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Abstract

We revisit Gatheral�s model of optimal execution and provide new
insights on key quantities and their properties, like the distribution and
variance of the implementation slippage, the symmetry of the optimal
policy, and the model�s behavior in terms of the decay function.

We propose two modi�cations of the model. The �rst is introduced
in order to correctly de�ne the admissible strategies in Gatheral�s model
within the execution horizon. In the second modi�cation, we reformulate
the control strategies via probability measures whose cdfs model the cu-
mulative fraction of the volume traded through time. For this modi�ed
model, we study the admissible and optimal policies in detail.

We examine the performance of the model in terms of the decay func-
tion and point out a problematic feature, namely, a possible degeneracy of
the implementation slippage as the decay function dissipates. We discuss
two possible ways to remedy this, namely, either by imposing additional
constraints on the existing optimal solution or by introducing a new cri-
terion that involves the variance of the implementation slippage.

1 Introduction

The aim herein is to present new results and discuss various issues related to
Gatheral�s model [4] for the optimal execution of a single order. We touch
upon several topics, bring up new insights and introduce new concepts. While
we focus only on the single order case, some of the results are stated more
generally in order to prepare the ground for the sequential order case that we
study in [5].
We provide a summary of the main contributions herein.

1. We �rst reformulate Gatheral�s model to correctly de�ne the execution
strategies. Speci�cally, the policies in [4] are taken to be left continuous
with right limits on [0; T ]; with full execution to be completed at T: This,
however, excludes the possibility of a jump at T: To remedy this, we assume
that the order has to be fully executed by some T̂ < T: This, in turn,
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generates the time lag T � T̂ which is re�ected on the impacted price and
other quantities of interest.

2. Assuming a shorter than T execution horizon is also needed in order to
properly de�ne the sequential order model, introduced in [2] for two or-
ders and extended in [5] for multi orders. We recall that a fundamental
assumption in this extended setting is that each new order arrives right
after the previous one is fully executed.

3. We propose an additional reformulation of Gatheral�s model, replacing the
strategies in [4] by probability measures whose cdfs represent the cumula-
tivefraction of the volume traded through time. These measures become
the de�ning element in the underlying optimization problem. The new
parametrization yields quantities that have more natural continuity prop-
erties (e.g. right continuity with left limits, which is aligned with the
standard assumptions in Ito�s calculus) as well as convenient scaling prop-
erties with respect to the traded volume.

4. We provide a detailed analysis of the admissible control distributions. We
analyze their densities and establish that the optimal one is symmetric
around the middle point of the execution time, continuous in the interior
and discontinuous at the end points with equal jumps, whose size we also
compute. One of the key steps is a time-reversal property of the optimal
measure.

5. So far, the analysis in both [4] and [2] has focused only on the mean
of the implementation slippage. In the model we introduce (see point 3
above), we analyze other probabilistic properties like its distribution and
variance, both for admissible and the optimal execution strategies. For
general decay functions, we provide representation results for the variance
and universal upper and lower bounds.

6. Starting with the tractable case of exponential decay functions, we observe
a potentially problematic feature of Gatheral�s model. Speci�cally, we
note that, as the decay functions decrease, the model allows for complete
elimination of the expected implementation slippage while the variance
remains �nite (or even becomes in�nite), clearly an undesirable feature of
the model.

We show that similar issues arise for general decay functions as well; we
do this by �rst establishing, and in turn using, the robustness of the im-
plementation slippage with regards to these functions.

7. To remedy the problematic issue raised in point 6 we propose two possi-
ble directions. Firstly, still using the criterion of [4], we investigate how
additional constraints on the optimized quantities - for example, requiring
certain properties of the optimal variance (its size or asymptotic growth)
- could be used to prevent pathological behavior. This approach leads
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to constraints on model inputs, like the stock�s volatility and the decay
function.

Secondly, we propose to depart from the objective in [4] and work with
a new optimality criterion. We propose a mean-variance type criterion.
Its formulation gives rise to a two-dimensional constrained calculus of
variations problem; the variance representations in point 5 above play a
key role here.

8. Finally, we study the di¤erent kinds of market impacts proposed and de-
veloped by several authors. We attempt to reconcile the various notions
within our model, noting however that some of the most popular ones have
been developed in models that do not allow for discontinuous policies. In a
related direction, we study the e¤ects of the power law assumption for the
average price change on the selection of model inputs within our model.

Some of the above points might at �rst look a bit redundant for the single or-
der case examined here. However, as we argue in [5], they all become important
in the sequential order framework. For example, in the general setting, in addi-
tion to the randomness generated by the Brownian motion, there is randomness
coming from the unknown volumes of the incoming orders as well as the related
random decay functions and volatility levels. As a result, the analysis of the
aggregate implementation slippage naturally involves both conditional (to the
information at order arrival) and unconditional arguments, and quantities like
variances and covariances for both the stock and the implementation slippage
processes play a key role. Furthermore, the time lags (see point 1) have ag-
gregate e¤ects on the impacted stock price, sequentially between each time an
order is fully executed and the next one arrives.

2 Gatheral�s model revisited and reformulated

We start with a brief review of the classical Gatheral�s model [4], bring up
several issues that we further discuss and develop in subsequent sections, and
provide new insights and results for various quantities of interest. To facilitate
the exposition, we abstract for now from most technical assumptions and only
present the technical steps that are relevant for the new parts we develop.
We consider a single order of volume V; which arrives at time 0 and must

be executed by (an a priori known) time T <1: Without loss of generality, we
assume that this is a buy order, V > 0: In [4], it is assumed that execution of
this order is done by deterministic policies that are left continuous with right
hand limits.
The �rst step in our analysis is to correctly set up this problem in a modi�ed

execution horizon. Speci�cally, we impose that, instead of T; the order must be
completed strictly before T; say at T̂ < T . There are two reasons for this:
i) Block trades are allowed even at the end point of the execution horizon;

as a matter of fact, the optimal policy turns out to include a jump therein. As a
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result, the right hand continuity requirement in [4] forces us to properly de�ne
the policies also right after the execution time.
ii) A fundamental assumption in the extended model of sequential orders

(say a total of N orders) is that each order must be entirely completed before
the next one arrives. Thus, if the nth order arrives at Tn�1 and the n+1 order
arrives at Tn; the n � 1 order must be completed by T̂n�1 < Tn�1 and the
nth order by T̂n < Tn. As we argue in [5], even though each interval Ti � T̂i;
i = 1; :::; N; is very small, these in�nitesimal sequential time lags have aggregate
e¤ects on various quantities, especially, on the variance and covariances of the
individual implementation slippages and the movements of the impacted stock

price in each interval
�
Ti � T̂i

i
:

2.1 First modi�cation of Gatheral�s model

To properly de�ne the admissible policies and, also, set the framework for the
upcoming sequential order case, we modify accordingly the set of admissible
policies of [4] to

A[0;T ] = fX : Xt; t 2 [0; T ] ; deterministic, non-decreasing,

left continuous with right hand limits, X0 = 0 and XT̂+ = V; T̂ < T
o
: (2)

The optimal execution model is now described on [0; T ] as follows:

� Interval
h
0; T̂

i
: The impacted stock price process is modeled as

St = S0 +

Z
[0;t)

G (t� s) dXs + �Wt; 0 < t � T̂ ; (3)

with X 2 A[0;T ], W being a Brownian motion in a probability space
(
;F ;P) and � > 0 a given constant. The decay function G (jtj) > 0;
t 2 R; is also given and for, now, assumed to be smooth enough for jtj 6= 0
(we re�ne its properties later on).

For each t 2
h
0; T̂

i
; the left continuous functionXt represents the cumulative

volume bought just before time t and with excluding a possible block trade at
t, while Xt+ is the volume held at t; including a possible jump at t. Since
V > 0; Xt and Xt+ are non-negative and non-decreasing. Thus, X is (uniquely)
decomposed asX = Xc+Xd in terms of its continuous and singular components,

Xd
t =

X
0�s�t

�Xs and Xc
t = Xt �Xd

t ; (4)

where �Xt := Xt+ �Xt denotes the jump at time t:

Jumps, may occur at any time t 2
h
0; T̂

i
; including the end points 0 and T̂ .

The requirement XT̂+ := V in (2) ensures that a possible jump may occur at
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the end of the e¤ective execution period,
h
0; T̂

i
: When there is a block trade,

Xt+ �Xt > 0, 0 � t � T̂ ; and thus the impacted price satis�es

St+ = St +G (0)�Xt > St: (5)

� Interval
�
T̂ ; T

i
: In order to de�ne the right limit of X at T̂ ; we set

Xt := V; T̂ < t � T:

At times t 2
�
T̂ ; T

i
; there is no execution; �Xt � 0: The impacted price

is given by

St = ST̂+ + �Wt = ST̂ +G (0)�XT̂ + �Wt; t 2
�
T̂ ; T

i
; (6)

as X might have a jump at T̂ :

We note that every strategy X 2 A[0;T ] determines uniquely a �nite Borel
measure. Speci�cally, this measure, denoted by �; is de�ned for 0 � a < b � T
as

� ([a; b)) := Xb �Xa: (7)

Conversely, for a �nite Borel measure � such that �
�h
0; T̂

i�
= V; T̂ < T;

the execution strategy is speci�ed as

Xt =

8<:
0; t = 0

� ([0; t)) ; 0 < t � T̂

V; T̂ < t � T:

(8)

We will also consider the normalized by the volume V policy  t; t 2 [0; T ] ;
de�ned as

d t :=
1

V
dXt with  0 = 0: (9)

The implementation cost IC (X) of an arbitrary strategy X 2 A[0;T ] is de-
�ned in terms of the corresponding costs of the continuous and singular compo-
nents IC (Xc) and IC (Xd) (cf. (4)).
The cost of implementing Xc is the sum of the costs of each in�nitesimal in

time trade dXt; t 2
h
0; T̂

i
; executed at price St;

IC (Xc) =

Z
[0;T̂ ]

StdX
c
t :

The cost of implementing Xd is the sum of the costs of implementing each
individual jump �Xt. It is assumed that the cost of each block trade �Xt; gen-
erating jump �St; can be decomposed into the sum of the costs of in�nitesimal
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in space orders 1
G(0)dy; each executed at price y; for each y 2 [St; St+] : This

assumption may be linked to the model proposed in [4] in which execution takes
place in a limit order book (LOB) and the price impact of the block trade �Xt

is linear in the order size; this is also the case in Gatheral�s model, where we
have

St+ = St +G (0)�Xt;

or �St = St+ � St = G (0)�Xt: Then, the in�nitesimal in space order 1
G(0)dy

costs y
G(0)dy to be executed. Therefore, the total cost of implementing an indi-

vidual block trade �Xt is given by

IC(�Xt) =

Z
[St;St+]

y

G (0)
dy =

1

2G(0)
(St+ � St)2

=
1

2
�Xt (St+ + St) =

G (0)

2
(�Xt)

2
+ St�Xt: (10)

Consequently, the cost of implementing Xd is given by

IC(Xd) =
X

t2[0;T̂ ]

�
G (0)

2
(�Xt)

2
+ St�Xt

�

=

Z
[0;T̂ ]

StdX
d
t +

X
t2[0;T̂ ]

G(0)

2
(�Xt)

2
:

We summarize the above �ndings in the following proposition.

Proposition 1 The total implementation cost IC(X) for strategy X 2 A[0;T ]
is given by

IC(X) =

Z
[0;T̂ ]

StdXt +
X

t2[0;T̂ ]

G (0)

2
(�Xt)

2
: (11)

The main quantity of interest in optimal execution is the implementation
slippage (or shortfall) introduced by Gatheral (see, [4], for example).

De�nition 2 The implementation slippage IS (X) of strategy X 2 A[0;T ] is
de�ned as the di¤erence between the cost of implementing strategy X and the
cost of executing the entire volume V at initial price S0,

IS(X) :=

Z
[0;T̂ ]

StdXt +
G (0)

2

X
t2[0;T̂ ]

(�Xt)
2 � V S0:

Following the calculations in [4], we deduce (12) below. Properties (13) and
(14) follow from the deterministic assumption on X and the properties of the
Brownian motion.
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Proposition 3 The implementation slippage IS (X) generated by strategy X 2
A[0;T ] for a buy order of volume V and executed in

h
0; T̂

i
is given by

IS (X) =
1

2

Z
[0;T̂ ]

Z
[0;T̂ ]

G (jt� sj) dXsdXt +

Z
[0;T̂ ]

�WtdXt: (12)

It is an FT̂ -measurable random variable and is normally distributed with mean

EP(IS(X)) =
1

2

Z
[0;T̂ ]

Z
[0;T̂ ]

G (jt� sj) dXsdXt; (13)

and variance

V arP (IS(X)) = �2
Z
[0;T̂ ]

Z
[0;T̂ ]

(t ^ s)dXsdXt: (14)

The measure P is the one related to the Brownian motion; for convenience,
we will drop the P-notation from now on.
As proposed in [4], the aim is to minimize the expected slippage (13) over all

admissible strategies,

E(IS(X�)) = min
X2A[0;T ]

1

2

Z
[0;T̂ ]

Z
[0;T̂ ]

G (jt� sj) dXsdXt: (15)

This problem was solved in [4] and more recently revisited in [2] where an
optimal transport setting was used to prove the uniqueness of the optimizer.
In these two works, slightly di¤erent assumptions on the decay function were
introduced but, herein, we do not focus on this. For now, we introduce the
assumption in [4] and recall the main optimality result therein.

Assumption 1: The decay function G (jtj) > 0; t 2 R; is represented as the
Fourier transform of a positive �nite Borel measure ' on R,

G (jtj) =
Z
R
eity' (dy) : (16)

Proposition 4 Let the decay function G satisfy (16). Then, the minimiza-
tion problem (15) has a unique optimal execution strategy, X�: Its optimality is

equivalent to the existence of a (unique) �� > 0; such that, for each t 2
h
0; T̂

i
;Z

[0;T̂ ]
G (jt� sj) dX�

s = ��: (17)

The minimized expected implementation slippage is given by

E(IS(X�)) =
1

2
��V . (18)
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It follows that E(IS(X�)) is decreasing in the execution time, i.e. for T̂ 0 <
T̂ < T;

E(IS(X�
T̂
); T̂ ) � E

�
IS(X�

T̂ 0
); T̂ 0

�
,

with X�
T̂
2 A[0;T̂ ] and X�

T̂ 0
2 A[0;T̂ 0]: This horizon monotonicity property is

consistent with the intuition and, also, demonstrates that the most expensive
strategy is to execute the entire volume V at initial time 0: It also suggests that
in order to minimize the expected implementation cost, one should increase the
execution time. Therefore, while we originally assumed that the order must be
executed by T̂ ; it is optimal to complete its execution exactly at T̂ and not
earlier.

Remark 5 As demonstrated in (10), the cost IC(�Xt) to implement a block
trade of size �Xt is proportional to it and to the average of the price before and
right after the jump. In particular, the cost to buy the entire volume V at initial
time 0 (in general, a suboptimal policy) is IC(�X0) =

1
2V (S0+ + S0) : In turn,

the associated implementation slippage is given by

IS(�X0) =
1

2
V (S0+ � S0) =

G (0)

2
V 2:

2.2 Exponential decay function

Due to its tractability, a popular choice for the decay function is

G (jtj) = e��jtj; t 2 R and � > 0: (19)

Proposition 6 If the decay function G is as in (19), the optimal strategy X�
t

satis�es

dX�
t =

V

2 + �T̂

�
�0 + �T̂ + �dt

�
; 0 < t � T̂ ; (20)

and the optimality condition (17) holds for

�� =
2V

2 + �T̂
: (21)

The minimal expected implementation slippage is given by

E(IS (X�)) =
V 2

2 + �T̂
=
1

2
��V (22)

and its variance by

V ar (IS(X�)) = V 2�2T̂
1 + �T̂ + 1

3

�
�T̂
�2

�
2 + �T̂

�2 : (23)

For �xed V and T̂ ;

lim
�"1

E(IS (X�)) = 0 and lim
�"1

V ar (IS(X�)) =
1

3
V 2�2T̂ : (24)
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Proof. For (20), (21) and (22) see [2] and [4]. To show (23) we work as follows.
From (12), we have

IS (X�) =
1

2

Z
[0;T̂ ]

Z
[0;T̂ ]

G (jt� sj) dX�
s dX

�
t +

Z
[0;T̂ ]

�WtdX
�
t :

Recalling  t de�ned in (9), we have

V ar (IS (X�)) = V 2�2

 Z
[0;T̂ ]

Z
[0;T̂ ]

t ^ sd �sd �t

!

= V 2�2
Z
[0;T̂ ]

1

2 + �T̂

 
t+

Z T̂

0

(t ^ s)�ds
!
d �t :

Since
R T̂
0
(t ^ s)�ds = �

�
1
2 t
2 + t

�
T̂ � t

��
; we deduceZ

[0;T̂ ]

Z
[0;T̂ ]

t ^ sd �sd �t

=
1

2 + �T̂

Z
[0;T̂ ]

�
t+ �

�
1

2
t2 + t

�
T̂ � t

���
d �t =

1�
2 + �T̂

�2 �T̂ + 12�T̂ 2
�

+
1�

2 + �T̂
�2 Z T̂

0

�
t+ �

�
1

2
t2 + t

�
T̂ � t

���
�dt

=
T̂ + 1

2�T̂
2�

2 + �T̂
�2 + 1

2�T̂
2 + �2

�
1
6 T̂

3 + 1
6 T̂

3
�

�
2 + �T̂

�2 =
1 + �T̂ + 1

3�
2T̂ 2�

2 + �T̂
�2 T̂ :

From the stock price equations (3) and (6) we derive the impacted price on
[0; T ] :

Proposition 7 Under the optimal execution policy (20), the impacted price
process S�t ; t 2 [0; T ] ; is given by

S0; t = 0 and S�0+ = S0 +
V

2 + �T̂
;

S�t = S0 +
V

2 + �T̂
+ �Wt = S�0+ + �Wt; 0 < t � T̂ ;

S�
T̂+

= S0 +
2V

2 + �T̂
+ �WT̂ = S�

T̂
+

V

2 + �T̂
;

and

S�t = S0 +
2V

2 + �T̂
+ �

�
Wt �WT̂

�
= S�

T̂+
+ �

�
Wt �WT̂

�
; T̂ < t < T:
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Next, we comment on the above results.

1. The optimal strategy is to �rst execute the block trade V
2+�T̂

at time 0.

Subsequently, by each t 2
�
0; T̂

i
; the volume V

2+�T̂
+ �V
2+�T̂

t is traded with

smooth execution rate �V
2+�T̂

: The remaining volume V
2+�T̂

is executed as

a block trade at T̂ .

2. The two block trades at 0 and T̂ are symmetric, each having size V
2+�T̂

.
As � " 1; the optimal policy converges to smooth, uniform execution in�
0; T̂

�
of constant rate V

T̂
.

3. Contrary to the standing assumptions in stochastic calculus (cadlag), the
above impacted stock price S� is left continuous with right hand limits.

4. For �xed V and �; it holds that

@

@T̂
E(IS (X�) ; T̂ ) = � �V 2�

2 + �T̂
�2 < 0

and, hence, the optimal expected slippage decreases with the execution
time. Furthermore, limT̂"1E(IS (X�) ; T̂ ) = 0; but the convergence is
rather slow.

5. For �xed T̂ ; E(IS (X�)) depends exclusively on the volume V and the size
of the equal at 0 and T̂ jumps,

E(IS (X�)) =
V

2 + �T̂
V =

1

2
V
�
�S�0 +�S

�
T̂

�
= V�S�0 = V�S�

T̂
:

In particular, the smooth execution component �V
2+�T̂

t; t 2
�
0; T̂

�
does not

generate any cost.

6. For each T̂ and � > 0; E(IS (X�) ;V ) is, as expected, strictly increasing
in the volume,

@E(IS (X�) ;V )

@V
=

2V

2 + �T̂
> 0:

On the other hand, it is quadratic in V; which might at �rst look counter
intuitive. However, one may allow � to depend on volume V; which
would give E(IS (X�) ;� (V ) ; V ) = V

2+�(V )T̂
: In particular, if one chooses

� (V ) = V; then
E(IS (X�)

V
=

V

2 + V T̂
<
1

T̂

and

lim
�"1

E (IS(X�))

V
= lim

V "1

E (IS(X�))

V
=
1

T̂
;

yielding a linear dependence on V; for large V .
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7. For �xed T̂ and V; E(IS (X�) ;�) is strictly decreasing in the decay para-
meter � as

@E(IS (X�) ;�)

@�
= � V 2T̂�

2 + �T̂
�2 < 0:

This is intuitively pleasing as the decay function (19) decreases monoton-
ically with �: Note, however, that as � increases, we have in the limit

lim
�"1

E(IS (X�) ;�) = 0 and lim
�"1

V ar (IS(X�)) =
1

3
V 2�2T̂ : (25)

In other words, the model allows for complete elimination of the expected
slippage in the limit, while yielding a non-zero variance. This seems like
an unsuitable modeling feature.

Observations in point 6 and, in particular, point 7 prompt us to examine
how the parameter � should be chosen given a targeted model behavior. More
importantly, the limiting behavior as � " 1 indicates that, perhaps, only mini-
mizing the expected slippage might not be an adequate modeling objective. We
study these questions later on in section 4.

3 Second modi�cation of Gatheral�s model

We further modify Gatheral�s model. We introduce a probability measure whose
cumulative distribution function models the fraction of the traded volume cu-
mulatively through time. This measure now becomes the de�ning element in
the optimization problem we study. We make this precise next.
Consider the set of probability measures

P[0;T ] =
n
� : � probability measure on B ([0; T ]) with �

�h
0; T̂

i�
= 1; T̂ < T

o
(26)

and the associated cumulative distribution functions by �t : [0; T ]! [0; 1] ;

�t := � ([0; t]) ; 0 � t � T: (27)

Note that �t is right continuous, nondecreasing with left limits (cadlag), �0� :=

0 and �t = 1, for t 2
h
T̂ ; T

i
.

We may then relate �t and  t; de�ned in (9), through  t = �t�; t 2 [0; T ] :
Recall that the execution strategies X 2 A[0;T ] and the associated measures
� (cf. (7)) and  have "opposite" continuity properties, in that they are left
continuous with right limits.
Next, we view �t, 0 � t � T; as the execution policies. Working as in section

1, we derive the implementation slippage,

IS(�) =
1

2
V 2
Z
[0;T̂ ]

Z
[0;T̂ ]

G (jt� sj) d�sd�t + V
Z
[0;T̂ ]

�Wtd�t; (28)
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and consider the related minimization problem

E(IS(��)) = min
�2P[0;T ]

1

2
V 2
Z
[0;T̂ ]

Z
[0;T̂ ]

G (jt� sj) d�sd�t: (29)

We will analyze this problem next. We stress that the probability measure �
now becomes the de�ning element as it gives rise to the cumulative distribution
�t, and in turn to the strategies  t and Xt (cf. (9) and (2)) in the formulation
of the model in section 1.

3.1 Properties of admissible policies

We start with some general properties of the probability measure � and its
distribution function. Properties (33), (34) and (35) will be used to compute
the variance of the implementation slippage while (36) and (37) to study the
robustness of the model in terms of the decay function.
We choose to present these properties for an arbitrary time interval, [a; b] ;

instead of
h
0; T̂

i
; in order to facilitate the adaptation of the results to the model

of sequential orders, where a and b will represent arrival and execution times,
respectively. For 0 � a < b; the set P[a;b] is de�ned in analogy to (26).

Lemma 8 If � 2 P[a;b]; then �t; satis�esZ
[a;b]

Z
[a;b]

t ^ sd�sd�t = a+

Z
(a;b]

(� ([t; b]))
2
dt: (30)

Proof. Let A and B be of �nite variation, right continuous functions on [a; b] ;
with Aa� = Ba� = 0; and f be a bounded measurable function on [a; b]. Then,
for a � s < t � b; Z

[a;t]

f (s) dAs = f (a)Aa +

Z
(a;t]

f (s) dAs (31)

and

AtBt �AsBs =
Z
(s;t]

Au�dBu +

Z
(s;t]

Bu�dAu +
X
u�(s;t]

(�Au) (�Bu) ; (32)

where �Cu = Cu � Cu�; C = A;B (see, for example, [3]). In turn, (31) yieldsZ
[a;b]

t ^ sd�s = a�a +

Z
(a;b]

t ^ sd�s = a�a +

Z
(a;t]

t ^ sd�s +
Z
(t;b]

t ^ sd�s

= a�a +

Z
(a;t]

sd�s + t� ((t; b]) :

From (32) we deduce that, if a < t; t�t� a�a =
R
(a;t]

sd�s+
R
(a;t]

�s�ds. Hence,Z
[a;b]

t ^ sd�s = a�a + t�t � a�a �
Z
(a;t]

�s�ds+ t� ((t; b])

12



= t�t + t� ((t; b])�
Z
(a;t]

�s�ds = t�
Z
(a;t]

�s�ds

and, thus, Z
[a;b]

Z
[a;b]

(t ^ s) d�sd�t =
Z
[a;b]

 
t�
Z
(a;t]

�s�ds

!
d�t

= a�a +

Z
(a;b]

 
t�
Z
(a;t]

�s�ds

!
d�t = a�a +

Z
(a;b]

td�t �
Z
(a;b]

Z
(a;t]

�s�dsd�t

= a�a + b�b � a�a �
Z
(a;b]

�s�ds�
Z
(a;b]

Z
(a;t]

�s�dsd�t

= b�b �
Z
(a;b]

�s�ds�
Z
(a;b]

Z
(a;t]

�s�dsd�t:

Next, using (32) with At =
R
(a;t]

�s�ds and Bt = �t; we deduceZ
(a;b]

Z
(a;t]

�s�dsd�t =

Z
(a;b]

AtdBt = AbBb �AaBa �
Z
(a;b]

Bt�dAt

=

 Z
(a;b]

�s�ds

!
�b �

Z
(a;b]

�t�dAt =

 Z
(a;b]

�s�ds

!
�b �

Z
(a;b]

�2s�dt:

Recalling that �b = 1; we then obtainZ
[a;b]

Z
[a;b]

(t ^ s)d�sd�t = b�b �
Z
(a;b]

�s�ds�
Z
(a;b]

Z
]a;t]

�s�dsd�t

= b�b �
Z
(a;b]

�s�ds�
  Z

(a;b]

�t�ds

!
�b �

Z
(a;b]

�2t�dt

!

= b� 2
Z
(a;b]

�s�ds+

Z
(a;b]

�2t�dt = a+

Z
(a;b]

�
1� 2�t + �2t�

�
dt

= a+

Z
(a;b]

(1� �t�)2 dt = a+

Z
(a;b]

(� ([t; b]))
2
dt;

and we conclude.

Proposition 9 Let � 2 P[a;b]: Then, for t 2 [a; b] ;Z
[a;b]

(Wt �Wa) d�t =

Z
(a;b]

� ([t; b]) dWt; (33)

E

 Z
[a;b]

(Wt �Wa) d�t

!2
=

Z
(a;b]

(� ([t; b]))
2
dt; (34)
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and

1

b� a

 Z
[a;b]

(t� a) d�t

!2
�
Z
(a;b]

(� ([t; b]))
2
dt �

Z
[a;b]

(t� a) d�t: (35)

Furthermore,

inf
�

Z
(a;b]

(� ([t; b]))
2
dt = 0 (36)

and

sup
�

Z
(a;b]

(� ([t; b]))
2
dt = b� a: (37)

Proof. We have Z
[a;b]

(Wt �Wa) d�t =

Z
(a;b]

(Wt �Wa) d�t

= (Wb �Wa) �b �
Z
(a;b]

�t�dWt

=

Z
(a;b]

(1� �t�) dWt =

Z
(a;b]

(1� � ([a; t))) dWt =

Z
(a;b]

� ([t; b]) dWt

and (33) follows.
To show (34), we recall that �t is deterministic and bounded. Therefore,

E

 Z
[a;b]

(Wt �Wa) d�t

!2
= E

Z
[a;b]

Z
[a;b]

(Wt �Wa) (Ws �Wa) d�td�s

=

Z
[a;b]

Z
[a;b]

E (Wt �Wa) (Ws �Wa) d�td�s

=

Z
[a;b]

Z
[a;b]

(t ^ s� a) d�td�s =
Z
(a;b]

(� ([t; b]))
2
dt;

where we used the previous Lemma. Next, we observe thatZ
[a;b]

(t� a) d�t =
Z
(a;b]

(t� a) d�t = (b� a) �b �
Z
(a;b]

�t�dt

=

Z
(a;b]

(1� �t�) dt =
Z
(a;b]

� ([t; b]) dt:

Hence, Z
(a;b]

(� ([t; b]))
2
dt �

Z
(a;b]

� ([t; b]) dt =

Z
[a;b]

(t� a) d�t;

and using that Z
(a;b]

� ([t; b]) dt

!2
� (b� a)

Z
(a;b]

(� ([t; b]))
2
dt;

we conclude. Assertions (36) and (37) follow directly using dominated conver-
gence.
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3.2 Properties of optimal policies: smoothness, time-reversal
and symmetry

We analyze properties of the candidate optimal policies represented via the
cummulative distribution function �t. We state them in a slightly more general
setting, in that we analyze properties of probability measures � 2 P[a;b] which
satisfy for each t 2 [a; b] ; Z

[a;b]

G (jt� sj) d�s = �; (38)

for some � > 0 that is independent of t: The above condition is the direct
analogue of (17) if a = 0; b = T and � = ��

V .

Proposition 10 Let � 2 P[a;b] satisfying (38). Assume that function G satis-
�es Assumption 1 and, for t � 0; G(t) is strictly decreasing and strictly convex,
three times continuously di¤erentiable for t > 0 and with1 G0+ (0) < 0: Then,
the following assertions hold for t 2 (a; b) :
i) the density of �t is continuous on (a; b) and satis�es

�0t =
1

2G0+ (0)

 
�G00 (b� t)�

Z
(a;t]

�uG
000 (t� u) du+

Z
(t;b]

�uG
000 (u� t) du

!
:

ii) �t satis�es

2G0+ (0) �t� �G0 (b� t) +
Z
(a;b]

�u�G
00 (jt� uj) du = 0;

and, hence, it has a jump at point a of size

�a =
1

2G0+ (0)

 
G0 (b� a)�

Z
(a;b]

�u�G
00 (u� a) du

!
: (39)

Proof. For a < t < b; we haveZ
[a;b]

G (jt� sj) d�s = G (t� a) �a +
Z
(a;t]

G (t� s) d�s +
Z
(t;b]

G (s� t) d�s

with Z
(a;t]

G (t� s) d�s = G (0) �t �G (t� a) �a +
Z
(a;t]

�s�G
0 (t� s) ds

and Z
(t;b]

G (s� t) d�s = G (b� t) �b �G (0) �t �
Z
(t;b]

�s�G
0 (s� t) ds:

1We use the notation G0+ (0) to denote the right derivative of G at point 0:
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Therefore, for each t 2 (a; b) ;

G (b� t) +
Z
(a;t]

�s�G
0 (t� s) ds�

Z
(t;b]

�s�G
0 (s� t) ds = �;

and, in turn,

2G0+ (0) �t� �G0 (b� t) +
Z
(a;b]

�s�G
00 (jt� sj) ds = 0: (40)

Consequently, �t� is continuous in (a; b) and left continuous on [a; b] ; with
�a� = 0 and limt#a �t� = limt#a �t = �a; as �t is right continuous. Rearranging
terms in (40) gives

�a =
1

2G0+ (0)

 
G0 (b� a)�

Z
(a;b]

�s�G
00 (s� a) ds

!
: (41)

Using that G is strictly decreasing and strictly convex we deduce that �a > 0:
Di¤erentiating (40) with respect to t 2 (a; b) and using that in this interval

�t� = �t together with the smoothness assumptions on G; we obtain

2G0+ (0) �
0
t +G

00 (b� t) +
Z
(a;b]

�s
@

@t
G00 (jt� sj) ds

= 2G0+ (0) �
0
t +G

00 (b� t) +
Z
(a;b]

�sG
000 (jt� sj) @

@t
jt� sj ds

= 2G0+ (0) �
0
t +G

00 (b� t) +
Z
(a;t]

�sG
000 (t� s) ds�

Z
(t;b]

�sG
000 (s� t) ds = 0:

Consequently, the density �0t of the cumulative distribution �t is continuous for
all t 2 (a; b) and satis�es

�0t =
1

2G0+ (0)

 
�G00 (b� t)�

Z
(a;t]

�sG
000 (t� s) ds+

Z
(t;b]

�sG
000 (s� t) ds

!
:

(42)
Using the above we rewrite (38) asZ

[a;b]

G (jt� sj) d�s

= G (t� a) �a +
Z
(a;b)

G (jt� sj) �0sds+G (b� t) (1� �b�) = �:

Corollary 11 Equality (38) may be written, for every t 2 [a; b] ; asZ
[a;b]

G (jt� sj) d�s

= G (t� a) �a +
Z
(a;b)

G (jt� sj) �0sds+G (b� t) (1� �b�) = �: (43)
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Let � 2 P[a;b] and de�ne, for t 2 [a; b] ; the non-decreasing function

e�t := 1� �a+b�t and e�b+ := 1: (44)

Lemma 12 The function e�t satis�es e�a = 0; e�a+ = �a, e�b = 1 � �a ande�b+ � e�b = �a: Thus, the measure ~� generated by e�t has jumps at both a and
b; and of the same size equal to �a in (41). Furthermore, for t 2 (a; b) ; the
corresponding densities satify

e�0t = �0a+b�t:

Proposition 13 i) Let �t satisfy (38) and e�t as in (44). Then, �t = ~�t;
t 2 [a; b] ; and thus the corresponding measures coincide,

� = ~�: (45)

ii) The function �t has equal jumps at the end points a and b; with jump size
equal to �a; given in (39),

�a+ � �a = �b+ � �b =
1

2G0 (0+)

 
G0 (b� a)�

Z
(a;b]

�s�G
00 (s� a) ds

!
:

Proof. Using e� in (43) yields that for each t 2 [a; b] ;Z
(a;b)

G (jt� sj) e�0sds = Z
(a;b)

G (jt� sj) �0a+b�sds

=

Z
(a;b)

G (ja+ b� t� sj) �0sds;

G (a+ b� t� a) �a = G (b� t) �a;
and

G (b� (a+ b� t)) (1� �b�) = G (t� a) �a:
Consequently, e� also satis�es (43), and (45) follows from the uniqueness of the
optimizer.
An alternative way to describe property (45) is to refer to the symmetry

of the (optimal) measure �; or of its cumulative distribution function �t. We
discuss this next.

Proposition 14 Let � satisfy (38). The following assertions hold:
i) The cumulative distribution �t satis�es, for all t 2 [a; b] ;

�0a+b
2 +t

= ��0a+b
2 �t and �00a+b

2 +t
= � �00a+b

2 �t (46)

and

G (t� a) �a +
Z
(a;b)

G (jt� sj) �0sds+G (b� t) �a = �: (47)
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ii) The density �0t has a maximum or a minimum at the middle point t =
a+b
2 :

iii) The following inequalities hold

b� a
4

�
Z
(a;b]

(� ([t; b]))
2
dt � b� a

2
: (48)

Proof. Let V be a random variable such that P (V � t) = � ([a; t]) = �t: Recall
that V is symmetric over the interval [a; b] if the random variables V�a+b

2 and
�
�
V�a+b

2

�
have the same distribution,

P

�
V � a+ b

2
� t

�
= � a+b

2 +t and P

�
�V + a+ b

2
� t

�
= 1� �( a+b2 �t)� :

Hence, for all t 2 [a; b] ; � a+b
2 +t = 1� �( a+b2 �t)� or, alternatively,

�t� = 1� �a+b�t: (49)

It, then, follows that � a+b
2
= 1 � �a+b� a+b

2
; and thus � a+b

2
= 1

2 . Moreover,
because the density �0t is bounded, given the regularity assumptions on G; we
also get that E

�
V�a+b

2

�
= E

�
�
�
V�a+b

2

��
: Hence,

E (V) =
Z
[a;b]

td�t =
a+ b

2
:

Using the symmetry condition (49) we get that, for all t 2 (a; b) ; �0t = �0a+b�t:
Furthermore, �00a+b

2 +t
= � �00a+b

2 �t and, thus, �
00
a+b
2

= ��00a+b
2

which implies

that �00a+b
2

= 0 and (ii) holds. The rest of the proof follows easily.

Proposition 15 For each t 2 [a; b] ;

G

 Z
[a;b]

jt� sj d�s

!
�
Z
[a;b]

G (jt� sj) d�s = � � G (0) : (50)

Furthermore,

G

�
b� a
2

�
� G

 
2

Z
(a; a+b2 ]

�sds

!
� � � G (0) : (51)

Proof. The �rst inequality in (50) follows from the convexity of G and the
second from its monotonicity. To show (51), we work as follows. For t 2 [a; b] ;
let

f (t) :=

Z
[a;b]

jt� sj d�s:

Then,

f (a) =

Z
[a;b]

(s� a) d�s =
b� a
2

and f (b) =

Z
[a;b]

(b� s) d�s =
b� a
2

:
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Moreover, for a < t < b;

f (t) =

Z
[a;t]

(t� s) d�s+
Z
(t;b]

(s� t) d�s = t�t�
Z
[a;t]

sd�s+

Z
(t;b]

sd�s�t� ((t; b])

= 2t�t � t� 2
Z
[a;t]

sd�s +

Z
[a;b]

sd�s = 2t�t � t� 2
Z
[a;t]

sd�s +
a+ b

2

= 2t�t � t� 2
 
t�t �

Z
(a;t]

�sds

!
+
a+ b

2
= �t+ 2

Z
(a;t]

�sds+
a+ b

2
:

Therefore, f 0 (t) = �1+2�t and f 00 (t) = 2�0t: It then follows that f is convex,
decreasing on

�
a; a+b2

�
and increasing on

�
a+b
2 ; b

�
: Furthermore,

�t0 =
1

2
if and only if t0 =

a+ b

2
:

Consequently, f (t) attains its minimum at t0 = a+b
2 and, in addition,

f

�
a+ b

2

�
= 2

Z
(a; a+b2 ]

�sds

�
�
a+ b

2
� a
�
=
b� a
2

= f (a) = f (b) :

Using (50), the monotonicity of G and that

2

Z
(a; a+b2 ]

�sds � 2� a+b
2

�
a+ b

2
� a
�
=
b� a
2

we conclude.

4 Rethinking of optimality criteria in Gatheral�s
model

We discuss the behavior of the model with respect to the decay function and
bring up some problematic features. For completeness, we �rst state the op-
timality results for problem (29). They are directly analogous to the ones in
Proposition 4 so the proof is ommited. The representation for V ar (IS (��)) is
new and follows from (34).

Proposition 16 i) The optimal measure �� for (29) is unique and, for each
t 2
h
0; T̂

i
; Z

[0;T̂ ]
G (jt� sj) d��s = �� =

��

V
; (52)

with �� as in Proposition 4.
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ii) The optimal implementation slippage IS (��) is an FT̂�measurable ran-
dom variable, given by

IS (��) =
1

2
V 2
Z
[0;T̂ ]

Z
[0;T̂ ]

G (jt� sj) d��sd��t + V
Z
[0;T̂ ]

�Wtd�
�
t : (53)

It is normally distributed with mean and variance given, respectively, by

E (IS (��)) =
1

2
V 2�� and V ar (IS (X�)) = V 2�2

Z
(0;T̂ ]

�
��
�h
t; T̂
i��2

dt:

(54)

In the discussion after Proposition 6 (point 7), we remarked that Gatheral�s
criterion to solely minimize the expected implementation slippage appears in-
adequate, for it might lead to arbitrarily small, or even completely eliminated,
execution costs without any penalty in doing so. This appears to be a de�ciency
of the model and prompts us to investigate how this problematic behavior could
be possibly remedied.
As a �rst step, one could investigate how the model inputs could be chosen so

that the underlying model o¤ers a satisfactory solution if we impose constraints
on the already optimized quantities. We recall that if the execution horizon is
known, there are only two such inputs: the decay function and the volatility
parameter. One choice - by no means the only one - is to require that the
optimal V ar (IS (��)) stays at a targeted level. We stress, however, that at this
point we do not replace criterion (29) by a mean-variance one. Rather, we aim
at controlling possible pathological behavior of the model through an implied
model input choice. We further elaborate by �rst considering the tractable
exponential case.

4.1 Exponential decay functions

If G (jtj) = e��jtj; t 2 R ; for some � > 0; the optimal policy ��t satis�es

d��t =
1

2 + �T̂

�
�0 + �T̂ + �dt

�
and

Z
[0;T̂ ]

e��jt�sjd��s = �� =
2

2 + �T̂
:

From (54),

E (IS (��)) =
V 2

2 + �T̂
and V ar (IS (��)) = V 2�2T̂

1 + �T̂ + 1
3

�
�T̂
�2

�
2 + �T̂

�2 ;

(55)
and, as previously observed,

lim
�"1

E (IS (��)) = 0 while lim
�"1

V ar (IS (��)) =
1

3
�2V 2T̂ <1:
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i) Choosing the decay function: Assume that, for a given pair (�; V ) and
execution horizon T̂ ; we require that the optimized variance V ar (IS (��)) stays
at targeted level, say M > 0;

V ar (IS (��)) =M .

Notice that the function

g (x) :=
1 + x+ 1

3x
2

(2 + x)
2 ; x > 0;

appearing in (55) with x = �T̂ ; satis�es

lim
x#0

g (x) =
1

4
and lim

x"1
g (x) =

1

3
;

and is strictly increasing,

g0 (x) =
1
3x

2 + 2
3x

(2 + x)
4 > 0; for x > 0:

Therefore, if K := M
�2V 2T̂

satis�es K 2
�
1
4 ;

1
3

�
; the "implied" model choice for

the decay parameter �� is unique,

�� =
1

T̂
g(�1)

�
M

�2V 2T̂

�
: (56)

More generally, one may require that V ar (IS (��)) belongs to an acceptable
range, say

M1 � V ar (IS (��)) �M2 (57)

which would yield
M1

�2V 2T̂
< g(x) <

M2

�2V 2T̂
:

As long as �
2V 2T̂
4 < M1 < M2 <

�2V 2T̂
3 ; the targeted variance range (57) would

be attained for any �� satisfying

1

T̂
g(�1)

�
M1

�2V 2T̂

�
< �� <

1

T̂
g(�1)

�
M2

�2V 2T̂

�
: (58)

The above observations may be somewhat generalized if we consider decay
functions given by the extended exponential,

~G (jtj) = exp
 
�

nX
i=1

�i jtj
!
; t 2 R; (59)

or, more generally, by completely monotonic functions, namely,

�G (jtj) =
Z �

�

e�yjtj{ (dy) ; t 2 R; (60)
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for 0 < � � � <1 and some positive Borel measure { of �nite mass.
We note that there is no linearity property at the optimum, in that ��

�
~G
�
6=

nX
i=1

��;i
�
e��ijtj

�
; similarly, for the optimal policies corresponding to �G:

ii) Choosing the volatility parameter: In a related direction, one may instead
want to control the growth rate of the optimized variance V ar (IS (X�)) as the

decay parameter � " 1. For �xed
�
V; T̂

�
; this may be done by letting the

volatility parameter to depend on �; for some � = � (�) with lim�"1 � (�) =
1: One may then make lim�"1 V ar (IS (��)) to converge to in�nity with an

arbitrary rate. For example, if we choose � (�) =
p
2 + �T̂ ;

V ar (IS (��)) =
T̂ + �T̂ 2 + 1

3�
2T̂ 3

2 + �T̂
T̂

and the growth rate becomes linear. The rate may become quadratic, if � (�) =
2 + �T̂ ,

V ar (IS (��)) =

�
T̂ + �T̂ 2 +

1

3
�2T̂ 3

�
T̂ :

4.2 General decay functions

For arbitrary decay functions we naturally loose the tractability of the exponen-
tial case, as explicit expressions cannot be obtained. However, as we show next,
we may still obtain various monotonicity, robustness and limiting results for
sequences of decay functions. These results highlight the possibly problematic
behavior of the model we mentioned ealier.

Proposition 17 Let (Gm)m�1 be a sequence of decreasing decay functions,

0 < Gm+1 (jtj) � Gm(jtj); t 2 R; m � 1:

Let also, for m � 1; ��m 2 P[0;T ] and ��m satisfy the related optimality conditionsZ
[0;T̂ ]

Gm (jt� sj) d��m;s = ��m; for each t 2
h
0; T̂

i
;

with ��m =
��m
V with ��m as in Proposition 4. The following assertions hold:

i) The sequence (��m)m�1 is decreasing,

��m+1 � ��m; m � 1: (61)

ii) If limm"1Gm (jtj) = 0 uniformly in t; then

lim
m"1

��m = lim
m"1

Z
[0;T̂ ]

Gm (jt� sj) d��m;s = 0: (62)
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Proof. Inequality (61) follows directly since

��m+1 =

Z
[0;T̂ ]

Gm+1 (jt� sj) d��m+1;s �
Z
[0;T̂ ]

Gm (jt� sj) d��m+1;s

�
Z
[0;T̂ ]

Gm (jt� sj) d��m;s = ��m;

where we used that ��m+1;t is an admissible but, in general suboptimal policy
under decay function Gm. If limm"1Gm (jtj) = 0 uniformly in t; then

lim
m"1

��m = lim
m"1

Z
[0;T̂ ]

Gm (jt� sj) d��m;s

= lim
m"1

Z
[0;T̂ ]

Z
[0;T̂ ]

Gm (jt� sj) d��m;sd��m;t � lim
m"1

Z
[0;T̂ ]

Z
[0;T̂ ]

Gm (jt� sj) d�sd�t;

for an arbitrary � 2 P[0;T̂ ]: Choosing, for example, � to be the uniform distrib-

ution with respect to the Lebesgue measure, we easily conclude.

Next, we recall that, for each m � 1;

E (IS (��m)) =
1

2
V 2��m and V ar (IS (��m)) = V 2�2m

Z
(0;T̂ ]

�
��m

�h
t; T̂
i��2

dt:

Therefore,

E
�
IS
�
��m+1

��
� E (IS (��m)) and lim

m"1
E (IS (��m)) =

1

2
lim
m"1

V 2��m = 0:

On the other hand,

lim
m"1

V ar (IS (��m)) = lim
m"1

V 2�2m

Z
(0;T̂ ]

�
��m

�h
t; T̂
i��2

dt:

Thus, depending on appropriate conditions on the sequence 
�2m

Z
(0;T̂ ]

�
��m

�h
t; T̂
i��2

dt

!
m�1

we may have

lim
m"1

V ar (IS (��m)) <1 or lim
m"1

V ar (IS (��m)) =1

while, however, limm"1E (IS (��m)) = 0:
This motivates us to work towards introducing alternative criteria to (29)

(and, in turn, to (15)).
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4.3 An extended criterion balancing the mean and vari-
ance of the implementation slippage

In order to remedy the aforementioned shortcoming of Gatheral�s model we
could consider an optimality criterion that includes, in addition to its mean,
the variance of the implementation slippage. Recall that, for � 2 P[0;T ]; the
variance of the associated implementation slippage is given by

V ar (IS (�)) = V 2�2
Z
(0;T̂ ]

�
�
�h
t; T̂
i��2

dt:

We may then consider the constrained optimization problem8>><>>:
min�2P[0;T ]

�
1
2V

2
R
[0;T̂ ]

R
[0;T̂ ]G (jt� sj) d�sd�t

�
with V 2�2

R
(0;T̂ ]

�
�
�h
t; T̂
i��2

dt > � > 0

; (63)

where � represents a variance threshold. The above problem can be simpli�ed,
setting k := �

�2V 2 ; to8>><>>:
min�2P[0;T ]

�
1
2

R
[0;T̂ ]

R
[0;T̂ ]G (jt� sj) d�sd�t

�
with

R
(0;T̂ ]

�
�
�h
t; T̂
i��2

dt > k > 0

: (64)

More generally, we may introduce constrained optimization criteria of the
form 8>><>>:

min�2P[0;T ]

�
1
2V

2
R
[0;T̂ ]

R
[0;T̂ ]G (jt� sj) d�sd�t

�
with 0 < �1 < V 2�2

R
(0;T̂ ]

�
�
�h
t; T̂
i��2

dt < �2

; (65)

for given thresholds �1; �2.

From the optimization point of view, (63) and (65) are two-dimensional
constrained calculus of variations problems. They are currently being examined
by the authors.
An important observation here is that because � is a probability measure,

and thus its total mass is constrained to 1; the variance constraints in (63) and
(65) might not always be viable for a given triplet (V; �; T̂ ): This, in turn, raises
questions about a possible interplay between variance thresholds and choices for
the volatility parameter. The choice of volatility is more critical in the sequential
order case and is discussed in detail in [5].
To our knowledge, problems (63) and (65) have not been considered before

within the framework developed in [4] and [2].
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5 Realized, permanent and temporary impacts

Our focus, so far, has been on the analysis of the implementation slippage. Next,
we revert our attention to the impact that execution strategies have on the stock
price process. This is widely discussed in the literature and, not surprisingly,
there are di¤erences in the way this impact is measured. Following the various
approaches in the literature, we analyze the realized, permanent and temporary
price impacts as de�ned in [1]. For this, we �rst recall the quantities:

� S0 is the stock price before the order execution begins

� Spost is the market price after the order is completed, and

� S is the volume-weighted average realized price on the order.

The post trade price Spost should capture permanent e¤ects of the order
execution on the market prices. The analysis in [1] provides information on
reasonable times after the completion of the order at which that Spost should
be measured. Among others, empirical analysis suggests that one half-hour
is adequate to achieve this. Consequently, if execution stops at time 1; then
Spost = S1+�; where � is this extra time. We thus have the following de�nition.

De�nition 18 i) The permanent impact on the stock price caused by execution
strategy � 2 P[0;T ] is de�ned as

I (�) :=
Spost � S0

S0
;

while the realized impact is de�ned as

J (�) :=
S � S0
S0

;

where S is the volume-weighted average realized price on the order.
ii) The temporary impact, denoted by TI (�) ; is de�ned as the di¤erence

between the realized and the permanent impact,

TI (�) = J (�)� I(�):

We stress that all computations in [1] are performed in volume time, denoted
by � t, which represents the fraction of an average market volume that has been
executed up to and including clock time t: Note that market volume time cor-
responds to our cdf �t which represents the cumulative fraction of the volume,
for a given order, executed up to time t. This representation of a strategy is
convenient because it does not depend on the speci�c volume to be executed in
the market.
Until now, we did not take into consideration in our model the volume traded

in the market. Clearly, an order whose volume exceeds what is traded cannot be
executed, an assumption that has been so far missed in the single order models.
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5.1 Impacts for admissible execution strategies

To align the notation of [1] within our framework, we assume from now on that
the permanent impact of execution policy � 2 P[0;T ] is de�ned as

I (�) :=
ST � S0
S0

:

Note that we choose the post time to be T; while the execution of the order is
completed at time T̂ ; hence, the time gap is given by � := T � T̂ . The order is

executed over the interval
h
0; T̂

i
with T̂ < T; and we recall that the process S is

left continuous with right limits on
h
0; T̂

i
and continuous on

�
T̂ ; T

i
: Therefore,

ST � S0 = V

Z
[0;T ]

G (T � s) d�s + � (WT �W0) : (66)

Consequently,

I (�) =
V
R
[0;T ]

G (T � s) d�s + � (WT �W0)

S0
:

Renormalizing the decay function: In order to compare our results with the
ones in [1] we need to reconcile the notation and the quantities used in each
of these models. Recall that process S represents price, say, in dollars, while,
in the original formulation, the strategy X and volume V represent number of
shares. As a consequence, unit inconsistency arises in both the original and the
modi�ed (involving the measure �) formulation. To remedy this, we work as
follows.
Observe that the performance of any admissible policy �t for a given function

G does not change if we multiply G by a constant, say C: It then turns out that
to compare the model in [1] with (66), one simply needs to take C = S0: The
new function, denoted by ~G; is then given by

~G (jtj) := S0G (jtj) ; t 2 R: (67)

Renormalizing the volatility parameter: In (66) ; the volatility represents the
so-called normal volatility of the Bachelier model while in [1] the volatility rep-
resents the log-normal volatility of the Black and Scholes model. In order to
compare both models we only need to convert the normal volatility to the log-
normal one, which is done by putting in our model

~� = S0�; (68)

where now � represents the log-normal volatility.
This change in notation brings model (66) closer to the framework of [1].

Still, a di¤erence remains, namely, how time is treated in [1]. Model (66) runs
in clock time while the model in [1] runs in volume time. We will focus on this
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di¤erence later on. For now, we only introduce a new parametrization to our
model, which still runs in clock time, namely

St = S0 + V

Z
[0;t)

~G (t� s) d�s + ~� (Wt �W0) ; t 2 [0; T ) ; (69)

where ~G and ~� are given by (67) and (68) ; respectively. Under these adjust-
ments, the permanent price impact takes the form

I(�) = V

Z
[0;T ]

G (T � s) d�s + � (WT �W0) : (70)

Proposition 19 The permanent price impact I (�) is an FT�measurable ran-
dom variable with mean

E (I (�)) =
V
R
[0;T ]

~G (T � s) d�s
S0

= V

Z
[0;T ]

G (T � s) d�s

and variance

V ar (I (�)) =
~�2

S20
T = �2T;

where � denotes the log-normal volatility.

The realized impact J (�) de�ned in [1] corresponds, using the modi�ed price
dynamics (69), to

J (�) =

R
[0;T ]

Ssd�s � S0
S0

;

where
R
[0;T ]

Ssd�s represents the realized price. Using (69) givesZ
[0;T ]

Ssd�s = S0

 
1 + V

Z
[0;T ]

Z
[0;t)

G (t� s) d�sd�t +
Z
[0;T ]

�Wtd�t

!

and, hence,

J (�) = V

Z
[0;T ]

Z
[0;t)

G (t� s) d�sd�t +
Z
[0;T ]

�Wtd�t: (71)

Proposition 20 The realized impact J (�) is an FT�measurable random vari-
able with mean

E (J (�)) = V

Z
[0;T ]

Z
[0;t)

G (t� s) d�sd�t

and variance

V ar (J (�)) = �2
Z
[0;T ]

Z
[0;T ]

t ^ sd�sd�t = �2
Z
(0;T ]

(� ([t; T ]))
2
dt:
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Next, we consider the relative to the value of volume traded, (i.e. relative to
S0V ) implementation slippage, de�ned as

R (�) :=
IS (�)

S0V
:

Proposition 21 The relative to the value of volume traded implementation slip-
page is given by

R (�) =
1

2
V

Z
[0;T ]

Z
[0;T ]

G (t� s) d�sd�t +
Z
[0;T ]

�Wtd�t: (72)

It is an FT -random variable, normally distributed with mean

E (R(�)) =
1

2
V

Z
[0;T ]

Z
[0;T ]

G (jt� sj) d�sd�t

and variance

V ar (R (�)) = �2
Z
(0;T ]

(� ([t; T ]))
2
dt:

Remark 22 Concepts of permanent, realized and temporary price impacts de-
�ned in [1] are derived within models referring to the rate of trading. Such
models have continuous trajectories. In our framework, the price process may
have jumps and the jumps are priced using space and not time in�nitesimal ar-
guments. When the execution strategy is in�nitesimal in time, we refer to the
rate of trading. However, when the execution strategy involves a jump (which
can be associated with a block trade) then, in a �xed time, this jump is priced
through in�nitesimal in space arguments. Here, the order book dynamics are
used to develop the price concept. It turns out, as we have demonstrated before,
that the block trades are implemented at the average price of S calculated before
and after the jump they generate.

We further deduce that

R (�)� J (�) = 1

2
G (0)V

X
0�t�T

(��t)
2
:

Moreover,

J (�)� I (�) = V

Z
[0;T ]

Z
[0;t)

G (t� s) d�sd�t +
Z
[0;T ]

�Wtd�t

�
 
V

Z
[0;T ]

G (T � s) d�s + � (WT �W0)

!

= V

Z
[0;T ]

Z
[0;t)

G (t� s) d�sd�t � V
Z
[0;T ]

G (T � s) d�s
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+

Z
[0;T ]

�Wtd�t � � (WT �W0) :

In accordance with the de�nition given in [1], the quantity

K (�) := V

Z
[0;T ]

Z
[0;t)

G (t� s) d�sd�t � V
Z
[0;T ]

G (T � s) d�s

represents the temporary impact caused by strategy �t. We also have

R (�)� J (�) + I (�) = 1

2
G (0)V

X
0�t�T

(��t)
2

+V

Z
[0;T ]

G (T � s) d�s + � (WT �W0) :

Introducing

L (�) :=
1

2
G (0)V

X
0�t�T

(��t)
2
+ V

Z
[0;T ]

G (T � s) d�s;

we have the following decomposition

R (�)� J (�) + I (�) = L (�) + � (WT �W0) : (73)

Remark 23 We note that the term V
R
[0;T ]

G (T � s) d�s represents the mean
of the permanent impact in the terminology of [1]. The term 1

2G (0)V
P

0�t�T (��t)
2

represents the impact of jumps which are, however, excluded in the model used
in [1].

5.2 Optimal strategy and the power law

The optimal measure �� satis�es for, all t 2
h
0; T̂

i
;Z

[0;T̂ ]
~G (t� s) d��s = ~�� (74)

with ~G as in (67) and ~�� := S0�
�.

Proposition 24 The random variables I (��) ; J (��) and R (��) satisfy

E (I (��)) = V �� and E (J (��)) =
1

2
V
�
�� � 2G (0) (���0)

2
�
;

and
E (R (��)) =

1

2
V ��:

Moreover,

E (J (��)) < E (R (��)) and V ar (J (��)) = V ar (R (��)) :
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Extensive empirical analysis (see [1] and references within) validates the
so-called power law, which states that the average relative price change is ade-
quately described by the quantity

Average relative price change � Y �

�
Q

V

��
; (75)

where � is the daily volatility of the asset, Q represents the volume of a metaorder,
and V is the daily traded volume.
The numerical constant Y is of order unity. The daily volatility � and the

daily volume V are measured contemporaneously to the trade. As indicated in
[6], the power law holds for the levels of the ratio Q

V ranging from a few 10�4

to a few 10�2: Depending on the market and, also, on the contract types, the
power � varies between 0:5 and 0:7:
Applied to the optimal strategy ��; the power law states that

V �� = �� = Y �D

�
V

V

��
; (76)

where �D is the asset volatility on day D and VD is the volume traded on this
day, both measured contemporaneously to the trade.
Note, however, that the quantities �D and VD might not be measurable

with respect to F0, but �� is and, hence, the above equality cannot hold true.
This poses a problem to the modi�ed Gatheral�s model (66) in which the order
characteristics, the decay function and the volatility must be measurable with
respect to F0:
One way to address this is to replace the power law by its estimate based

on the data which are not contemporaneous to the trade but use the daily
volatilities and volumes collected on the days proceeding the trade. Then, the
power law becomes

V �� = �� = Y V �E

�
�D
V �D

jF0
�
;

where E
�
�D
V �
D

jF0
�
represents an F0�measurable estimate of the quantity �D

V �
D

.

5.3 E¤ects on the choice of model components

We conclude examining the relation between the average permanent impact and
the choice of the decay function for which (75) holds. Once more, we discuss
this in the realm of the exponential case where we seek to specify the value of
the parameter � for which (76) holds. Recall that, in this case, �� = ��

V = 2
2+��

and, hence, we must have

2

2 + �T
=
1

V
Y �D

�
V

VD

��
:
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Therefore, the parameter � must satisfy

� =
2

T

�
V 1��V �D
Y �D

� 1
�
:

Note, however, that because � > 0, we must have

V 1��V �D > Y �D;

which, in turn, imposes viability constraints for the various model inputs.
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