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Abstract

We study distorted survival probabilities related to risks in incomplete markets. The risks are modeled as diffusion processes,
and the distortions are of general type. We establish a connection between distorted survival probabilities of the original risk
process and distortion-free survival probabilities of new pseudo risk diffusions; the latter turns out to be diffusions with killing
or splitting rates related, respectively, to concave and convex distortions. The main tools come from the theories of stochastic
control, stochastic differential games, and non-linear partial differential equations. © 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Wang et al. (1997) propose axioms for prices (or, more generally, measures of risk) in a competitive insurance
market. The market is allowed to behave as if it is risk averse with respect to probability, but required to be risk
neutral in wealth. They show that, under their axioms, insurance prices in the market can be represented by the
expectation with respect to a distorted probability. Their work is closely related to the work of Yaari (1987) who
develops a theory of risk, parallel to expected utility theory, by modifying the independence axiom of Von Neumann
and Morgenstern (1944).

In Yaari’s theory, attitudes towards risks are characterized by a distortion applied to probability distribution
functions, in contrast to expected utility theory in which attitudes towards risks are characterized by a utility
function of wealth. Adistorted probabilityis a special case of anon-additive measure(Denneberg, 1994). One
can think of the distorted probability underlying market prices as a ‘risk neutral’ non-additive probability — a
non-additive version of a risk neutral probability in the theory of financial pricing. Thus, one can take a market
approach (Wang et al., 1997) or an individual approach (Yaari, 1987) and obtain the same pricing principle.

In work related to that of Wang et al. (1997), Chateauneuf et al. (1996) propose a set of axioms for pricing
financial risks. Under their axiomatic system, prices can be represented as the Choquet integral with respect to a
non-additive measure. Such a pricing rule can explain violation of put–call parity and the fact that parts of a security
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may sell at a premium to the underlying security. Jouini and Kallal (1995a,b), El Karoui and Quenez (1995), and
Artzner et al. (1998) develop similar pricing formulas or risk measurements infinancial markets with frictions.

Calculating prices of risky prospects as expected values with respect to distorted probabilities, therefore, has a
strong theoretical basis and a wide scope of applicability. Given the ever-growing sophistication and complexity
of financial claims and insurance plans, there is great need to extend the use of distorted probabilities todynamic
settings. This is the task we undertake herein; as a first-step, we concentrate on the case of stochastic risks modeled
as diffusion processes. We provide a complete characterization of the associated distorted survival probabilities
for general distortion functions. The methodology we develop comes from the theories of stochastic control and
non-linear partial differential equations, and it can be applied easily to other risk processes like, for example,
diffusion processes with jumps and general Levy processes.

In this work, we do not look yet at the fundamental problem of dynamic pricing rules via distorted probabilities,
rather, we concentrate on developing technical tools and alternative characterizations of distorted probabilities.
We show that when the distortion is a power function with exponent sayγ , then the distorted probability of the
original risk process can be interpreted as a non-distorted survival probability of a new underlying pseudo-risk
process. In particular, if the powerγ ∈ (0, 1) (concave distortions), the new underlying process is a diffusion
with killing and if γ > 1 (convex distortions), the new underlying process is a branching diffusion process. In the
case of a general distortion, the pseudo-risk process is a branching diffusion with a combination of ‘killing’ and
‘splitting’ characteristics. We expect that these characterizations will shed light on questions related to the valuation
of insurance risks in a dynamic framework. Moreover, we expect that this approach will lead to a unified theory
of valuation, especially for markets with unhedgeable risks and other frictions. We plan to analyze these valuation
problems in subsequent work.

In Section 2, we briefly review the axioms of Wang et al. (1997) and provide a representation theorem for the
pricing functional (or risk measure) in the static case. In Section 3.1, we characterize the distorted survival probability
of a diffusion process when the distortion is a power function, while in Section 3.2, we consider general distortions.
In Section 4, we present examples of a distorted probability when the risk diffusion process follows a geometric
Brownian motion and the distortion is either a power function or a piecewise linear function.

2. Axiomatic foundation of measuring risk: the static setting

Fix a probability space (�, F, Pr), in which� is the space of outcomes,F a σ -algebra of events, and Pr is a
probability measure on (�, F). A risk X is a random variable on (�, F, Pr); that is,X is aF-measurable function
from the space of outcomes� to the real numbers. One can think ofX(ω) as the monetary gain or loss that one
incurs if the outcome isω ∈ �.

Let X denote the set of risks. One can view a risk measure as a functional RM fromX to the extended real
numbersRRR:

RM : X → RRR = [−∞, ∞],

in which we allow an insurance risk to have an infinite measure of risk.
Next, we summarize the axioms for a functional RM that imply that RM can be represented as anexpected value

with respect to a distorted probability. See Wang et al. (1997) for arguments that support these axioms.

Axiom 2.1.
(a) Independence. The measure of risk depends only on the risk’s distribution.
(b) Monotonicity. If X, Y∈ X, are such thatX(ω) ≤ Y (ω), for all ω ∈ �, then RM[X] ≤ RM[Y ].
(c) Comonotonic additivity. Let X, Y∈ X be comonotonic; then, RM[X + Y ] = RM[X] + RM[Y ], in which X and

Yare said to be comonotonic if there exist non-decreasing real-valued functionsf1 andf2 and a random variable
Z∈ X, such thatX = f1(Z) andY = f2(Z).
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(d) No unjustified risk loading. Let 1� represent the degenerate random variable that equals 1 with probability one,
then RM[1�] = 1.

(e) Continuity.Let X∈ X anda be a real number; then,

lim
a→0+

RM[max(X − a, 0)] = RM[X] if X ≥ 0,

lim
a→∞ RM[min(X, a)] = RM[X],

and

lim
a→−∞ RM[max(X, a)] = RM[X].

Notation 2.2. Denote the decumulative distribution function(ddf) of X by SX: SX(t) ≡≡ Pr(X> t), t ∈ R.

Wang et al. (1997) prove the following representation theorem for RM, which essentially follows from Yaari’s
representation theorem applied to not necessarily bounded random variables.

Theorem 2.3. If the measure of riskRM : X → RRR = [−∞, ∞], satisfies Axioms2.1 (Independence, Monotonicity,
Comonotonic additivity, No unjustified risk loading, and continuity), then there exists a non-decreasing function g:
[0, 1]→ [0, 1] such that g(0)= 0, g(1)= 1, and

RM[X] =
∫

X d(g ◦ Pr) =
∫ 0

−∞
{g [SX(t)] − 1} dt +

∫ ∞

0
g [SX(t)] dt. (2.1)

Further, if X contains all the Bernoulli random variables, then g is unique. In this case, for p∈ [0,1], g(p) is given
by the risk measure of a Bernoulli(p) risk.

The integral in (2.1) is a special case of the Choquet integral for non-additive measures. See Denneberg (1994)
for further background in non-additive measure theory and Wang (1996) for more details concerning the premium
principle given by (2.1).

Definition 2.4. A non-decreasing functiong: [0, 1]→ [0, 1] such thatg(0) = 0 andg(1) = 1, is called a distortion
andg ◦ Pr is called a distorted probability.

Wang et al. (1997) also argue for a final axiom from which it follows thatg is a power function. This final axiom
is added in order to avoid a particular arbitrage opportunity.

Axiom 2.5. Let X = IY be a compound Bernoulli random variable, withX, I,andY∈ X, where the Bernoulli
random variableI is independent of the random variableY = X|X > 0. Then, RM[X] = RM[I ]RM[Y ].

Corollary 2.6. If RM is as assumed in Theorem2.3and if RM additionally satisfies Axiom2.5, then there exists
γ > 0, such thatg(p) = pγ , for all p ∈ [0, 1].

In what follows, we allowX to follow a stochastic process, and we characterize the distorted probability ofX at
a timeT given a value forX at timet.

3. Yaari’s risk measures in a stochastic setting

In this section, we look at the case ofdynamic risksthat are modeled as stochastic processes, and we provide
a completestochastic variational representationfor the associated distorted survival probabilities. The processes
that characterize the risks are assumed to be diffusion processes with their generator operator known to us.
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We consider the dynamic analog of the static survival probability function that was presented in the previous
section. We look at the conditional survival probability function at expiration timeT, given the state at initial time
t. By using stochastic control methods, we characterize the distorted probability as the conditional expectation of
a characteristic function of a new risk process, loaded with arisk factor. In the example of Section 4.1 (geometric
diffusion with power distortion), we find that this risk factor can be written in terms of thehazard functionof
the normal distribution. The underlying process in the new setting is not the original risk process but a new
diffusion risk process withmodified drift; the latter depends on the shape of the distortion and the original diffusion
parameters.

In the case ofconcavepower distortion functions, we establish that the distorted survival probability function can
be viewed as a distortion-free survival probability function of a new risk process. This new risk process turns out to
be akilled diffusion whose drift andkilling rate are influenced by the form of the distortion. When the distortion
is a convexpower function, the new risk process is associated with abranchingdiffusion. Finally, we show that
general distortionfunctions correspond to branching diffusions with a combination of ‘killing’ and ‘splitting’
characteristics.

This phenomenon is not only observed for the case of diffusion processes. As a matter of fact, when the risks are
modeled as jump processes, the authors have established that the new risk process turns out to be a jump process
with jumps of modified intensity (Young and Zariphopoulou, 1998).

We start with a brief review of fundamental results from the theory of stochastic processes. In order to make the
analysis more tractable, we work with the one-dimensional case. For the case of multi-dimensional problems, the
analysis can be carried out with similar arguments, but we choose not to do so here for the sake of presentation.

We consider a diffusion processXt , which will ultimately be related to the price of a particular asset or liability.
We assume that the state processXt solves the stochastic differential equation

dXt = b(Xt , t) dt + σ(Xt , t) dWt, X0 = x, x ∈ RRR (3.1)

for t ∈ [0, T ]. Wt is a standard Brownian motion defined on the probability space (�, F, Pr). We denote byFt the
augmentation of theσ -algebra generated by the realizations of the Brownian motion up to timet.

Assume that thedrift andvolatility coefficientsb(x, t) andσ (x, t) satisfy the usual growth and Lipschitz conditions

|b(x, t) − b(y, t)| + |σ(x, t) − σ(y, t)| ≤ K |x − y| , (3.2)

|b(x, t)|2 + |σ(x, t)|2 ≤ K(1 + |x|)2 (3.3)

for some positive constantK. These conditions guarantee that a unique solution to Eq. (3.1) exists (Gihman and
Skorohod, 1972, Chapter 6). Moreover, we assume that the diffusion process does not ‘degenerate’, that is, for all
x∈ R and for allt ∈ [0,T], there is anε > 0, independent of the variablesx andt, such that

σ 2(x, t) > ε. (3.4)

We will use the uniform ellipticity condition (3.4) in subsequent arguments.

Remark 3.1. Even though some of the above, as well as subsequent conditions, can be refined by the so-called
local conditions, we do not try to state the weakest assumptions. We concentrate mostly on the methodology we
develop to further explore the nature of distorted probabilities. For a thorough study of diffusion processes and
their connection to parabolic partial differential equations, we refer the reader to the books of Friedlin(1985)and
Fleming and Soner(1993).

Remark 3.2. In a wide range of applications, the associated risk processes violate the ellipticity condition(3.4).
In this case, even though the analysis is more delicate, most results can be modified to incorporate possible
degeneracies. The latter require us to relax the notion of related classical solutions and to work with weak ones
(see Theorem3.7).
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Next, we consider the conditional survival probability function, also called a transition probability,

u(x, t; y, T ) = Pr(XT > y|Xt = x), (3.5)

in which y is a fixed parameter,T is a fixed horizon, andx∈ R. Classical elements from the theory of diffusion
processes and linear partial differential equations yield the following result.

Theorem 3.3. Under assumptions(3.2), (3.3), and (3.4),we have that u∈ C2,1(R × [0,T)), u(x, t) > 0 for
0 < t < T , and u solves the backward(in time) parabolic problem

ut + (1/2)σ 2(x, t)uxx + b(x, t)ux = 0, u(x, T ; y, T ) =
{

1 if x > y,

0 if x ≤ y.
(3.6)

See, for example, Fleming and Soner (1993, Chapter 6).

Example 3.4. In the case of diffusion processes with linear coefficients, the survival probability function can be
calculated explicitly. Indeed, suppose that the risk processXt solves the linear equation dXt = bXt dt + σXt dWt ,
with b andσ constants,σ > 0. Direct calculation yields that

u(x, t; y, T ) = Pr(XT > y | Xt = x ) = 8

[−ln(y/x) + (b − σ 2/2)(T − t)

σ
√

T − t

]

for x > 0 andy > 0, in which8 is the cumulative distribution function of the standard normal. Also, one can easily
verify thatu solves

ut + (1/2)σ 2x2uxx + bxux = 0.

Example 3.5. In an insurance setting, a diffusion processXt > 0 might represent the random loss to an insurance
company, while

∫ ∞
0 u(x, t; y, T ) dy is the expected loss at timeT, given that the loss isx at timet. Our work in

Section 2, argues that
∫ ∞

0 g [u(x, t; y, T )] dy, in which g is a concave distortion, is ameasure of the riskiness
of XT conditional on the informationXt = x. Also, see Wang et al. (1997) and Artzner et al. (1998). Also,Xt

might represent the value of the assets of an insurance company; in that case, a convex distortion would be more
‘conservative’ in valuing the asset. Finally, one might consider the stochastic loss random variable of liabilities
minus assets; for example, see Norberg (1997). The work in this paper will aid an actuary in calculating these risk
measures when the risk process follows a diffusion process. In insurance, the claim process is often modeled as a
jump process, and that is the subject of our future research.

Example 3.6. The survival probability functionu plays an important role in the valuation theory of financial
derivatives. In fact, consider the case of a European call option that is a contingent claim written on an under-
lying stock with valueSt at time t, expiration at timeT, and strike priceK. The fundamental pricing problem
amounts to determining thefair price of the claim, which precludes arbitrage opportunities, as well as to con-
struct the so-calledhedging portfolio. The main arguments involve transforming the original stock price pro-
cess to the so-called risk-neutral process, which, in the case of diffusion prices, turns out to be the solution
of

dSt = r(t)St dt + z(St , t) dWt. (3.7)

The coefficientsr(t) andz(S, t) are the riskless interest rate and the volatility function, respectively. It turns out
that the stock account component of the dynamic hedging portfolio is related to the so-called delta processξ t , given
by

dξt = [r(t)ξt + z1(ξt , t)z(ξt , t)] dt + z(ξt , t) dWt
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in which z(·, t) is as in (3.7) andz1(·, t) represents the first partial derivative with respect to the spatial argument.
In fact, the number of stock shares used for replication is given by the delta process of the call (Black and Scholes,
1973). The delta of the call represents the ‘probability of finishing in the money’, or in other words, the survival
probability of the processξ t to ‘finish’ above the strike priceK (See Grundy and Wiener, 1998):

δ(S, t) = Pr(ξt > K|ξt = S).

As discussed earlier, a distorted probability function might turn out to be a very important index for valuing
dynamic risks in markets with frictions. Before we attack this fundamental pricing problem, we undertake the task
of analyzing and characterizing the distorted survival probability functions. Our ultimate goal is to understand how
the distortion of the survival probability affects the stochastic structure of the original underlying risk process. We
will be looking for a ‘pseudo’ risk process, say,X̃t , such that the distorted survival probability of the original process
Xt can be related to the survival probability of the new processX̃t , that is,

g (Pr[XT > y|Xt = x]) = Pr
[
X̃T > y|X̃t = x

]
= E

[
111{X̃T >y}|X̃t = x

]
, (3.8a)

or, in general,

g (Pr[XT > y | Xt = x ]) = E
[
111{X̃T >y}F(X̃T )|Xt = x

]
, (3.8b)

in which 111{X̂T >y} is the indicator function of the set{X̂T > y}, E is the expectation operator with respect to the
measure Pr, andF is astochastic risk load factor.

We find such a characterization rather useful and interesting for several reasons. From the technical point of
view, it shows a direct connection between non-linear probability functionals and linear ones. From the theoretical
point of view, this characterization suggests that pricing risks in markets with frictions might possibly be associated
with ‘friction-free’ risks of new pseudo-price processes. Note that there is evidence that distorted probabilities can
accommodate unhedgeable risks inherent from incomplete markets, (see for example, Chateauneuf et al., 1996;
Wang et al., 1997).

We carry out the analysis by studying the partial differential equation that the distorted probability function
solves. By using elements from the theory of stochastic control, we are able to identify the distorted probability
as the solution of a stochastic control problem; these solutions are known asvalue functions. We are then able to
associate the optimally controlled process with a pseudo-underlying processX̃t , as denoted in (3.8a) and (3.8b).

We first consider the special case of apower distortion. The reason we concentrate on the case of power distortions
is twofold. First, this case is easier to analyze and to describe effectively the stochastic control methods used to
understand the stochastic nature of the distorted probabilities. Second, Wang et al. (1997) motivate using power
distortions from the point of view of conditional risks; see Axiom 2.5. Moreover, see Wang and Young (1998) for
a strong link between the power distortion and the Bayes’ rule for updating non-additive set functions.

In Section 3.2, we study the case of a general distortion. In this case, the aforementioned stochastic control
problem turns out to be azero-sum stochastic differential game. When we restrict ourselves to the class ofconcave
(respectively, convex) power distortion functions, the underlying stochastic control problem turns out to be amin-
imization(respectively, maximization) problem of some expected discounted payoff. The intriguing consequence
of these results is that, in the case ofconcave(respectively, convex) distortions, the controlled processX̃t is related
to akilled (respectively, branching) diffusion process. Therefore,the distorted survival probability of the original
process can be interpreted as the survival probability of the new killed(resp. branching) diffusions.

3.1. Power distortions and their associated HJB equations

3.1.1. The concave case
We consider the distorted probability function

v(x, t) = [Pr(XT > y |Xt = x )]γ = u(x, t)γ (3.9)
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for some 0< γ < 1. Direct differentiation and (3.6) yield thatv solves

vt + 1

2
σ 2(x, t)vxx + b(x, t)vx = −1 − γ

γ
σ 2(x, t)

v2
x

2v
(3.10)

with terminal condition

v(x, T ) =
{

1
0

if x > y,

if x ≤ y.
(3.11)

We observe that the non-linear term−(v2
x/2v) can be expressed in terms of an auxiliary control variable as

follows:

− v2
x

2v
= min

α
[(1/2)α2v + αvx ].

Therefore, Eq. (3.10) becomes

vt + (1/2)σ 2(x, t)vxx + b(x, t)vx = min
α

[(1/2)δα2σ 2(x, t)v + δασ 2(x, t)vx ] (3.12)

with δ = (1 − γ )/γ .
We continue with a formal discussion regarding the interpretation of the distorted probability as a solution

of Eq. (3.12). First observe that Eq. (3.12), together with the appropriate terminal condition as in (3.11), is the
Hamilton–Jacobi–Bellman (HJB) equation of a stochastic control problem described below.

Consider the controlled diffusion processX̂s that solves the stochastic differential equation

dX̂s =
[
b(X̂s, s) − δαs(X̂s)σ

2(X̂s, s)
]

ds + σ(X̂s, s) dWs (3.13)

with X̂t = x, t ≤ s ≤ T . The processWs and the coefficientsb(x, s) andσ (x, s) are the same as in (3.1). The
processαs will play the role of an admissible control process that is assumed to beFs-progressively measurable,
whereFs is the complete filtration generated by the Brownian motion, and to satisfy the integrability condition
E[

∫ T

t
|αs | ds] < ∞. We denote the set of admissible policiesαs by A. In addition to affecting the drift of the state

processX̂s , αs affects the discount factor of the expected cost functional given by

J (x, t; α) = E

[
111{X̂T >y} exp

(
−

∫ T

t

1

2
δσ 2(X̂s, s)α

2
s ds

) ∣∣∣X̂t = x

]
, (3.14)

in which E is the expectation with respect to the original measure Pr.
Next, we define the value function

V (x, t) = inf
α∈A

J (x, t; α), (3.15)

for x∈ R, andt ≥ 0. By using standard results from the theory of stochastic control, we see that the above value
function solves the same equation as the distorted survival probability functionv(x, t), namely Eq. (3.10), together
with the terminal condition (3.11). Therefore, if we know that there exists auniquesolution of (3.10) and (3.11),
then it would follow that the distorted survival probabilitycoincideswith the value function of the above stochastic
control problem. Recent advances in the theory of non-linear partial differential equations enable us to provide
a unique characterization of the solution of (3.10) and (3.11) in a very rich class ofweaksolutions, namely the
viscosity solutions. This unique characterization will be used in turn to identify the value function with the distorted
probability as we demonstrate in Theorem 3.7 below.

Viscosity solutions were introduced by Crandall and Lions (1983) for first-order non-linear partial differential
equations and were later generalized for the second-order case by Lions (1983a,b); see also Ishii and Lions (1990).
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Viscosity solutions of non-linear partial differential equations are now routinely used in non-linear problems related
to stochastic control, and in particular, in a wide range of applications of financial models with unhedgeable risks,
which is the case in markets with transaction costs, stochastic income, or trading constraints. For these models,
viscosity solutions were first employed by the second author in Zariphopoulou (1992, 1994) and Davis et al. (1993).
We provide the definition of viscosity solutions in Appendix A.

Theorem 3.7. The value function V, given in(3.15),is the unique bounded viscosity solution of the HJB equation
(3.12) satisfying the terminal condition(3.11).

The proof of Theorem 3.7 follows from standard arguments well known in viscosity theory, and therefore, we
omit it.

We are now ready for one of our main results.

Theorem 3.8.
1. The distorted survival probability function v(x, t; y, T) identically equals the value function V.
2. The optimal policyα∗

s is given in feedback form by

α∗
s = −Vx(X

∗
s , s)

V (X∗
s , s)

= −vx(X
∗
s , s)

v(X∗
s , s)

= −γ
ux(X

∗
s , s)

u(X∗
s , s)

(3.16)

for t ≤ s≤ T, in which X∗
s is the optimally controlled risk process solving

dX∗
s =

[
b(X∗

s , s) + (1 − γ )σ 2(X∗
s , s)

ux(X
∗
s , s)

u(X∗
s , s)

]
ds + σ(X∗

s , s) dWs, (3.17)

and V, u, b, andσ are given in(3.15), (3.5), (3.1),and(3.1),respectively.

Proof.
1. From Theorem 3.7, we have that the value functionV is the unique bounded viscosity solution of (3.12)

that also satisfies (3.11). On the other hand, the distorted survival probability function is a smooth function
(C2,1(R × [0,T))) that satisfies (3.10); therefore,v is automatically a viscosity solution of (3.12) satisfying the
terminal condition (3.11). Thus,v coincides withV by the uniqueness of viscosity solutions.

2. The first-order conditions in the HJB equation (3.12) yield that

−Vx(Xs, s)

V (Xs, s)
= −vx(Xs, s)

v(Xs, s)
= arg min

α

{
1

2
α2V + αVx

}
.

Also, observe thatvx/v = γ (ux/u). By using the regularity ofV together with a standard verification (for
example, Fleming and Soner, 1993, Chapter 4), we establish the optimality of the processα∗

s , t ≤ s ≤ T . �

The above theorem yields a very useful representation of the value function in terms of the original survival
probability and the distortion factorγ . In fact, part (2) of Theorem 3.8 says that

V (x, t) = E

[
111{X∗

T >y} exp

(
−

∫ T

t

k(X∗
s , s) ds

)
|X∗

t = x

]
(3.18)

with the ‘risk load’ factork(x, t) ≥ 0 given in functional form by

k(x, t) = 1

2
γ (1 − γ )σ 2(x, t)

(
ux(x, t)

u(x, t)

)2

. (3.19)
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On the other hand, the HJB equation (3.12), together with (3.9) and (3.16), becomes the linear parabolic
equation

Vt + 1

2
σ 2(x, t)Vxx +

[
b(x, t) + (1 − γ )σ 2(x, t)

ux(x, t)

u(x, t)

]
Vx = k(x, t)V (3.20)

with terminal condition as in (3.11) and the risk load factor as in (3.19). Note that ifk ≡ 0, the above equation gives
us the survival probability function of the optimally controlled processX∗

t . The case for whichk is not identically
zero corresponds to a new diffusion process with killing, as the next result shows.

Proposition 3.9. Consider the processX∗
s solving (3.17)with X∗

t = x, t ≤ s≤ T, and the factor k(x, t) as in
(3.19).Let Z be an independent and exponentially distributed random variable with mean one. Define the random
time by

τ1(x, t) = inf

{
s ≥ t :

∫ s

t

k(X∗
u, u) du ≥ Z

}
, (3.21)

and define the process Ms by

Ms =
{

X∗
s ,

A,

t ≤ s < τ1(x, t),

s > τ1(x, t),
(3.22)

in which A is an isolated state inR. Then,

V (x, t) = Pr[MT > y|Ms = x]. (3.23)

Proof. See, for example, Durrett (1996). �

Remark 3.10. Intuitively, the load factor k in(3.18)can be thought of as a variable force of interest(Kellison,
1991)that depends on time s and on the optimally controlled diffusion processX∗

s , t ≤ s ≤ T .

3.1.2. The convex case
The case of a distorted survival probability function of the form

v(x, t) = [Pr(XT > y |Xt = x )]γ = u(x, t)γ

for γ > 1 can be treated similarly as the case forγ ∈ (0, 1). We first observe that the equalityv = uγ , together
with Eq. (3.6) thatu solves, yields

vt + 1

2
σ 2(x, t)vxx + b(x, t)vx = γ − 1

γ
σ 2(x, t)

v2
x

2v
(3.24)

with terminal condition

v(x, T ) =
{

1

0

if x > y,

if x ≤ y.
(3.25)

Next, it is immediate that the non-linear term in (3.24) can be expressed in terms of an auxiliary control variable as
follows:

v2
x

2v
= max

α

[
−1

2
α2v + αvx

]
.
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Therefore, Eq. (3.24) becomes

vt + (1/2)σ 2(x, t)vxx + b(x, t)vx = max
α

[−(1/2)θα2σ 2(x, t)v + θασ 2(x, t)vx ] (3.26)

with θ = (γ − 1)/γ .
Proceeding as in the case of a concave power distortion, we can interpret the above equation as the HJB equation

of an underlying stochastic control problem. Subsequently, we can show that its value function actually coincides
with the distorted survival probability. Since the arguments are a straight modification of the ones used previously,
we only state the relevant results.

We consider the controlled diffusion processX̂s that solves the stochastic differential equation

dX̂s =
[
b(X̂s, s) − αsθσ 2(X̂s, s)

]
ds + σ(X̂s, s) dWs (3.27)

with X̂t = x, t ≤ s ≤ T . The processαs is a control policy that is assumed to belong to the set of admissible
policiesA, as defined in Section 3.1.1. We define the value function

V (x, t) = sup
α∈A

E

[
111{X̂T >y} exp

(∫ T

t

1

2
θσ 2(X̂s, s)α

2
s ds

) ∣∣∣X̂t = x

]
. (3.28)

As in the case of a concave power distortion, the goal is first to identify the above value function as the distorted
survival probability. The next theorem summarizes the relevant results.

Theorem 3.11.
1. The distorted survival probability function v(x, t; y, T) identically equals the value function V.
2. The optimal policyα∗

s is given in feedback form by

α∗
s = Vx(X

∗
s , s)

V (X∗
s , s)

= vx(X
∗
s , s)

v(X∗
s , s)

= γ
ux(X

∗
s , s)

u(X∗
s , s)

, (3.29)

for t ≤ s≤ T, in whichX∗
s is the optimally controlled risk process solving

dX∗
s =

[
b(X∗

s , s) − (γ − 1)σ 2(X∗
s , s)

ux(X
∗
s , s)

u(X∗
s , s)

]
ds + σ(X∗

s , s) dWs. (3.30)

This theorem yields the following stochastic representation of the distorted survival probability.

V (x, t) = E

[
111{X∗

T >y} exp

(∫ T

t

l(X∗
s , s) ds

)
|X∗

t = x

]
(3.31)

with the load factorl(x, t) ≥ 0 given in functional form by

l(x, t) = 1

2
γ (γ − 1)σ 2(x, t)

(
ux(x, t)

u(x, t)

)2

, (3.32)

in whichu is the original survival probability function.
By using classical results from the theory of branching diffusions, we can easily relate (3.31) to the expectation

of a branching process as follows.

Proposition 3.12. Consider a branching diffusion Ys that starts at a single particle at location x at time t,
with particles splitting at a rate l( Ys , s) with the two‘ offspring’ born at the location of the parent and then
independently diffusing according to the diffusion operator as in(3.27). If N(τ ) is the number of particles alive at
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timeτ , then

V (x, t) = E

[
111{YT >y} exp

(∫ T

t

l(Ys, s) ds

)
|Yt = x

]
= E


N(T )∑

i=1

111{Yi(T )>y}|N(t) = 1, Y1(t) = x




=
N(T )∑
i=1

[Pr{Yi(T ) > y} |N(t) = 1, Y1(t) = x] . (3.33)

Proof. See, for example, Durrett (1996). �

The above result enables us to identify the distorted survival probability of the original diffusion risk process with
the distortion-free survival probability of a new underlying risk process. The latter is a branching diffusion process
Ys whose splitting rate, given in (3.32), is state dependent with coefficients depending on the form of the distortion.
Moreover,Ys diffuses according to a new diffusion operator, sayL given by

L = 1

2
σ 2(x, t)

∂2

∂x2
+

[
b(x, t) − (γ − 1)σ 2(x, t)

ux(x, t)

u(x, t)

]
∂

∂x

that differs from the diffusion operator of the original risk processXs (3.1) by the drift term
−(γ − 1)σ 2(x, t) [ux(x, t)/u(x, t)]. In conclusion, the convex power of the survival probability ofXs can be
interpreted as thedistortion-free survival probability of a branching diffusion Ys whose diffusion operator is similar
to the one ofXs modulus a change of drift and with a splitting rate depending on the distortion power.

3.2. General distorted probabilities and stochastic differential games

We now look at the case of a general distortion functiong: [0, 1]→ [0, 1] applied to the original survival
probability function. We assume thatg is strictly increasing so that it has an inverse. We will demonstrate that
the distorted survival probability can be represented as the value of a stochastic differential game and, ultimately,
as the distortion-free survival probability of a new diffusion process with a risk load factor. The latter has similar
characteristics to the diffusions with killing and splitting that we discussed in the previous section.

We pursue along the same lines as before. By using the form of the distorted probability and the fundamental
equation (3.6) satisfied by the original survival probability, we derive a non-linear equation that turns out to be a
Bellman–Isaac(BI) equation. This equation is the analogue of the HJB equation for a wider class of stochastic
optimization problems, namely the (zero-sum) stochastic differential games.

To this end, we set

F(x, t) = g(u(x, t)), (3.34)

which easily yields thatF solves

Ft + 1

2
σ 2(x, t)Fxx + b(x, t)Fx = 1

2
σ 2(x, t)F 2

x

g′′(u)

[g′(u)]2
. (3.35)

Equivalently,

Ft + (1/2)σ 2(x, t)Fxx + b(x, t)Fx = (1/2)σ 2(x, t)F 2
x G(F ), (3.36)

in which

G(F) = g′′(g−1(F ))

[g′(g−1(F ))]2
. (3.37)
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Note that the ratio in Eq. (3.37) is actually theArrow-Pratt, or absolute, risk aversion coefficientof the inverse
distortion functiong−1. Indeed, by differentiating the identityu = g−1(g(u)) twice, we obtain

g′′(u)[g−1(g(u))]′ = −[g′(u)]2[g−1(g(u))]′′,

which, in turn, implies that

G(F) = g′′(g−1(F ))

[g′(g−1(F ))]2
= − [g−1(F )]′′

[g−1(F )]′
, (3.38)

where we usedu = g−1(F ).
For the analysis to follow, we will need the following assumption.

Assumption 3.13. The distortion functiong: [0, 1]→ [0, 1] is invertible, twice continuously differentiable in
(0, 1), and such that the reciprocal of the absolute risk aversion coefficient ofg−1 is a Lipschitz function in [0, 1].

Example 3.14. In addition to the family of power distortions, thedualpower distortions satisfy Assumption 3.13, in
which a dual power distortion is of the formg(p) = 1−(1−p)γ ,γ > 0. Moreover,g(p) = (ap−1)/(a−1), a > 1,
defines a family of distortions which also satisfies the above assumption.

Next, we put Eq. (3.36) in the form of the BI equation associated with a stochastic differential game. At this
point, we proceed formally assuming that all the necessary operations are valid. We first observe that

p2 = max
l

[
lp − 1

4
l2

]
. (3.39)

Thus

p2G(q) = max
l

[
lpG(q) − 1

4
l2G(q)

]
= max

l

[
(lG(q))p − 1

4

(lG(q))2

G(q)

]
= max

α1

[
α1p − 1

4
α2

1H(q)

]
, (3.40)

in whichα1 = αG(q), andH(q) = 1/G(q).

By Assumption 3.13, the functionH is Lipschitz with Lipschitz constant, sayL. Then,H can be represented as

H(q) = min
α2

[H(α2) + L |q − α2|] . (3.41)

Moreover, it is well known that

|q − α2| = max
|z|≤1

(α2 − q)z,

which together with Eq. (3.41), yields

H(q) = min
α2

max
|z|≤1

[H(α2) − Lqz+ Lα2z]. (3.42)

Therefore,

p2G(q) = max
α1

[
α1p − 1

4
α2

1min
α2

max
|z|≤1

[
H(α2) − Lqz+ Lα2z

]]

= max
α=(α1, α2)

min
|z|≤1

[
α1p + 1

4
α2

1Lqz− 1

4
α2

1(H(α2) + Lα2z)

]
. (3.43)

By evaluating the above expression atp = Fx andq = F , and by using Eq. (3.36), we obtain
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Ft + 1

2
σ 2(x, t)Fxx + b(x, t)Fx

+ 1

2
σ 2(x, t) min

α=(α1, α2)
max
|z|≤1

[
−α1Fx − 1

4
α2

1zLF+ 1

4
α2

1(H(α2) + Lα2z)

]
= 0. (3.44)

Next, we review fundamental elements of the theory ofstochastic differential games, and we recall the notion
of their solution. For the sake of presentation, we start with generic coefficients, and we specify them according to
(3.44) later on.

Consider the state diffusion risk processX̂s that solves the stochastic differential equation

dX̂s = f (X̂s, αs, zs, s) ds + σ(X̂s, s) dWs (3.45)

with initial conditionX̂t = x, with x ∈ R, and the criterion

J (x, t; α, z) = E

[∫ T

t

h(X̂s, αs, zs, us) exp

(
−

∫ s

t

c(X̂τ , ατ , zτ , uτ ) dτ

)
ds + 8(X̂T )

]
. (3.46)

As before,Ws is a Brownian motion on the underlying probability space (�, F, Pr); the processesαs andzs are the
control processes assumed to belong to appropriately defined sets of admissible policiesA andZ. The functions
c(X, α, z, u), h(X, α, z, u), and8(x) represent the discount factor, the running cost (or payoff), and the terminal
penalty (or bequest) function, respectively.

The intuitive idea is that the processesαs andzs represent the actions of two players, I and II, respectively, in the
following way. Player I controlsαs and wishes to maximizeJ over all choices ofzs . On the other hand, Player II
controlszs and wishes to minimizeJ over all choices ofαs . The main difficulty in the study of such games lies in
the fact that, although at any times ∈ [t, T ] both players know the stateŝXs , Ws , αs , andzs , instantaneous switches
of αs andzs are possible in continuous time.

This fundamental point was addressed by introducing two approximate games, namely thelower and theupper
game. In the lower game, Player II is allowed to knowαs before choosingzs , while in the upper game, Player
I choosesαs knowing zs . Each game has a value, the lower valueV and the upper valueV that turn out to be
(viscosity) solutions of the BI equations

V t + 1

2
σ 2(x, t)V xx + H−(V x, V , x, t) = 0, (3.47)

and

V t + 1

2
σ 2(x, t)V xx + H+(V x, V , x, t) = 0 (3.48)

with the same terminal condition, say

V (x, T ) = V (x, T ) = 8(x). (3.49)

The expressionsH− andH+ are the so-calledHamiltoniansand are given by

H−(p, q, x, t) = max
α

min
z

[f (x, α, z, t)p + h(x, α, z, t) − c(x, α, z, t)q] ,

and

H+(p, q, x, t) = min
z

max
α

[f (x, α, z, t)p + h(x, α, z, t) − c(x, α, z, t)q] .

We say that theIsaac’s conditionis satisfied if for all (p, q, x, t),

H−(p, q, x, t) = H+(p, q, x, t). (3.50)
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The main objective is to establish that the lower and the upper values of the game are equal, in which case we
say that thedifferential game has a value. The following theorem gives some of the most general results and was
proved by Fleming and Souganidis (1989).

Theorem 3.15(FS). Assume thatA and Z are compact metric spaces, that the functions f,σ , h, and c are
bounded, uniformly continuous, and Lipschitz continuous with respect to(x, t), uniformly with respect to(α, z)
in A and Z, and that the function8 is bounded. Then, the lower valueV ( respectively, the upper valueV )
of the stochastic differential game(SDG) with stateX̂s and payoff J, given by(3.45) and (3.46), is the unique
viscosity solution of the lower(respectively, upper) BI equation (3.47) (respectively, (3.48)). Moreover, if the Isaac’s
condition(3.50)holds, then the SDG has a valueV = V = V given by

V (x, t) = inf
A

sup
Z

J (x, t; α, z) = sup
Z

inf
A

J (x, t; α, z). (3.51)

Remark 3.16. As it is stated in Fleming and Souganidis(1989),the above conditions are by no means the weakest
possible. We do not attempt to look for the weakest assumptions because our main goal is to demonstrate a potentially
very useful connection between general distorted probability functions and stochastic differential games.

We are now ready to discuss the representation of the distorted survival probability as the value of a stochastic
differential game. To this end, we first observe that Eq. (3.44) can be viewed as the upper BI equation (3.48) with
coefficients

f (x, α, z, t) = b(x, t) − (1/2)σ 2(x, t)α1, (3.52)

h(x, α, z, t) = (1/8)σ 2(x, t)α2
1(H(α2) + Lα2z), (3.53)

c(x, α, z, t) = (1/8)σ 2(x, t)α2
1zL, (3.54)

8(x) = 111{x>y}. (3.55)

Proposition 3.17. Assume that the conditions of Theorem3.15 (FS) hold for the functions f, h, and c defined in
(3.52), (3.53) and (3.54).Then, the distorted survival probability F(x, t) is the value of a stochastic differential
game with statêXs and criterion J, given by(3.45) and (3.46),with 8 given in(3.55).

4. Examples: geometric Brownian motion

In this section, we present two examples in which the diffusion process is a geometric Brownian motion. First, we
consider the case of a power distortion, as in Section 3.1. Then, we analyze the case of a piecewise linear distortion.
The work in Section 3 is not directly applicable to the latter case because the distortion is not differentiable, but
the observations in Section 2 still apply. Specifically, one can use the expectation with respect to a probability
distorted by a piecewise linear distortion as a measure of risk. In the case of a piecewise linear distortion, we provide
explicit formulae for the distorted survival probability, and we analyze their behavior in terms of the various risk
parameters.

To this end, let the state processXs, t ≤ s ≤ T , follow the diffusion process

dXs = bXs ds + σXs dWs, Xt = x, x ∈ RRR,

in whichb andσ are real constants, withσ > 0. In this case, we can writeXs explicitly:

Xs = x exp

[(
b − σ 2

2

)
(s − t) + σWs−t

]
, t ≤ s ≤ T .
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Because the statex = 0 is an absorbing state (see Gihman and Skorohod, 1972), ifx > 0, the survival probability
u(x, t; y, T) equals 1, fory ≤ 0; and

u(x, t; y, T ) = 8

[(
b − σ 2

2

) √
T − t

σ
− 1

σ
√

T − t
ln

(y

x

)]
for y > 0,

in which8 is the cumulative distribution function of the standard normal random variable. Similarly, ifx < 0, the
survival probability fory < 0 is given by

u(x, t; y, T ) = 8

[
−

(
b − σ 2

2

) √
T − t

σ
+ 1

σ
√

T − t
ln

(y

x

)]
,

and it equals 0, fory ≥ 0.

4.1. Power distortion functions

Let g be the power distortion given byg(p) = pγ . For concreteness, we assume thatg is concave (0< γ < 1)
and thatx > 0 andy > 0. The other cases follow similarly and are not treated here. From Theorem 3.8, the distorted
probabilityv(x, t) = u(x, t)γ is given by the expectation in (3.18)

E

[
111{X∗

T >y} exp

(
−

∫ T

t

k(X∗
s , s) ds

)
|X∗

t = x

]
,

in whichX∗
s is the optimally controlled risk process solving

dX∗
s =

[
bX∗

s + (1 − γ )σ 2(X∗
s )

2ux(X
∗
s , s)

u(X∗
s , s)

]
ds + σX∗

s dWs,

andk(x, t) is the ‘load’ factor

k(x, t) = 1

2
γ (1 − γ )σ 2x2

(
ux(x, t)

u(x, t)

)2

.

In this case,

ux(x, t)

u(x, t)
= 1

σx
√

T − t
λ(z(x, t; y)),

in whichz(x, t; y) = [ln(
y
x
) − (b − σ2

2 )(T − t)]/σ
√

T − t , andλ(z) is thehazard functionof the standard normal
distribution.

In general, thehazard functionof a continuous random variableX is given byf (x)/S(x), in which f is the
probability density function ofX andS is the decumulative distribution function ofX.

It follows thatX∗
s solves

dX∗
s =

[
bX∗

s + (1 − γ )σX∗
s

T − t
λ(z(X∗

s , s; y))

]
ds + σX∗

s dWs,

and the load factork(x, t) equals

k(x, t) = γ (1 − γ )

2(T − t)
[λ(z(x, t; y))]2.
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4.2. Piecewise linear distortion

Consider the concave piecewise linear distortion given by

ga,c(p) =




c

a
p, 0 ≤ p ≤ a,

(c − a) + (1 − c)p

(1 − a)
, a < p ≤ 1,

in which 0 ≤ a ≤ c ≤ 1. In this case, we can explicitly calculate the risk measure from Section 2, Eq. (2.1). The
risk measure of the geometric Brownian motionXT , given thatXt = x, determined byga,c is

RM[XT ; x, t; a, c] =
∫

XT d(ga,c ◦ Pr|Xt=x) = x eb(T −t)

1 − a

[
(1 − c) + c − a

a
8(za + σ

√
T − t)

]

for x > 0, in whichza is the 100a-th percentile of the standard normal. Ifx 6= 0, then the risk measure ofXT , given
thatXt = x, is

RM[XT ; x, t; a, c] =
∫

XT d(ga, c ◦ Pr|Xt=x) = x eb(T −t)

1 − a

[
(1 − c) + c − a

a
8(za + σ

√
T − t)

]
.

Whenx > 0, it is straightforward to demonstrate that RM[XT ; x, t; a, c] satisfies the properties listed below; note
that similar properties hold whenx < 0.
• RM[XT ; x, t; a, c] ≥ x eb(T −t) = E[XT |Xt = x]. This result follows from the fact thatga,c(p) ≥ p for all

p ∈ [0, 1].
• For fixedc ≥ a, RM[XT ; x, t; a, c] decreases asa increases. Intuitively, asga,c becomes less concave, the risk

measure ofXT decreases. Whena = c, note that RM[XT ; x, t; a, c] = x eb(T −t) = E[XT |Xt = x], as expected
because in that case, there is no distortion.

• For fixeda ≤ c, RM[XT ; x, t; a, c] increases asc increases. Intuitively, asga,c becomes more concave, the risk
measure ofXT increases.

5. Summary

In this paper, we studied the distorted survival probability functions of risk processes which are modeled as
diffusion processes. We established that these probabilities can be related, under general weak assumptions, to
distortion-free survival probabilities of new ‘pseudo’ risk processes with modified drift. This representation is
important because it relates distorted survival probabilities — associated with risks in incomplete markets —
with distortion-free probabilities of new risk processes. This relation is expected to facilitate the pricing of risks
in the presence of frictions via the relevant values for the friction-free case. This is the subject of our future
research.

Acknowledgements

We thank Thomas Kurtz, Gerard Pafumi, Sheldon Lin, and an anonymous referee for their helpful comments.

Appendix A

In this appendix, we present the definition of viscosity solutions of non-linear parabolic partial differential
equations. The notion ofviscosity solutionswas introduced by Crandall and Lions (1983) for first-order equations
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and by Lions (1983a,b) for second-order equations. For a general overview of the theory, see Fleming and Soner
(1993).

Consider a non-linear second-order partial differential equation of the form

F(X, V, DV, D2V ) = 0 in � × [0, T ], (A.1)

in which � ⊆ R2, DV andD2V denote the gradient vector and the second-derivative matrix ofV, and the function
F is continuous in all its arguments and degenerate elliptic, meaning that

F(X, p, q, A + B) ≤ F(X, p, q, A) if B ≥ 0.

Definition A.1. A continuous functionV : � × [0, T ] → RRR is a viscosity solution of Eq. (A.1) if the following
two conditions hold:
1. V is a viscosity subsolution of (A.1) on�× [0, T ]; that is, for anyφ ∈ C2,1(�× [0, T ]) and any local maximum

pointX0 ∈ � × [0, T ] of V−φ,

F(X0, V (X0), Dφ(X0), D
2φ(X0)) ≤ 0.

2. V is a viscosity supersolution of (A.1) on� × [0, T ]; that is, if for anyφ ∈ C2,1(� × [0, T ]) and any local
minimum pointX0 ∈ � × [0, T ] of V−φ,

F(X0, V (X0), Dφ(X0), D
2φ(X0)) ≥ 0.
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