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Abstract. We study the behavior of the optimal portfolio policy of a long-run
investor in markets with stationary investment opportunity sets. We provide con-
ditions on the utility function, for large wealth levels, which are sufficient for
the optimal portfolio policy to approximate, as the trading horizon becomes very
long, the policy of investing a constant proportion of wealth in the various assets.
The analysis is carried out by employing the associated HJB equation and recent
advances in the area of viscosity solutions.
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1 Introduction

The optimal portfolio policy for a long-run investor has been a classical topic in
financial economics; see Cox and Huang (1992), Hakansson (1974), Huberman
and Ross (1983), Leland (1972), and Mossin (1968). The central question asked
in these papers is whether in an economy with a stationary investment opportunity
set, there are necessary and sufficient conditions on a long-run investor’s utility
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function for final wealth, so that the optimal portfolio policy at the very beginning
of the investment horizon can be approximated arbitrarily closely by the policy
of investing constant proportions of wealth in the assets or in other words, if it
exhibits theportfolio turnpike property?

It is well known that in an economy with a stationary investment environment,
the optimal portfolio policy for an investor whose utility function exhibits a
constant coefficient of the Arrow-Pratt measure of relative risk aversion (CRRA)
is to invest constant proportion of wealth in the risky asset. The results in this
literature thus lie in showing the turnpike property when the utility function of the
long-run investor behaves almost like a CRRA utility function for large wealth
levels.

In discrete-time models, Hakansson (1974) shows the turnpike property for a
utility function U so thatγ−1(x − a)γ/ ≤ U (x) ≤ γ−1(x + a)γ ∀x ≥ a and for
someγ < 1, and Huberman and Ross (1983) show this forU which is bounded
from below and satisfies, for somea ∈ (0, 1),

lim
x→∞

−U ′′(x)x
U ′(x)

= a.

Huberman and Ross (1983), Leland (1972), Hakansson (1974), and Mossin
(1968) all use dynamic programming in their discrete time model.

In a continuous-time model, Cox and Huang (1992) demonstrate, using prob-
abilistic methods, that the portfolio turnpike property holds if there existA1 > 0,
A2 > 0, b > 0 andy∗ > 0 with

(U ′)−1(y) − A1y− 1
b | ≤ A2y−a ∀y ≤ y∗

for somea ∈ [0, 1/b), whereU ′ and (U ′)−1 denotes the derivative ofU and the
inverse ofU ′, respectively. They also bring out the economics of the problem
most clearly: when the interest rate is strictly positive, the present value of any
contingent claim having payoffs bounded from above can be made arbitrarily
small when the investment horizon increases. Thus an investor concentrates his
wealth in buying contingent claims that have payoffs unbounded from above at
the very beginning of his horizon. As a consequence,it is the asymptotic prop-
erty of his utility function as wealth goes to infinity, that determines the optimal
investment strategy at the very beginning of his horizon.

The condition of Huberman and Ross (1983) is neither more general or more
restrictive than that of Hakansson’s. Cox and Huang’s condition implies that
the relative risk aversion of the utility function converges to a constant not
necessarily between 0 and 1. Thus their condition is also neither more general
nor more restrictive than that of Huberman and Ross’.

One open question remains: Can one findnecessaryandsufficientconditions
for the turnpike property that include all the existing known conditions as special
cases? We do not have a complete answer to this question in this paper, however;
instead, we show that the turnpike property holds under a condition that neither
includes as special cases all existing conditions, nor is included as a special case
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of one of the known conditions. More specifically, we show that in a continuous
time economy the condition

lim
x→∞

U ′(x)
xγ−1

= K (1.1)

for some strictly positive scalarK for a utility function U is sufficientfor the
turnpike property. Nevertheless, we still contribute to the answering of the open
question in two ways. First, we learn that the turnpike property holds under some
conditions that were not previously known. Second, we use dynamic program-
ming in our proofs and thus the sufficient conditions for the turnpike property are
conditions on the marginal utility function. This contrasts with the conditions on
the “inverse” of the marginal utility function of Cox and Huang (1992). Given
that, in discrete time models, all existing conditions for the turnpike property
are directly imposed on the utility function and the proofs depend on dynamic
programming, it is useful to have a proof of the turnpike property in acontinuous
time frameworkwhich also uses dynamic programming. This makes it easier to
compare the proofs of the turnpike property under different conditions and can
potentially give rise to a general condition on the utility function for the turnpike
property to hold.

Besides the issues discussed above, this paper also makes a methodological
contribution that is of independent interest. We show how the recent advances
in the theory of nonlinear partial differential equations and, in particular, in the
theory ofviscosity solutions, can be extremely useful in analyzing the asymptotic
properties of the optimal portfolio policy. Similar techniques may also be useful
in other contexts.

The rest of this paper is organized as follows. In Sect. 2 we formulate a
continuous-time securities market economy with a stationary investment oppor-
tunity set. We analyze an investor’s optimal portfolio decision when he invests
his wealth over time in order to maximize the expected utility of wealth at the
end of his investment horizon. We also show that the optimal amount invested
in the risky asset solves a time homogeneous second order nonlinear ordinary
differential equation. In Sect. 3 we first show that, independently of the length
of the investment horizon, the optimal dollar amount invested in the risky asset
is approximately a linear function of wealth, at high levels of wealth, when the
marginal utility behaves asymptotically like a power function. Sect. 3 goes on
to demonstrate that, given the power asymptotic behavior of the utility function,
the optimal dollar amount invested in the risky asset for all levels of wealth and
all investment horizons, must lie in a time independent “window.” It then fol-
lows that the optimal dollar amount invested in the risky asset is approximately
a linear function of wealth for all levels of wealth at the very beginning of a
very long investment horizon, provided that the marginal utility function satis-
fies the aforementioned asymptotic condition. Finally, in Sect. 4 we state some
concluding remarks.
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After this work was completed, a similar class of investment problems with
turnpike behavior was studied, using entirely different methodology, by Back
et al. (1994).

2 The formulation

We start this section by describing the underlying financial model that we study
herein. This is the classical optimal investment model, introduced by Merton
(1971), in a market with a stationary opportunity set and a finite investment
horizon. Since this model is widely known and extensively studied, we only
present the main results without going into a detailed discussion about the tech-
nical conditions at this point. Some of the arguments, presented in this section,
will be further discussed later on when we specify the class of preferences in the
context of the turnpike behavior for the optimal investment policies. To this end,
we consider a securities market economy with one long-lived asset and a riskless
lending and borrowing opportunity. Denote byS(t) the risky asset price at time
t . Assume that the risky asset price follows a geometric Brownian motion; that
is, in the short-hand differential form,

dS(t) = µS(t)dt + σS(t)dw(t), t ∈ <+,

whereµ andσ are two positive constants,w = {w(t); t ∈ <+} is a standard Brow-
nian motion defined on some probability space (Ω, F , P), and<+ is the positive
real line. The riskless interest rate is a constant denoted byr . For convenience,
we assume thatµ > r ; the caseµ ≤ r can be treated similarly.

For a given time horizonT > 0, consider at anyt ∈ [0, T] the problem of
maximizing the expected utility of one’s terminal wealth by dynamically invest-
ing in the risky asset and in the riskless one. LetAτ denote the dollar amount
invested in the risky asset when there areτ periods toT. Then, according to
the budget constraint, the dollar amount invested in the riskless rate isWτ − Aτ

whereWτ is the investor’s wealth at timeτ .
The wealth dynamics must satisfy the stochastic differential equation (SDE):{

dWs = [rWs + (µ − r )As]dt + σAsdw(s), s ∈ (t , T]
Wt = x, x ≥ 0.

(2.1)

We assume that the portfolio processesAs satisfy the admissibility constraints:

i) As is Fs-progressively measurable, whereFs = σ{wu; t ≤ u ≤ s}.

ii) As satisfies the integrability conditionE
∫ T

t
A2

sds < +∞, a.s.

iii) the budget (state) constraintWs ≥ 0; a.s.t ≤ s ≤ T, holds.

We denote byA the set of admissible policies.
Given the initial level of wealth att , Wt = x, we want to find the policy

A ∈ A that solves the portfolio problem
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J (x, τ ) ≡ sup
A∈A

E[U (WT )|Wt = x]; a.s. τ = T − t , (2.2)

where the wealth dynamics satisfy (2.1) andU is the utility function of final
wealth assumed to be increasing and strictly concave. The functionJ (x, τ ) is
called the indirect utility function or thevalue function.

Using the properties ofU and the linearity of the state dynamics it can be
shown (see, for example, Merton 1971) thatJ is strictly increasing and concave
in x. Moreover, it follows (see Merton 1971) from the dynamic programming
principle that ifJ (x, τ ) is C2,1(<+,<+),1 it satisfies the Bellman equation:

max
A

{
1
2
σ2A2Jxx + (µ − r )AJx

}
+ rxJx −Jτ = 0, (x, τ ) ∈ (0,∞)× (0, T] (2.3)

with initial and boundary conditions{
J (x, 0) = U (x) ∀x ≥ 0

J (0, τ ) = U (0) ∀τ ∈ (0, T]

}
. (2.4)

Also, the first-order conditions for maximality in (2.3) imply that the optimal
policy A∗

τ can be expressed in the feedback formA∗
τ = A(W∗

τ , τ ) whereW∗
τ is

the optimal wealth trajectory and

A(x, τ ) = −µ − r
σ2

Jx(x, τ )
Jxx(x, τ )

, (x, τ ) ∈ (0,∞) × (0, T]. (2.5)

The fact thatµ > r and thatJ is strictly increasing and concave inx yields

A(x, τ ) ≥ 0, ∀(x, τ ) ∈ <+ × (0, T]. (2.6)

Substituting (2.5) into (2.3) gives the nonlinear partial differential equation

Jτ = − (µ − r )2

2σ2

J 2
x

Jxx
+ rxJx , (x, τ ) ∈ (0,∞) × (0, T]. (2.7)

We impose the following assumption throughout the paper

Assumption 2.1: The utility function U: <+ → <+ is assumed to be increasing,
concave and twice continuously differentiable. Moreover, it is assumed that U′′

is nondecreasing and that U satisfies U(0) = 0 and also, the growth condition
U (x) ≤ K (1 + x)γ for 0 < γ < 1 and K > 0.

Remark 2.1: In the next section, we will see that the above growth condition
of the utility function follows from the conditions to be imposed on its asymp-
totic behavior for large wealth (see Lemma 3.1). At this point we impose this
assumption, albeit redundant, in order to guarantee that the value function is well
defined.2 In fact, one can compute explicitly the value function, corresponding
to the utility U1(x) = K (1 + x)γ , which dominates the value functionJ .

The following proposition records that under Assumption 2.1, the value func-
tion solves (2.3) and the optimal control satisfies some nice properties.
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Proposition 2.1: The value function J is the unique C2,1(<+,<+) increasing and
concave solution of the Bellman equation (2.3), also satisfying (2.4). Moreover,
the optimal dollar amount invested in the risky asset A(x, τ ) is C2,1(<+,<+) and
satisfies the quasilinear parabolic equation

1
2
σ2A2Axx + rxAx − rA − Aτ = 0, (x, τ ) ∈ (0,∞) × (0, T] (2.8)

with initial and boundary conditions{
A(x, 0) = −µ−r

σ2
U ′(x)
U ′′(x) , ∀x > 0

A(0, τ ) = 0, ∀τ ∈ [0, T]

}
(2.9)

The proof of the proposition is presented in the Appendix.

Remark 2.1. Note that the boundary conditions, atx = 0, for the value function
and the optimal policy, given respectively in (2.4) and (2.9), arenot explicitly
given by (2.2). Actually, one can show that they are equivalent to the nonnega-
tivity of the wealth state process (see, for example, He and Huang 1993).

3 Optimal portfolio for long horizons and sufficient conditions for the
turnpike property

We are interested in the behavior ofA(x, τ ) whenτ is large. Given thatA satisfies
(2.8), the behavior ofA(x, τ ) for very largeτ should be approximated by the
solution of the time independent version of (2.8):

1
2
σ2A2Axx + rxAx − rA = 0, x > 0. (3.1)

Two problems arise, however. First, limτ→∞ A(x, τ ) may not exist. Second, it is
easily verified that (2.8) does not have a unique solution; for example, any time-
independent linear function ofx satisfies (3.1). Thus, even if limτ→∞ A(x, τ )
exists, we won’t get much information out of just (3.1). (We get some informa-
tion; see Theorem 3.1.)

We will tackle the first problem using recent advances in the theory of vis-
cosity solutions, namely the limit supremum and the limit infimum operations
introduced by Barles and Perthame (1988). As for the second problem, after get-
ting as much out of (3.1) as possible, we will use the Bellman equation and the
relation betweenA and the functionJ described in (2.5).

Before we present the technique of Barles and Perthame, we state the defi-
nition of viscosity solutions.

The notion of viscosity solutions was introduced by Crandall and Lions (1984)
for second order equations. For a general overview of the theory we refer the
reader to the “User’s Guide” by Crandall et al. (1992) and the book of Flem-
ing and Soner (1993). To this end, consider a nonlinear second order partial
differential equation of the form
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F (z, u, Du, D2u) = 0, z ∈ Ω, (3.2)

whereΩ is an open subset of<2 andF : Ω ×R×R2 ×M2×2 → R is continuous
and (possibly degenerate) elliptic, i.e.,

F (z, u, Du, A + B) ≤ F (z, u, Du, A) if B ≥ 0.

Moreover, Du and D2u are, respectively, the gradient and the second-order
derivative matrix ofu and M2×2 is the space of 2× 2 matrices. Finally in the
sequel we will denote the closure ofΩ by Ω̄.

Definition 3.1:

1. An upper semi-continuous function u: Ω → < is a viscosity subsolution of
(3.2), if for anyφ ∈ C2(Ω) and any local maximum point z0 ∈ Ω of u − φ,

F (z0, u(z0), Dφ(z0), D2φ(z0)) ≤ 0.

2. A lower semi-continuous function u: Ω → < is a viscosity supersolution of
(3.2), if for anyφ ∈ C2(Ω̄) and any minimum point z0 ∈ Ω of u − φ,

F (z0, u(z0), Dφ(z0), D2φ(z0)) ≥ 0.

Definition 3.2: A continuous function u: Ω → < is a viscosity solution of (3.2)
if and only if it is both a sub- and a super-viscosity solution inΩ.

3.1 Properties of the limsup and liminf of A(W, τ )

We define the limsup and liminf ofA(x, τ ) as the functions

A∗(x) ≡ lim sup
τ→∞

y→x

A(y, τ ), (3.3)

and
A∗(x) ≡ lim inf

τ→∞
y→x

A(y, τ ). (3.4)

The following theorem gives useful properties ofA∗ and A∗ in relation to the
limit equation (3.1).

Theorem 3.1:

(i) The functions A∗ and A∗ are respectively upper and lower semicontinuous
and sub- and super-viscosity solutions of the stationary equation (3.1)

(ii) The functions A∗ and A∗ satisfy{
0 ≤ A∗(x) ≤ A∗(x)

A∗(0) = A∗(0) = 0.
(3.5)
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The proof of (i) follows along the lines of Theorem 3.1 of Barles and
Perthame (1988) and therefore it is omitted. Assertion (ii) follows from the
definition of A∗ andA∗ and the budget (state) constraint.

The information contained in the above theorem, albeit valuable, does not
suffice to pin down the asymptotic property ofA when the investment horizon is
long. This should not come as a surprise. In Bellman’s equation (2.3) or (2.7),
the information of the utility function comes into the analysis as a boundary
condition whenτ = 0. Given the time independent nature of (2.8), however,
there is no natural way to bring the information regarding the utility function into
the analysis. How then can we expect (3.1) to give us very precise information
about the asymptotic property ofA? We have to, instead, bring the information
on U into our analysis for finiteτ through the Bellman equation and examine
the properties ofA in detail whenτ increases. This is the subject to which we
now turn. The reader will find out later that the HJB equation alone won’t do the
job either. It is a delicate interplay between the HJB equation and the portfolio
equation (2.8) that makes one of the main results of this paper possible.

3.2 Asymptotic properties of A(x, τ ) for high levels of wealth

We consider a class of utility functions that satisfy the following assumption

Assumption 3.1: For someγ < 1,

lim
x→∞

U ′(x)
xγ−1

= 1.

Under the above assumption, we will show that forhigh levels of wealth,
A(x, τ ) is approximately linearregardless of whetherτ is large. To this end, we
will utilize the form (2.5) of the optimal portfolio and thus need to examine the
behavior of the derivatives ofJ whenx is large.

Note that our results to follow apply to utility function that satisfy Assump-
tion 3.1 with the right-hand-side of the equality replaced by any strictly positive
scalar. Our choice of setting this scalar to be unity is for notational simplicity.

We begin with a lemma that characterizes all the utility functionsU that
satisfy Assumption 3.1.

Lemma 3.1: Under Assumption 3.1, the utility function U is unbounded from
above if0 ≤ γ < 1 and is bounded from above ifγ < 0. In particular,

(i) if 0 ≤ γ < 1, Assumption 3.1 is equivalent to

lim
x→∞

U (x)
1
γ xγ

= 1, (3.6)

where we understand that whenγ = 0, 1
γ xγ = ln x;
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(ii) if γ < 0, Assumption 3.1 is equivalent to

lim
x→∞

U (x) − N
1
γ xγ

= 1

for some constant N ;
(iii) for all values ofγ < 1,

lim
x→∞

−U ′′(x)x
U ′(x)

= 1 − γ. (3.7)

Proof. We only provide the proof of parts (i) and (iii) since part (ii) follows along
the lines of (i). To this end, observe that from Assumption 3.1 we have that for
ε > 0, ∃Rε > 0 such that

(1 − ε)xγ−1 ≤ U ′(x) ≤ (1 + ε)xγ−1, for x ≥ Rε.

Integrating yields,

(1 − ε)
( 1

γ
xγ − 1

γ
Rγ

ε

)
≤ U (x) − U (Rε)

≤ (1 + ε)
( 1

γ
xγ − 1

γ
Rγ

ε

)
and, in turn,

(1 − ε)
(

1 −
(Rε

x

)γ)
+

U (Rε)
1
γ xγ

≤ U (x)
1
γ xγ

≤ (1 + ε)
(

1 −
(Rε

x

)γ)
.

Sendingx → ∞ we have

(1 − ε) ≤ lim
x→∞

U (x)
1
γ xγ

≤ lim
x→∞

U (x)
1
γ xγ

≤ 1 + ε

and by lettingε → 0 we conclude.
For part (iii), we show (3.7) for 0< γ < 1 since the proof for the other

values ofγ is similar. To this end, we first show

lim
x→∞

U ′′(x)
(γ − 1)xγ−2

= 1. (3.8)

In fact, by Assumption 2.1,U ′ is convex which implies

U ′(x + h) ≥ U ′(x) + hU ′′(x) ∀h > 0, x > 0.

Dividing by (γ − 1)hxγ−2, the above inequality yields

U ′(x + h) − U ′(x)
(γ − 1)hxγ−2

≤ U ′′(x)
(γ − 1)xγ−2

(3.9)
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which in turn yields, forh = δx with δ > 0,

1
γ − 1

[ U ′((1 + δ)x)
(1 + δ)γ−1xγ−1

(1 + δ)γ−1

δ
− U ′(x)

δxγ−1

]
≤ U ′′(x)

(γ − 1)xγ−2
. (3.10)

We now use Assumption 3.1 and, keepingδ fixed, inequality (3.10) implies

1
(γ − 1)

(1 + δ)γ−1 − 1
δ

≤ lim
x→∞

U ′′(x)
(γ − 1)xγ−2

.

The above inequality implies, asδ → 0,

lim
δ→0

1
γ − 1

(1 + δ)γ−1 − 1
δ

≤ lim
x→∞

U ′′(x)
(γ − 1)xγ−2

or,

1 ≤ lim
x→∞

U ′′(x)
(γ − 1)xγ−2

. (3.11)

Applying the above arguments forh = −δx, starting with

U ′(x(1 − δ)) ≥ U ′(x) − δxU ′′(x)

and passing to the limit yields

lim
x→∞

U ′′(x)
(γ − 1)xγ−2

≤ 1

which combined with (3.11) yields (3.8).
The assertion then follows since

lim
x→∞

−U ′′(x)x
U ′(x)

= lim
x→∞

−U ′′(x)/xγ−2

U ′(x)/xγ−1

= − limx→∞ U ′′(x)/xγ−2

limx→∞ U ′(x)/xγ−1

= 1 − γ.

ut
Even though the above lemma shows that the class of utility functions satis-

fying Assumption 3.1 includes those that are bounded as well as the logarithmic
case (γ = 0), we will only deal with the cases where 0< γ < 1. This is assumed
only for notational simplicity since all the proofs apply to the excepted cases
with slight modification of some arguments.

We will next show that under the aforementioned assumption, the indirect
utility function J (x, τ ) inherits the asymptotic behavior ofU for largex and for
all finite times τ , not necessarily just for largeτ . Instead of working directly
with the functionJ (x, τ ), we will first work with a family of auxiliary functions
J ε’s, given by

J ε(x, τ ) ≡ εγJ
(x

ε
, τ

)
∀x ≥ 0, ε > 0, τ ∈ [0, T], (3.12)
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and examine the behavior ofJ ε asε → 0.
Before proceeding, we record the following two lemmas.

Lemma 3.2: Assume that there exists a functionw increasing and concave, such
that Jε(x, τ ) ≤ w(x, τ ) ∀x ≥ 0, ε > 0, τ ∈ [0, T]. Then the functions J∗ = lim

ε→0
J ε

and J∗ = lim
ε→0

J ε are respectively viscosity sub- and super-solutions of

J̃τ = max
π

[
1
2σ2π2J̃xx + (µ − r )πJ̃x

]
+ rx J̃x = − (µ − r )2

2σ2

J̃ x2

J̃xx

+ rx J̃x

J̃ (x, 0) = 1
γ xγ ,

J̃ (0, τ ) = 0.

(3.13)

For the proof see Ishii and Lions (1990).

Lemma 3.3: The initial value problem (3.13) has a unique viscosity solution in
the class of functions that are increasing and concave in x. Moreover this solution
is given by

J̃ (x, τ ) =
eλτ

γ
xγ ,

where

λ ≡ γ(µ − r )2

2σ2(1 − γ)
+ γr .

Proof. For the uniqueness part, see Theorem 4.1 in Zariphopoulou (1994). Also,
observe that the functioñJ is smooth and therefore, it is a viscosity solution of
(3.13). Moreover,̃J is concave and increasing inx and we easily conclude that
it must coincide with the unique viscosity solution of (3.13).

Proposition 3.2: Suppose that Assumptions 2.1 and 3.1 hold. Then

lim
ε→0

J ε(x, τ ) =
eλτ xγ

γ
(3.14)

and therefore

lim
x→∞

J (x, τ )
eλτ xγ

=
1
γ

. (3.15)

where J solves (2.3).

Proof. Using (3.12) and direct differentiation give

J ε
x (x, τ ) = εγ−1Jx

(
x
ε , τ

)
,

J ε
xx(x, τ ) = εγ−2Jxx

(
x
ε , τ

)
,

J ε
τ (x, t) = εγJτ

(
x
ε , τ

)
.

(3.16)

Evaluating (2.3) and (2.4) at the point
(

x
ε , τ

)
yields
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Jτ

(x
ε
, τ

)
= − (µ − r )2

2σ2

J 2
x

(
x
ε , τ

)
Jxx

(
x
ε , τ

) + r
x
ε

Jx

(x
ε
, τ

)
and

J
(x

ε
, 0

)
= U

(x
ε

)
.

These imply, using (3.16), that

J ε
τ (x, τ ) = − (µ−r )2

2σ2
(Jε

x (x,τ ))2

Jε
xx(x,τ ) + rxJ ε

x (x, τ ),

J ε(x, 0) = εγU
(

x
ε

)
.

(3.17)

We next show that theJ ε(x, τ )’s are locally bounded in<+ × [0, T] uni-
formly in ε. To this end, letw(x, τ ) be the indirect utility function of the utility
maximization problem given by (2.2), with utility function

Û (x) = K1xγ + K2,

where K1 > 1
γ and K2 > 0 is a sufficiently large (local) constant. Given that

lim
x→∞

U (x)
xγ

=
1
γ

, one sees that for sufficiently largeK2, Û (x) > U (x), ∀x ≥ 0.

Let ŵ be defined as

ŵ(x, τ ) ≡ K1eλτ xγ + K2eλτ .

Direct calculation shows that ˆw is a (viscosity) supersolution of wτ (x, τ ) = − (µ−r )2

2σ2
w2

x (x,τ )
wxx(x,τ ) + rxwx(x, τ ),

w(x, 0) = K1xγ + K2.

(3.18)

Since by Proposition 2.1 equation (3.18) admits a unique concave solution,
the supersolution ˆw must lie above the solutionw. Moreoverw dominatesJ
becauseÛ > U . Therefore

ŵ(x, τ ) ≥ w(x, τ ) ≥ J (x, τ ),

which in turn yields,

J ε(x, τ ) ≤ εγŵ
(

x
ε , τ

)
= εγ

[
K1eλτ

(
x
ε

)γ
+ K2eλτ

]
= K1eλτ xγ + K2eλτ εγ

< eλτ (K1xγ + K2) .

Applying Lemma 3.2 withw = eλτ (K1xγ + K2), we get thatJ∗ are J∗ are
viscosity sub- and super-solutions of (3.13). On the other hand, by Lemma 3.3,
the initial value problem (3.13) has a unique viscosity solution which implies
that

J∗ ≤ J∗.
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Moreover, by construction,J∗ ≥ J∗ which combined with the above inequality
yields

J∗(x, τ ) = J∗(x, τ ) = J̃ (x, τ )

whereJ̃ is the unique visicosity solution of (3.13) given in Lemma 3.3.
Therefore,

lim
ε→0

J ε(x, τ ) =
eλτ xγ

γ
.

Equivalently,

lim
ε→0

εγJ
(

x
ε , τ

)
eλτ xγ

= lim
ε→0

J
(

x
ε , τ

)
eλτ

(
x
ε

)γ =
1
γ

,

which in turn implies

lim
x→∞

J (x, τ )
eλτ xγ

=
1
γ

.

ut
Remark 3.1. For the caseγ = 0, considerÛ (x) = M1xδ + M2 for someδ ∈ (0, 1)
andM2 sufficiently large.

An immediate corollary of the above proposition is thatJx(x, τ ) also behaves
like a power function for largex.

Corollary 3.1: The function Jx satisfies

lim
x→∞

Jx(x, τ )
eλτ xγ−1

= 1.

The proof is similar to the proof of part (iii) of Lemma 3.1 and therefore we
present only the main steps.

Proof. The concavity ofJ yields

J (x(1 + δ), τ ) ≤ J (x, τ ) + δxJ′(x, τ )

which, in turn, implies∀δ > 0, τ ∈ [0, T]

1
δγ

{J ((1 + δ)x, τ )
xγ

− J (x, τ )
xγ

}
≤ Jx(x, τ )

γxγ−1
.

Sendingx → ∞ andδ → 0, yields

lim
x→∞

Jx(x, τ )
xγ−1

≥ 1.

We can get similarly that

lim
x→∞

Jx(x, τ )
xγ−1

≤ 1

and the assertion follows from the latter inequalities.
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From the above result, we seeJ and Jx behave like power functions when
x is sufficiently large. It turns out that these properties ofJ and Jx imply that
A(x, τ ) behaves like alinear function when x is sufficiently large for all trading
horizons. This is the subject of the main theorem of this subsection.

Theorem 3.2: Under Assumptions 3.1 and 3.2,

lim
x→∞

A(x, τ )
x

=
1

1 − γ

µ − r
σ2

∀τ ∈ [0, T]. (3.19)

Proof. First observe that by (2.9) and (3.7)

lim
x→∞

A(x, 0)
x

=
1

1 − γ

µ − r
σ2

.

We are left to prove that the assertion holds for anyτ > 0.
From (2.5) and Corollary 3.1 it follows that (3.19) holds if we establish that

for everyτ ≥ 0

lim
x→∞

Jxx(x, τ )
(γ − 1)eλτ xγ−2

= 0. (3.20)

To prove (3.20), it suffices to show that the functionJx(x, τ ) is convex inx.
In fact, using the convexity ofJx together with its asymptotic behavior, stated

in Corollary 3.1 we can show (3.20). The arguments to show (3.20) are similar
to the ones used in Lemma 3.1 (part (iii)) and therefore are omitted.

To prove the convexity ofJx(x, τ ) we use a transformation employed in
Karatzas et al. (1987). To this end, letf : <+ × [0, T] → <+ be such that

Jx(f (y, τ ), τ ) = y. (3.21)

Differentiating the HJB equation (2.3) with respect tox and using the definition
of f , yields thatf solves the initial value problem

(IVP)

 fτ + rf = 1
2

(µ−r )2

σ2 y2fyy +
(

(µ−r )2

σ2 − r
)

yfy

f (y, 0) = (U ′)−1(y)

with (U ′)−1 being the inverse function ofU ′.
On the other hand, the above (IVP) has a unique smooth solution (see, for

example Krylov 1987) which has the probabilistic representation

f (y, τ ) = E
[
e−r τ (U ′)−1(yτ ); y0 = y

]
(3.22)

where the processy(x), 0 ≤ s ≤ τ solves the linear stochastic differential
equation

dy(s) =

[
(µ − r )2

σ2
− r

]
y(s)ds +

µ − r
σ

y(s)dw(s). (3.23)

Using (3.22), the convexity of (U ′)−1 and the linear dynamics of (3.23) we
get thatf is convex iny. Finally, differentiating (3.21) with respect toy, yields
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Jxx(x, τ ) =
1

fy(y, τ )

and

Jxxx(x, τ ) = − fyy(y, τ )
f 3
y

(3.24)

wherex = f (y, τ ).
Using now the concavity ofJ which yields thatfy < 0, and the convexity of

f , (3.24) impliesJxxx > 0 which in turn yields thatJx is convex inx.

3.3 Asymptotic properties of A(x, τ ), asτ → ∞, for a class of utility functions

In the previous subsection, Theorem 3.2 establishes that the optimal dollar amount
invested in the risky asset is approximately linear in wealth, for any investment
horizon when the wealth is high enough. We will now establish that this implies
that the optimal dollar amount invested in the risky asset is, in the limit,linear
for all levels of wealthat the beginning of a very long investment horizon.

We begin by showing thatA(x, τ ) must lie in a certain region, denoted by
W , for all x ≥ 0 and all τ ≥ 0. Note that this “turnpike window”W is
independentof time τ .

Proposition 3.3: Suppose that Assumptions 2.1 and 3.1 hold. Then for everyθ > 0
there exist xθ > 0 and yθ > 0 so that for all(x, τ ) ∈ <+ × <+,

A(x, τ ) ≤ f1(x), (3.25)

A(x, τ ) ≥ f2(x), (3.26)

where

f1(x) =

(
µ − r

σ2(1 − γ)
+ θ

)
x + yθ, (3.27)

f2(x) = max

[(
µ − r

σ2(1 − γ)
− θ

)
(x − xθ), 0

]
. (3.28)

Proof. We will only prove (3.25) as (3.26) follows from similar arguments. By
Theorem 3.2,

lim
x→∞

A(x, 0)
x

=
µ − r

σ2(1 − γ)

for everyθ > 0. Therefore, there existsyθ large enough, such that

A(x, 0) ≤ f1(x) ≡
(

µ − r
σ2(1 − γ)

+ θ

)
x + yθ, ∀x ≥ 0. (3.29)

We will next show that (3.29) holds for allτ > 0. To this end, we first observe
that f1(x) is a viscosity supersolution of (2.8); to see this, we note that

rf1(x) = r

(
µ − r

σ2(1 − γ)
+ θ

)
x + ryθ > rxf ′

1(x) = r

(
µ − r

σ2(1 − γ)
+ θ

)
x, ∀x ≥ 0.
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We now prove a comparison result between the viscosity solutionA(x, τ ) and
the viscosity supersolutionf1 of (2.8). To see this, we argue by contradiction.
For fixedT, assume

sup
(x,τ )∈<+×[0,T]

[A(x, τ ) − f1(x)] > 0. (3.30)

Given the asymptotic behavior ofA(x, τ ) and the form off1, it follows that
the supremum in (3.30) should occur at a point (x0, τ0) with x0 < ∞, and, by
assumption,

A(x0, τ0) > f1(x0). (3.31)

Since bothA and f1 are twice continuously differentiable at the point (x0, τ0),

Ax(x0, τ0) = f ′
1(x0) =

µ − r
σ2(1 − γ)

+ θ,

Aτ (x0, τ0) = 0,

Axx(x0, τ0) ≤ 0.

Using the above relations and (2.8) we get

rA(x0, v0) ≤ r

(
µ − r

σ2(1 − γ)
+ θ

)
x0,

which contradicts (3.31). ThusA(x, τ ) ≤ f1(x) for all τ ∈ [0, T].
Relation (3.28) is proved the same way. ut
Proposition 3.3 shows that for any (x, τ ) ∈ <+ × <+, A(x, τ ) lies in a time-

independent “turnpike window”,W , depicted in Fig. 1.
Now we are ready for the main theorem.

Theorem 3.3: Suppose that the utility function U satisfies Assumptions 2.1 and 3.1
hold. Then

A∗(x) = A∗(x) =
µ − r

σ2(1 − γ)
x, x ≥ 0.

Proof. Our proof is organized as follows. We first show that for everyθ > 0 and
for all x ≥ 0,

f2(x) ≤ A∗(x) ≤
(

µ − r
σ2(1 − γ)

+ θ

)
x; (3.32)(

µ − r
σ2(1 − γ)

− θ

)
x ≤ A∗(x) ≤ f1(x), (3.33)

that is,A∗ and A∗ lie, respectively, in part I and II ofW (see Fig. 1). Conse-
quently, (

µ − r
σ2(1 − γ)

− θ

)
x ≤ A∗(x) ≤ A∗(x) ≤

(
µ − r

σ2(1 − γ)
+ θ

)
x

and sendingθ → 0 we conclude.
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Fig. 1. Time-independent window forA(x, τ )

We start with (3.32). Note that (3.25) and (3.26) imply

f2(x) ≤ A∗(x) ≤ f1(x), ∀x ∈ <+. (3.34)

We claim that the upper bound ofA∗ can be refined to

A∗(x) ≤
(

µ − r
σ2(1 − γ)

+ θ

)
x. (3.35)

To see this, we first observe that atx = 0, A∗(0) = 0 by Theorem 3.1. Thus
(3.35) holds atx = 0. For x > 0, we argue by contradiction. We look at the
following cases.

Case 1: Suppose thatA∗ is strictly above
(

µ−r
σ2(1−γ) + θ

)
x at some point and then

goes back down to be equal to or less than
(

µ−r
σ2(1−γ) +θ

)
x. Formally, assume for

some ˆx > 0, A∗(x̂) >
(

µ−r
σ2(1−γ) +θ

)
x̂ and for some ¯x > x̂, A∗(x̄) ≤

(
µ−r

σ2(1−γ) +θ
)

x.

Then by the upper semicontinuity ofA∗ (see the first assertion of Theorem 3.1,

A∗(x) −
(

µ−r
σ2(1−γ) + θ

)
x achieves a local maximum at somex0 ∈ (0, x̄) with

A∗(x0) >
(

µ−r
σ2(1−γ) + θ

)
x0. Sincef (x) =

(
µ−r

σ2(1−γ) + θ
)

x is smooth andA∗ is a

viscosity subsolution (for the latter see Theorem 3.1), it follows that
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rx 0

(
µ − r

σ2(1 − γ)
+ θ

)
≥ rA∗(x0),

which is a contradiction. ThusA∗ cannot be strictly above
(

µ−r
σ2(1−γ) + θ

)
x and

then go back down to be equal to or less than
(

µ−r
σ2(1−γ) + θ

)
x.

Case 2: Suppose thatA∗ lies strictly above
(

µ−r
σ2(1−γ) +θ

)
x for all x > x̄ for some

x̄ ≥ 0; that is,( µ − r
σ2(1 − γ)

+ θ
)

x < A∗(x) ≤
( µ − r

σ2(1 − γ)
+ θ

)
x + yθ, ∀x > x̄. (3.36)

To prove (3.35) we argue by contradiction. Assume that

sup
x≥0

[
A∗(x) −

(
µ − r

σ2(1 − γ)
+ θ

)
x

]
> 0. (3.36)

It then follows that forδ ∈ (0, 1) andε > 0 sufficiently small,

sup
x≥0

[
A∗(x) −

(
µ − r

σ2(1 − γ)
+ θ

)
x − εxδ

]
> 0. (3.37)

Let ϕ(x) =
(

µ−r
σ2(1−γ) + θ

)
x + εxδ. SinceA∗(0) = ϕ(0) = 0, (3.37) yields that the

above supremum is achieved at a point, sayx0 > 0. Using thatA∗ is a subsolution
of (3.1) and the form ofϕ we get

1
2
σ2[A∗(x0)]2εδ(δ − 1)xδ−2 + rx0

[(
µ − r

σ2(1 − γ)
+ θ

)
+ εδxδ−1

0

]
≥ rA∗(x0).

Given thatδ ∈ (0, 1), the above relation implies

r ϕ(x0) > r

[(
µ − r

σ2(1 − γ)
+ θ

)
x0 + εδxδ

0

]
≥ rA∗(x0)

which contradicts (3.37).

The inequality (3.33) can be proved along the same line of arguments used
to prove (3.32). ut

4 Concluding remarks

In this paper we provided further results on the turnpike theory in a continu-
ous time framework. We employed recent advances of the theory of viscosity
solutions which enabled us to obtain asymptotic results via a delicate interplay
between the Bellman equation (2.7) and the equation (2.8) that the optimal pol-
icy solves. Although we restricted ourselves to the case of state dynamics with
linear coefficients (see, equation (2.1)) the methodology developed herein could
be applied to the general case at the expense of tedious calculations and long
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arguments. Moreover, the same analysis could be applied in cases where trading
constraints are binding, e.g. limited or not at all shortselling/borrowing etc. Al-
though the above cases would give rise to more complicate Bellman equations,
and subsequently to more complex equations for the optimal policies, the theory
of viscosity solutions, and in particular theirstability propertieswould be valid
even for the “more nonlinear” situations.

Endnotes

1 The functionJ (x, τ ) is said to beC2,1(<+, <+) if it is twice continuously differentiable inx and
continuously differentiable int , for (x, t) in (<+, <+).

2 The authors would like to thank Phil Dybvig for a fruitful comment.
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Appendix

In this Appendix, we derive (2.8) whenr = 0. The calculations forr /= 0 are
similar but much more tedious. (The motivated reader could look at He and
Huang (1933).) First, we observe that combining (2.5) and (2.7) yields

Jτ =
µ

2
A(x, τ )Jx . (A.1)

Moreover, differentiating equality (2.5) with respect toτ and rearranging terms
gives

Aτ = − µ

σ2

Jxt

Jxx
+

µ

σ2

JxJxxt

J 2
xx

. (A.2)

Differentiating (A.1) with respect tox yields

2Jτx = µAxJx + µAJxx (A.3)

and
2Jτxx = µAxxJx + 2µAxJxx + µAJxxx. (A.4)

We claim that
Aτ = 1

2σ2A2Axx

or, equivalently

− µ

σ2

JxtJxx − JxJxxτ

J 2
xx

= 1
2σ2

(
− µ

σ

Jx

Jxx

)2
Axx

⇔ 2JxJxxτ − 2Jxτ Jxx = µJ 2
x Axx.

(A.5)

Using (A.3) and (A.4), (A.5) becomes

Jx(µAxxxJx + 2µAxJxx + µAJxxx)
−Jxx(µAxJx + µAJxx) = µAxxJ 2

x

⇔ AxJxJxx = A(J 2
xx − JxJxxx)

⇔ Ax = − µ

σ2

1
J 2

xx

(
J 2

xx − JxJxxx
)

⇔ Ax = − µ

σ2
+

µ

σ2

JxJxxx

J 2
xx

which follows from the form ofA.


