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Abstract

This paper considers an infinite horizon invest-
ment-consumption model in which a single agent consumes
and distributes his wealth in two assets, a bond and a
stock. The problem of maximization of the total
utility from consumption is treated. State (amount
allocated in assets) and control (consumption, rates of
trading) constraints are present. It is shown that the
value function is the unique viscosity solution of a
system of variational inequalities with gradient con-
straints.

1. INTRODUCTION
In this paper we examine a general investment and
consumption decision problem for a single agent. The
investor consumes at a nonnegative rate and he distrib-
utes his current wealth between two assets continuously
in time. One asset is a bond, i.e. a riskless security
with instantaneous rate of return r. The other asset

is a stock, which rate of return zt is a continuous

time Markov chain. In our version of the model the
investor cannot borrow money to finance his investment
in bond and he cannot short-sell the stock. In other
words, the amount of money allocated in bond and stock
must stay nonnegative.

When the investor makes a transaction, he pays
transaction fees which are assumed to be proportional
to the amount transacted. The control objective is to
maximize, in an infinite horizoun, the expected dis-
counted utility which comes only from consumption. Due
to the presence of the transaction fees, this is a
singular control problem.

IT. The Financial Model with Transaction Fees

We consider a market with two assets: a bond and
a stock. The price Pg of the bond is given by

sz = rPOdt

t 65
PO =
o Po

where r > 0. The price Pt of the stock satisfies

dPt = Z(t)Ptdt
(2)
PO = p.
The rate of return 2z 1is a finite state continuous

time Markov chain defined on some underlying probabil-
ity space (Q,F,P) with jumping rate q,,- from

state z to state z~ The state space is denoted by
Z. The associated generator £ of the Markov chain
has the form

fv(z) = §
2z %z

A natural assumption is K > r. The

q,,-v(z ) - v(=2)].

Let K = maxz,
zeZ

amount of wealth X

bond and stock respectively, are the state variables
and they evolve (see [17]) according to the equations

and Vs invested at time t in
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dxt = (rxt—Ct)dt - (1+X)th + (l—u)dNt

dyt = z(t)ytdt + th - dNt (3)

Xy = Xy = v,2(0) = z .

The numbers i and u represent the proportional
transaction fees; they are assumed to be nonnegative
and one of them must always be positive. For simplic-
ity we assume here that all financial charges are paid
from the holdings in bond. The investor cannot borrow
money or short sell the stock. The control processes
are the consumption rate C. and the processes M

and Nt which represent the cumulative purchases and

sales of stock respectively. The controls (Ct’Mt’Nt)

are admissible if:
(1) Ct is Ft—measurable where Ft =

o(zszoisit) and C_> 0 a.e. t >0.

t
(ii) Mt’Nt are Ft—measurable, right continuous

and nondecreasing processes.

(iid) X, 2 0, Ve >0 a.e. t >0, where XYy

are the trajectories given by the state equation (3)
using the controls (Ct’Mt’Nt)'

We denote by A the set of admissible controls.
The total expected discounted utility J coming
from consumption is given gy
—

J(x,y,z,C,M,N) = E \ e_BtU(C Ydt
Io t

with (C,M,N) € A and z(0) = z, where the utility
function U:[0,+»)>[0,+=) is assume to have the
following properties:

1
U 1is strietly increasing, bounded, concave, C

function and

U(0) = 0, 1imU°(e)= +, 1lim U"(c) = O.
c=0 [

The discount factor 8 > 0 weights consumption now
versus consumption later, large £ denoting instant
gratification. Note that the controls M and N are
acting implicitly through the constraint (iii).

The value function wu is given by

-*-00_

u(%,y,2z) = sup E ( e BU(Ct)dt.

A 0

Our goal is to derive the Bellman equation
associated with this singular control problem and to
characterize wu as its unique solution. It turns
out that the Bellman equation here is a system of
variational inequalities.

Transaction costs are an essential feature of
some economic theories. In [2], [3] Constantinides
assumes that the transaction costs deplete only the
riskless asset and that the stock price is a log-
arithmic Brownian motion. He shows that if an optimal
policy exists, it is characterized by two reflecting
barriers A, with X < X, such that the investor
does not trade as long as the ratio yt/xt lies in

[X,i] and transacts to the closest boundary of the
rggion of no transactions [A,)], whenever this ratio
lies outside this interval. Constantinides's work
was generalized by Davis and Norman [5]



pifferent criteria were used by Taksar, Klass and
Assaf [16] and, under more general assumptions by
Fleming, Grossman, Vila and Zariphopoulou [6l.

Single-period models with fixed transaction costs
are discussed in Leland [11], Mukherjee and Zabel [14],
Brennan [1], Goldsmith [8], Levy [12] and Mayshar [13].
Finally, Kandel and Ross [10] introduce quasi-fixed
transaction costs.

We now ~cnsider a similar control problem in which
the controls, which represent the rates of trading, are
assumed to be absolutely continuous processes. More
precisely, we consider a market which offers a bond and
a stock with prices evolving according to equations
(1) and (2) respectively. The state variables X and

Yes which are the amount of money invested in bond and

stock, obey the state equations
= -C - dt + ~p
dxt (rxt Lt)dt (l+)\)mt (1 L)ntdt

c\yt = z(t)ytdt + mtdt - ntdt (4)

Xy = X,y = y,2z(0) = z .
The controls of the investor are the comsumption rate
C, and the rates of trading m  and n.. The set of
admissible controls AL consists of controls (C,m,n)
such that
(i) Ct is
CtzQ a.e. £>0.

Ft—measurable where Ft = c(zs:Oigfp),

(i1)

n are
MMy

nonnegative processes.
(iid) Ofmt,nth a.e. t>0 for some positive constant

L.
thp, ytzp a.e.

Ft-measurable right continuous and

(iv) t>0, where Xy, are the
solutions of (4) using the controls (C,m,n).
The control objective is to maximize the expected
discounted utility from consumption over the set of
admissible controls. TFor each fixed L > O, the value

function is given by

L gt
u (%,y,2z) = sup EJ e "Tu(c,)dt,
A Yo

where U is the usual utility function and B > 0 is
the discount factor.

III. Preliminaries
L

Proposition 2.1: The value functions u and u~ are
increasing, concave and uniformly continuous functions
on 0 = [0,+=] x [0,+=).

In the sequel we will need the following defini-
tion: '
Definition 2.1: We consider a nonlinear partial dif-
ferential equation of the form

F(X,z,u(X,z), bu(X,z)) =0 (5)
where z eZ, X = (x,y) with (x,y) ¢, Du(x,z)
= éﬂégLél, QE%KLEL) and F:Q<ZxRxRZ »R is continuous
for eazh 2eZ. A continuous function u:QxZ-R 1is a

constrained viscosity solution of (5) if

i) u 1is a viscosity subsolution of (5) on Q s
i.e. for each =zeZ

F(X,z,u(X%,2z),r) <0

X = (x,y)eQ and reD?X,y)u(X,z)
where
+ _ 2, u(X+h,z)-u(X,z)-r-h
D(x’y)u(x,z) = {reR":1lim sup ] <0},

h*0

ii) u 1is a viscosity supersolution of (5) in
Q, 1i.e. for each zeZ

F(X,z,u(X,z),r) > 0
where
0

(x,y)

u(X,2z) = {reR%:1lim inf “(XJ'hJQI‘“(X’Z)'r'h

h~0

>0}3.

IV. Results
In the sequel, we characterize the value function
u  as the unique constrained viscosity solution of the
associated Bellman equation. Some results about

L .

u-  are first stated. L
Theorem 3.1: The value function u
viscosity solution of

+ max PcuL+U(c)] + LuL(z)
c>0

is a constrained

BuL = rxui + zyuL

(6)

+ max [—(l+A)uL+uL]m +
Xy

max [(1—u)uL-uL]n
0<m<L Xy

0<n<L
(x,7)eQ, zeZ .

The proof follows along, the results of Fleming, Sethi,
and Sonmer [7]. It is essentially based on the dynamic
programming principle and Dynkin's formula.

Theorem 3.2: The value function u” is the unique
constrained viscosity solution of (6) in the class of
bounded and uniformly continuous functions.

Proof: We show that if u and v _are respectively

a viscosity subsolution of (6) on Q and a_viscosity
supersolution of (6) in Q, then u<v on Q. We argue
by contradiction, i.e. we assume that

max sup [u(X,z) - v(X,2)1>0 &)
zeZ Xef

which implies that for sufficiently small 6 > 0O

max sup [u(X,z) - v(X,2) - 0[x]|%] > 0. (8
zeZ XeQ

We can find points zosZ and XeQ such that

u(i,zo)—V(E,zo) - 9|§\2=max sugju(X,z)—v(X,z)—SIXlZ].
zeZ XeQ

In the sequel we omit z.. Next, for € >0 we
consider the auxiliary function ¢:0xQ »IR given by

v D=0+ X - ha,nl % 6x]? - v,

We show that if its maximum is achieved at (XO,YO) then

Yoeﬂ and
Y, - xol < fe. (9)
We now consider the functions
¥-X
_ 0 2 2
oD = u(Xy) -l 41,1017 - o]x|
_ Y -X
T = v+~ 4,1 2 4o)x|% .

We observe that u - g-has a maximum at Xoeﬁ- and

v - ¢ has a minimum at Y €. Applying the definition
of viscosity solution and using (9) we get

CZL2

2 —
Blu(X,2)-v(X,2)-8[X|"] < “=0, Xe@ and

zeZ,

Sending 6 - 0, contradicts (8).
We now state the main theorems.

Theorem 3.3: The value function u is a constrained

Viscosity—gblution of
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min[(l+A)uX—uy, —(1—u)ux+uy, Bu—rxux—zyuy
- max [—cuX+U(c)] - Lu(z)] = 0 (10)
c>0
The proof is based on the Dypnamic Programming
Principle and the generalized Dynkin's formula. The
presence of singular controls and the fact that the
Bellman equation is actually a Variational Inequality
make the proof rather technical.
Theorem 3.4: The value function u is the unique
constrained viscosity solution of (10) in the class of
bounded and uniformly continuous functions.

Proof: We are going to show that if u_ and U are
respectively a subsolution of (10) on £ and a super-
solution of (10) in &, then U>u on Q. We follow

¢:ﬁ>+ R be defined by
Cl’ C2 and k are

positive constants satisfying (l—u)Cl< ¢, < (1+X)C1
and B8k > rC1 + KC

the strategy of Ishii [9]. Let
dx,y) = ClX + CZY + k, where

+ max [—cC1 + U(c)]. Let
c>0

X = (x,7) € & P = (p,q)eRxR

by

2

and H:ﬁ?ZXRXR2+]R given

H(X,z,v,P)=min[(1+})p-q, —(1-p)p+q, Bu-rxp-zyq-

- max [-cptU(c)] - £fu(z)].

c>0
Let U = 68U + (1-6)6 for 0e(0,1). Then there
exists a positive constant M such that
XEﬁ; zel.

H(X,2,U,,70.) > M(1-8) > 0

We work as in Theorem 3.1,
8 >0,

We next show that U, >
we assume that for sufficiently small

> ua,

2
max sup[u(X,z) - Ue(X,Z) -8|x]°1 > o. (11)
zeZ Xel
We can find points zer and XeR such that
- - 2
u(X,z . )~U_(X,z )—6’X{2=max sup [u(X,z)-U_(X,2)-6]X]|"].
0’ 8 0 §
zeZ Xe
We look at
2
[Y-x 2
= - -1 -0|x|°.
VKX, 20)=0(X,20) =V, (Tr2) =~ =41, D) | ~0[X]
If its maximum is achieved at (XO,YO) then YOEQ
and
|Y0 - xo& < le (12)
and
1im lim elxolz =0 (13)
6+0 €40
We now consider the functions
Y-X
0 2 2
V) = u®y) - - a@ D |7 ok
Y. -X
- 0 2 2
= Y - | - 1,1 + 01X
V) = U, (Y) - [ - s | x|
We observe that u - § has a maximum at X0 and
Uy — % has a minimum at YO. Using the viscosity
property we get
H(Xo,zo,u(XO,zo), P€+29X0)—H(YO,zO,Ue(YO,zO),PE)
< - M(1-8). (14)

2 %0 %

E< €

where Po=- - 4(1,1)).

Let YO = (xo,yo) and PE = (pe,qE). We now look at

different cases depending on the form of
Y . £
H( O,zO,Ue(YO,zO), Pe) If H(YO’ZO’US(YO’ZO)’ Pe)

= By mTxgPe - 20Y4d,

- max[—cpE + U(c)]—er(YO,zo)
c>0

we work as in Theorem 3.2 and we contradict (3.6). In

the other cases (14) yields

- cle]x

£
or some C1

again contradict (11). Finally we send B41.

ol < - M(1-8)

> 0. Sending 6+0 and using (13) we
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