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Abstract 

In the context of Merton’s original problem of optimal consumption and portfolio 
choice in continuous time, this paper solves an extension in which the investor is 
endowed with a stochastic income that cannot be replicated by trading the available 
securities. The problem is treated by demonstrating, using analytic and, in particular, 
‘viscosity solutions’ techniques, that the value function of the stochastic control problem 
is a smooth solution of the associated Hamilton-Jacobi-Bellman (HJB) equation. The 
optimal policy is shown to exist and given in a feedback form from the optimality 
conditions in the HJB equation. At zero wealth, a fixed fraction of income is consumed. 
For ‘large’ wealth, the original Merton policy is approached. We also give a sufficient 
condition for wealth, under the optimal policy, to remain strictly positive. 
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1. Introduction 

In the context of Merton’s (1971) original problem of optimal consumption and 
portfolio choice in continuous time, this paper treats an extension in which the 
investor is endowed with a stochastic income that cannot be replicated by trading 
the available securities. In other words, markets are incomplete in an essential 
way. The value function of the stochastic control problem is a smooth solution 
of the associated Hamilton-Jacobi-Bellman (HJB) equation. Optimal policies 
are derived in feedback form, and characterized, using the optimality conditions 
in the HJB equation. At zero wealth, a fixed fraction of wealth is consumed, the 
remainder being saved in the riskless asset. For ‘large wealth’, the original 
Merton consumption-investment policy is approached. We also give a suffi- 
cient condition for wealth, under the optimal policy, to remain strictly positive. 

In the case of general time-additive utilities, studied in Duffie and 
Zariphopoulou (1993), the value function is characterized as the unique con- 
strained viscosity solution of the HJB equation. Because of market incomplete- 
ness, in evidence in the stochastic income stream and the imperfect correlation of 
its source of noise with that of the stock price, the HJB equation can be 
degenerate and the value function therefore need not be smooth. It is highly 
desirable then, to obtain numerical approximations for the value function and 
the optimal policies. This can be successfully done by implementing a wide class 
of monotone and consistent schemes whose convergence is obtained via the 
strong stability properties of viscosity solutions. Considerable simplification is 
obtained by assuming HARA utility, whose homogeneity allows a reduction of 
the dimension of the state space from two (one state x for wealth and one state 
y for the stochastic income rate) to one (for the ratio z = x/y of wealth to 
income). In this case, the HJB equation becomes a one-dimensional second- 
order ordinary differential equation, although it can still be degenerate. For this 
reason, the classical results for uniformly elliptic equations cannot be directly 
applied. The approach taken here is first to approximate the value function by 
a sequence of smooth functions that are value functions of non-degenerate 
stochastic income problems. Then, the limit of this sequence, which turns out in 
fact to be smooth, is thereby identified with the value function. This is done 
using the strong stability properties of viscosity solutions and the fact that the 
value function is the unique viscosity solution of the HJB equation. The reduced 
state variable z for the original income-hedging problem can also be viewed as 
the wealth state variable for a new investment-consumption problem, in which 
the utility function is not HARA and in which a fixed fraction of wealth must be 
held in an asset whose returns are uncorrelated with the returns from the 
available risky security. The ‘duality’ between these two hedging problems is 
also a focus of this paper. 

Aside from its role in obtaining smooth solutions, the reduction to a one- 
dimensional HJB equation facilitates the characterization and numerical com- 
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putation of the optimal policy. In independent work on the same’ problem, Koo 
(1991) also uses the homogeneity of the problem in order to reduce it to 
a simpler problem. His methods are quite different. 

The reader is invited to draw comparisons between the PDE-approach taken 
here and the martingale-measure duality approach used to address similar 
hedging problems by Cuoco (1995), He and Pearson (1991), and Karatzas et al. 
(1991). Related recent literature includes Duffie and Richardson (1991), Cvitanih 
and Karatzas (1991), Dybvig (1992), El Karoui and Jeanblanc-Picque (1994), He 
and Pages (1993), and Svensson and Werner (1993). 

2. The problem 

On a given probability space is a standard Brownian motion W = (W ‘, W’) 
in Iw’. The standard augmented filtration {Ft: t 2 0} generated by W is fixed. 
Riskless borrowing or lending is possible at a constant continuously compound- 
ing interest rate r. A given investor receives income at time t at the rate Y,, where 

dY,=pYYtdt+aY,dW: (t>O), 

yo = Y (Y ’ Oh (2.1) 

where p and G are positive constants and y is the initial level of income. A traded 
security has a price process S given by 

dS, = aS,dt + c?S,dB, (t 2 0), 

so = so (So > 019 

for positive constants a and 8, where B is a standard Brownian motion having 

correlation p E( - 1,l) with W’. For this, we can take B = p W' + JmW2. 
The risky asset pays dividends at current rate 6S, for some constant 6. The total 
expected rate of return of the risky asset is therefore b = a + 6. 

A consumption process is an element of the space LZ’+ consisting of any 
non-negative {p,}-progressively measurable process C such that 
E(si C,dt) < co for any T > 0. The agent’s utility function %: 9, -+ Iw+ for 

‘In his most recent revision, Koo changes the problem formulation somewhat, assuming the 
investor must maintain portfolio fractions in a compact set. 
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consumption is given by 

y(C) = E 

for some risk-aversion measure y E (0, 1) and discount factor /I > r. As stated 
above, we assume throughout that fl> r, that (pl # 1, and that the volatility 
coefficient (T is strictly positive. Cases in which /I 5 r, 0 = 0, or 1 p 1 = 1 are not 
treated here, and may lead to a different characterization of optimal policies 
than shown here. 

The agent’s wealth process X evolves according to the equation 

dX, = [rX, + (b - r)L’, - C, + Y,] dt + tin,dB, (t 2 0), 

x0 = x (x 2 Oh (2.2) 

where x is the initial wealth endowment, and the control processes C and 
LZ represent the consumption rate C, and investment n, in the risky asset, with 
the remainder of wealth held in riskless borrowing or lending. The controls 
C and n are drawn, respectively, from the spaces V = {C E 9 + : y(C) < co} and 
Qi = {I: 1 is 9,-progressively measurable and si 1: ds < cc a.s. (t 2 O)}. The set 
&(x, y) of admissible controls consists of pairs (C, n) in 55’ x @ such that X, 2 0 
a.s., (t 2 0), where X is given by the state equation (2.2) using the controls (C, L’). 

The agent’s value function u is given by 

4% Y) = sup %(C). (2.3) 
(C, n) E dB(x, Y) 

The goal is to characterize u as a classical solution of the HJB equation 
associated with this control problem, and then to use the regularity of u to prove 
the existence of optimal policies and to provide feedback formulae for them. 

3. The Hamilton-Jacobi-Bellman equation 

In this section we use the special form of the agent’s utility function to reduce 
the dimensionality of the problem. 

Assuming, formally for the moment, that the value function u is finite-valued 
and twice continuously differentiable on D E (0, a) x (0, co), it is natural to 
conjecture that u solves the HJB equation 

flu = max G’(n) + fr~~y~u,, + y:t H”(c) + (rx + y)ox + pyu, 
n (3.1) 
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for (x, y) E D, where subscripts indicate the obvious partial derivatives and 

G”(r) = +~zn2v,, + pnycrou,, + (b - ~)Tco,, 

H”(c) = - cv, + cy. 

It can be shown directly from (2.3) that if u is finite-valued then it is concave 
and is homogeneous with degree y; that is, for any (x, y) and positive constant 
k we have u(kx, ky) = k%(x, y). It therefore makes sense to define 
u: [0, + co) -+ [0, + co) by u(z) = v(z, l), so that knowledge of u recovers v from 
the fact that u(x, y) = y’u(x/y) for y > 0. The same idea is used, for example, in 
Davis and Norman (1990). This does not recover v(x, 0), which is known 
nevertheless to be Merton’s original solution without stochastic income. 

If v satisfies (3.1) then, in s1 = (0, + co), u solves 

\U = f a’z’u” + max [(i6’rr2 - paCrcz)u” + k,nu’] + k2zu’ + F(d), (3.2) 
II 

where 

p^ = P - PY + hJ2Y(l - Y), 

k, = b - I - (1 - Y)~oc?, (3.3) 

k2 = a2(1 - y) + I - PL, 

and F: [O, + co) --t [O, + co) is given by 

F(p) = cyc, [- cp + (1 + c)~]. (3.4) 

After performing the (formal) maximization in (3.2) (assuming that u is smooth 
and strictly concave), we get 

: d2 
bJ = ; f12z2(1 - p2)u” - & % + kzu’ + F(d) (z > O), (3.5) 

where 

k=pk,a+k 
8 

2. (3.6) 
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In Sections 4 and 5, we show that II can be characterized as the value function 
of a so-called ‘dual’ investment-consumption problem. That is, 

[S 
+CU 

u(z) = sup E 
(C. nr E .&rf 

eeBf(l + C#‘dt 
0 1 ~3 (3.7) 

where the set d(z) of admissible policies is defined in the next section. It turns 
out that this characterization of u is crucial for proving regularity results for the 
value function v as well as for obtaining feedback forms for the optimal policies. 
By a ‘feedback policy’, we mean, as usual, a pair (g, h) of measurable real-valued 
functions on [0, co) x [0, co) defining, with current wealth x and income rate y, 
the risky investment h(x, y) and consumption rate g(x, y). Such a feedback policy 
(g, h) determines the stochastic differential equation for wealth given by 

dX, = [rX, + (b - r)h(X,, Y,) - g(X,, Y,) + Y,] dt + cS(X,, Y,)dB, 

x0 = x (x > 0). (3.8) 

If there is a non-negative solution X to (3.8) and if the policy (C, ZI) defined by 

ct = gwt, Y,), n, = h(Xt, Y,), 

are in V and @, respectively, then (C, n) is an admissible policy by definition of 

Nx, Y). 
Before stating our main conclusions, we recall that for the case y = 0 (imply- 

ing Y, = 0 for t 2 0), the value function u is given from Merton’s (1971) work as 
follows. Provided that the constant 

K = B - v y(b - d* ~- 
1-Y 2(1 - y)2$ 

is strictly positive, we have 

u(x, 0) = KY- lxy, 

with optimal policies given in feedback form by 

$I(& 0) = Kx, w, 0) = g!p). 

(3.9) 

(3.10) 

(3.11) 

For x > 0 and y > 0, the feedback policy functions g and h defined by the 
first-order optimality conditions for (3.1), in light of the homogeneity property 
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u(x, y) = y’u(x/y), are given by 

759 

u’(x/y) l/(Y - 1) 

&,Y) = Y - ( > 9 

Y 

kl u'(x/Y) 
h(x,y)=$x-yr-- 

cJ2 u"(x/y) . 
(3.13) 

(3.12) 

One of our results will be the regularity under which the policy (g, h) defined by 
(3.12) and (3.13) makes sense (and indeed is optimal) when applied to ((0, y): 
y 2 O>, the zero-wealth boundary of the state space. To this end, we will prove: 

Proposition 1. u’(O) = lim,&(z) exists and is in the interval [y, 00). Also, 

lim z%“(z) = 0. 
210 

Suppose that kI # 0. Then u’(0) > y and 

lim zu”(z) = 0, 
210 

limltrp &u”(z) < 0. 

A proof of Proposition 1 is given in Section 7. This behaviour of the 
derivatives of u near the origin implies that the risky investment policy h defined 
by (3.13), and the feedback consumption policy g defined by (3.12), uniquely 
extend continuously to the whole state space D with h(0, y) = 0 and g(0, y) I y. 
Note that these inequalities are consistent with the budget-feasibility constraint, 
X, 2 0. In Section 8, we will show that there is a unique solution of (3.8) with 
(3.1 l)-(3.13) satisfying the constraint and then show that this process is optimal. 

Our main results are thus as follows. 

Theorem 1. Suppose j?, K, and I - p are all strictly positive. 

(i) 

(ii) 

(iii) 

There is a unique C’([O, +co))nC’((O, +a)) solution u of the ordinary 
differential equation (3.5) in the class of concave functions. 
The value function v is given by 

v(x, 0) = KY- lxy, 

v(x, Y) = YYU $ , 
0 

y > 0. (3.14) 

There is a unique solution X, of (3.8) with (3.21)-(3.13) satisfying the budget 
feasibility constraint X, 2 0, and an optimal policy (C*, ZI*) is given by 
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(iv) 
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C: = g(X,, Y,) and li’: = h(X,, Y,) where g, and h, are given by (3.11H3.13), 
with h(0, y) = Ofor all y and g(0, y) = ay for all y, where a = (u’(O)/~)“~~- ‘I. 
If kI # 0, starting from strictly positive wealth (x > 0), the optimal wealth 
process, almost surely, will never hit zero, and starting from zero, almost 
surely, the optimal wealth process will instantaneously become strictly posit- 
ive. The same conclusion holds if kI = 0 and u’(O) > y. 

We do not know whether the case k, = 0, u’(O) = y is possible for a particular 
choice of the parameters. If this case occurs, it might be possible that the optimal 
wealth process, starting from strictly positive wealth, hits zero in finite time. 
Analysis of this case is an interesting open question. 

A proof of Theorem 1 is presented in Section 8. The idea is to use an auxiliary 
problem and techniques from the theory of viscosity solutions to prove the 
existence of a classical solution to the HJB equation in Sections 4-6, and then to 
use a verification approach to confirm the form of the optimal policy implied in 
feedback form by the HJB equation. A detailed analysis of u near the origin is 
given in Section 7 and the asymptotic behavior of u at infinity is analyzed in 
Section 8. Here, we characterize the behavior of the optimal policy as the ratio of 
wealth to income becomes large, showing it to converge to the optimal behavior 
in the original Merton (1971) problem with no stochastic income. The verifica- 
tion proof of Theorem 1 is also included in Section 8. 

The technical conditions on parameters given in the theorem are maintained 
for the remainder of the paper. 

In an extension of the problem to multiple risky assets, it is easy to see from 
the extension of (3.13) that we will not generally obtain portfolio separation, 
under which one could, without loss of generality, replace the collection of risky 
assets with a single risky asset. 

The main results are obtained by studying a related hedging problem whose 
HJB equation reduces to (3.5). The new problem is stated in the following 
section and analyzed in Sections 5 and 6. The reader who is not interested in the 
technical points of the proof can skip Section 5 and follow only the main 
arguments of Sections 6-8. 

4. A ‘dual’ hedging problem 

We now consider a consumption-investment problem of an agent whose 
current wealth Z, evolves, using a consumption process C and risky investment 
process n, according to the equation 

dZ, = [kZ, + kJT, - C,] dt + 5l7, dW: + aZ,,/mdW: (t 2 0), 

z0 = z (2 2 O), (4.1) 
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where z is the initial endowment and kl and k are given, respectively, by (3.3) and 
(3.6). The set 9 of consumption processes consists of any progressively measur- 
able process C such that C, 2 - 1 almost surely for all t, with E(Ji C,ds) < co 
for all t. A control pair (C, ZI) for (4.1) consists of a consumption process C in 
9 and a risky investment process ne @. A control pair (C, n) for (4.1) is 
admissible if 2, 2 0 a.s., (t 2 0), where 2, is given by (4.1). We denote by d(z) the 
set of admissible controls. Observe that on the one hand, the agent is forced to 
invest a fixed multiple of wealth in a risky asset with expected return k and 

‘volatility’ cr,,/m). On the other hand, he chooses the amount Lr invested in 
another risky asset with mean return k, and volatility 8. 

The agent’s utility 2 : _Y + iR+ is given by 

j(C) = E 

The value function w: [O, 00) + R + is defined by 

w(z) = sup 3(C). 
(C, fl) E &) 

+ CJy dt 1 . 

(4.2) 

The HJB equation associated with this stochastic control problem is 

jw = $a2(1 - p2)z2w,, + rn:x [~~2rr2w,, + k,nw,] 

+ cya_“, [- cw, + (1 + c)?] + kzw, (z > 0). (4.3) 

We observe that (4.3) reduces (at least formally) to (3.5) for smooth concave 
solutions. In the sequel, we show that (4.3) has a smooth concave solution w, 
which will ensure that u is also smooth. 

We call problems (4.2) and (2.3) ‘dual’ to each other because one hedges an 
income stream and the other hedges an investment, and because of the relation- 
ship between their value functions: The reduced value function u of problem (2.3) 
for HARA utility reduces to the value function w of (4.2) for non-HARA utility. 
Conversely, the reader :an show that problem (4.2), after substituting the HARA 
utility function j for % and substituting the correlated Brownian motion B for 
W2 in (4.1), has a value function equivalent to that of problem (2.3), after making 
the opposite substitutions. Thus either of these dual problems can be reduced to 
a version of the other with a single-state variable. 
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5. Viscosity solutions of the Hamilton-Jacobi-Bellman equation 

In this section we analyze the Hamilton-Jacobi-Bellman equation (4.3), using 
results from the theory of uiscosity solutions. In particular, we show that the 
value function w is the unique constrained viscosity solution of (4.3). This charac- 
terization of w is natural because of the state constraint 2, 2 0. 

The notion of viscosity solutions was introduced by Crandall and Lions (1983) 
for first-order equations and by Lions (1983) for second-order equations. For 
a general overview of the theory of viscosity solutions, we refer to the User’s 
Guide of Crandall et al. (1992) as well as Fleming and Soner (1993). We now 
review the notion of constrained viscosity solutions, introduced by Soner (1986) 
for first-order equations (see also Capuzzo-Dolcetta and Lions (1990), Ishii and 
Lions (1990)). 

To this end, consider a nonlinear second-order partial differential equation of 
the form 

F(x, u, u,, u,,) = 0 in Sz, (5.1) 

where Sz is an open subset of R and F : 52 x R x R! x IR + R is continuous and 
(degenerate) elliptic, meaning that F(x, t, p, X + Y) I F(x, t, p, X) if Y 2 0. 

Dejnition. A continuous function u : Q --) [w is a constrained viscosity solution 
of (5.1) if 

(i) u is a viscosity subsolution of (5.1) on 0, that is, for any cp E C’(B) and any 
local maximum point x0 E Sz of u - cp, F(xo, u(xo), cpx(xo), p&x0)) I 0, and 

(ii) u is a viscosity supersolution of (5.1) in s2, that is, for any cp E C2@) and any 
local minimum point x0 E 0 of u - cp, F(xo, u(xo), cp,(xo), rp,,(xo)) 2 0. 

The first result of this section characterizes w as a constrained viscosity 
solution of the associated HJB equation (4.3) on B = [0, 00). 

Theorem 2. The value function w is finite and is a constrained viscosity solution 
of(4.3) on a. 

Finiteness of w follows from an argument similar to Proposition A.2. Alterna- 
tively, the function 

W(z):= co(z + qy, z 2 0 

is a smooth supersolution of (4.3) for all sufhciently large co and cl. Then 
a verification argument shows that w I W, hence, w is finite. 
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The fact that, in general, value functions of (stochastic) control problems and 
differential games turn out to be viscosity solutions of the associated PDEs 
follows directly from the dynamic programming principle and the theory of 
viscosity solutions (see, for example, Lions, 1983; Evans and Souganidis, 1984; 
Fleming and Souganidis, 1989; Fleming and Soner, 1993). The main difficulty 
for the problem at hand is that neither control, consumption rate nor risky 
investment, is uniformly bounded. In order to overcome this difficulty, we 
approximate the value function with a sequence of functions that are viscosity 
solutions of modified HJB equations. We repeatedly use the stability properties 
of viscosity solutions (see Lions, 1983) in order to pass to limits. Since the 
arguments are lengthy and also similar to those in Theorem 3.1 of 
Zariphopoulou (1993) and Theorem 4.2 of Duffie and Zariphopoulou (1993), 
they are not presented here. 

Theorem 3. Suppose that u is an upper-semicontinuous concave viscosity subsolu- 
tion of the HJB equation (4.3) on [0, + 00) and u(z) I c,,(zy + 1) for some co > 0, 
and suppose that v is bounded from below, uniformly continuous on [0, + GO) and 
locally Lipschitz in (0, + oo), and a viscosity supersolution of (4.3) in (0, + co). 
Then u < v on [0, + co). 

The proof follows in the lines of the proof of Theorem 4.1 in Zariphopoulou 
(1993). The latter is an adaptation of Theorem II.2 of Ishii and Lions (1990) for 
the case of controls that are not uniformly bounded, which is the case on hand. 

The next theorem will be needed for the characterization and recovery of the 
value function of the original two-dimensional problem from that of the reduced 
problem. The proof is presented in Duffie and Zariphopoulou (1993), in a setting 
for general utility functions and income processes. 

Theorem 4. The value function v is the unique constrained viscosity solution of 
the HJB equation (3.1) on d in the class of concave functions. 

6. Classical solutions of the HJB equation 

In this section we show that w is a classical solution of (4.3). We begin with 
some useful basic properties. 

Proposition 2. The value function w is concave, increasing, and continuous on 

CO, a). 

The arguments supporting concavity, monotonicty, and continuity are stan- 
dard and are similar to those found, for example, in Karatzas et al. (1986) and 
Zariphopoulou (1993). 



Theorem 5. The value function solution 
of (4.3) in the class of concave functions. 

Before going into the details of the proof, we describe the main ideas. 
Although the HJB equation (4.3) is an ordinary differential equation, it is not at 
all trivial to prove that it has a smooth solution. The main difficulty stems from 
the fact that (4.3) is not uniformly elliptic since, it is not a priori known if the 
optimal X* in (4.3), given formally by 7t* = - kwz/(ij2wzz), lies in a compact set 
(see Krylov, 1987). To overcome this difficulty, we will first work in an interval 
(zr, z2) c [0, + co) and show that w solves a uniformly elliptic HJB equation in 
(zr , z2) with boundary conditions w(zr) and ~(2~). Standard elliptic regularity 
theory (see Krylov, 1987) and the uniqueness of viscosity solutions will then 
yield that w is smooth in (zr, z2). 

An important feature of the proof is the approximation of w by a family of 
smooth functions {w ? L > O> that are solutions of a suitably regularized 
equation. For fixed L > 0, we first turn to d and its properties. We let 

wL(z) = sup E 
.ez) 

+ C$dt , 1 
where 

d(z) = {(C, l7)Ed(z): - L 5 II, I L a.s., t 2 O}. 

The concavity of the utility function as well as the linearity of the state 
equation (4.1) with respect to the state Z and controls (C, IT), implies that wL is 
concave, strictly increasing, and continuous on Sz. Moreover, using arguments 
similar to those used in Theorems 3.1 and 4.1 in Zariphopoulou (1993), we get 
that, for every L > 0, w’ is the unique constrained viscosity solution, in the class 
of concave functions on 0, of the HJB equation 

jw” = $_?(l - p2)z2w!, + _na& [&&?wf; + kr?rW;] 

+ max [ - cwf + (1 + c)‘] + kzwf. 
CZ -1 

(6.1) 

Since K > 0 (cf. (3.9)), we see that for sufficiently large constants co and cr, 

W(z) := co(z + Cl)7 

is a supersolution of (6.1) and wL is bounded by W, for every L. Then, we observe 
that there exists 4 concave such that wL + ti as L + 03, locally uniformly in 0. 
The stability property of viscosity solutions yields that ui, is a constrained 
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viscosity solution of (4.3) and therefore, by uniqueness, it coincides with u’. 
Therefore, as L + 03, 

wL + w, locally uniformly in 6. (6.2) 

We next show that wL is smooth in any interval [zi, z2] with zi > 0. Without 
loss of generality, due to concavity, we can choose the points zi and z2 such that 
w,(zi) and w,(z2) exist; the reason will be apparent in the sequel. 

We have that wL is the unique viscosity solution (see Lions, 1983; Ishii and 
Lions, 1990) of the boundary value problem 

flu = &r2(1 - p2)z2u,, + _ pf-ax_ L [f627r2~,, + k17Cu,I 

+ ,y”“, [ - cu, + (1 + c)‘] + kzu,, z E(z~, z2), 

+I) = 

L < n _< L 
can be eliminated. 

First, we observe that the concavity and monotonicity of wL imply that wL is 
a smooth solution of 

flu = *a’(1 - 

am u(z2) = wL(z2). 

L, 

(6.4) 

(6.5) 

kl &W --- 
CT2 

L,. (6.6) 
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Combining (6.6) with (6.4), we get 

flWL”(Z,) 2 fo2(1 - p’)z,2w~;(z,, + ~fPL,2w~;(z,) + k&,w+(z,) 

+ cy-“l[ - cwi’“(z,) + (1 + c)‘] + kz,w>(z,) 

+ =rrp-“1 [ - cti(z,) + (1 + $1 + kz,ti(z,). (6.7) 

From (6.2), the concavity of w and wL, and the given choices of zi and z2, we 
get the existence of positive constants Ci and C2, independent of L, such that for 
L sufficiently large 

Cl s d(z) I c2, ZE(Zl,Q). (6.8) 

We now send n --f co. From (6.6) and (6.8), 

lim d;(z.) = 0. (6.9) 
n-cc 

Since z, E (zi, z2), n E N, there exists ZE [zl, z2] such that lim,,,z, = 2. Combin- 
ing (6.7)-(6.9), and sending L, + 00, we get a contradiction. 

We now observe that (6.5) implies that wL is a smooth concave solution of 

flu = $02(1 - p2)z2u,, + m,ax [$T2n2u,, + klnu,] 

+ max [ - cu, + (1 + c)‘] + km,, 
CZ -1 

U(Zl) = w%l)Y u(z2) = wL(z2). (6.10) 

We next show that there exists a constant R < 0, independent of L, such that 

&(4 < K ZE(ZI, z2). (6.11) 

Indeed, after performing the maximization in (6.10) with respect to rr and c, we 

get 

fiw” = ;a”(1 - p2)z2dZ - $$@$ + h(w:) + kzwk, z~(z,, ~2) (6.12) 
zz 
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for some h : R -+ (0, co) whose calculation is left to the reader. Multiplying both 
sides of (6.12) by wf; and using the fact that h > 0 we have 

Q(wf;) EE ;02(1 - ,o”)z~(w~;)~ + w;;(kzw: - flwL) - $“f)’ > 0. 

It is immediate that the quadratic equation Q(A) = 0 has two real roots 
i+ and A_ of opposite signs. Therefore, wiz < A_. Using the expression for A_, 
(6.2), and (6.8), we get the existence of a constant R < 0, independent of L, such 
that (6.11) holds. 

We now conclude as follows. Using the concavity of wL, (6.8) and (6.1 l), we get 
that wL is a smooth solution of 

/7u = $_r2(1 - p2)z2u,, + max [+(T27r2u,, + krnu,] 
O<rr<M 

+ max [-ccu,+(1+~)~]+k~u,, ZE(Z~,Z~), 
CB -1 

4Zl) = W%l), 4z2) = wL(z2), 

where 

From (6.2) and the stability property of viscosity solutions, we have that w is 
a viscosity solution of 

+ max [ - cu, + (1 + c)‘] + kzuZ, z E (zl, z2), 
cs? --I 

U(Zl) = w(z1)r u(z2) = w(z2). (6.13) 

On the other hand, (6.13) has a unique smooth solution (as in Krylov, 1987) 
and a unique viscosity solution (as shown by Ishii and Lions, 1990). Therefore, 
w is smooth in (zl, z2). We can always choose z1 and z2 so that (a, b) c (zt, z2) 
for any interval (a, b). This completes the proof of Theorem 5. 
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7. Proof of Proposition 1 

Let u be the unique solution of (3.5) constructed in Section 4. In this section, 
we study the behavior of u near the origin in several steps. 

Step 1: In this step, we analyze u’(z), as zJ0. By concavity and monotonicity, 

u’(0) := lim u’(z) 
210 

exists and is non-negative, however, it may take the value of co. Suppose that 
u’(0) = co. Then, 

limm = 1 

210 u’(z) ’ 

and, therefore, there exists z. > 0 satisfying 

F(u’(z)) + kzu’(z) - bu(z) 2 f U’(Z), vz E (0, zo] . 

By (3.5) and the concavity of u, 

0 2 3 ~‘(1 - pz)z2u”(z) + F@‘(z)) + kzu’(z) - flu(z) 

2 02z2u”(Z) + *u’(z), vz E (0, zo]. 

Set 

Y(5) := n’(zo - 0, 0 < r < zo, 

so that 

~(0 = ~(0) + s 1 y’(s) ds = ~(0) - s =’ u”(s) ds I y(0) + 
20 - 5 

ds V’5 E (0, zo]. 

By Gronwall’s inequality, 

~(0 

1 1 1 

2 y(O)exp 
2 

[ 
(zo _ g)2 --z z. 1 WE (09z01 
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and 

s 

z’l 
0 I u(z) = u(zg) - u’(s)ds I u(zO) - C exp(a -‘s-‘)ds. 

Z 

Since exp(s-*) is not integrable on [0, z,], we conclude that u’(O) is finite. 

Step 2: In this step, we will show that 

limzV’(z) = 0. 
40 

(7.1) 

Set a := - lim supZIO ZU”(Z), so that, for all sufficiently small z > 0, 

oo>u’(O)-u’(z)= -{;u”(s)dstJ;;ds, 

Hence a = 0. Set 

A(z) := flu(z) - f+‘(z)) - kzu’(z), 

(hu’W2 
Wz) := ; 02z2(1 - p’)u”(Z) - 262u,,(z) , 

b := - lim inf z’u”(z). 
210 

By (3.9, A(z) = B(z) and, since A is continuous on [0, co), so is B. Suppose that 
b > 0. Since a = 0 and u” is continuous on (0, co), there are two sequences z,JO, 
and &JO satisfying 

lim (z,)~u”(z,) = - b, 
n-03 

lim (Q’u”(&) = - g. 
n-m 

Then, 

lim B(z,) = - i a2(1 - p2), 
“-+a 

lim B(&) = - $ g2 (1 - p’). 
n-+cc 

Since B is continuous, we conclude that b = 0. 
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Step 3: In this step, we will show that u’(O) 2 y and flu(O) = F(u’(0)). Recall that 
u is a constrained viscosity solution of (3.5) in [0, co). Hence, 

p^u(O) - F(cp’(0)) + yg; IO, (7.2) 

for every test function cp E C’([O, co)) satisfying q”(O) < 0 and 

(u - 440) = yf,“‘” - cp)(z). (7.3) 

(See, for instance, Soner, 1986 or Fleming and Soner, 1993, Section 11.12.) 
For every E > 0 and R > 0, there exists a smooth test function (~~,a satisfying 

(7.3) and 

(P:,~(O) = u’(O) + R, (P;:~(O) = - 1. 
E 

We use (P&R in (7.2) and let ~10. The result is 

/h(O) - F(u’(0) + R) s 0 VR 2 0. 

Moreover, by (7.1) and (3..5), 

#h(O) - F(u’(0)) = hm$ - (;z;‘;;2 2 0. 

Hence, 

j%(O) = F+‘(O)) I F@‘(O) + R) VR 2 0 

and 

l im WW2 = o 

210 rT2u”(Z) . 

(7.4) 

(7.5) 

Inequality (7.4) implies that u’(O) is greater than or equal to the minimizer of F; 
hence u’(O) 2 y. When, kl # 0, (7.5) yields lim,,, u”(z) = - co. 

In the remainder of this section, we assume that 

Step 4: In this step we show that u’(0) > y. In Step 2, we have shown that 
lim supzLO zu”(z) = 0. Therefore, there exists a sequence z,JO such that znu”(zn) 
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tends to zero as n + co. We argue by contradiction, supposing that u'(O) = 1'. 
Then, for every z 2 0, u’(z) 5 u’(0) = y and 

flu(z) - l+‘(z)) = &u(z) - u(0)) - F@‘(z)) + F(u’(0)) Bl(u(z) - lm. 

We use this in (3.5): 

co = _ lirn (k’u’(zn))2 = lim ~‘Uz”) - F(“‘(z”)) _ ku,(z,) 

n+032Z"~2U"(Z,) n-Pm Z, 

< l im i%<z*) - 40)) - - ku’(z,) = (p^ - &J’(O). 
n-m Zll 

Hence u’(0) > y. 

Step 5. We claim that lim,,, zu”(z) = 0. Let A and B be as in Step 2. Since 
u’(0) > y and u”(O) = - co, 

,im 44 c u(z) - u(0) 
- = lim /3 _ ku,(z) _ F@‘(z)) - F@‘(O)) 

210 z 210 Z Z 

= (fl - k)u’(O) - F’(u’(O))u”(O) = co. 

Choose a sequence z”l.0 such that the following limit exists: 

v := lim znu”(zn). 
“‘ca 

Then, by (3.5), 

a = lim A0 = lim %!!I = _ ‘k~~~~)2 _ !j a2(1 _ p2)v, 
210 z n-am z, 

Hence v = 0, and the claim is proved. 

Step 6: We finally show that lim&u”(z) < 0. Because 

B(z) = 
klu’(z)y (frzu”(2))~(1 - p2) 
___ - 

2a2 2 ](-A)3 
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k, # 0, u’(0) 2 y, and zu”(z) --) 0 as ~10, there are z1 > 0 and c0 > 0 satisfying 

B(z) 2 - 2- 
u”(Z) ’ Zll. 

By Step 2, 

A(z) = j&(z) - u(O)] - zku’(z) - F(u’(z)) + F(u’(0)) 

= 
s 
j&‘(s) - ku’(z)]ds + ~;F@‘(s))( - u”(s))ds. 

Because u’(0) > y, there are z2 > 0 and ci > 0 such that 

A(z) _< cr [z - JjJ’(s)ds], ZE(O, zz]. 

We set z. = min{z,, z2} and Y(z) := - l/u”(z), so that 

B(z) 44 Cl 
Y(Z) 5 cg = ----[z + [;$ds] VZE[O,Z~]. 

CO 

Because y(z) + 0 as ~10, there is some z* > 0 satisfying 

y(z) IS* s = 1 
- ds, 

co 0 Y(S) 
z E (0, z*]. 

Then, by Gronwall’s inequality, there is a constant c* such that y(z) 5 c*& 
for all z near zero. Hence, 

This completes the proof of Proposition 1. 

8. Verification results and optimal policies 

In this section we prove the main Theorem 1, and describe the asymptotic 
behavior of the value function and the optimal policies as the ratio of wealth to 
income becomes large. 



D. Duffie et al. J Journal of Economic D,vnamics and Control 21 (1997) 753-782 773 

We start with a description of the asymptotic behavior of the value function 
v and the optimal policy as the ratio x/y of wealth to income becomes large. By 
‘F(x, y) - F’, in the following theorem, we mean that ‘F(x,, y,J + F for any 
strictly positive sequence {(x,, y,)} with x,/y, + co’. As one can see from the 
following result, the optimal behavior is asymptotically that of the Merton 
problem with no stochastic income. 

Theorem 6. As x/y + co, we have: 
(i) v(x, y) - KY- ‘xy,for K given by (3.9). 

(ii) g(x, y)lx - K. 
(iii) h(x, y)/x - (b - r)/[(l - r)Z”]. 

Proof: Part (i) is immediate from Proposition A.2 (Appendix A). 
For Part (ii), we can use Part (i) and the relationship between u and v to see 

that 

lim !!$I = KY-‘, 
r-rm 

For 2 > 0, we set 

U,(z) := A-yu(Az), 

so that UI solves (3.5) with F(p) replaced by 

F^(p’:=ff$J -c,.(;+cy], p>o. 

Then, by Part (i), as LTco, U,( .) converges locally uniformly to the Merton value 
function 

v(z) = KY- lzy, 

where K is as in (3.9). We note that v solves (3.5) with F(p) replaced by 

L(P)=y,(P)=u -Y) ; 0 
l/(1 -A) 

. 

Because U1 is concave, the uniform convergence of U1 to u implies the conver- 
gence of the derivatives: 

lim U;(z) = u’(z) = yKY-‘zY-‘, z 2 0. 
I.t cc 
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Hence, 

lim U;(l) = lim A’-yu’(A) = yKY-‘, 
AT m 1.r cc 

and, therefore, 

Iirn u’w9 
X/Y - 02 Y (my- l 

= p-1. (8.1) 

Combining with (3.12) gives the result. 
For Part (iii), the first-order conditions for (4.3) give us 

fiW =; ti@- ~*)z*w,, - &$ + W, + W;/(Y-‘1 + kzw,. 
II 

Solving with respect to wzz, and taking into account that w,, < 0, gives 

wzz = 

-(w,+w:"Y-"+kzw,-B^w)- 
62 

w,w:‘(~-~)) + kzw, - /?w), + k2_(1 - p2)z2 
a2 

d(1 - pqz2 

Dividing by zy-*, using Part (i), (8.1), and u = w, and sending z + co yields 

lim 
z-c0 

$ = KY_iY(Y - l), 

which, combined with (8.1), yields 

lim w,(z) 1 

r+mzw,,o=y-- 

Combining with (3.13) and the fact that u = w gives the result. 0 

Let X, be a solution of(3.8) with g and h given by (3.11)-(3.13). (In the proof of 
Theorem 1, below, we will show that there is a unique solution X,.) We continue 
by considering the question of whether, beginning with strictly positive wealth 
(X0 = x > 0), the optimal policy allows zero wealth to be attained. We can 
address this issue by applying the boundary classification Lemma 6.1 of Karlin 
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and Taylor (1981, p. 228) to the process 2, = X,/Y,. From (4.1), 

dZ, = G(z)dt + v(Z,)d[,, Z, > 0, 

where 

6(z) = kz - 2 b(z) - a(z), 

v(z) = (k:b’(z) + a2z2(1 - /I~))~‘~, 

and 

l/(y- 1) u’(z) 
- 1 and b(z) = - 

u”(z) ’ 
z 2 0. 

and where [ is a standard Brownian motion. The scale measure S associated 
with Z is defined by 

S(z) = $4 dt, 

where 

45) = ew[ - ],:($$)dz], 
where x0 > 0 and to > 0 are arbitrary. By Lemma 6.1 of Karlin and Taylor, if 

lim S(5) = - co, 
510 

(8.2) 

then Z, > 0 for all t almost surely. This in turn would imply that X, > 0 for all 
t almost surely. 

When k, # 0, by Proposition 1, a(O) < 0, b(0) = 0, and for small z, v’(z) is of 
the order of z. Then, on an interval (0, E) for E sufficiently small, 6( .) is 
non-negative and bounded away from zero, so that indeed (8.2) holds, and 
X, > 0 for all t almost surely, When kl = 0, v2(z) is of the order of z2. Therefore, 
if u’(O) > y, (8.2) holds, and X, > 0 for all t almost surely. 

Proof of Theorem 1. We now prove the remaining part of Theorem 1. 
Part (i) follows from Theorem 5 and the matching of (3.5) and (4.3). For part 

(ii), the case of y = 0 is handled by the fact that, if Y,, = y = 0, then Y, = 0 for all 
t almost surely, reducing the problem to that of Merton (1971). When y > 0, we 
first observe that the candidate value function 6(x, y) = y%+‘y) is smooth 
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because u coincides with w, which is smooth. Moreover, due to the properties of 
u, G is concave and continuous to the boundary. Using the form of v^ and 
Theorem 2, it immediately follows from the definition of viscosity solutions that 
6 is a constrained viscosity solution of the original HJB equation (3.1). Thus, 
u^ coincides with the value function v since the latter, by Theorem 4, is the unique 
concave constrained viscosity solution of (3.1). Therefore, we conclude that u is 
given by (3.17) and it is also smooth. 

We next continue with the verification of the candidate optimal policy, part 
(iii) of Theorem 1. Once we establish the existence of an optimal policy and an 
optimal wealth process, part (iv) follows from the argument given before this 
proof. 

In order to show that (C*, ZI*), as given by the feedback policy (g, h) is 
optimal, we first show that it exists and is admissible under the assumptions of 
the theorem, and then show that j(C*) = u(x, y). 

We extend u to the real line by defining u(z) = u(O) + u’(O)z for z < 0. As such, 
u is a concave function that is differentiable at 0. By Rockafellar (1970), Theorem 
25.3, u’ is continuous at 0. From Proposition 1, we know that h, given by (3.13), 
extends continuously to h(0, y) = 0 for all y. Also g given by (3.12) extends 
continuously to g(0, y) = ay for all y, where a I 1 and a -c 1 if u’(O) > y. Recall 
that this is indeed the case if kr # 0. 

We can now show that X, as given by (3.8) and (3.11)-(3.13), is uniquely well 
defined, taking g(0, y) as defined by (3.12) and h(0, y) = 0. As such, g and h are 
continuous. The existence of a solution X to (3.8) follows from the proof of 
existence of Z = X/Y established in Appendix B. The uniqueness follows from 
the fact that, when kl = 0, h is locally Lipschitz on the whole real line and g is 
monotone. When kl # 0, the coefficients of (3.8) are locally Lipschitz only on 
(0, co), but the solutions of (3.8) are, almost surely, positive. Since the sample 
paths of C* and fl* are continuous, it follows that ji C: ds and j: n,” ds are 
finite for all t. That u’(O) > y is crucial in the foregoing argument, for this implies 
that g(0, y) i y, so that the drift (1 - a) Y, of X at the zero-wealth boundary is 
non-negative. Since the diffusion h(0, y)0 is zero at the zero-wealth boundary, 
the solution to (3.8) for X is therefore non-negative. 

Admissibility then follows from the fact that f(C*) < V(X, y) < co, which is 
true by the arguments in the proof of Proposition A.2. 

We continue by showing that the policy (C*, n*) is optimal. For given (x, y) 
with y > 0, let X be defined by the proposed policy (C*, n*). Since Z = X/Y is 
a well-defined semimartingale and u is a concave function, the process V defined 
by V, = u(Z,) is a well-defined semimartingale by application of Ito’s Lemma for 
convex functions of continuous semimartingales, for example, Karatzas and 
Shreve (1988, Theorem 7.1, p. 218). By this result, we can ignore the lack of 
differentiability of u’ at zero, and use the usual ‘naive’ form of Ito’s lemma, 
ignoring the term u”(z) where, at z = 0, it may not be defined. (See, for example, 
Karatzas and Shreve, 1988, Problem 7.3, p. 219.) From this, using Ito’s Lemma 
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to expand the process V defined by I/, = Y[U, as the product of two continuous 
semimartingales, we can see that the usual form of Ito’s Lemma for u(X,, Y,) 
applies, simply leaving out the second-order term u,, wherever (at X, = 0) it 
does not exist anyway! 

By this application of Ito’s Lemma, the fact that u satisfies the HJB equation 
(3.1) and the fact that (g(x, y), h(x, y)) satisfies the first-order necessary and 
sufficient conditions for the maximization indicated in the HJB, we have, for any 
T > 0, 

E e-B’(C:)y dt 1 = - ECe-B""'hTu(X,(,)^T, y,(,),~)l + G,Y), (8.3) 

where, for any positive integer n, 

z(n) = inf{t: Y, = n} r\inf{t: Y, = n-l> 

*infIt: jiZ7ids = n}Ainf(r: X, = n>. 

Letting n + co, we have r(n) + + co almost surely. By Proposition A.2, 

as n + co. We let n + co in (8.3). By dominated convergence, 

[S 

T 

E e-B’(C:)Ydt 
0 1 = - E[e -BTdXT, Y,)l + 4x, Y) (8.4) 

for every T > 0. Applying monotone convergence and f(C*) < co, the left- 
hand side converges to $(C*). If, in addition, we have 

li,” ‘,“f E[e-PTU(XT, Y,)] = 0, (8.5) 

then we are finished, for this implies that u(x, y) = f(C*). By Proposition A.2, 

u(xT, y,) < KY-l(xT + 4YT)’ < KY-‘(X# + ($YT)‘, 

and, in view of (2.1), 

e-PTE[(YT)Y] = yYe-? 

Since j? > 0, this term converges to zero, as T -+ co. 
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We will use Theorem 6 to estimate E [(X,)?]. Indeed, by Theorem 6(ii), there 
is a constant co satisfying 

c: = g(X,, Y,) 2 KX, - COY,. 

Therefore, (C:)y 2 KyX[ - cyOY f, and 

[I 
co 

E e-@KYX: - c&Yfdt I y(C*) c CO. 
0 1 

Since 

E[ ~o~e-fitY~dt] < co, 

there exists a sequence T, + co, such that 

lim E[e-BTnX$ ] = 0 I 3 
“-rcD 

and, consequently, 

1iFirmrf E[emBTu(Xr, Yr)] I Frna KY-1(4Yr)Y + lim KY-l(Xr.)Y = 0. 
-+ n-rm 

This completes the proof of Theorem 1. I-J 

Appendix A. A pseudo-complete markets problem 

In order to obtain convenient bounds on the value function u and characterize 
its asymptotic behavior, we consider a fictitious consumption-investment prob- 
lem with the same objective function f considered in Section 2, with no 
stochastic income, and with an additional ‘pseudo-asset’ with price process S’ 
given by 

dS; = b’s; dt f S;o’ dW,, S;, > 0, 

where b’ E IF4 and (r’ E R2 are coefficients to be appropriately chosen. We always 
take 



D. Dufie et al. /Journal of Economic Dynamics and Control 21 (1997) 753-782 779 

non-singular, implying effectively complete markets. We denote by U the value 
function of this ‘pseudo-problem’. That is, 

U(x) = SUP Y(C), 
(c,n,n’)E~(w) 

where d’(x) is the set of (C, n, n’) in %’ x @ x @ such that there is a non-negative 
solution X’ to the stochastic differential equation 

dX; = [rX; - C, + (b - r)n, + (b’ - r)L’;] dt + SZ,dB, + LQ’dW,, 

X;,=xlO. 

Proposition A.I. The constants b’ and Q’ can be chosen so that, for all x, we have 
v(x, 0) = U(x). 

Proof We know from Merton’s original work that 

U(x) = kY- ‘xy, 

where 

W) 

k = p - ry ylT(zzT)-‘;l -- 
1-Y 2(1 - y)* ’ 

(A.3 

with AT = (b - I, b’ - I). 
In view of the similar explicit solution for v(x, 0) given by Theorem 1, is 

enough to choose b’ and g’ so that 

JT(~;cT)- 11 = fb IrJ2 

cr* ’ 

maintaining non-singularity of Z. By expanding the matrix (CZ’)-’ in terms of 
b’ and B’, this can be done by solving a quadratic equation for b’, fixing r = CCT. 
We have 

b’=r+(b-r)?. 
11 

(A-3) 

This compietes the proof. 0 
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Proposition A.2. There exists a strictly positive constant C#I such that, for all 

(x3 YX 

KY- lx? I v(x, y) I KY- ‘(x + qby)‘, 

where K is given by (3.9). 

Proof: Consider the pseudo-problem described above. Let f: [0, + co) + 
[0, + co], representing the ‘initial wealth equivalent’ of the stochastic income Y, 
be defined by 

f(y) = E 

where 

6 = exp( - f(6). O)t + 8. W,), 

with 8 = C- ‘1. We note that fis finite-valued if 

8,o < r - p. (A.4) 

Since p- r < 0 by assumption in Theorem 1, (A.4) holds provided Tzz is 
sufficiently large, fixing b’ and r i2 = Tz 1. We can thus choose b’ and cr’ so that 
both (A.3) (which does not depend on rz2) and (A.4) hold. With this, 
f(y) = #y < co for a constant 4 > 0. 

The stochastic income Y can be replicated by a trading strategy involving the 
riskless asset, the original risky asset with price process S, and the pseudo-asset 
with price process S’. The associated initial investment required is r$y. Because 
of the non-negative wealth constraint in the pseudo-problem, the optimal utility 
with stochastic income is smaller than the optimal utility in which the stochastic 
income is replaced with its wealth-equivalent, #my. The latter optimal utility is 
U(x + 4~). This approach is well known by now; for a standard reference, see 
Huang and Pages (1992). 

The utility V(X, y) for the incomplete markets original problem is certainly no 
larger than the utility U(x + 4~) that obtains when one is allowed to invest in 
both the original assets and the pseudo-asset, and is also allowed to replace 
stochastic income with its wealth equivalent, establishing that 
U(X, y) I V(x + 4~). Combining this with Proposition A.1 and (A.l) gives the 
result. 0 

It is worth noting from the construction in the proof that p > r can be 
accommodated with slightly more complicated conditions. 
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Appendix B 

Proposition B.1. The process Z given by (4.1) is uniquely well dejined. 

Proof: It suffices to show that the square of the coefficients of the stochastic 
differential equation for 2 grow at most quadratically. (See Theorem 3 in 
Chapter 6 of Gikhman and Skorohod, 1972.) 

First, we observe that the optimal policy (C*, n*) of the reduced one- 
dimensional ‘dual’ problem are given in the feedback form 

C: = A(Z,), n: = - 2 B(Z,) 

with A and B defined in Section 7. We next show that 

A’(z) + 5 B’(z) I CI(~ + z2) 

for some constant Ci. 
First, observe that A(z) 2 0 and that A(z) is strictly increasing in z since 

1 
A’(z) = - 

Y--l 
u~~(z)uJ(z)(2-YMY- 1) > 0. 

The quadratic growth of A’(z) follows then from the above properties together 
with the continuity of A and Theorem 6, Part (i). Similarly, the quadratic growth 
of B2(z) follows from the positivity and finiteness of B together with (7.7) which 
gives 

lim B(z) _ l 
Z-too z y--l’ 

from which (B.l) follows. 0 
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