Z
[Ti;T̂i+1]

t ^ sd�isd�it � Ti

!!
:

The above representations expose the dependence of the means and variances
on the random order characteristics Vi and "i; and the random decay function
Gi that is chosen by the trader. Among others, they show that they depend
only on the frequency of empty orders and not on whether order i is a buy or
sell order.

4 Optimality results for orders with stochastic
characteristics

We present the optimal policies and the minimized implementation slippages
for two cases. Firstly, we consider only a single order with stochastic charac-
teristics, arriving at a future time. We then study the optimal policies and the
minimized aggregate implementation slippage. We also consider the case of ran-
dom exponential decay functions and provide explicit results. For completeness,
we present most of the results using both formulations for the strategies (i.e.
with Xi and �i; and X and �):

4.1 Future single order

For i = 0; 1; :::; n� 1; assume that order i with FTi�measurable characteristics
Vi and "i will arrive at time Ti. We also assume that the trader will use a
decay function Gi 2 FTi that satis�es (2) and will apply admissible execution
strategies

dXi
t = "iVid�

i
t;

in the respective execution interval
h
Ti; T̂i+1

i
. The following result follows in

analogy to the single order case (see [3], [2] and [5]).

Proposition 6 For i = 0; 1; :::n�1; the minimal expected implementation slip-
page of order i; with characteristics Vi; "i and Gi; is given by

min
Xi

E
�
IS
�
Xi
��
= E

�
min
Xi

E
�
IS
�
Xi
�
jFTi

��
=
1

2
E ("iVi�i) ;

9



where Xi;� is the optimal strategy. Its optimality is equivalent to the existence
of a unique (a.s.) FTi�measurable random variable �i such that, for each t 2h
Ti; T̂i+1

i
; Z

[Ti;T̂i+1]
Gi (jt� sj) dXi;�

s = "i�i:

Proposition 7 For i = 0; 1; :::n�1; ; the optimal fraction �i;�t of order i satis�esZ
[Ti;T̂i+1]

Gi (jt� sj) d�i;�s = �i; ; for each t 2
h
Ti; T̂i+1

i
,

where
�i = "iVi�i:

The minimal aggregate expected slippage for order i is given by

min
Xi

E
�
IS
�
Xi
��
=
1

2
E
�
�i"

2
iV

2
i

�
:

The following result provides the variance of the optimal implementation
slippage in terms of the optimal measure.

Proposition 8 Let �j;� be the optimal measure for order j; j = 0; :::; n � 1:
Then,

V ar
�
IS
�
Xj;��� = 1

4
V ar

�
"2jV

2
j �j

�
+E

 
�2j"

2
jV

2
j

Z
(Tj ;T̂j+1]

�
�j;�

�h
t; T̂i+1

i��2
dt

!
: (18)

The characteristic function of IS
�
Xj;�� ; is given by

E
�
eitIS(X

j;�)
�
= E

�
e
it 12 "jV

2
j �j� 1

2 t
2�2j"

2
jV

2
j

R
(Tj;T̂j+1](�

j;�([s;T̂j+1]))
2
ds
�
:

The proof of (18) is based on the following lemma (see (see proof Lemma 8
in [5]), appropriately modi�ed to capture the stochastisity of the orders.

Lemma 9 Let � be a probability measure on the interval [a; b] ; a < b; and de�ne
�a� = 0, �t = � ([a; t]) ; a � t � b: Then,Z

[a;b]

Z
[a;b]

(t ^ s) d�sd�t = a+

Z
(a;b]

(� ([t; b]))
2
dt:

We note that the distribution of IS
�
Xj;�� depends only on the joint distri-

bution of the random vector 
"2j ; V

2
j ; �j ; �

2
j ;

Z
(Tj ;T̂j+1]

�
�j;�

�h
s; T̂j+1

i��2
ds

!
:

However, it does not depend on previous orders and the decay functions used
for their execution.
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4.2 Sequential orders

We are now ready to state the main optimality results for problem (8).

Proposition 10 Let i = 0; 1; :::; n�1: Assume a sequence of orders with charac-
teristics Vi; "i and Gi, arriving at times Ti; i = 0; 1; :::; n� 1; and to be executed
on
h
Ti; T̂i

i
; T̂i < Ti+1; respectively.

An execution strategy X� =
�
X0;�; :::; Xn�1;�� ; with Xi;� 2 A[Ti;Ti+1] (cf.

(3a)) is optimal if and only if there exist random variables �0; �1; :::; �n�1; with
�i being FTi�measurable, such that, for i = 0; 1; :::; n� 1;Z

[Ti;T̂i+1]
Gi (jt� sj) dXi;�

s = "i�i; for each t 2
h
Ti; T̂i+1

i
:

The optimal fraction �i;�t satis�es for all t 2
h
Ti; T̂i+1

i
and, i = 0; 1; :::n� 1;Z

[Ti;T̂i+1]
Gi (jt� sj) d�i;�s = �i with �i = "iVi�i:

Proposition 11 The minimal aggregate expected implementation slippage is
given by

E(IS(X�)) =
1

2

n�1X
i=0

E (�i"iVi) (19)

=
1

2

n�1X
i=0

E
�
�i"

2
iV

2
i

�
=
1

2

n�1X
i=0

E
�
�iV

2
i 1f"i 6=0g

�
:

Furthermore,

V ar (IS (X�)) =

n�1X
i=0

V ar
�
IS
�
Xi;��� (20)

+
X
i 6=j

�
E
�
Z�i Z

�
j

�
+ E

�
Z�i_jU

�
i^j+1

��
;

where
Z�i :=

1

2
"2iV

2
i �i �

1

2
E
�
"2iV

2
i �i

�
and

U�i+1 :=

Z
[Ti;T�i+1]

� (Wt �WTi) dX
i;�
t

= "iVi

Z
[Ti;T�i+1]

� (Wt �WTi) d�
i;�
t = "iViW

�
i+1;

with

W �
i+1 :=

Z
[Ti;T�i+1]

� (Wt �WTi) d�
i;�
t :

11



4.3 Random exponential decay functions

We assume that, for each order i = 0; 1; :::; n� 1; the random decay functions

Gi (jtj) = e��ijtj; t 2 R ; �i > 0 with �i 2 FTi ; (21)

are used. In analogy to the results in [3], [2] and [5], we deduce that the
optimal execution strategy X� = (X�0; :::; X�;n) for a sequence of orders with
characteristics ((V0; "0) ; (V1; "1); :::; (Vn; "n)) ; is given, for i = 0; :::; n� 1; by

dX�i
t = "iVid�

i;�
t ;

where
d�i;�t =

1

2 + �i

�
T̂i+1 � Ti

� ��Ti + �T̂i+1 + �idt� :
The optimal policy satis�es, for each t 2

h
Ti; T̂i+1

i
;Z

[Ti;T̂i+1]
e��ijt�sjdXi;�

s =
2"iVi

2 + �i

�
T̂i+1 � Ti

� = "i�i = "iVi�i:

The minimal aggregate expected slippage is given by

E (IS (X�)) =
1

2

n�1X
i=0

E

0@ "2iV
2
i

2 + �i

�
T̂i+1 � Ti

�
1A : (22)

The associated impacted price process satis�es, for i = 0; 1; :::; n� 1;

� For Ti < t � T̂i+1;

S�t = S�Ti +

Z
[Ti;t)

e��ijt�sjdX�;i
s + � (Wt �WTi)

= S�Ti +
"iVi

2 + �i

�
T̂i+1 � Ti

� + � (Wt �WTi) = S�Ti+ + � (Wt �WTi) :

The jumps at Ti and T̂i+1 are of equal sizes, speci�cally,

S�Ti+ � S
�
Ti = S�

T̂i+1+
� S�

T̂i+1
=

"iVi

2 + �i

�
T̂i+1 � Ti

� :
� For T̂i+1 < t � Ti+1;

S�t = S�
T̂i+1+

+ �
�
Wt �WT̂i+1

�
;

and, hence, it is a Brownian motion starting from S�
T̂i+1+

at time T̂i+1.

12



At time Ti, i = 0; 1; :::; n�1; the volume "iVi
2+�i(T̂i+1�Ti)

is traded, which may

be negative (sell order), zero (empty order) or positive (buy order). Up until
time t; with Ti < t < T̂i+1; the volume

"iVi

2 + �i

�
T̂i+1 � Ti

� + "iVi�i

2 + �i

�
T̂i+1 � Ti

� t
is executed while the remainder

"iVi

2 + �i

�
T̂i+1 � Ti

�
is traded all at once at time T̂i+1.

Discussion:
i) The impacted price process S�t ; t 2 [0; T ] ; is left continuous with right

hand limits, and with jumps at each Ti and T̂i+1; i = 1; :::; n � 1: This is a
consequence of the fact that both the arrival time of each order and execution
horizon are speci�ed in advance (F0�measurable).
ii) The minimal average expected slippage E (IS (X�)) (cf. (22)) depends

on "2i ; which takes vales 0 and 1: Thus, E (IS (X
�)) does not depend on the

direction of each of the orders.
iii) If order i is an empty one, "2i = 0; the corresponding term in (22) vanishes.

Consequently, the larger the proportion of empty orders, the smaller the optimal
aggregate implementation slippage.
iv) The pair (Vi; "i) is generated by the market and characterizes an order,

which arrive at time Ti; i = 0; 1; :::; n � 1 and needs to be executed by T̂i+1 <
Ti+1: On the other hand, the random decay function Gi is chosen by the trader
who uses (Vi; "i) and the execution model.
v) While the expected aggregate implementation slippage depends only on

the marginal distribution of each order�s characteristics, the assessment of the
frequency depends on the joint distribution of the "2i ; i = 0; 1; ::; n � 1: Ability
to forecast the next empty order could lower the overall execution cost.
vi) The description of the triplet dynamics Vi; "i and Gi depends on the joint

distribution of all such triplets.
The joint distribution needs to represent the movement that is consistent

with the way that a) market generates orders and b) the traders adjust the
random decay functions Gi:
The challenge here is to statistically capture this movement and reconcile it

with the way the market prices single orders in succession. This comes down to
de�ning the transition mechanism of order characteristics from one execution
period to the next.
vii) Historical data should be used to determine how the volumes V0; V1; :::; Vn

move with the order �ow and the market.

13



5 Rethinking of optimality criteria

In [5] the authors pointed out a de�ciency of Gatheral�s model, namely, the
expected implementation slippage may become arbitrarily small, or even vanish,
while its variance remains �nite. The elimination of the expected slippage may
be, for example, achieved by choosing a suitable decay function. They then
proposed two possible ways to remedy this �aw.
The �rst direction is to still work with the same criterion (minime the ex-

pected slippage) but, also, impose constraints on the optimal solution. For
example, one may want to control the variance of the optimal slippage. This,
in turn, imposes constraints on the model parameters. A major challenge, how-
ever, is that very little, if anything, is known for the structure of the optimal
solution once we depart from the tractable exponential case. For general de-
cay functions, the authors in [5] derived various new results. Among others,
they proved a general robustness result of the optimal solution with respect
to the decay function, and also established universal bounds of the variance
of the implementaion slippage. For the latter, they worked with the reformu-
lated Gatheral�s model (as (17) herein) and characterized in detail the optimal
measure.
The second alternative proposed in [5] is to work with an alternative opti-

mization criterion which combines the mean and the variance of the implemen-
tation slippage. For the single order case, they showed that this results in a
deterministic two-dimensional calculus of variations problem.
When we deal with sequential orders, which also have stochastic charac-

teristics, the problem becomes considerably more complex. A major di¢ culty
stems from the rather convoluted dependence of the variance of the implemen-
taion slippage on the joint distribution of all random variables involved, namely,
the volumes (V1; V2; :::; Vn) ; the directions ("1; "2; :::; "n) and the (to be chosen)
decay functions (G1; G2; :::; Gn).
Another di¢ culty arises from the multiplicity of the orders itself. For exam-

ple, in order to follow the �rst alternative proposed by the authors, one needs
to decide a priori what constraints should be imposed "order-by-order" on the
optimized individual slippages. But these slippages are a¤ected by the sequen-
tial choice of the random decay functions, which are themselves in�uenced by
the upcoming realized market impacts and other quantities.
Below, we do not give answers to these questions but, rather, take the step

to �rst generalize the results in [5] to individual future orders with stochastic
charcateristics. Furthermore, we only focus on the �rst alternative which is,
neverthless, already challenging enough.
In lack of a better word, we will be using the "model calibration" terminology

to describe the e¤ects on the model parameters that the additional constraints
on the optimal solution will have. To motivate the reader, we start with a
tractable case of sequential deterministic decay functions of exponential type.

14



5.1 A motivational example

Assume that the trader chooses to work with sequential deterministic decay
functions,

Gi (jtj) = e��ijtj; t 2 R ; �i > 0;

for order i; i = 0; 1; :::; n � 1. The related optimal execution strategy Xi;� is
then given by

dX�i
t = "iVid�

i;�
t =

"iVi

2 + �i(T̂i+1 � Ti)

�
�Ti + �T̂i+1 + �idt

�
:

Moreover,Z
[Ti;T̂i+1]

e��ijt�sjdXi;�
s =

2"iVi

2 + �i(T̂i+1 � Ti)
= "i�i = "iVi�i;

with �i =
�i
Vi
; for Vi 6= 0.

The minimal expected implementation slippage is equal to

E
�
IS
�
Xi;��� = 1

2
E (�i"iVi) =

1

2 + �i(T̂i+1 � Ti)
E
�
"2iV

2
i

�
:

We easily deduce that
lim
�i"1

E
�
IS
�
Xi;��� = 0;

and, hence, the expected implementation slippage for future order i can be made
arbitrarily small.
Next, we look at V ar

�
IS
�
Xi;��� : Working as in Proposition 6 in [5] we

deduce the following result. The calculations are tedious and are omitted to
ease the presentation.

Proposition 12 The unconditional variance of IS
�
Xi;�� is given by

V ar
�
IS
�
Xi;��� = V ar

�
"2iV

2
i

2 + �i�i

�
+ E

 
�2"2iV

2
i

�i + �i�
2
i + �

2
i
1
3�

3
i

(2 + �i�i)
2

!

with
�i := T̂i+1 � Ti: (23)

Thus,

lim
�i"1

V ar
�
IS
�
Xi;��� = �i

3
E
�
�2"2iV

2
i

�
and

lim
�i"0

V ar
�
IS
�
Xi;��� = 1

4
V ar

�
"2iV

2
i

�
+
�i
4
E
�
�2"2iV

2
i

�
:
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From the above we deduce that

lim
�i#0

V ar
�
IS
�
Xi;��� � lim

�i"1
V ar

�
IS
�
Xi;���

if and only if

V ar
�
"2iV

2
i

�
� T̂i+1 � Ti

3
E
�
�2"2iV

2
i

�
= lim

�i"1
V ar

�
IS
�
Xi;��� :

This holds for su¢ ciently large �; provided, however, that E
�
V 4i
�
<1:

The above example demonstrates that by taking very large �0is; one can
make the expected implementation cost arbitrarily small. In the limit �i " 1;
the expected implementation slippage is equal to zero but, at the same time,
the V ar

�
IS
�
Xi;��� remains bounded from below. Consequently, one can reduce

the execution cost to zero but, yet, the standard deviation of IS
�
Xi;�� remains

�nite.
Observe also that

lim
�i"1

V ar
�
IS
�
Xi;��� = T̂i+1 � Ti

3
E
�
�2"2iV

2
i

�
;

and

lim
�i#0

V ar
�
IS
�
Xi;��� = 1

4
V ar

�
"2iV

2
i

�
+
T̂i+1 � Ti

4
E
�
�2"2iV

2
i

�
:

Therefore,
lim
�i#0

V ar
�
IS
�
Xi;��� � lim

�i"1
V ar

�
IS
�
Xi;���

if and only if

V ar
�
"2iV

2
i

�
� T̂i+1 � Ti

3
E
�
�2"2iV

2
i

�
= lim

�i"1
V ar

�
IS
�
Xi;��� : (24)

The latter holds for su¢ ciently large �; provided however that E
�
V 4i
�
<1:

5.1.1 Choosing the stock�s volatility

Inequality (24) actually raises questions about the choice of volatility in the
underlying model. To explain this point, let us for now assume that all decay
deterministic parameters are taken to be equal to the initial one,

�i = �0; i = 0; 1; :::; n� 1:

It, then, follows that

V ar
�
IS
�
Xi;��� = V ar

�
"2iV

2
i

2 + �0�i

�
+ E

 
�2"2iV

2
i

�i + �0�
2
i + �

2
0
1
3�

3
i

(2 + �0�i)
2

!
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=
1

(2 + �0�i)
2V ar

�
"2iV

2
i

�
+
�i + �0�

2
i + �

2
0
1
3�

3
i

(2 + �0�i)
2 E

�
�2"2iV

2
i

�
;

with �i as in (23).
Observe now that if the volatility parameter is taken as a function of �0

which also blows up as �0 !1; i.e. � = � (�0) with lim�0"1 � (�0) =1; then
the V ar

�
IS
�
Xi;��� may converge to in�nity with an arbitrary rate.

For example, if we choose � (�0) =
p
2 + �0�i; we have

V ar
�
IS
�
Xi;��� = 1

(2 + �0�i)
2V ar

�
"2iV

2
i

�
+
�i + �0�

2
i + �

2
0
1
3�

3
i

2 + �0�i
E
�
"2iV

2
i

�
;

and the growth rate is linear.
If, on the other hand, we take � (�0) = 2 + �0�i; then,

V ar
�
IS
�
Xi;��� = 1

(2 + �0�i)
2V ar

�
"2iV

2
i

�
+

�
�i + �0�

2
i + �

2
0

1

3
�3i

�
E
�
"2iV

2
i

�
and the growth rate is quadratic.
In the general case, when the parameters are random, �i 2 FTi , i = 0; 1; :::; n�

1; allowing the volatility � to depend on �i requires modi�cation of Gatheral�s
model to a model with stochastic volatility. Replacing � with � (�i) ; or even
with an arbitrary random variable �i 2 FTi ; does not pose major di¢ culties as
it can be accommodated by the methodology we have developed. Then, in such
a framework we have the order characteristics "i and Vi; which are given by the
market, and the chosen random variables �i and �i or, in general Gi and �i;
which determine the model for order execution.
The impacted process is then calibrated to the order characteristics to gen-

erate behavior consistent with the dynamics of the characteristics and with the
observed performance of the execution strategies. The modi�ed dynamics of the
impacted process are of the form

St = STi +

Z
[Ti;t)

Gi (t� s) dXi
s + �i (Wt �WTi) ; t 2 (Ti; Ti+1] ;

where �i 2 FTi with E
�
�4i
�
<1.

Under the above assumptions, all previous results hold true when the volatil-
ity parameter � is replaced with �i in [Ti; Ti+1] ; i = 0; 1; :::; n� 1: Speci�cally,

E
�
IS
�
Xi
��
=
1

2
E

 
"2iV

2
i

Z
[Ti;T̂i+1]

Z
[Ti;T̂i+1]

Gi (jt� sj) d�isd�it

!

and
V ar

�
IS
�
Xi
��
= V ar

�
E
�
IS
�
Xi
�
jFTi

��
+E

 
�2i "

2
iV

2
i

 Z
[Ti;T̂i+1]

Z
[Ti;T̂i+1]

t ^ sd�isd�it � Ti

!!
:
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5.2 General random decay functions

We consider order i; i = 0; 1; :::; n � 1; with characteristics Vi; "i and decay
function Gi: We will be using the self-evident notation IS

�
Xi; Gi

�
:

Proposition 13 Let i = 0; 1; :::; n� 1 and assume that the random decay func-
tions Gi;Hi satisfy

Gi � Hi; a:s::

Then,

E
�
IS
�
Xi; Gi

��
= E

 Z
[Ti;T̂i+1]

Z
[Ti;T̂i+1]

Gi (jt� sj) dXi
sdX

i
t

!

� E

 Z
[Ti;T̂i+1]

Z
[Ti;T̂i+1]

Hi (jt� sj) dXi
sdX

i
t

!
= E

�
IS
�
Xi;Hi

��
:

Therefore, as in the single order case in [5], the implementation slippage can
be made arbitrarily small by taking a decreasing sequence of decay functions
G
(n)
i ,

0 < G
(m+1)
i � G

(m)
i ; a:s:

As mentioned earlier, we then need to consider additional quantities related

to the random variables IS
�
Xi; G

(m)
i

�
and

Pn�1
i=0 IS

�
Xi; G

(m)
i

�
. In particular,

we considered the unconditional variance

V ar

 
n�1X
i=0

IS
�
Xi; G

(m)
i

�!

and observed that it displays explicit dependence among the various random
modeling components, namely, the random sequences (V0; :::; Vn�1) , ("0; "1; :::; "n�1)

,
�
G
(m)
0 ; G

(m)
1 ; :::; G

(m)
n�1

�
and the Brownian motion (Wt : t � 0).

5.3 Targeted interplay between E(IS(X�)) and V ar (IS (X�))

We present results for E(IS(X�)) and its conncetion with V ar (IS (X�)). We
�rst recall the following lemma (see section 4.2 in [5])

Lemma 14 Let G and H be decay functions such that

0 < G � H.

Then, for any probability measure � on an interval [a; b]Z
[a;b]

Z
[a;b]

G (jt� sj) d�sd�t �
Z
[a;b]

Z
[a;b]

H (jt� sj) d�sd�t:
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Let �G and �H be the probability measures for which, respectively,Z
[a;b]

G (jt� sj) d�Gs = �G and
Z
[a;b]

H (jt� sj) d�Hs = �H ;

for all t 2 [a; b] : Then,
�G � �H :

To calibrate our model, we take a decreasing sequence of decay functions
G
(n)
i such that 0 < G

(m+1)
i � G

(m)
i and assume that, for each i and m;Z

[Ti;T̂i+1]
G
(m)
i (jt� sj) d�i;�;(m)s = �

(m)
i ;

for a probability measure �i;�;(m)s : It, then, follows from the above lemma that
�
(m+1)
i � �

(m)
i . Next, assume that, for each i; limm"1G

(m)
i = 0. Then, for any

probability measure �;

lim
m"1

�
(m)
i = lim

m!1

Z
[Ti;T̂i+1]

G
(m)
i (jt� sj) d�i;�;(m)s

= lim
m"1

Z
[Ti;T̂i+1]

Z
[Ti;T̂i+1]

G
(m)
i (jt� sj) d�i;�;(m)s d�

i;�;(m)
t

� lim
m"1

Z
[Ti;T̂i+1]

Z
[Ti;T̂i+1]

G
(m)
i (jt� sj) d�sd�t:

Consequently,

lim
m"1

�
(m)
i �

Z
[Ti;T̂i+1]

Z
[Ti;T̂i+1]

lim
m"1

G
(m)
i (jt� sj) d�sd�t = 0:

Next, we recall that, for each i and m;

E
�
IS
�
Xi;�;(m)

��
=
1

2
E
�
"2iV

2
i �

(m)
i

�
and

V ar
�
IS
�
Xi;�;(m)

��
=
1

4
V ar

�
"2iV

2
i �

(m)
i

�
+E

 
"2iV

2
i

�
�
(m)
i

�2 Z
(Ti;T̂i+1]

�
�i;�;(m)

�h
t; T̂i+1

i��2
dt

!
:

Therefore, in order to calibrate the model, we choose the decay function
G
(m)
i together with the stochastic volatility �(m)i in a way to obtain the desired

levels of the mean E
�
IS
�
Xi;�;(m)�� and variance V ar �IS �Xi;�;(m)�� : Clearly,

E
�
IS
�
Xi;�;(m+1)

��
� E

�
IS
�
Xi;�;(m)

��
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and
lim
m"1

E
�
IS
�
Xi;�;(m)

��
=
1

2
lim
m"1

E
�
"2iV

2
i �

(m)
i

�
= 0:

Moreover, observe that

lim
m"1

V ar
�
IS
�
Xi;�;(m)

��
= lim

m"1
E

 
"2iV

2
i

�
�
(m)
i

�2 Z
(Ti;T̂i+1]

�
�i;�;(m)

�h
t; T̂i+1

i��2
dt

!
=1;

under appropriate conditions on the sequence�
�
(m)
i

�2 Z
(Ti;T̂i+1]

�
�i;�;(m)

�h
t; T̂i+1

i��2
dt; m = 1; 2; 3:::

When the mean converges to zero and the variance grows to in�nity, the
decrease in the expected implementation slippage can be balanced against the
increase in the standard deviation of IS

�
Xi;�;(m)� :

5.4 Distribution of IS (X�)

The distribution of the optimized implementation splippage

IS (X�) =

n�1X
i=0

IS
�
Xi;�� ;

is considerably more involved. Indeed, it depends on the joint distribution of all
orders and on their interaction with the Brownian motion de�ning the model
dynamics. To see this, recall that

IS
�
Xi;�� = 1

2
"2iV

2
i �i + "iVi�iMi+1

where

Mi+1 =

Z
[Ti;T�i+1]

(Wt �WTi) d�
i;�
t

is FT̂i+1�measurable with E (Mi+1 jFTi ) = 0: Consequently, for i < j; we have

E
�
IS
�
Xi;�� IS �Xj;��� = E

�
IS
�
Xi;��E �IS �Xj;�� ���FT̂j ��

= E

�
IS
�
Xi;�� 1

2
"2jV

2
j �j

�
=
1

4
E
�
"2iV

2
i �i"

2
jV

2
j �j

�
+
1

2
E
�
"iVi�iMi+1"

2
jV

2
j �j

�
:

Hence, the covariance displays not only the dependence among the orders but
also on the Brownian motion W through the random variable Mi+1: In order to
analyze further this dependence, we will use the following result; for its proof
see Proposition 9 in [5].
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Lemma 15 Let � be a probability measure on the interval [a; b] ; a < b and
de�ne �a� = 0, �t = � ([a; t]) ; a � t � b: Then,Z

[a;b]

(Wt �Wa) d�t =

Z
(a;b]

� ([t; b]) dWt

and

E

 Z
[a;b]

(Wt �Wa) d�t

!2
=

Z
(a;b]

(� ([t; b]))
2
dt:

Moreover,�R
[a;b]

(t� a) d�t
�2

b� a �
Z
(a;b]

(� ([t; b]))
2
dt �

Z
[a;b]

(t� a) d�t; (25)

inf
�

Z
(a;b]

(� ([t; b]))
2
dt =

Z
(a;b]

(�a ([t; b]))
2
dt = 0

and

sup
�

Z
(a;b]

(� ([t; b]))
2
dt =

Z
(a;b]

(�b ([t; b]))
2
dt = b� a:

Remark 16 Note that the above lemma yields

E

 Z
[a;b]

(Wt �Wa) d�t

!2
= E

 Z
(a;b]

� ([t; b]) dWt

!2
=

Z
(a;b]

(� ([t; b]))
2
dt;

which can be used to compute the variances V ar
�
IS
�
Xi;��� :

It is well known that if 'X (t) := EeitX , the characteristic function of a
random variable X; is integrable, the cumulative distribution function FX of X
is absolutely continuous. Hence, it has a density, fX ; given by

fX (x) =
1

2�

Z
R
e�itx'X (t) dt:

Next, we recall that the optimal measure �i;� satis�es �i;�
��
T̂i+1; Ti+1

i�
= 0

and, hence, we have

Mi+1 =

Z
[Ti;T̂i+1]

(Wt �WTi) d�
i;�
t =

Z
[Ti;Ti+1]

(Wt �WTi) d�
i;�
t :

Consequently, using the previous lemma we deduce that

Mi+1 =

Z
(Ti;Ti+1]

�i;� ([t; Ti+1]) dWt:
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This representation ofMi+1 is particularly useful in the analysis of the aggregate
implementation slippage, as it is demonstrated below.

IS (X�) =
n�1X
i=0

IS
�
Xi;�� = n�1X

i=0

�
1

2
"2iV

2
i �i + "iVi�iMi+1

�

=
1

2

n�1X
i=0

"2iV
2
i �i +

n�1X
i=0

"iVi�i

Z
(Ti;Ti+1]

�i;� ([t; Ti+1]) dWt

=
1

2

n�1X
i=0

"2iV
2
i �i +

n�1X
i=0

"iVi�i

Z
(0;Tn]

1(Ti;Ti+1] (t) �
i;� ([t; Ti+1]) dWt

=
1

2

n�1X
i=0

"2iV
2
i �i +

Z
(0;Tn]

 
n�1X
i=0

"iVi�i1(Ti;Ti+1] (t) �
i;� ([t; Ti+1])

!
dWt:

Using the above we deduce the following result.

Proposition 17 i) The conditional on 
"i; Vi; �i; �i;

Z
(Ti;Ti+1]

�
�k;� ([t; Ti+1])

�2
dt; i = 0; 1; :::; n� 1

!
;

distribution of IS (X�) is normal with mean

A :=
1

2

n�1X
i=0

"2iV
2
i �i (26)

and variance

B :=

Z
(0;Tn]

 
n�1X
i=0

"iVi�i1(Ti;Ti+1] (t) �
i;� ([t; Ti+1])

!2
dt

=
n�1X
i=0

"2iV
2
i �

2
i

Z
(Ti;Ti+1]

�
�i;� ([t; Ti+1])

�2
dt: (27)

ii) The characteristic function and density of IS (X�) are given, respectively,
by

EeitIS(X
�) = EeitA�

1
2 t

2B = ' (t) (28)

and

fIS(X�) (x) =
1

2�

Z
R
e�itxEeitA�

1
2 t

2Bdt (29)

= E
1p
2�B

exp

�
� 1

2B
(x�A)2

�
;
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provided ' (t) is integrable, which holds when

E

�
1p
B

�
<1: (30)

iii) Furthermore,

EIS (X�) =
1

2

n�1X
k=0

E
�
"2kV

2
k �k

�
and

V ar (IS (X�)) = V arA+ EB

= V ar

 
1

2

n�1X
k=0

"2kV
2
k �k

!
+ E

n�1X
k=0

"2kV
2
k �

2
k

Z
(Tk;Tk+1]

�
�k;� ([t; Tk+1])

�2
dt:

Proof. Observe that

E

 
eitIS(X

�)

�����"k; Vk; �k; �k;
Z
(Tk;Tk+1]

�
�k;� ([t; Tk+1])

�2
dt; k = 0; 1; :::n� 1

!

= eitA�
1
2 t

2B

and (28) follows. To prove the integrability of '; we note that

j' (t)j =
���EeitA� 1

2 t
2B
��� � Ee�

1
2 t

2B

and, hence,Z
R
E
�
e�

1
2 t

2B
�
dt = E

�
1p
B

Z
R
e�

1
2 t

2

dt

�
=
p
2�E

�
1p
B

�
<1:

Next, using that '0 (0) = iEA and '00 (0) = �EA2 � EB; we deduce that

V ar (IS (X�)) = �'00 (0) + ('0 (0))2 = V arA+ EB:

6 Types of market impact

The impact the execution of large trades has on market prices has been widely
discussed in the literature. Not surprisingly, there are di¤erences in the way this
impact is de�ned and, in turn, measured. Our focus, so far, has been on the
analysis of the implementation slippages induced by the execution strategies.
Next, we analyze the realized, permanent and temporary price impacts as

de�ned in [1]. We denote by S0 market price before order execution begins,
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by Spost market price after the order is completed, and by S volume weighted
average realized price on the order.
The post trade price Spost should capture the permanent e¤ect of the order

execution on market prices. The argument used in [1] is that it should be taken
"long enough" after the order is completed. Empirical analysis suggests that one
half-hour is adequate to achieve this. Consequently, if execution stops at time
1; then Spost = S1+�; where � is this extra time which in [1] is one half-hour.
Based on these prices, and following [1], we de�ne the permanent impact as

I =
Spost � S0

S0
;

and the realized impact as

J =
S � S0
S0

:

The di¤erence between the realized and permanent impacts is used to de�ne
the temporary price impact, namely,

J � I = Temporary +Noise:

We stress that all computations in [1] are performed in volume time � t, which
represents the fraction of an average market volume that has been executed up
to and including clock time t: Note, however, that the market volume time
corresponds to our �t; which represents the fraction of the volume, for a given
order, executed up to time t. This representation of a strategy is convenient
because it does not depend on the speci�c volume to be executed, or traded, in
the market. Until now, we did not take into consideration the volume traded in
the market. Clearly we cannot execute an order for which the volume exceeds
what is traded. From now on, we assume that the volume traded in the market
over any interval within the trading period exceeds the volume we want to
execute.

6.1 Single order arbitrary strategy

To incorporate the notation of [1] within our framework, we assume from now
on that for each order i; i = 0; 1; :::; n� 1 we use

Ii =
STi+1 � STi

STi

to represent the permanent price impact. Note that we choose the post time
to be Ti+1 while the execution of order i is completed at time T̂i+1: Hence, the
"gap" is given by

�i+1 = Ti+1 � T̂i+1: (31)

Recall that the impacted price process is given by

St = STi +

Z
[Ti;t)

Gi (t� s) dXi
s + �i (Wt �WTi) ; t 2 (Ti; Ti+1]
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= STi + "iVi

Z
[Ti;t)

Gi (t� s) d�is + �i (Wt �WTi) ; t 2 (Ti; Ti+1]; (32)

where �i is, in general, a random variable measurable with respect to FTi and
such that E

�
�4i
�
<1:

The order is executed over the interval
h
Ti; T̂i+1

i
with T̂i+1 < Ti+1: The

process S is left continuous with right hand limits on the interval
h
Ti; T̂i+1

i
and

continuous on
�
T̂i+1; Ti+1

i
: Therefore,

STi+1 � STi = "iVi

Z
[Ti;Ti+1]

Gi (Ti+1 � s) d�is + �i
�
WTi+1 �WTi

�
:

Consequently, the permanent price impact takes the form

Ii =
"iVi

R
[Ti;Ti+1]

Gi (Ti+1 � s) d�is + �i
�
WTi+1 �WTi

�
STi

;

using the notation of (32).

We now make the following observations:

1. In order to compare the model proposed in [1] with (32) we must �rst
reconcile the notation in both models. Recall that in (32) the process S
represents price, say, in dollars. However, the strategy Xi and volume
Vi represent number of shares. Consequently, we have unit inconsistency.
Fortunately, there is a simple remedy to this issue, which also helps to
reconcile both models. Indeed, note that the relative performance of the
strategies, and in particular of the optimal strategy for a given function
Gi; does not change when we multiply Gi by an FTi�measurable quantity
Ci: It then turns out that to compare model [1] with (32) one simply needs
to take Ci = STi : Then, the new decay function G

new
i becomes

Gnewi = STiGi: (33)

2. Another di¢ culty we encounter is how to interpret the stock�s volatility.
In (32) ; � represents the so called normal volatility of the Bachelier model.
In [1], however, volatility represents the log-normal volatility of the Black
and Scholes model. In order to compare both models, we just need to
convert the normal volatility to the log-normal one. We do this by setting

�newi = STi�i; (34)

where now �i represents the log-normal volatility. This change in notation
brings model (32) closer to the framework of the model in [1].
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3. There is still one remaining di¤erence related to how time is treated in
[1]. Model (32) runs in clock time while the model in [1] runs in volume
time. We will focus on this di¤erence later on. For now, we introduce new
parametrization to our model, which still runs in clock time. Speci�cally,
we take, for t 2 (Ti; Ti+1];

St = STi +

Z
[Ti;t)

Gnewi (t� s) dXi
s + �

new
i (Wt �WTi)

= STi + "iVi

Z
[Ti;t)

Gnewi (t� s) d�is + �newi (Wt �WTi) ; (35)

where Gnewi and �newi are given by (33) and (34) ; respectively.

Using "new" notation, the permanent price impact takes the form

Ii =
"iVi

R
[Ti;Ti+1]

Gnewi (Ti+1 � s) d�is + �newi

�
WTi+1 �WTi

�
STi

= "iVi

Z
[Ti;Ti+1]

Gi (Ti+1 � s) d�is + �i
�
WTi+1 �WTi

�
: (36)

In order to compare notation and results in [1] with our framework, we use
the "new" parameters.

Proposition 18 The conditional on FTi distribution of the permanent impact
Ii is normal with mean

E (Iij FTi) =
"iVi

R
[Ti;Ti+1]

Gnewi (Ti+1 � s) d�is
STi

= "iVi

Z
[Ti;Ti+1]

Gi (Ti+1 � s) d�is

and variance

V ar (Iij FTi) =
(�newi )

2

S2Ti
(Ti+1 � Ti) = �2i (Ti+1 � Ti) ;

where �i denotes log-normal volatility.

The realized impact J de�ned in [1] corresponds in (35) to

Ji =

R
[Ti;Ti+1]

Std�
i
t � "iSTi

STi
;

where
R
[Ti;Ti+1]

Std�
i
t represents the realized price. The latter is, in fact, the

price weighted by the volume of order i; sinceR
[Ti;Ti+1]

StdX
i
t

Xi ([Ti; Ti+1])
=

Z
[Ti;Ti+1]

Std�
i
t:
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Using (??) we deduce thatZ
[Ti;Ti+1]

StdX
i
t = STi"iVi+

Z
[Ti;Ti+1]

Z
[Ti;t)

Gnewi (t� s) dXi
sdX

i
t+

Z
[Ti;Ti+1]

�newi WtdX
i
t

= STi"iVi +

Z
[Ti;Ti+1]

Z
[Ti;t)

STiGi (t� s) dXi
sdX

i
t +

Z
[Ti;Ti+1]

STi�iWtdX
i
t

= STi

 
"iVi + "

2
iV

2
i

Z
[Ti;Ti+1]

Z
[Ti;t)

Gi (t� s) d�isd�it + "iVi
Z
[Ti;Ti+1]

�iWtd�
i
t

!
:

Consequently,Z
[Ti;Ti+1]

Std�
i
t = STi

 
"i + "

2
iVi

Z
[Ti;Ti+1]

Z
[Ti;t)

Gi (t� s) d�isd�it + "i
Z
[Ti;Ti+1]

�iWtd�
i
t

!

and, hence,

Ji = "i + "
2
iVi

Z
[Ti;Ti+1]

Z
[Ti;t)

Gi (t� s) d�isd�it + "i
Z
[Ti;Ti+1]

�iWtd�
i
t � "i

= "2iVi

Z
[Ti;Ti+1]

Z
[Ti;t)

Gi (t� s) d�isd�it + "i
Z
[Ti;Ti+1]

�iWtd�
i
t: (37)

Proposition 19 The conditional on FTi distribution of the realized impact Ji
is normal with mean

E (Jij FTi) = "2iVi

Z
[Ti;Ti+1]

Z
[Ti;t)

Gi (t� s) d�isd�it

and variance

V ar (Jij FTi) = "2i�
2
i

Z
[Ti;Ti+1]

Z
[Ti;Ti+1]

(t ^ s� Ti) d�isd�it

= "2i�
2
i

Z
(Ti;Ti+1]

�
�i ([t; Ti+1])

�2
dt:

We easily deduce that

IS
�
Xi
�
=
1

2

Z
[Ti;Ti+1]

Z
[Ti;Ti+1]

Gnewi (jt� sj) dXi
sdX

i
t +

Z
[Ti;Ti+1]

�newi WtdX
i
t

= STi

 
1

2
"2iV

2
i

Z
[Ti;Ti+1]

Z
[Ti;Ti+1]

Gi (jt� sj) d�isd�it + "iVi�i
Z
[Ti;Ti+1]

Wtd�
i
t

!
:

Consequently, relative to the value of volume traded (i.e. relative to STiVi) the
implementation slippage, de�ned by
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Ri :=
IS
�
Xi
�

STiVi
;

is given by

Ri =
1

2
"2iVi

Z
[Ti;Ti+1]

Z
[Ti;Ti+1]

Gi (jt� sj) d�isd�it + "i�i
Z
[Ti;Ti+1]

Wtd�
i
t: (38)

The conditional on FTi distribution of Ri is normal with mean

E (Rij FTi) =
1

2
"2iVi

Z
[Ti;Ti+1]

Z
[Ti;Ti+1]

Gi (jt� sj) d�isd�it

and variance

V ar (Rij FTi) = "2i�
2
i

Z
(Ti;Ti+1]

�
�i ([t; Ti+1])

�2
dt:

Concepts of permanent, realized and temporary price impacts de�ned in
[1] are derived within models referring to the rate of trading. Such models,
however, have continuous trajectories. In our framework the price process may
have jumps and the jumps are priced using space and not time in�nitesimal
arguments.
When the execution strategy is in�nitesimal in time we refer to the rate of

trading. However, when the execution strategy involves a jump, which can be
associated with a block trade, that jump is priced (in a �xed time) through
in�nitesimal arguments in space. Here, the order book dynamics are used to
develop the price concept. It turns out that the block trades are implemented
at the average price of S; calculated before and after the jump they generate
(this was �rst observed in [5] and can be easily extended herein).

The unconditional distributions of Ii; Ji and Ri can be easily derived using
arguments developed so far. In particular, the density fRi (x) of Ri is given by

fRi
(x) = E

1p
2�V ar (Rij FTi)

exp

�
� 1

2V ar (Rij FTi)
(x� E (Rij FTi))

2

�
;

provided "2i = 1 and

E
1p

V ar (Rij FTi)
<1:

The densities for Ii and Ji are derived in the same way. It is, also, straightfor-
ward to show that

Ri � Ji =
1

2
Gi (0) "

2
iVi

X
Ti�t�Ti+1

�
��it

�2
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and, hence, Ri � Ji 2 FTi . Moreover,

Ji � Ii = "2iVi

Z
[Ti;Ti+1]

Z
[Ti;t[

Gi (t� s) d�isd�it + "i
Z
[Ti;Ti+1]

�iWtd�
i
t

�
 
"iVi

Z
[Ti;Ti+1]

Gi (Ti+1 � s) d�is + �i
�
WTi+1 �WTi

�!

= "2iVi

Z
[Ti;Ti+1]

Z
[Ti;t[

Gi (t� s) d�isd�it � "iVi
Z
[Ti;Ti+1]

Gi (Ti+1 � s) d�is

+"i

Z
[Ti;Ti+1]

�iWtd�
i
t � �i

�
WTi+1 �WTi

�
:

Therefore, in accordance with the de�nition given in [1], the quantity

Ki = "2iVi

Z
[Ti;Ti+1]

Z
[Ti;t)

Gi (t� s) d�isd�it � "iVi
Z
[Ti;Ti+1]

Gi (Ti+1 � s) d�is

represents the temporary impact. Clearly, we also have

Ri � Ji + Ii =
1

2
Gi (0) "

2
iVi

X
Ti�t�Ti+1

�
��it

�2
+"iVi

Z
[Ti;Ti+1]

Gi (Ti+1 � s) d�is + �i
�
WTi+1 �WTi

�
:

Introducing

Li :=
1

2
Gi (0) "

2
iVi

X
Ti�t�Ti+1

�
��it

�2
+ "iVi

Z
[Ti;Ti+1]

Gi (Ti+1 � s) d�is

we obtain the decomposition

Ri � Ji + Ii = Li + �i
�
WTi+1 �WTi

�
: (39)

The term "iVi
R
[Ti;Ti+1]

Gi (Ti+1 � s) d�is represents the conditional mean of the
permanent impact, in the terminology of [1].
On the other hand, the quantity 1

2Gi (0) "
2
iVi
P

Ti�t�Ti+1
�
��it

�2
represents

the impact of jumps which, however, are excluded by the model used in [1].

6.2 Single order optimal strategy and the power law

The optimal fraction �i;� corresponding to the optimal strategy Xi;� of the
future order i satis�es for i = 0; 1; :::n� 1;Z

[Ti;T̂i+1]
Gnewi (jt� sj) d�i;�s = �newi ; for each t 2

h
Ti; T̂i+1

i
(40)
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with �newi = STi�i; where for all t 2
h
Ti; T̂i+1

i
and i = 0; 1; :::; n� 1;Z

[Ti;T̂i+1]
Gi (jt� sj) d�i;�s = �i; for each t 2

h
Ti; T̂i+1

i
:

Working as in the single order case in [3], we deduce the following result.

Proposition 20 For i = 1; :::; n� 1; the random variables Ii; Ji and Ri satisfy

E (Iij FTi) = "iVi�i;

E (Jij FTi) =
1

2
"2iVi

�
�i � 2Gi (0)

�
��iTi

�2�
and

E (Rij FTi) =
1

2
"2iVi�i:

Furthermore,

E (Jij FTi) < E (Rij FTi) and V ar (Jij FTi) = V ar (Rij FTi) :

Extensive empirical analysis (see ([7] and references within) validates the
so-called power law which states that the average relative price change is well
described by the formula

Y �

�
Q

V

��
;

where � is the daily volatility of the asset, Q is the volume of a metaorder, and
V is the daily traded volume. The numerical constant Y is of order unity. The
daily volatility � and the daily volume V are measured contemporaneously to
the trade. As indicated in [7], the power law holds for the levels of QV ranging
from a few 10�4 to a few %: Depending on the markets and on the contracts�
types, � varies between 0:5 and 0:7. It then follows from (36) that the average
relative price change is given by

E (Iij FTi) = "iVi

Z
[Ti;Ti+1]

Gi (Ti+1 � s) d�is

for an admissible strategy �i; and by

E (I�i j FTi) = "iVi�i

for the optimal �i;�. It is important to note that the average has been calculated
under the conditional on FTi distribution. Of course, the average relative price
changes, calculated under the unconditional distribution, follow trivially from
the above expressions.
Applied at the optimal strategy �i;�; the power law states that, under the

conditional on FTi distribution, we have

"iVi�i = "i�i = "iYi�Di

�
Vi
VDi

��
;
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where �Di is the asset volatility and VDi the volume traded on the day Di; both
measured contemporaneously to the trade. Consequently, �Di and VDi are
not measurable with respect to FTi : However, both "i and �i are and, hence,
the above equality cannot hold. This, however, poses a problem to the extended
model (32) we introduced, in which the order i characteristics, the decay function
and the volatility, must be measurable with respect to FTi :
One way to address this inconsistency is to replace the power law by its

estimate based on the data which are not contemporaneous to the trade but,
rather, use the daily volatilities and volumes collected on the days preceding
the trade. Then, the power law yields

Vi�i = �i = YiV
�
i E

 
�Di

V �Di

jFTi

!
;

where the random variable E
�
�Di
V �
Di

jFTi
�
represents an estimate of the quantity

�Di
V �
Di

: Indeed, because

I�i = "iVi�i + �i
�
WTi+1 �WTi

�
= "iYi (Vi)

�
E

 
�Di

V �Di

jFTi

!
+ "iYi�Di

�
Vi
VDi

��

�"iYiV �i E
 
�Di

V �Di

jFTi

!
+ �i

�
WTi+1 �WTi

�
;

we obtain the following, conditionally on FTi , power law

E (I�i jFTi ) = "iYiV
�
i E

 
�Di

V �Di

jFTi

!
:

When the daily volume VDi and the daily volatility �Di are estimated using
the daily volatilities and volumes collected on the days preceding the trade, they
are not estimated contemporaneously to the trade (which we assume from now
on). Then, the power law becomes

E (I�i jFTi ) = "iYi�Di

�
Vi
VDi

��
= "iVi�i = "i�i: (41)

Calibration to the average permanent impact corresponds to the choice of
the decay function for which (41) holds. When the decay function is a simple
exponential, calibration comes down to the speci�cation of � for which (41)
holds. Recall that, in this case, �i =

�i
Vi
= 2

2+�i(Ti+1�Ti) and, hence, we must
have

2

2 + �i (Ti+1 � Ti)
=
1

Vi
Yi�Di

�
Vi
VDi

��
:
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This, in turn, gives

�i =
2

(Ti+1 � Ti)

 
V 1��i V �Di

Yi�Di

� 1
!
:

Note, however, that calibration is only possible when �i > 0: Hence, we must
have

V 1��i V �Di
> Yi�Di ;

which, in turn, imposes constraints on the volumes of the orders and the stock�s
volatility.

7 Market impacts of sequential orders

When several orders are executed during a day, one may want to consider vari-
ations of the aggregate impact they generate in the market. Our model may
give some insights as to how impacts of the individual orders are aggregated.
Recall that the slippage of a sequential execution strategy is de�ned as the sum
of slippages of individual orders. We adopt the same logic here and aggregate
di¤erent impacts of individual orders by taking their sums. The idea then is
to measure at the model level the impact that the dependence structure of the
order �ow will have on the distributions of the aggregate impacts.
From the previous analysis, we already know that the cost of execution may

not be the only criterion one wants to consider when optimizing execution of
a single or of sequential orders. Distributions of impacts may help to de�ne
an alternative optimality criterion. For example, small average impact may be
associated with its relatively large variance. On the other hand, small variance
may be associated with relatively large average impacts.
Rational choices for a single order have been discussed by the authors in [5].

However, when we aggregate impacts during a day, the situation is conisderably
less clear. This is because a lot will depend on the nature of the order �ow.
Indeed, when we calculate daily permanent impact by summing up perma-

nent impacts of the individual orders, we will notice a di¤erence among the days
during which most of the orders are of the same type, say, to buy or to sell, and
the days when we get balanced �ow of buy and sell orders. This is because on
a "balanced day", average permanent impacts may compensate each other to
generate a relatively small daily average impact.
This logic is very natural and is similar to the strategy of order aggregation,

currently being studied in [6]. The idea therein is to move away from sequential
execution of orders and adopt an alternative strategy where one aims for the
longest, in calendar time, execution of each order and, hence, needs to manage
orders at a portfolio level. There are many ways one could manage such a
portfolio. We propose one such approach in [6].
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8 Volume time

The main focus of this paper is to provide a framework in which one can analyze
and measure the cost of sequential execution of several orders within a �xed
period of time, for example, during a day. However, the market activity changes
substantially between di¤erent periods of the day. Ten-day average intra-day
volume and volatility pro�les, on 15-minute intervals, are presented in [1].
Volumes tend to decrease from the market opening. They stabilize mid-day

and tend to increase towards the end trading. Daily volume pro�le looks like
a symmetric convex function of time during the day. This is a good news for
our model because densities of optimal strategies are symmetric and convex,
and hence are consistent with the liquidity pro�le the market provides. How-
ever, when we need to execute sequentially several orders during a single day,
symmetric strategies will face non-symmetric liquidity pro�les. This should be
taken into account in the execution algorithms.
As demonstrated in [1]; the volatility falls initially and then stays roughly at

the same level until the close of trading. We have given some attention so far to
the impact the volatility parameter �i may have on the probabilistic properties
of our model outputs. On the other hand, the daily volatility appears in the so
called power law describing the average permanent impacts. Daily volumes also
appear in the power law. Intra-day average volumes were used in [1] to de�ne
the concept of volume time, which is an example of business time studied in
details in [4].
We now introduce volume time into our model. To this aim, we de�ne

increasing cadlag processes Ait on the time interval [Ti; Ti+1] with A
i
T̂i
= 0 and

Ai
T̂i+1

: The amount Ait represents the average market executed volume over the

interval [Ti; t] and

� it :=
Ait

AT̂i+1

stands for the fraction of AT̂i+1 executed over the interval [Ti; t] : We assume
that the trading stops at clock time Ti+1:
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