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non-linear stock dynamics

Thaleia Zariphopoulou*

Department of Mathematics and School of Business, University of Wisconsin, Grainger Hall,
975 University Avenue, Madison, WI 53706, USA (e-mail: zariphop@math.wisc.edu)

Abstract. We study a generalization of the Merton's original problem of
optimal consumption and portfolio choice for a single investor in an inter-
temporal economy. The agent trades between a bond and a stock account and
he may consume out of his bond holdings. The price of the bond is determin-
istic as opposed to the stock price which is modelled as a di¨usion process.
The main assumption is that the coe½cients of the stock price di¨usion are
arbitrary nonlinear functions of the underlying process. The investor's goal is
to maximize his expected utility from terminal wealth and/or his expected
utility of intermediate consumption. The individual preferences are of Con-
stant Relative Risk Aversion (CRRA) type for both the consumption stream
and the terminal wealth. Employing a novel transformation, we are able to
produce closed form solutions for the value function and the optimal policies.
In the absence of intermediate consumption, the value function can be ex-
pressed in terms of a power of the solution of a homogeneous linear parabolic
equation. When intermediate consumption is allowed, the value function is
expressed via the solution of a non-homogeneous linear parabolic equation.

Key words: Portfolio management, Hamilton-Jacobi-Bellman equation, closed
form solutions, constrained viscosity solutions

1. Introduction

This paper is a contribution to the theory of optimal portfolio management in
intertemporal economies. The underlying task is to specify the maximal
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expected utility and the optimal investment and consumption strategies of a
single individual1 who trades and consumes in the presence of uncertainty for
market returns. The market consists of two assets, a bond and a stock with
prices already prespeci®ed via equilibrium conditions. The bond price is
deterministic and the stock price is modelled as a di¨usion process. The
objective is to maximize the individual's expected utility which comes from
terminal wealth and/or intermediate consumption.

The fundamental stochastic model of optimal investment and consump-
tion, was ®rst introduced by Merton (1969, 1971) who constructed explicit
solutions under the assumption that the stock price follows a geometric
Brownian motion and the individual preferences are of special type. Speci®-
cally, the utilities are either of Constant Relative Risk Aversion (CRRA) type,
including the logarithmic case, or of exponential type. There are no binding
constraints on the traded portfolios besides the standard no arbitrage con-
straint of keeping the wealth nonnegative at all times. Merton's pioneering
papers initiated a considerable volume of new work on the subject in various
directions.

The case of general utilities was analyzed in Karatzas et al. (1986, 1987)
who produced the value function in closed form. Models with general utilities
and trading constraints were subsequently studied by various authors (see
Karatzas et al. (1991), Zariphopoulou (1994), Cvitanic and Karatzas (1995)).
Generally speaking, there are two main methodologies for the study of these
stochastic optimization problems: one that relies heavily on the theory of
nonlinear partial di¨erential equations and the alternative approach that is
based on martingale theory. Independently of the speci®c approach used, the
standing assumption in the existing literature is that the asset prices follow a
geometric Brownian motion. This special structure enables us to absorb the
stock price in the wealth variable ± through the budget constraint ± and,
therefore, to remove one of the state variables. This assumption facilitates the
analysis considerably but it does not accommodate a variety of applications
like, for example, the case of stochastic volatility. It has been relaxed in a
limited way by allowing the linearity coe½cients to be deterministic functions
of time (see for example, Karatzas et al. (1991)).

In this paper, the above restrictive assumption on the underlying stock
price are removed by allowing the coe½cients of the price process to be non-
linear functions of the current stock level. A special case of this class of prices
is the case of stochastic volatility perfectly correlated with the underlying
stock. The main contribution herein is the derivation of closed form solutions
for the value function and the optimal policies. This is accomplished by
exploring the homotheticity properties of the value function combined with a
novel transformation. The latter enables us to express the value function in
terms of a power of the solution of the so-called ``reduced'' equation. This
representation also facilitates the construction of the optimal portfolio and
consumption policies which are given in a simpli®ed feedback form in terms of
the solution of the reduced equation and its ®rst derivatives. If the goal of the
agent is to maximize his expected utility from terminal wealth, the latter
equation turns out to be a homogeneous linear parabolic one. If intermediate
consumption is allowed, the reduced equation is also linear parabolic but non-

1 The investor is assumed to be ``small'' in the sense that his actions do not a¨ect the equilibrium
asset prices.
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homogeneous. Nevertheless, in both cases, the reduced equations are similar
to the ones arising in bond pricing. An interesting consequence is the repre-
sentation of their solutions in terms of the expectation of an exponential pay-
o¨ of a new state process. This process solves the same equation as the stock
price but with a modi®ed drift which represents the e¨ects of the inherent
nonlinearities of the model.

Besides the derivation of new results in the area of optimal portfolio
management, this paper o¨ers an exposition ± for the technically oriented
reader ± of the use of a class of weak solutions, namely the viscosity solutions,
of the relevant Hamilton-Jacobi-Bellman equation. The HJB equation is the
o¨spring of the Dynamic Programming Principle and stochastic analysis and
it is expected to be satis®ed by the value function. Due to speci®c degeneracies
and other characteristics of the stochastic optimization model, the value
function might not satisfy the HJB equation in the classical sense. Such sit-
uations are common in ®nance models with market imperfections like trading
constraints, transaction costs and stochastic labor income. It is thus useful to
relax the notion of solutions to the HJB equation and this has been success-
fully done in the aforementioned class. Viscosity solutions have become by
now an important tool in analyzing stochastic optimization problems that
arise in a variety of valuation models in economics, ®nance and insurance
theory.2

The paper is organized as follows: in Section 2, we introduce the invest-
ment model without intermediate consumption and we state the main results.
In Section 3, we derive the Hamilton-Jacobi-Bellman equation and we study
its solutions using elements from the theory of viscosity solutions. In Section
4, we derive the closed form solutions and we provide regularity and veri®ca-
tion results for the value function and the optimal policies. In Section 5, we
study the problem when intermediate consumption is allowed and we discuss
possible extensions.

2. The investment model and main results

We consider an optimal investment model of a single agent who manages his
portfolio by investing in a bond and a stock account. The price of the bond Bt

solves

dBt � rBt dt

B0 � B

�
�2:1�

where r > 0 is the interest rate. The price of the stock is modelled as a
di¨usion process St satisfying

dSt � m�St�St dt� s�St�St dWt

S0 � S V 0:

�
�2:2�

2 See for example, Zariphopoulou (1992), Fleming and Zariphopoulou (1991), Fitzpatrick and
Fleming (1990), Barles et al. (1993), Scheinkman and Zariphopoulou (1999), Shreve and Soner
(1994), Tourin and Zariphopoulou (1994), Young and Zariphopoulou (1999).
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The process Wt is a Brownian motion de®ned on a probability space
�W;F;P�. The coe½cients m and s are functions of the current stock price and
they are assumed to satisfy all the required regularity assumptions in order to
guarantee that a unique solution to (2.2) exists. These conditions, together
with some additional growth assumptions will be introduced later; at this
point, we only outlay the underlying structure of the model.

The investor rebalances his portfolio dynamically by choosing at any time
s, for s A �t;T � and 0U tUT , the amounts p0

s and ps to be invested
respectively in the bond and the stock accounts. His total wealth satis®es the
budget constraint Xs � p0

s � ps and the stochastic di¨erential equation

dXs � rXs dt� �m�Ss� ÿ r�ps ds� s�Ss�ps dWs

Xt � xV 0 0U tU sUT :

�
�2:3�

The above state equation follows from the budget constraint and the dynam-
ics in (2.1) and (2.2). The wealth process must also satisfy the state constraint

Xs V 0 a:e: tU sUT : �2:4�

Remark 2.1: We assume that the coe½cients m and s do not depend explicitly
on time. This is assumed only to ease the presentation since the time-
dependent case follows easily from the autonomous one.

The pair of control processes �ps;Cs� is said to be admissible if it is
Fs-progressively measurable, where Fs � s�Wu; tU uU s�, satis®es the inte-
grability condition E

� T

t
s�Ss�2p2

s ds < �y and, is such that the above state
constraint is satis®ed. We denote by A the set of admissible policies.

The investor's objective is to maximize his expected utility payo¨

J�x;S; t; p� � E�U�XT �=Xt � x;St � S � �2:5�
with Xs, Ss given respectively in (2.3) and (2.2).

The value function of the investor is de®ned as

u�x;S; t� � sup
A

J�x;S; t; p� �2:6�

with the utility function U : �0;�y� ! �0;�y� being of the form

U�x� � 1

g
xg: �2:7�

The quantity 1ÿ g is known as the risk aversion coe½cient and it is assumed to
satisfy 0U 1ÿ g < 1. The case g � 0 corresponds to logarithmic utilities.

The goal herein is to analyze the value function and to determine the
optimal investment strategies.

The special form of the above utilities together with the linearity of the
wealth dynamics with respect to the state and control processes (see (2.3)),
suggest that the value function may be written in a ``separable'' form. In other

words, the value function may be written as u�x;S; t� � xg

g
V�S; t�. To our

274 T. Zariphopoulou



knowledge, the component V is in general unknown except for some very
special cases of the risk aversion parameter 1ÿ g and the components of the
state dynamics (see Merton (1971)). As a matter of fact, V solves a nonlinear
equation for which no closed form solutions are available in general.

The novelty of our results lies in the fact that under a simple power trans-
formation, the factor V can be expressed in terms of the solution of a linear
parabolic equation. This representation provides closed form solutions for the
value function and the optimal policies which can in turn be used e¨ectively in
a more general class of valuation problems with stochastic components.
Without stating at this point the necessary technical assumptions and the
regularity properties of the solutions, we outline the main results below.

Proposition 2.1:
i) The value function u is given by

u�x;S; t� � xg

g
v�S; t�1ÿg

where v : R� � �0;T � ! R� solves the linear parabolic equation

vt � 1

2
s2�S; t�S2vSS � m�S�S � g�m�S� ÿ r�S

�1ÿ g�
� �

vS

� g

1ÿ g
r� �m�S� ÿ r�2

2s2�S��1ÿ g�

" #
v � 0

v�S;T� � 1 and v�0; t� � e�rg=�1ÿg���Tÿt�; 0U tUT :

8>>>>>>>>><>>>>>>>>>:
ii) The optimal investment policy P �

s is given in the feedback form
P �

s � p��X �s ;Ss; s�; tU sUT , where the function p� : R� � R� � �0;T � ! is
de®ned by

p��x;S; t� � vS�S; t�
v�S; t� �

1

1ÿ g

m�S� ÿ r

s2�S�
� �

x:

We conclude this section by reviewing brie¯y the celebrated Merton's
optimal portfolio management problem (see Merton (1969), (1971) and
(1973)). To this end, we consider a market with two securities, a bond whose
price solves (2.1) and a stock whose price process satis®es the linear stochastic
di¨erential equation

dSt � mSt dt� sSt dWt �2:8�

with S0 � S > 0. The market parameters m and s are, respectively, the mean
rate of return and the volatility; it is assumed that m > r > 0 and s > 0. The
process Wt is a standard Brownian motion de®ned on a probability space
�W;F;P�.

The wealth process satis®es Xs � p0
s � ps with the amounts p0

s and ps rep-
resenting the current holdings in the bond and the stock accounts. The state
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wealth equation (2.3) reduces to

dXs � rXs ds� �mÿ r�ps ds� sps dWs: �2:9�
The wealth process must satisfy the state constraint

Xs V 0 a:e: tU sUT : �2:10�
The control ps; tU sUT is admissible if it is Fs-progressively measurable ±
with Fs � s�Wu; tU uU s� ± it satis®es E

� T

t
p2

s ds < �y and, it is such that
the state constraint (2.10) is satis®ed. We denote the set of admissible policies
by ~A.

The value function is de®ned as in (2.6), namely

~u�x; t� � sup
~A

E
1

g
X

g
T=Xt � x

� �
: �2:11�

Observe that the geometric Brownian motion assumption on prices results
in reduction of the number of state variables, from two to one.

A fundamental optimality fact, known as the Dynamic Programming
Principle yields that for every stopping time t,

~u�x; t� � E�~u�X �t ; t�=Xt � x� �2:12�

with X �t being the optimal wealth at time t. Using stochastic analysis and
under appropriate regularity and growth conditions on the value function, we
get that V solves the associated Hamilton-Jacobi-Bellman equation, for xV 0
and t A �0;T�,
8>>>>>><>>>>>>:

~ut �max
p

1

2
s2p2~uxx � �mÿ r�p~ux

� �
� rx~ux � 0; �2:13�

~u�x;T� � 1

g
xg; xV 0; �2:14�

~u�0; t� � 0; t A �0;T �: �2:15�

Remark 2.2: The boundary condition ~u�0; t� is not in general prespeci®ed due
to the presence of the state constraint (2.10). The standard by now approach
to deal with this issue is to work with the appropriate class of weak solutions,
namely the constrained viscosity solutions, and to characterize the value
function as the unique solution of the HJB equation in this class. Once this is
established, the boundary value may be obtained from the values of the solu-
tion in the interior, for x > 0, after passing to the limit as x! 0.

The homogeneity of the utility function and the linearity of the state
dynamics with respect to both the wealth and the control portfolio process,
suggest that the value function must be of the form

~u�x; t� � xg

g
f �t� �2:16�
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with f �T� � 1. Using the above form in (2.13) and after some cancellations,
one gets that f must satisfy the ®rst order equation

f 0�t� � l f �t� � 0

with

f �T� � 1

where

l � rg� �mÿ r�2
2�1ÿ g�s2

: �2:17�

Therefore,

~u�x; t� � xg

g
el�Tÿt�: �2:18�

Once the value function is determined, the optimal policy may be obtained
in the so-called feedback form as follows: ®rst, we observe that the maximum
of the quadratic term appearing in (2.13) is achieved at the point

p��x; t� � ÿ mÿ r

s2

~ux�x; t�
~uxx�x; t�

or, otherwise,

p��x; t� � mÿ r

s2�1ÿ g� x

where we used (2.18). Next, we recall classical Veri®cation results (see, for
example, Chapter VI in the book of Fleming and Soner (1993)) which yield
that the candidate solution, given in (2.18) is indeed the value function and
that, moreover, the policy

p�s �
mÿ r

s2�1ÿ g�X
�

s �2:19�

is the optimal investment strategy.
In other words,

~u�x; t� � E
�X �T �g

g

�
X �t � x

� �
where X �s solves

dX �s � r� �mÿ r�2
s2�1ÿ g�

 !
X �s ds� mÿ r

s�1ÿ g�X
�

s dWs:
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The solution of the optimal state wealth equation is, for Xt � x,

X �s � x exp r� �mÿ r�2
s2�1ÿ g� ÿ

�mÿ r�2
2s2�1ÿ g�2

 !
�sÿ t� � mÿ r

s�1ÿ g�Wsÿt

" #
:

The Merton optimal strategy dictates that it is optimal to keep a ®xed

proportion, namely
mÿ r

s2�1ÿ g�, of the current total wealth invested in the stock

account. We will refer to this proportionality constant as the Merton ratio.

Remark 2.3: It is important to observe that the Merton model uses heavily the
assumption that the stock price remains strictly positive even though the stock
price does not appear explicitly. One could easily verify this constraint by
looking at the actual derivation of the state wealth equation (2.9); we refer the
reader to Merton (1969) or Karatzas et al. (1987). Given that the stock price is
modelled as a log-normal process, it becomes zero only if it starts at the state
0. In this case, the Merton model degenerates to a deterministic model with no
(stochastic) optimization features. In fact, one could easily prove that no in-
vestment takes place in the stock account and that the wealth process satis®es
the deterministic equation dXs � rXs ds for tU sUT . In this case, the value

function turns out to be ~u�x; t� � xg

g
erg�Tÿt�. We can view this degenerate case

as the limiting case of (2.13) as m! r or as s! �y. Indeed, if m � r or
s � �y, the solution of the HJB equation degenerates to ~u�x; t� and the
optimal policy, given in (2.19), becomes zero.

3. The HJB equation and viscosity solutions

In this section we analyze the associated Hamilton-Jacobi-Bellman (HJB)
equation and characterize the value function (2.6) as its solution. Generally
speaking, the fact that the value function of a stochastic optimization problem
solves, in the classical sense, the relevant HJB equation follows from the
optimality principle of Dynamic Programming and stochastic calculus. But it
is the case that this can be done only if it is known a priori that the value
function has enough regularity. Conversely, classical veri®cation results (see,
for example, Fleming and Soner (1993)) yield that if the HJB equation has a
unique smooth solution then it coincides with the value function. In the
problem at hand, however, it does not follow directly that the value function
is smooth. Also the associated HJB equation, see (3.9) below, is a second-
order fully nonlinear and possibly degenerate equation and therefore might
not have a unique smooth solution. It is thus imperative to relax the notion of
solutions to the HJB equation. It turns out that a suitable class of solutions
are the so-called viscosity solutions; as a matter of fact, due to the presence
of the state constraint (2.4) we will actually work in the class of constrained
viscosity solutions.

The notion of viscosity solutions was introduced by Crandall and Lions
(1983) for ®rst-order equations, and by Lions (1983) for second-order equa-
tions. For a general overview of the theory we refer to the User's Guide by
Crandall, Ishii and Lions (1992) and the book by Fleming and Soner (1993).
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Next, we recall the notion of constrained viscosity solutions which was
introduced by Soner (1986) and Capuzzo-Dolcetta and Lions (1990) for ®rst-
order equations (see also Ishii and Lions (1990)). To this end, we consider a
nonlinear second order partial di¨erential equation of the form

F �X ;V ;DV ;D2V� � 0 in W� �0;T � �3:1�

where W is an open subset of R2, DV and D2V denote the gradient vector and
the second derivative matrix of V, and the function F is continuous in all its
arguments and degenerate elliptic, meaning that

F �X ; p; q;A� B�UF�X ; p; q;A� if BV 0: �3:2�

De®nition 3.1: A continuous function V : W� �0;T � ! R is a constrained
viscosity solution of (3.1) if the following two conditions hold:

i) V is a viscosity subsolution of (3.1) on W� �0;T �; that is, if for any
f A C 2;1�W� �0;T �� and any local maximum point X0 A W� �0;T � of V ÿ f,

F �X0;V�X0�;Df�X0�;D2f�X0��U 0; �3:3�

ii) V is a viscosity supersolution of (3.1) in W� �0;T �; that is, if for any
f A C 2;1�W� �0;T �� and any local minimum point X0 A W� �0;T � of V ÿ f,

F �X0;V�X0�;Df�X0�;D2f�X0��V 0: �3:4�

Viscosity solutions in stochastic control problems arising in mathematical
®nance were ®rst introduced by Zariphopoulou (1989) in the context of opti-
mal investment decisions with trading constraints. These solutions were
subsequently used in other asset valuation problems in markets with frictions
(see, for example, among others, Davis, Panas and Zariphopoulou (1993),
Shreve and Soner (1994), Barles and Soner (1999), Du½e et al. (1997), Con-
stantinides and Zariphopoulou (1999a)) and by now they have become a
standard tool in studying asset pricing models in general markets.

One of the main advantages to work with viscosity solutions comes from
the fact that such a characterization enables us to obtain convergence of a
large class of numerical schemes for the maximized utility ± value function ±
as well as the optimal trading strategies. This is desirable given the absence of
optimal feedback formulas for the optimal policies due to lack of su½cient
regularity of the value function (see, for example, Tourin and Zariphopoulou
(1994) and Pichler (1996)). Another contribution of the theory is that, if can-
didate solutions of the HJB equation can be computed, the characterization
of the value function as the unique viscosity solution of the same equation
results in identifying it with the candidate solution and, therefore, obtain it in
closed form. This is actually the main ingredient that is used herein for the
construction of the value function and the optimal policies. Finally, the char-
acterization of the value function as the unique viscosity solution may be used
e¨ectively in obtaining estimates when closed form solutions are not available.
This methodology has been successfully used in valuation models of derivative
pricing and has been rather fruitful (see, for example, Barles et al. (1993),
Constantinides and Zariphopoulou (1999a, 1999b)).
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In the sequel, we derive the HJB equation and we provide results for its
viscosity solutions and the value function. Even though most of the involved
argument follow along the lines of existing ones, we choose to present the
main steps in order to provide a concise exposition on the use of viscosity
solutions for the technically oriented audience3.

We start with some elementary properties for the value function. We note
that all the results in this section hold for general utility functions U, besides
the CRRA ones that were previously introduced (see (2.11)). The only stand-
ing assumption about the individual preferences is that U : �0;�y� !
�0;�y� is increasing and concave and satis®es the growth condition

U�x�UK�1� x�g; ExV 0 �3:5�
for some positive constant K and 0 < g < 1.

Assumption 3.1: The coe½cients m : �0;�y� ! �0;�y� and s : �0;�y� !
�0;�y� in (2.2) have the following properties.

i) if f stands for the functions m�S�S and s�S�S then, for all S V 0

j f �S� ÿ f �S�jULjS ÿ Sj and f 2�S�UL�1� S2� �3:6�
from some generic positive constant L.

ii) The function m : �0;�y� ! �0;�y� satis®es

m�S� > r for S > 0 and m�0� � r: �3:7�
The function s : �0;�y� ! �0;�y� is bounded away from zero and for all
S V 0,

�m�S� ÿ r�2
s2�S� UM �3:8�

with M being a large constant.
iii) The coe½cients m and s are such that Ss > 0 a.s. if St > 0 and Ss � 0 if

St � 0, for tU sUT .

The above assumptions were motivated by the following facts. First, stock
price processes are expected to stay positive, for positive initial condition, and
to remain at zero if they start there. For the necessary technical conditions
that ensure (iii), we refer the reader to Gikhman and Skorohod (1972). Sec-
ondly, it is natural to assume that the mean rate of return of the risky security
dominates the riskless interest rate at all levels of (positive) stock prices.
Thirdly, we impose the condition m�0� � r motivated by the behavior of the
degenerate Merton model for zero stock prices, as it was discussed in Remark
2.3. We will return to this issue at subsequent points in our analysis.

Proposition 3.1: i) The value function u is non-decreasing and concave with
respect to the wealth variable x.

3 We refer the technically non-interested reader to Section 4 which provides the closed form
solutions and the related veri®cation results.
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ii) There exists a constant l > rg that
xg

g
erg�Tÿt�U u�x;S; t�U xg

g
el�Tÿt�.

iii) The value function satis®es u�x; 0; t� � xg

g
erg�Tÿt�.

Proof: i) The concavity of u is an immediate consequence of the concavity
of the utility function U and the fact that if p1 A A�x1;S�, p2 A A�x2;S� and
l A �0; 1� then �lp1 � �1ÿ l�p2� A A�lx1��1ÿl�x2;S�; the latter follows from the
linear dependence of the state dynamics (2.4) with respect to the control vari-
ables and the state wealth. That u is nondecreasing in x follows from the
observation that A�x1;S�JA�x2;S� for x1 U x2.

ii) The lower bound for the value function follows directly from the de®-
nition of u and the fact that ps � 0, tU sUT is an admissible policy. The
upper bound follows from a standard Girsanov transformation, HoÈlder's
inequality and the uniform bound in inequality (3.8). The relevant to
the change of measure Randon-Nikodym derivative is given by ZT �
expfÿ � T

t
ys dWs ÿ 1

2

� T

t
y2

s dWsg with ys � �m�Ss� ÿ r�2
s2�Ss� . This kind of analysis

is standard in stochastic optimization problems and it is skipped for the sake
of the presentation. (We refer the reader to the book of Friedlin (1985) or, in
the context of relevant portfolio management problems, to the papers of
Huang and PageÁs (1992) and Du½e and Zariphopoulou (1993)).

iii) By assumption, f0g is an absorbing state and therefore if St � 0 then
Ss � 0 for tU sUT . The optimal strategy turns out to be p�s � 0, tU sUT
which in turn yields X �T � xer�Tÿt�. The value u�x; 0; t� then follows from the
de®nition of u and the form of the utility function.

We continue with the main results of this section. We denote the solvency
domain by D � �0;�y� � �0;�y� � �0;T �.

Theorem 3.1: The value function u : D! �0;�y� is a constrained viscosity so-
lution on D of the HJB equation

ut �max
p

1

2
s2�S�p2uxx � s2�S�pSuxS � �m�S� ÿ r�pux

� �

� 1

2
s2�S�S2uSS � m�S�SuS � rxux � 0 �3:9�

with

u�x;S;T� � 1

g
xg �3:10�

and

u�x; 0; t� � 1

g
xgerg�Tÿt�: �3:11�
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The fact that in general, value functions of (stochastic) control problems
and di¨erential games turn out to be viscosity solutions of the associated
partial di¨erential equations follows directly from the Dynamic Programming
Principle, stochastic analysis and the theory of viscosity solutions (see for
example Lions (1983), Evans and Souganidis (1984) and Fleming and Souga-
nidis (1989)). The main di½culty with the problem at hand, and in general in
all optimization problems of stochastic portfolio management, is that the
control processes, representing the risky investments, are not uniformly
bounded. In order to overcome this di½culty, we follow the approach of
Lions (1983) (see also Krylov (1980)) with which one works with the nor-
malized HJB equation which results from a time change. This methodology
was introduced in the context of stationary problems of optimal investments
with stochastic labor income by Du½e and Zariphopoulou (1993). Even
though the main arguments below are modi®cations of the ones used by
Du½e and Zariphopoulou (1993, Theorem 4.1) we present them here for
completeness.

Proof: We ®rst show that u is a viscosity supersolution (3.9) in D. Let f be a
smooth function on D and �x0;S0; t0� A D be a minimum of uÿ f. Without
loss of generality we can assume that

u�x0;S0; t0� � f�x0;S0; t0� and vV f in D: �3:12�

We need to show that

ft�x0;S0; t0� �max
p

G�x0;S0; t0; p� �Lu�x0;S0; t0� � rx0fx�x0;S0; t0�U 0

�3:13�

where

G�x0;S0; t0; p�

� 1
2 s2�S0�p2fxx�x0;S0; t0�

� ps2�S0�S0fxS�x0;S0; t0� � �m�S0� ÿ r�pfx�x0;S0; t0�; �3:14�

and the operator L is de®ned as

Lf�x0;S0; t0� � 1
2 s2�S0�S2

0 fSS�x0;S0; t0� � m�S0�S0fS�x0;S0; t0�: �3:15�

Next we consider a ®xed policy ps � p0 for tU sU y where y � minfy :
tU yUT and X p0

y � 0g with ~Xs being the solution of (2.3) with the constant
policy being used and satisfying ~Xt0

� x0. Since such policies are in general
suboptimal, we get that

u�x0;S0; t0�VE�u� ~Xy;Sy; y�= ~Xt0
� x0; ~St0

� S0�:

On the other hand, applying ItoÃ 's lemma to the smooth function
f� ~Xs;Ss; s� for t0 U sU y, yields
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E�f� ~Xy;Sy; y�= ~Xt � x0;St � S0�

� f�x0;S0; t0� � E

� � y

t0

fG� ~Xs;Ss; s; p0� �Lf� ~Xs;Ss; s�

� r ~Xsfx� ~Xs;Ss; s�g ds= ~Xt0
� x0;St0

� S0

�
:

Combining the above and using standard estimates from the theory of
stochastic di¨erential equations (see Gikhman and Skorohod (1972)), we get

E

� � y

t0

fft�x0;S0; t0� � G�x0;S0; t0; p0� �Lf�x0;S0; t0�

� rx0fx�x0;S0; t0�g ds= ~Xt0
� x0;St � S0

�
� E

� y

t0

h�s� dsU 0

where h�s� � O�s�. Dividing both sides by E�y� and passing to the limit as
n!y, inequality (3.13) follows.

We next show that u is a viscosity subsolution of (3.9) on D. Let f be a
smooth solution on D and let us assume that uÿ f has a maximum at a point
�x0;S0; t0� A D. Without loss of generality we may assume that u�x0;S0; t0� �
f�x0;S0; t0� and uU f otherwise. We need to show that

ft�x0;S0; t0� �max
p

G�x0;S0; t0; p� �Lf�x0;S0; t0� � rx0fx�x0;S0; t0�V 0:

�3:16�
In order to show the above inequality, we ®rst recall that the value function u
is a viscosity subsolution on D of the normalized HJB equation

max
p AR

�
1

1� p2

�
ut � 1

2
s2�S�p2uxx � s2�S�pSuxS � �m�S� ÿ r�pux

� �

�Lu� rxux

��
� 0: �3:17�

(For a proof see Lions (1983).) We next look at the following cases.

Case A. fxx�x0;S0; t0�V 0 and s2�S0�S0fxS�x0;S0; t0� �
�m�S0� ÿ r�fx�x0;S0; t0�0 0. Then (3.16) is automatically satis®ed since the
right-hand side of (3.16) is �y.

Case B. fxx�x0;S0; t0� > 0 and s2�S0�S0fxS�x0;S0; t0� �
�m�S0� ÿ r�fx�x0;S0; t0�0 0. This is the same as the situation in Case A.

Case C. fxx�x0;S0; t0� � 0 and s2�S0�S0fxS�x0;S0; t0� �
�m�S0� ÿ r�fx�x0;S0; t0�0 0. Then (3.16) becomes

ft�x0;S0; t0� �Lf�x0;S0; t0� � rx0fx�x0;S0; t0�V 0: �3:18�
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We argue by contradiction. Let us assume that (3.18) is not true. Then de®ne

A1ÿ �ft�x0;S0; t0� �Lf�x0;S0; t0� � rx0fx�x0;S0; t0�� > 0: �3:19�

Using the fact that uÿ f has a maximum at �x0;S0; t0� and inequality (3.19),
the normalized HJB equation (3.17) yields

max
p AR

A

1� p2
U 0;

which is a contradiction because

max
p AR

A

1� p2
� A > 0:

Case D. fxx�x0;S0; t0� < 0 and s2�S0�S0fxS�x0;S0; t0� �
�m�S0� ÿ r�fx�x0;S0; t0�0 0. Then the maximum with respect to p of

1
2 s2�S0�p2fxx�x0;S0; t0� � s2�S0�S0pfxS�x0;S0; t0�

� �m�S0� ÿ r�fx�x0;S0; t0�

occurs at a ®nite point, denoted p�. We argue again by contradiction. Let us
assume that (3.16) does not hold, that is

A1ÿ �ft�x0;S0; t0� � 1
2 s2�S0��p��2fxx�x0;S0; t0�

� s2�S0�S0p�fxS�x0;S0; t0�
�Lf�x0;S0; t0� � rx0fx�x0;S0; t0�� > 0:

From the normalized HJB equation, we get max
p AR

A

1� p2
U 0 which again

yields a contradiction.

Case E. fxx�x0;S0; t0� < 0 and s2�S0�SfxS�x0;S0; t0� �
�m�S0� ÿ r�fx�x0;S0; t0� � 0. This is the same as the situation in Case C.

We conclude this Section by presenting a uniqueness result for viscosity
solutions of the HJB equation. Such a uniqueness results will be used in the
sequel to identify the candidate closed form solution with the value function.
As it is common in the literature of nonlinear partial di¨erential equations, we
present the uniqueness theorem as a comparison result.

Theorem 3.2. Let u be an upper-semicontinuous concave, with respect to x,
viscosity subsolution of (3.9) on D and v a supersolution of (3.9) in D that is
bounded from below, uniformly continuous on D and locally Lipschitz in D, such
that u�x;S;T� � v�x;S;T� and u�x;S; t� � v�x;S; t�UO�xg�, for x large, uni-
formly in S and t. Then uU v on D.
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The precise arguments used in the general proof of uniqueness of viscosity
solutions for second order non-linear partial di¨erential equations are rather
lengthy and can be found in Ishii and Lions (1990) or in the User's Guide by
Crandall, Ishii and Lions (1992). In the context of HJB equations arising in
stochastic optimization problems of portfolio management, such uniqueness
proofs can be found in Zariphopoulou (1989), (1994) and Du½e and
Zariphopoulou (1993). Below, we only present the main steps of the proof
and refer the technically oriented reader to Theorem 4.2 of Du½e and
Zariphopoulou (1993).

We consider two functions u and v which have the desired properties and
satisfy the appropriate growth conditions as stated in the assumptions of the
theorem. The function u is a viscosity subsolution of (3.9) on D and v is a
viscosity supersolution of (3.9) in D.

Next, we consider an arbitrary constant m > 0, we de®ne the func-
tion Fm�y; t� � u�y; t� ÿ v�y; t� ÿm�T ÿ t� and we look at sup

�y; t� AD

Fm�y; t�.
Clearly, if sup

�y; t� AD

Fm�y; t� occurs at t � T for all m > 0, then the comparison

follows from using that u�y;T� � v�y;T� and passing to the limit as m # 0. It
remains to investigate if the comparison holds for the other case, i.e. in the
case that there exists m > 0 with sup

�y; t� AD

Fm�y; t� > 0 and the maximum

occurs at a point �y0; t0� A D such that t0 < T . We are going to establish that
this case cannot occur. To this end, we consider the function ~u�y; t� �
u�y; t� ÿm�T ÿ t� and we de®ne for y � �x;S�, z � �x; S � with x; x;S; S A
�0;�y�, the function

f�y; z; t� � zÿ y

d
ÿ 4h

��� ���4�y�x� S�e �m�T ÿ t�

where h A R2, e A �g; 1� and y; d are positive constants.
From the growth assumptions on u and v, the de®nition of ~u and the role

of m, we get that the maximum of c�y; z; t� � ~u�y; t� ÿ v�z; t� ÿ f�y; z; t�
occurs at a point, say �~y; ~z; ~t� that converges to �y0; t0� as d; y # 0 and khk # 0.
Using a straightforward variation of the arguments used in Theorem 4.2 of
Du½e and Zariphopoulou (1993) we get ± after tedious but routine calcu-
lations ± that mU 0 which is a contradiction. Note that the HJB equation
studied in Du½e and Zariphopoulou (1993) has a similar structure to (3.20),
(3.21) and (3.22) and the necessary calculations are explicitly outlayed in
Theorem 4.2 of their paper.

4. Closed form solutions of the HJB equation

In this section, we derive closed form solutions for the value function and the
optimal policies. We establish that the value function can be written as

u�S; y; t� � 1

g
xgv�S; t�d for d � 1ÿ g, with v solving a linear parabolic equa-

tion. The coe½cients of the latter depend on the market coe½cients and the
risk aversion 1ÿ g.
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In order to demonstrate the key calculations, we start with a formal anal-
ysis assuming that all the required derivatives of the relevant solutions exist.
The rigorous results together with necessary assumptions on the market
coe½cients are presented in subsequent theorems.

To this end, we continue with the construction of a candidate solution of
the HJB equation (3.9).

As it was discussed earlier, the homogeneity of the utility function together
with the fact that the state Xs and the control ps appear linearly in (2.3), sug-
gest that the value function must be of the form

u�x;S; t� � xg

g
V�S; t�: �4:1�

Direct substitution in the HJB equation (3.9) yields that V�y; t� solves

1

g
Vt � 1

2
s2�S�S2VSS � m�S�SVS

� �
� rV

�max
~p

1

2
�gÿ 1�s2�S�~p2V � s2�S�S~pVS � �m�S� ÿ r�~pV

� �
� 0 �4:2�

together with the terminal and boundary conditions

V�S;T� � 1 and V�0; t� � erg�Tÿt�: �4:3�

Note that the control ~p corresponds
p

x
with p being the control variable

appearing in (3.9).
We now apply, formally, the ®rst order conditions in (4.2). Observe that

the maximum over ~p in (4.3) is well de®ned because 0 < g < 1 and one has
that V�S; t� > 0 (see Proposition 3.1). We have that the maximum is achieved
at

~p��S; t� � s2�S�SVS�S; t� � �m�S� ÿ r�V�S; t�
�1ÿ g�s2�S�V�S; t� : �4:4�

Substituting the above form of ~p��S; t� in (4.2) yields that V must solve

1

g
Vt � 1

2
s2�S�S2VSS � m�S�SVS

� �
� rV � ��m�S� ÿ r�V � s2�S�SVS�2

2�1ÿ g�s2�S�V � 0:

Expanding the quadratic term in the above equation and rearranging terms
gives

Vt � 1

2
s2�S�S2VSS � m�S�S � g�m�S� ÿ r�S

�1ÿ g�
� �

VS

� rg� g�m�S� ÿ r�2
2�1ÿ g�s2�S�

" #
V � gs2�S�S2

2�1ÿ g�
V 2

S

V
� 0: �4:5�

286 T. Zariphopoulou



We now make the following transformation4. We let

V�S; t� � v�S; t�d �4:6�
for a parameter d to be determined. Di¨erentiating yields

Vt � dvtv
dÿ1; VS � dvSvdÿ1; VSS � dvSSvdÿ1 � d�dÿ 1�v2

Svdÿ2:

Substituting the above derivatives in (4.5) gives

dvtv
dÿ1 � 1

2
s2�S�S2dvSSvdÿ1

� 1

2
s2�S�S2d�dÿ 1�v2

Svdÿ2 � m�S�S � g�m�S� ÿ r�S
�1ÿ g�

� �
dvSvdÿ1

� rg� g�m�S� ÿ r�2
2�1ÿ g�s2�S�

" #
vd � gs2�S�S2d2v2

Sv2�dÿ1�

2�1ÿ g�vd
� 0

which in turn implies that v solves the quasilinear equation

vt � 1

2
s2�S�S2vSS � m�S�S � g�m�S� ÿ r�S

�1ÿ g�
� �

vS

� 1

d
rg� g�m�S� ÿ r�2

2�1ÿ g�s2�S�

" #
v� s2�S�S2

2

v2
S

v
�dÿ 1� � g

1ÿ g
d

� �
� 0:

The above expression indicates that if we choose the parameter d to satisfy

d � 1ÿ g �4:7�
then, equation (5) becomes a linear parabolic di¨erential equation. In fact, if d
satis®es (4.7) then v solves

vt � 1
2 s2�S�S2vSS � �m�S�S � c�S��vS � k�S�v � 0 �4:8�

with

v�S;T� � 1 and v�0; t� � e�rg=�1ÿg���Tÿt�: �4:9�
The functions c�S� and k�S� are given in terms of the market coe½cients,

c�S� � g�m�S� ÿ r�S
�1ÿ g� �4:10�

k�S� � g

1ÿ g
r� �m�S� ÿ r�2

2�1ÿ g�s2�S�

" #
: �4:11�

4 This novel transformation was ®rst introduced in Zariphopoulou (1999a).
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We will refer to d as the distortion power.
Observe that, d coincides with the Risk Aversion coe½cient of the utility

function. Also, notice that if 0 < g < 1, then k�S� > 0 and under appropriate
regularity and growth conditions, one expects, through the Feynman-Kac
formula, the stochastic representation

v�S; t� � ~E exp

�T

t

g

1ÿ g
r� �m�

~Ss� ÿ r�2
2s2� ~Ss��1ÿ g�

" #
ds

�
~St � S

" #
�4:12�

where the process ~Ss, tU sUT solves

d ~Ys � �m� ~Ss� ~Ss � c� ~Ss�� ds� s� ~Ss� ~Ss d ~Ws: �4:13�
The process ~Ws is a standard Brownian motion on a probability space
�W;G;Q� and ~E is the expectation with respect to Q. Observe that the above
stochastic di¨erential equation is similar to (2.2) but with a modi®ed drift.

From all the above we see that the value function u is expected to be
represented in the form

u�x;S; t� � xg

g
v�S; t�1ÿg �4:14�

or, alternatively,

u�x;S; t� � xg

g
~E exp

�T

t

g

1ÿ g
r� �m�

~Ss� ÿ r�2
2�1ÿ g�s2� ~Ss�

" #
ds

�
~St � S

" # !1ÿg

�4:15�
with ~Ss solving (4.13).

Using (4.4) and the representation formula (4.14) for the value function,
one obtains the following simpli®ed expression for the optimal feedback port-
folio function

p��x;S; t� � SvS�S; t�
v�S; t� �

1

1ÿ g

m�S� ÿ r

s2�S�
� �

x: �4:16�

From classical arguments in stochastic control theory, one recovers the
optimal portfolio process via P �

s � p��X �s ;Ys; s� for tU sUT , where p� is as
in (4.16) and the optimal wealth X �s is given by (2.3) with the optimal process
P �

s being used.

The following theorem provides a veri®cation result for the value function.

Theorem 4.3: The value function u is given by u�x;S; t� � xg

g
v�S; t�1ÿg where v

is the unique viscosity solution of (4.8) and (4.9).

Proof: Applying the results of Ishii and Lions (1991) one easily gets that
equation (4.8) has a unique viscosity solution satisfying the boundary and
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terminal conditions (4.9). As a matter of fact, one can show (Lions (1983))
that v admits the stochastic representation (4.12). From (4.12) and the

uniform bound on the risk-premium term
m�S� ÿ r

s2�S� (see (3.8)) one gets that

v�S; t�U el�Tÿt� with l � rg

1ÿ g
� gM 2

2�1ÿ g�2.

Applying once more the de®nition of viscosity solutions to F �x;S; t�1
xg

g
v�S; t�1ÿg, one veri®es easily that F is a viscosity solution of the HJB equa-

tion for x > 0, S V 0 and t A �0;T�. Moreover, the fact that F is a viscosity
subsolution at the boundary points �0;S; t� for S V 0, t A �0;T� is a direct
consequence of the in®nite slope Fx�x;S; t� as x! 0. Therefore F is a con-
strained viscosity solution of the HJB equation and it also belongs to the
appropriate class of solutions in which uniqueness has been established. Be-
cause the value function belongs to the same class, we readily conclude that

u�x;S; t� � F �x;S; t�1 xg

g
v�S; t�1ÿg.

Remark 4.1: Observe that as S ! 0, the equation (4.8) ``converges'' to

vt � rg

1ÿ g
v � 0 which yields the solution v�0; t� � e�rg=�1ÿg���Tÿt� recovering

the boundary condition (4.9).

5. Investment models with intermediate consumption

In this section we analyze the optimal investment model when intermediate
consumption is allowed. Models of optimal consumption may allow for either
in®nite or ®nite trading horizon. In the case of in®nite horizon trading, the
investor does not acquire any utility from his wealth holdings in that his utility
depends only on the consumption stream. If trading takes place in a ®nite
horizon, the agent maximizes his utility function from intermediate consump-
tion as well as his bequest utility from terminal wealth.

To preserve consistency with the optimal portfolio management model
previously studied, we introduce and analyze the investment/consumption
model in the case that the trading horizon is ®nite. We assume that the indi-
vidual preferences are modelled through a Constant Relative Risk Aversion
utility and a bequest function of the same risk aversion. Employing a similar
transformation as in the absence of intermediate consumption, we obtain the
value function and the optimal policies in closed form. The solutions are pro-
vided in terms of the ``distorted'' solution of an underlying equation as it was
the case in (4.8). The fundamental di¨erence when intermediate consumption
is allowed is that the underlying equation turns out to be an inhomogeneous
as opposed to the homogeneous linear parabolic partial di¨erential equation
(4.8).

Below we introduce the optimal investment and consumption model and
we derive the closed form solutions. We choose not to present any rigorous
results because most of the arguments needed to establish that the value
function is the unique constrained viscosity solution of the relevant HJB
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equation follow along the lines of Theorems 4.1 and 4.2 of Du½e and
Zariphopoulou (1993) as well as Theorems 3.1 and 3.2 herein. Once the
uniqueness property is established, the veri®cation follows readily if a smooth
candidate solution is available.

To this end, we consider an optimal investment/consumption model of a
single agent who manages his portfolio by investing in a bond and a stock
account. The processes that the prices of the primary securities follow are the
same as before solving (2.1) and (2.3).

The investor rebalances his portfolio dynamically by choosing at any time
s, for s A �t;T � and 0U tUT , the amounts p0

s and ps to be invested
respectively in the bond and the stock accounts. He also consumes out of his
bond holdings at a rate Cs. His total wealth satis®es the budget constraint
Xs � p0

s � ps and the stochastic di¨erential equation

dXs � rXs dt� �m�Ss� ÿ r�ps dsÿ Cs ds� s�Ss�ps dWs

Xt � xV 0 0U tU sUT :

�
�5:1�

The above state equation follows from the budget constraint and the dynam-
ics in (2.1) and (2.2). The wealth process must also satisfy the state constraint

Xs V 0 a:e: tU sUT : �5:2�

The pair of control processes �ps;Cs� is said to be admissible if it is
Fs-progressively measurable, where Fs � s�Wu; tU uU s�, satis®es the inte-

grability conditions E
� T

t
Cs ds < �y and E

� T

t
s�Ss�2p2

s ds < �y and, is
such that the above state constraint is satis®ed. We denote by A the set of
admissible policies.

The investor's objective is to maximize his expected utility

J�x;S; t; p;C� � E

�T

t

U�Cs� ds�F�XT�=Xt � x;St � S

� �
; �5:3�

with Xs, Ss given in (5.1) and (2.2) respectively.
The value function of the investor is

v�x;S; t� � sup
�p;C� AA

J�x; y; t; p�: �5:4�

The utility function U : �0;�y� ! �0;�y� and the bequest function F :
�0;�y� � R! �0;�y� are of the form

U�c� � 1

g
cg and F�x� � 1

g
xg: �5:5�

As it was the case in the model of Section 2, the special form of the above
functions together with the fact that the state equation (5.1) is linear with re-
spect to the portfolio and the consumption control processes, suggest that the

value function can be written in the ``separable form'' v�x;S; t� � xg

g
h�S; t�.

The next goal is to determine the function h.
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We impose the same assumptions on the coe½cients as in the no
consumption case. These assumptions imply therefore that if St � 0,
Ss � 0 for tU sUT which in turn yields the deterministic wealth
equation d ~Xs � r ~Xs dsÿ Cs ds. The solution to the deterministic control

problem C�x; t� � sup
CV0

�1

t

C g
s

g
ds, with the state constraint ~Xs V 0,

tU sUT , can be easily computed and it is given by

C�x; t� � 1� 1ÿ g

g

� �
e�rg=�1ÿg���Tÿt� ÿ 1ÿ g

rg

� �1ÿg

. Therefore

v�x; 0; t� � xg

g
1� 1ÿ g

g

� �
e�rg=�1ÿg���Tÿt� ÿ 1ÿ g

rg

� �1ÿg

:

Next, we state the main result and we outline the relevant computations.

Proposition 5.1: i) The value function v is given by

v�x;S; t� � xg

g
h�S; t� �5:6�

where

h�S; t� � w�S; t�1ÿg

with w : R� � �0;T � ! R� being the solution of

wt � 1

2
s2�S�S2wss � m�S�S � g�m�S� ÿ r�S

�1ÿ g�
� �

ws

� g

1ÿ g
r� �m�S� ÿ r�2

2s2�S��1ÿ g�

" #
w� 1 � 0 �5:7�

w�S;T� � 1 and w�0; t� � 1� 1ÿ g

rg

� �
e�rg=�1ÿg���Tÿt� ÿ 1ÿ g

rg
: �5:8�

ii) The optimal investment policy P �
s is given in the feedback form

P �
s � p��X �s ;Ss; s�, tU sUT , where the function p� : R� � �0;T � ! R is

de®ned by

p��x;S; t� � S
wS�S; t�
w�S; t� �

1

1ÿ g

m�S� ÿ r

s2�S�
� �

x �5:9�

iii) The optimal consumption policy C �s is given in the feedback form
C �s � c��X �s ;Ss; s�, tU sUT , where the function c� : R� � �0;T� ! R� is
de®ned by

c��x;S; t� � x

w�S; t� : �5:10�

We continue with the formal derivation of (5.6), (5.9) and (5.10).
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Following similar arguments as in the proof of Theorem 3.1 we can derive
the HJB equation associated with the optimal consumption problem presented
below

vt �max
p

1

2
s2�S�p2vxx � s2�S�SpvxS � �m�S� ÿ r�pvx

� �

� 1

2
s2�S�S2vSS � m�S�SvS � rxvx �max

CV0
ÿCvx � 1

g
C g

� �
� 0: �5:11�

Direct substitution of a candidate solution v�x;S; t� � xg

g
h�S; t� yields

1

g
hS � 1

2
s2�S�S2hSS � m�S�ShS

� �
� rh

�max
~p

1

2
�gÿ 1�s2�S�~p2h� s2�S�SphS � �m�S� ÿ r�~ph

� �

�max
~C V 0

ÿ ~Ch� 1

g
~C g

� �
� 0: �5:12�

Note that the controls ~p and ~C correspond, respectively, to
p

x
and

C

x
with p

and C being the control variables appearing in (5.11).
We now apply, formally, the ®rst order conditions. We have that the

maximum is achieved at

~p��S; t� � s2�S�ShS�S; t� � �m�S� ÿ r�h�S; t�
�1ÿ g�s2�S�h�S; t� �5:13�

or, in terms of �x;S; t�, at

p��x;S; t� � s2�S�ShS�S; t� � �m�S� ÿ r�h�S; t�
�1ÿ g�s2�S�h�S; t�

� �
x: �5:14�

Similarly, the maximum over ~C is achieved at

~C ��S; t� � h�S; t�1=�gÿ1� �5:15�

or, in terms of �x;S; t� at

C ��x;S; t� � xh�S; t�1=�gÿ1�: �5:16�

The equalities (5.13) and (5.15) follow from (5.11) and the ®rst order
conditions.

Using the form of ~p��S; t� and ~C ��S; t� in (5.12) yields

292 T. Zariphopoulou



1

g
ht � 1

2
s2�S�S2hSS � m�S�ShS

� �
� rh

� ��m�S� ÿ r�h� s2�S�ShS�2
2�1ÿ g�s2�S�h � 1ÿ g

g
hg=�gÿ1� � 0:

Expanding the quadratic term in the above equation yields

ht � 1

2
s2�S�S2hSS � m�S�S � g�m�S� ÿ r�S

�1ÿ g�
� �

hS

� rg� g�m�S� ÿ r�2
2�1ÿ g�s2�S�

" #
h� gs2�S�S

2�1ÿ g�
h2

y

h
� �1ÿ g�hg=�gÿ1� � 0: �5:17�

We now make the transformation

h�y; t� � w�y; t�d �5:18�

used in previous sections, with d being a constant to be determined. Sub-
stituting the derivatives of h in (5.17) gives

dwtw
dÿ1 � 1

2
s2�S�S2dwyywdÿ1

� 1

2
s2�S�S2d�dÿ 1�w2

ywdÿ2 � m�S� � g�m�S� ÿ r�
�1ÿ g�s�S�

� �
dwywdÿ1

� rg� g�m�S� ÿ r�2
2�1ÿ g�s2�S�

" #
wd � gs2�S�S2

2�1ÿ g�
d2w2

yw2�dÿ1�

wd

� �1ÿ g�wgd=�gÿ1� � 0

which in turn implies that v solves the quasilinear equation

wt � 1

2
s2�S�S2hSS � m�S�S � g�m�S� ÿ r�S

�1ÿ g�
� �

hS

� 1

d
rg� g�m�S� ÿ r�2

2�1ÿ g�s2�S�

" #
w� s2�S�S2

2

w2
y

w
�dÿ 1� � g

1ÿ g
d

� �

� �1ÿ g�
d

w�dr=�gÿ1��ÿ�dÿ1� � 0: �5:19�

The above expression indicates that if we choose the parameter d to satisfy

d � 1ÿ g �5:20�
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then, equation (5.19) becomes the inhomogeneous linear parabolic equation

wt � 1
2 s2�S�S2wSS � �m�S�S � c�S��wS � k�S�w� 1 � 0; �5:21�

where the coe½cients c�S� and k�S� are the same functions as in (4.10) and
(4.11), restated below for completeness

c�S� � g�m�S� ÿ r�S
�1ÿ g�

k�S� � g

1ÿ g
r� �m�S� ÿ r�2

2�1ÿ g�s2�S�

" #
:

Using (5.15) and (5.16) and the above representation formula, one obtains
the following simpli®ed expressions for the optimal feedback portfolio
functions

p��x;S; t� � wS�S; t�
w�W ; t� �

1

1ÿ g

m�S� ÿ r

s2�S�
� �

x: �5:22�

and the optimal feedback consumption rate

C ��x;S; t� � x

w�S; t� : �5:23�

From classical arguments in stochastic control, under enough regularity
one expects to recover the optimal portfolio and consumption processes via
P �

s � p��X �s ;Ys; s� and C �s � C ��X �s ;Ys; s� for tU sUT , where p�, C � and
Ys are as in (5.22), (5.23) and (2.3) respectively and the optimal wealth X �s is
given by (2.4) with the optimal process P �

s being used.

Observe that as S ! 0, the equation (5.21) ``converges'' to

wt � rg

1ÿ g
w� 1 � 0, which yields the solution

w�0; t� � 1� 1ÿ g

rg

� �
erg=�1ÿg��Tÿt� ÿ 1ÿ g

rg
recovering the boundary condition

(5.8).
Besides the case of non-linear stock dynamics, one could investigate the

optimal consumption/investment model when the stock price is a¨ected by a
non-perfectly correlated stochastic factor. Partial results for models without
intermediate consumption are presented in Zariphopoulou (1999a). When
intermediate consumption is allowed, preliminary work indicates that the
``reduced'' linear equation (5.8) becomes a reaction-di¨usion equation (see
Zariphopoulou (1999b)) in the case of di¨usion price processes and an integro-
di¨erential reaction-di¨usion equation (see Zariphopoulou (1999c)) when asset
prices are modelled as jump/di¨usions.
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