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1 Introduction

This work is a contribution to stochastic optimization problems of expected util-
ity. Trading takes place between a bond and a stock account with the stock price
being modelled as a diffusion process. The fundamental assumption is that the
coefficients of the latter depend on another process, to be referred as “stochastic
factor”, which is in general correlated with the underlying stock price. We model
the stochastic factor as a diffusion process but we make no special assumption on
the structure of its diffusion coefficients. The individual preferences are modelled
in terms of a Constant Relative Risk Aversion (CRRA) function and trading takes
place in a finite horizon. The objective of the agent is to maximize his expected
utility from terminal wealth and to specify the optimal investment strategy.

The motivation to study this rather general class of optimal investment models
comes from their wide applicability in a variety of asset pricing problems. The
simplest model that fits into our framework is the one with nonlinear stock
diffusion dynamics. In this setting there are no unhedgeable risks, the stochastic
factor can be readily identified with the (normalized) nonlinear component and
it is perfectly correlated with the underlying price process. In the past, similar
models have been extensively studied using martingale theory techniques (see
Karatzas 1997), but closed form solutions have been produced only for the case
of logarithmic utilities (Merton 1971).

Even though the above setting applies to a number of interesting situations
– among others, in models of mean reverting stock prices and in models with
constant elasticity of variance – the most challenging questions arise when there
is not perfect correlation between the stochastic factor and the underlying stock
price. In fact, there is a lot of interest, both from the practical as well as the
theoretical point of view, to explore the effects of correlation to the optimal
demand for the risky asset. The effects of correlation are also important in pricing
derivatives withnon-traded assets which, even though they cannot be used in
the hedging portfolio, are often closely correlated to the available for trading
underlying asset. During the last years, this type of derivatives has been attracting
an ever increasing interest and no unified method has been successfully developed
to date. As in other cases of derivative pricing in incomplete markets – for
example, in markets with transaction costs and/or trading constraints – a rather
successful method has been proven to be the so-calledutility approach. In order
to apply the latter to the case of non-traded assets, one needs first to study the
relevant utility optimization problems which fall into the family of problems we
solve herein (see Davis 1999).

It is worth noticing that an alternative valuation approach is based on min-
imization criteria of theexpected hedging loss. These criteria may either rely
on mean variance hedging (see, among others, Duffie and Richardson 1991;
Schweizer 1992 and 1996) or on other types of loss functionals (see Hipp and
Taksar 1999). In both classes of models, the majority of the relevant stochastic
minimization problems are similar to the problems we study.
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From a different direction, we may view the models of optimal portfolio
management withstochastic volatility also as valuation models with non-traded
assets. Even though, the volatility is not in general observable and therefore
such modelling might not be entirely realistic, one may still rely on models with
diffusion volatilities after the latter are recovered through the implied volatility
which is actually observable (see for example the recent work by Avellaneda and
Zhu 1999 and Ledoit and Santa Clara 1999).

The main contribution of this work is a methodology to derive reduced form
solutions for the value function and the optimal policies in optimal investment
models when prices are affected by correlated stochastic factors. This is accom-
plished via the homotheticity properties of the value function combined with a
novel transformation. The latter enables us to express the value function in terms
of a specific power of the solution of a linear parabolic equation. This exponent
depends only on the risk aversion coefficient and the correlation between the
stock price and the stochastic factor. The feedback optimal policies are then ex-
pressed in a simplified way in terms of the solution of the reduced linear equation
and its first derivative.

Besides the apparent reduction in constructing the value function simply by
solving a linear partial differential equation, the obtained representation formulae
indicate an interesting connection with two unrelated notions: “distorted” mea-
sures of risk and recursive utilities. As we demonstrate in our discussion session,
the component of the value function that represents the effects of the stochastic
factor can be associated to a “distorted” risk measure in terms of a new pseudo-
stochastic factor. The latter turns out to be a diffusion process with dynamics
similar to the ones of the original stochastic factor process but with a modified
drift. As it was mentioned above, we also establish a connection between the
same component of the value function and recursive utilities. By interpreting the
inherent nonlinearities appropriately, we are able to write the solution in terms of
a recursive utility whose aggregator and variance multiplier are explicitly speci-
fied. Even though both the above characterization results are rather preliminary,
they nevertheless indicate that the reduced form solutions we derive herein, might
help us to understand – in connection with the above notions – how the various
market imperfections and the relevant unhedgeable risks affect the prices, the
optimal demand and the hedging strategies.

Finally, our results may be applied to a different class of valuation models
in imperfect markets, namely the optimal investment and consumption models
with stochastic labor income. In these models, the unhedgeable risks are coming
through a stream of stochastic labor income that cannot be replicated by trading
the available securities (see among others, Duffie and Zariphopoulou 1993; He
and Pag̀es 1993; Duffie et al. 1997; El Karoui and Jeanblanc-Picqué 1994; Koo
1991). Due to the special way the stochastic income affects the dynamics of
the state wealth, the scaling properties and the transformation employed herein
cannot be applied. On the other hand, the results of this paper might be potentially
used to derive qualitative properties for the solutions with stochastic income in
finite horizon for which only very general results are known up to date.



64 T. Zariphopoulou

The paper is organized as follows: in Sect. 2, we introduce the investment
model and we state the main results. In Sect. 3, we derive the reduced form
solutions and we provide regularity and verification results for the value function
and the optimal policies. Finally, in Sect. 4, we present examples, we provide
an interpretation of the results, using elements from the theory of stochastic
differential utility, and we conclude with future research plans.

2 The investment model and main results

We consider an optimal investment model of a single agent who manages his
portfolio by investing in a bond and a stock account. The price of the bondBt

solves { dBt = rBt dt

B0 = B
(2.1)

wherer > 0 is the interest rate. The price of the stock is modelled as a diffusion
processSt solving

dSt = µ(Yt , t)St dt + σ(Yt , t)St dW 1
t (2.2)

with S0 = S ≥ 0. The processYt will be referred to as the “stochastic factor”
and it is assumed to satisfy

dYt = b(Yt , t)dt + a(Yt , t)dW 2
t (2.3)

for Y0 = y ∈ R.
The processesW 1

t and W 2
t are Brownian motions defined on a probabil-

ity space (Ω, F , P ) and they are correlated with correlation coefficientρ with
−1 ≤ ρ ≤ 1. The coefficientsµ, σ, b anda are functions of the factorYt and time
and they are assumed to satisfy all the required regularity assumptions in order
to guarantee that a unique solution to (2.2) and (2.3) exists. These conditions,
together with some additional growth assumptions will be introduced later; at
this point, we only outlay the underlying structure of our valuation model.

The investor rebalances his portfolio dynamically by choosing at any times,
for s ∈ [t , T ] and 0≤ t ≤ T , the amountsπ0

s andπs to be invested, respectively,
in the bond and the stock account. His total wealth satisfies the budget constraint
Xs = π0

s + πs and the stochastic differential equation dXs = rXs ds + (µ(Ys , s) − r)πs ds + σ(Ys , s)πs dW 1
s

Xt = x ≥ 0 0 ≤ t ≤ s ≤ T .

(2.4)

The above wealth state equation follows from the budget constraint and the
dynamics in (2.1), (2.2) and (2.3). The wealth process must also satisfy the state
constraint

Xs ≥ 0 a.e. t ≤ s ≤ T . (2.5)
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Remark 2.1 Even though it is assumed that the bond price is deterministic, the
case ofstochastic interest rates may be easily analyzed as long as the interest
rate depends only onYt and time. We choose not to incorporate this in our
presentation because the really interesting case is when the interest rate depends
on a second stochastic factor, correlated toYt in general. Such a formulation gives
rise to a three dimensional problem and the formulae obtained herein might not
generalize in a straightforward way.

Remark 2.2 In this model, it is assumed that the investor does not have the
opportunity to consume part of his wealth in the trading interval [t , T ]. Even
though the methodology introduced here can be effectively applied to models with
intermediate consumption, the results are of a different nature and of independent
interest. This class of optimal investment and consumption models is analyzed
in Zariphopoulou (1999).

The controlπs is said to be admissible if it isFs -progressively measurable,
whereFs = σ((W 1

u , W 2
u ); t ≤ u ≤ s), satisfies the integrability condition

E
∫ T

t σ(Ys , s)2π2
s ds < +∞ and is such that the above state constraint is satisfied.

We denote byA the set of admissible policies.
The investor’s objective is to maximize his expected utility of terminal wealth

J (x , y , t ; π) = E [U (XT , YT )/Xt = x , Yt = y ] (2.6)

with Xs , Ys given in (2.4) and (2.3) respectively.
The value function of the investor is

u(x , y , t) = sup
π∈A

J (x , y , t ; π). (2.7)

The goal herein is to analyze the value function and to determine the optimal
investment strategies when the utility function is of the separableCRRA type

U (x , y) =
1
γ

xγh(y) for γ < 1, γ �= 0 (2.8)

andh : R → R+ being a bounded continuous function; to simplify the exposi-
tion we assume that for somem ∈ (0, 1), m ≤ h(y) ≤ 1, ∀y ∈ R. The classical
CRRA utilities haveh(y) ≡ 1 but we choose to incorporate the componenth so
that we present a general version of the model; as a matter of fact, utilities of the
above form are employed in the pricing of derivatives with non-traded assets.

As it is well known, the special form of the above utilities together with the
linearity of the wealth dynamics with respect to the state and control processes
(see (2.4)), enables us to represent the value function in a “separable” form.

In fact, the value function can be written asu(x , y , t) =
xγ

γ
V (y , t). To our

knowledge, the componentV is in general unknown except for some special
cases of the correlation coefficientρ, the risk aversion parameter 1− γ and the
components of the state dynamics. As a matter of fact,V solves a nonlinear
equation for which no closed form solutions are available.
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The novelty of our results lies in the fact that under a simple transformation,
we manage to remove certain non-linearities that arise due to the stochastic factor.
In fact, it turns out thatV can be expressed as thepower of the solution of a
linear parabolic equation; this power depends only on the risk aversion coefficient
and the degree of correlation between the stock price and the stochastic factor.
Under certain assumptions on the coefficients of the reduced linear equation,
exact solutions may be produced for the value function and the optimal policies.
In general, the reduction from the original fully non-linear Hamilton-Jacobi-
Bellman equation to a linear parabolic one has obvious advantages both from the
analytic as well as the computational point of view. Without stating at this point
the necessary technical assumptions and the regularity properties of the relevant
solutions, we outline the main results below.

Proposition 2.1

i) The value function u is given by

u(x , y , t) =
xγ

γ
v(y , t)

1−γ

1−γ+ρ2γ

where v : R × [0, T ] → R+ solves the linear parabolic equation
vt +

1
2

a2(y , t)vyy +
[
b(y , t) + ρ

γ(µ(y , t) − r)a(y , t)
(1 − γ)σ(y , t)

]
vy

+
γ(1 − γ + ρ2γ)

1 − γ

[
r +

(µ(y , t) − r)2

2σ2(y , t)(1 − γ)

]
v = 0

v(y , T ) = h(y).

ii) The optimal policy Π∗
s is given in the feedback form Π∗

s = π∗(X ∗
s , Ys , s),

t ≤ s ≤ T , where the function π∗ : [0, +∞) × R × [0, T ] → R is defined by

π∗(x , y , t) =
[ ρ

(1 − γ) + ρ2γ

a(y , t)vy (y , t)
σ(y , t)v(y , t)

+
1

1 − γ

µ(y , t) − r
σ2(y , t)

]
x

with X ∗
s being the state wealth process given by (2.4) when the policy Π∗

s is
being used.

3 The HJB equation and reduced form solutions

In this section, we derive reduced form solutions for the value function and the
optimal policies. The portfolio policies can be expressed in a feedback form in
terms of the first order derivatives and the solution of a simplified linear equation
whose coefficients are related to the dynamics of the risk process, the correlation
and the risk aversion coefficients.

In order to demonstrate the main steps of our approach, we start with a
formal analysis assuming that all the required derivatives exist in the equations
we employ. The rigorous results together with necessary assumptions on the
market parameters are presented in subsequent theorems.
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A classical approach in stochastic control theory is to examine the Hamilton-
Jacobi-Bellman (HJB) equation that the value function is expected to satisfy.
This equation, which is the offspring of the Dynamic Programming Principle
and stochastic analysis, turns out to be

ut +
1
2

a2(y , t)uyy + b(y , t)uy + rxux +

max
π

[1
2
σ2(y , t)π2uxx + ρπσ(y , t)a(y , t)uxy + (µ(y , t) − r)πux

]
= 0.

(3.1)

Moreoveru satisfies the terminal condition

u(x , y , T ) = U (x , y) (3.2)

for (x , y , t) ∈ D = {(x , y , t) : x ≥ 0, y ∈ R, 0 ≤ t ≤ T} andU as in (2.8).

Remark 3.1 Note that the state constraint (2.5) suggests that if the initial wealth
is zero, i.e.Xt = 0, the only admissible policy isπs = 0 for t ≤ s ≤ T . This
results in the boundary conditionu(0, y , t) = U (0, y). As a matter of fact, the
rigorous way to recover the value atx = 0 is by looking at the correct solution for
x > 0 and then pass to the limit asx → 0. As we subsequently show, the correct
solution is the unique constrained viscosity solution of the HJB equation, which
actually coincides with the value function, and that the appropriate boundary
behavior is indeed guaranteed.

Remark 3.2 The HJB equation can be simplified by introducing a new control
variable π̃ = σ(y , t)π and this way absorb the variable coefficient in front of
the second order derivativeuxx . Moreover, using the homogeneous form of the
utility and the linearity properties of the state equation one could also absorb
the drift termrxux by discounting, from the beginning, the wealth and portfolio
processes by the factore−r(T−t).

We continue with the construction of a candidate solution of (3.1). As it was
discussed earlier, the homogeneity of the utility function together with the fact
that the stateXs and the controlπs appear linearly in (2.4), suggest that the value
function must be of the form

u(x , y , t) =
xγ

γ
V (y , t). (3.3)

Direct substitution in the HJB Eq. (3.1) yields thatV (y , t) solves

1
γ

[
Vt +

1
2

a2(y , t)Vyy + b(y , t)Vy
]

+ rV +

max
π̃

[1
2

(γ − 1)σ2(y , t)π̃2V + ρσ(y , t)a(y , t)π̃Vy + (µ(y , t) − r)π̃V
]

=0

(3.4)
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together with the terminal condition

V (y , T ) = h(y). (3.5)

Note that the control ˜π corresponds to
π

x
with π being the control variable

appearing in (3.1).
We now apply, formally, the first order conditions in (3.4). Observe that the

maximum (over ˜π) in (3.4) is well defined becauseγ < 1 and one can show that
V (y , t) > 0 (see Proposition 3.1). We have that the maximum is achieved at

π̃∗(y , t) =
ρσ(y , t)a(y , t)Vy (y , t) + (µ(y , t) − r)V (y , t)

(1 − γ)σ2(y , t)V (y , t)
(3.6)

or, in terms of (x , y , t), at

π∗(x , y , t) =
[ρσ(y , t)a(y , t)Vy (y , t) + (µ(y , t) − r)V (y , t)

(1 − γ)σ2(y , t)V (y , t)

]
x , (3.7)

where we used (3.3). Using the form of ˜π∗(y , t) and (3.4) gives

1
γ

[
Vt +

1
2

a2(y , t)Vyy +b(y , t)Vy

]
+ rV +

[(µ(y , t) − r)V + ρσ(y , t)a(y , t)Vy ]2

2(1− γ)σ2(y , t)V
= 0.

Expanding the quadratic term in the above equation yields

Vt +
1
2

a2(y , t)Vyy +
[
b(y , t) + ρ

γ(µ(y , t) − r)a(y , t)
(1 − γ)σ(y , t)

]
Vy

+
[
rγ +

γ(µ(y , t) − r)2

2(1− γ)σ2(y , t)

]
V + ρ2γa2(y , t)

2(1− γ)

V 2
y

V
= 0. (3.8)

We now make the following transformation1. We let

V (y , t) = v(y , t)δ (3.9)

for a parameterδ to be determined. Differentiating yields

Vt = δvtv
δ−1, Vy = δvyv

δ−1, Vyy = δvyyv
δ−1 + δ(δ − 1)v2

yv
δ−2.

Substituting the above derivatives in (3.8) gives

δvtv
δ−1 +

1
2

a2(y , t)δvyyv
δ−1

+
1
2

a2(y , t)δ(δ − 1)v2
yv

δ−2 +
[
b(y , t) + ρ

γ(µ(y , t) − r)a(y , t)
(1 − γ)σ(y , t)

]
δvyv

δ−1

+
[
rγ +

γ(µ(y , t) − r)2

2(1− γ)σ2(y , t)

]
vδ + ρ2γa2(y , t)

2(1− γ)

δ2v2
yv

2(δ−1)

vδ
= 0

which in turn implies thatv solves the quasilinear equation

1 To our knowledge, this is the first time this transformation is used in optimal portfolio manage-
ment problems with non-traded assets.
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vt +
1
2

a2(y , t)vyy +
[
b(y , t) + ρ

γ(µ(y , t) − r)a(y , t)
(1 − γ)σ(y , t)

]
vy +

1
δ

[
rγ +

γ(µ(y , t) − r)2

2(1− γ)σ2(y , t)

]
v +

a2(y , t)
2

v2
y

v

[
(δ − 1) +ρ2 γ

1 − γ
δ
]

= 0.

The above expression indicates that if we choose the parameterδ to satisfy

δ =
1 − γ

1 − γ + ρ2γ
(3.10)

then, Eq. (3.8) becomes alinear parabolic differential equation. In fact, if δ
satisfies (3.10) thenv solves{ vt + 1

2a2(y , t)vyy + [b(y , t) + c(y , t)]vy + k (y , t)v = 0

v(y , T ) = h(y)1/δ,

(3.11)

(3.12)

where the coefficientsc(y , t) andk (y , t) are given in terms of the market coeffi-
cients,

c(y , t) = ρ
γ(µ(y , t) − r)a(y , t)

(1 − γ)σ(y , t)
(3.13)

k (y , t) =
γ

δ

[
r +

(µ(y , t) − r)2

2(1− γ)σ2(y , t)

]
. (3.14)

We will refer to δ as thedistortion power.

Remark 3.3 Observe that for all values ofγ < 1 with γ �= 0, the distortion
power satisfiesδ > 0. As a matter of fact,δ < 1 if 0 < γ < 1 andδ > 1 for
γ < 0. Moreover, in the case of market completeness,ρ2 = 1, δ becomes 1− γ

and the value function is given byu(x , y , t) =
xγ

γ
v(y , t)1−γ .2 Finally, if ρ = 0,

δ degenerates to one and there are no non-linearities coming directly from the

presence of the discount factor; in this caseu(x , y , t) =
xγ

γ
v0(y , t) with v0 being

the solution of (3.11) and (3.12) withc(y , t) ≡ 0.

Remark 3.4 Notice that if 0 < γ < 1 (resp.γ < 0), thenk (y , t) > 0 (resp.
k (y , t) < 0) and under appropriate regularity and growth conditions, one expects,
through the Feynman-Kac formula, the stochastic representation

v(y , t) = E
[
h(ỸT )1/δ exp

∫ T

t

γ

δ

[
r +

(µ(Ỹs , s) − r)2

2σ2(Ỹs , s)(1 − γ)

]
ds
/

Ỹt = y
]

(3.15)

where the process̃Ys , t ≤ s ≤ T solves

dỸs = [b(Ỹs , s) + c(Ỹs , s)]ds + a(Ỹs , s)dWs (3.16)

2 This class of models was analyzed in Zariphopoulou (1999) in optimal portfolio management
models that allow for intermediate consumption and with nonlinear stock dynamics.
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with Ws being a standard Brownian motion. Observe that the above stochastic
differential equation is similar to (2.3) but with amodified drift.

Therefore, we see that the value functionu is represented as

u(x , y , t) =
xγ

γ
v(y , t)δ (3.17)

or, alternatively, as

u(x , y , t) =
xγ

γ

(
E

[
h(ỸT )1/δ exp

∫ T

t

γ

δ

[
r +

(µ(Ỹs , s) − r)2

2(1− γ)σ2(Ỹs , s)

]
ds
/

Ỹt = y

])δ

,

(3.18)
whereỸs solves (3.16) andδ is defined in (3.10).

Even though the above representation is a direct consequence of the Feynman-
Kac formula, it is interesting to observe the precise structure of (3.18). Recall
that in the simple framework of the Merton problem (see Merton 1969, 1971)
which corresponds to constantsµ and σ and h(y) = 1, (3.18) is replaced by

ũ(x , t) =
xγ

γ
eλ(T−t) with λ = rγ +

γ(µ − r)2

2(1− γ)σ2
. Equality (3.18) is also of the

same kind but with the deterministic exponentialeλ(T−t) being replaced by the
expectation of a stochastic exponential. It is intriguing that the underlying process
Ỹs appearing in this expectation resembles the original stochastic factor but with a
modified drift; this modified drift degenerates to the original one in the orthogonal
caseρ = 0. We return to the interpretation of (3.18) in our discussion in Sect. 4.

Using (3.7) and the representation formula (3.17) for the value function, one
obtains the following simplified expression for theoptimal feedback portfolio
rule

π∗(x , y , t) =
[ ρ

(1 − γ) + ρ2γ

a(y , t)
σ(y , t)

vy (y , t)
v(y , t)

+
1

1 − γ

µ(y , t) − r
σ2(y , t)

]
x . (3.19)

From classical arguments in stochastic control, one expects to recover the
optimal portfolio process viaΠ∗

s = π∗(X ∗
s , Ys , s) for t ≤ s ≤ T , whereπ∗ and

Ys are as in (3.19) and (2.3) respectively, and the optimal wealthX ∗
s is given by

(2.4) with the optimal processΠ∗
s being used.

We continue with a rigorous analysis of the above results; the main tools will
come from the theories of stochastic control and viscosity solutions of the HJB
equation. To this end, we start with basic assumptions on the market coefficients
and we discuss some preliminary properties of the value function. To simplify
the exposition, we assume that 0< γ < 1; the arguments forγ < 0 are easily
modified.

Assumption i) The coefficientsµ, σ, b, a : R × [0, T ] → R satisfy the global
Lipschitz and linear growth conditions
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|f (y , t) − f (y , t)| ≤ K |y − y |, (3.20)

f 2(y , t) ≤ K 2(1 + y2), (3.21)

for every t ∈ [0, T ], y , y ∈ R, K being a positive constant andf standing forµ,
σ, b, anda.

ii) Uniformly in y ∈ R andt ∈ [0, T ], the volatility coefficientσ(y , t) satisfies
σ(y , t) ≥ � > 0 for some constant�, and for some positive constantM ,

(µ(y , t) − r)2

σ2(y , t)
≤ M . (3.22)

Conditions (3.20) and (3.21) are standard for the existence and uniqueness
of solutions of the state stochastic differential Eqs. (2.2) and (2.3) (see Gikhman
and Skorohod 1972). Condition (3.22) will be used to determine the appropriate
growth conditions for the value function and to facilitate the relevant verification
results.

Proposition 3.1 i) The value function u is non-decreasing and concave with
respect to the wealth variable x .

ii) There exists a constant λ > rγ such that m xγ

γ erγ(T−t) ≤ u(x , y , t) ≤
xγ

γ eλ(T−t).

Proof i) The concavity ofu is an immediate consequence of the concavity
of the utility function U and the fact that ifπ1 ∈ A(x1,y), π2 ∈ A(x2,y) and
λ ∈ (0, 1) then (λπ1 + (1 − λ)π2) ∈ A(λx1+(1−λ)x2,y); the latter follows from the
linear dependence of the state dynamics (2.4) with respect to the control variables
and the state wealth. Thatu is nondecreasing inx follows from the observation
that A(x1,y) ⊆ A(x2,y) for x1 ≤ x2.

ii) The lower bound for the value function follows directly from the defini-
tion of u and the fact thatπs = 0, t ≤ s ≤ T is an admissible policy. The upper
bound follows from a standard Girsanov transformation, Hölder’s inequality and
the uniform bound in inequality (3.22). The relevant to the change of measure

Randon-Nikodym derivative is given byZT = exp
{

− ∫ T
t θs dW 1

s − 1
2

∫ T
t θ2

s dW 1
s

}
with θs =

(µ(Ys , s) − r)2

σ2(Ys , s)
. This kind of analysis is standard in stochastic opti-

mization problems and it is skipped for the sake of the presentation. (We refer
the reader to the book of Friedlin 1985 or, in the context of relevant portfolio
management problems, to the papers of Huang and Pagès 1992 and Duffie and
Zariphopoulou 1993).

We continue with the study of the HJB Eq. (3.1) that the value function is
expected to solve. As it is well known, for optimal decision problems a convenient
class of solutions of the associated HJB equation is the class of(constrained)
viscosity solutions. This class has been successfully used in a number of asset
pricing and portfolio management problems in markets with frictions (see for
example, 1992, 1994, Davis et al. 1993; Duffie and Zariphopoulou 1993; Shreve
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and Soner 1994; Barles and Soner 1998) and it is now routinely used in new
models with similar market characteristics (among others, trading constraints,
transaction costs and stochastic volatility). The analysis herein follows closely
the analysis of Duffie and Zariphopoulou (1993) who provided a complete study
of the value function of an optimal investment model with stochastic labor income
and general utilities. Even though, as it was mentioned in the Introduction, the
decomposition (3.3) and the transformation (3.9) for the value function cannot be
applied, the associated HJB equation in Duffie and Zariphopoulou (1993) is of
similar structure to (3.1). In fact, the analysis used by Duffie and Zariphopoulou
(1993) does not require closed form solutions and it can be readily adapted for
the study of Eq. (3.1). For this reason, we only state the basic results and we
refer the technically motivated reader to Theorems 4.1 and 4.2 of Duffie and
Zariphopoulou (1993).

The following theorem states that the value function is the unique constrained
viscosity solution of (3.1) in the appropriate class. The characterization ofu as a
constrained solution is natural due to the presence of the state constraint (2.5). We
provide the definition of (constrained) viscosity solutions and relevant references
in the appendix.

Theorem 3.1 The value function u is a constrained viscosity solution of the HJB
Eq. (3.1) on D with u(x , y , T ) = xγ

γ h(y). Moreover, u is the unique constrained
viscosity solution in the class of functions that are concave, and nondecreasing
in x , have sublinear growth of order γ and, for fixed x , they are of exponential
growth eλ(T−t) for some constant λ, uniformly in y.

The following theorem provides a verification result for the value function
and the optimal policies.

Theorem 3.2 The value function u is given by u(x , y , t) = xγ

γ v(y , t)δ where v is
the unique viscosity solution of (3.11) and (3.12) and δ is given in (3.10).

Proof We assume that 0< γ < 1 since the caseγ < 0 follows along modified
arguments. Applying the results of Ishii and Lions (1991) one easily concludes
that equation (3.11) has a unique viscosity solution satisfying the boundary and
terminal conditions (3.12). As a matter of fact, one can show (Lions (1993))
that v admits the stochastic representation (3.15) which in view of (3.22) yields
that v ≤ eλ(T−t) with λ = rγ

δ + γM
2δ(1−γ) . Applying the definition of viscosity

solutions one also gets directly that the functionF (x , y , t) = xγ

γ v(y , t)δ is a
viscosity solution of the HJB equation in (0, +∞) × R × [0, T ]. Moreover, at the
boundary pointx = 0, the slope ofF is infinite and therefore the viscosity sub-
solution property is automatically satisfied. Therefore,F is a constrained viscosity
solution of the HJB equation and clearly, it also belongs to the appropriate class
of solutions in which uniqueness has been established. We readily get thatF
coincides with the value function and thereforeu is indeed given by the proposed
closed form solution.
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The last result of this section provides additional results for the regularity of
the value function and a characterization of the optimal policies. The conditions
on the coefficients can be relaxed in many ways, especially when the latter do
not depend explicitly on time. We refer the reader to the book of Friedlin (1985)
or Fleming and Soner (1993) for more general assumptions.

Theorem 3.3 Assume that the functions a(y , t), b(y , t), and c(y , t) and k (y , t),
given in (3.13) and (3.14), are bounded and uniformly Hölder’s continuous in
R × [0, T ]. Moreover, assume that a(y , t) is uniformly elliptic, i.e. there exists
a positive constant ε such that a2(y , t) ≥ εy2 for y ∈ R and t ∈ [0, T ]. Then
the value function is twice continuously differentiable with respect to (x , y), for
x > 0 and y ∈ R and continuously differentiable with respect to t for t ∈
[0, T ). Moreover, the optimal portfolio process Π∗

s is given in the feedback form
Π∗

s = π∗(X ∗
s , Ys , s), t ≤ s ≤ T where the function π∗ : [0, +∞)×R × [0, T ] → R

is defined by

π∗(x , y , t) =

[
ρ

(1 − γ) + ρ2γ

a(y , t)vy (y , t)
σ(y , t)v(y , t)

+
1

1 − γ

µ(y , t) − r
σ2(y , t)

]
x (3.23)

and X ∗
s is the optimal state wealth process given by (2.4) with Π∗

s being used.

Proof We first observe that the above conditions on the coefficients guarantee that
equation (3.11) (together with (3.12)) has a unique smooth solution, sayṽ. By
the uniqueness of viscosity solutions for (3.11) we get thatṽ ≡ v and therefore
v is smooth. The regularity of the value function with respect tox follows then
immediately from its explicit form.

Applying the first order conditions in (3.1) and using the representation for-
mula (3.17), yields that the maximum occurs at the pointπ∗(x , y , t) as given in
(3.23). The fact that the optimal portfolio process is given in the feedback form
Π∗

s = π∗(X ∗
s , Ys , s) follows from standard verification results (see, for example,

Duffie et al. 1997).

4 Examples and discussion

In this section we provide a number of applications related to the closed form
solutions we derived earlier. As the examples below indicate, our results can
facilitate the analysis of valuation models in portfolio management and derivative
pricing in the presence of unhedgeable risks and, ultimately help us to obtain a
better understanding of the effects of this kind of market frictions. Additionally,
these results can also be applied to valuation models without unhedgeable risks
but with non-linear stock dynamics – departing from the class of log-normal
diffusion stock prices – for which no closed form solutions exist in general.

A Investment models with a single stochastic factor

This is basically the class of models extensively analyzed in previous sections
and we only look briefly at the limiting casesρ = 0 andρ = ±1.
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i) ρ = 0 : When the underline stock price and the stochastic factor are not
correlated, there is no distortion in the sense thatδ = 1. In this case,

u(x , y , t) =
xγ

γ
v0(y , t) and π∗(x , y , t) =

µ(y , t) − r
(1 − γ)σ2(y , t)

x . (4.1)

The Eq.(3.11) satisfied byv0 becomes v0
t + 1

2a2(y , t)v0
yy + b(y , t)v0

y +

[
rγ +

γ(µ(y , t) − r)2

2(1− γ)σ2(y , t)

]
v0 = 0

v0(y , T ) = h(y)

and (3.15) or (3.17) yield

v0(y , t) = E

[
h(YT ) exp

∫ T

t

[
rγ +

γ(µ(Ys , s) − r)2

2(1− γ)σ2(Ys , s)

]
ds/ Yt = y

]
with Ys solving the original state Eq. (2.3). Notice that the drift change, repre-
sented by the coefficientc(y , t) in (3.13), disappears.

The above formulae indicate the natural consequences of the absence of
correlation: the componentv0(y , t) is not “distorted” and also, the first component
of π∗(x , y , t) in (3.7) is eliminated. We see that, as expected, there is no hedging
demand as (4.1) indicates; in fact, the ratio of wealth invested optimally in the
risky asset is given by a similar expression to the so-called Merton ratio.

ii) ρ2 = 1 : When the underline stock price and the stochastic factor have
correlation coefficientρ = ±1, the distortion power coincides with the relative
risk aversion,δ = 1− γ. In this case,

u(x , y , t) =
xγ

γ
ṽ(y , t)1−γ

and

π∗(x , y , t) =
[
(sgnρ)

a(y , t)
σ(y , t)

ṽy (y , t)
ṽ(y , t)

+
1

1 − γ

µ(y , t) − r
σ2(y , t)

]
x

with ṽ solving
ṽt +

1
2

a2(y , t)ṽyy +
[
b(y , t) + (sgnρ)

γ(µ(y , t) − r)a(y , t)
(1 − γ)σ(y , t)

]
ṽy+

+
γ

1 − γ

[
r +

µ(y , t) − r
2(1− γ)σ2(y , t)

]
ṽ = 0

ṽ(y , T ) = h(y)1/(1−γ).

B Optimal investment models with non-linear price dynamics

It is well known that in the absence of correlated stochastic risk factors, the HJB
Eq. (3.4) has been analyzed extensively when the coefficientsµ and σ depend
on time and more generally, in an adaptive way on the underlying Brownian
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motion (see Karatzas 1997). In most cases, the value function and the optimal
policies are determined via martingale representation arguments and closed form
solutions are not in general available.

The methodology of this paper can be applied specifically to models with
nonlinear stock price dynamics of the form say

dSs = µ(Ss , s)Ss ds + σ(Ss , s)Ss dWs .

The problem is easily reduced to the case of the stochastic factorYs ≡ Ss ;

then ρ = 1, a(y , t) = σ(y , t)y , b(y , t) = µ(y , t)y and c(y , t) =
γ(µ(y , t) − r)y

1 − γ
.

The value function is given by

u(x , S , t) =
xγ

γ
v(S , t)1−γ

wherev solves (3.11) modified with the above coefficients.

C Derivative pricing via utility maximization

Expected utility methods have been effectively used for the valuation of deriva-
tive securities in markets with transaction costs. This approach typically gener-
ates price bounds which are independent of the current portfolio holdings and
provides a range of derivative prices advantageous for both the writer and the
buyer of the securities. (See among others, Hodges and Neuberger 1989; Davis
et al. 1993; Barles and Soner 1998; Constantinides and Zariphopoulou 1999).
Recently, Mazaheri (1998) employed the utility maximization approach to ob-
tain price bounds for European-type derivatives when the dynamics of the stock
price are affected by a non-traded asset represented byYs . These bounds are
determined by comparing the value functionu(x , y , t) to the value functions of
the writer and the buyer, denoted respectively byFW and FB respectively. To
simplify the exposition, we takeh(y) ≡ 1.

For the case of the writer, his value function is defined as

FW (x , S , y , t) = sup
Aw

E [u(XT − g(ST ), YT , T )/Xt = x , St = S , Yt = y ]

with g(ST ) being the payoff of the security at expiration timeT . The setAw

is the set of admissible policies for the investments of the writer. Because of
feasibility conditions, the lowest admissible level of wealth turns out to be the
value of one share of stock, in which case one gets

FW (S , S , y , t) = E [u(ST − g(ST ), YT , T )/St = S , Yt = y ]

or, equivalently (see (3.3) and (3.5))

FW (S , S , y , t) = E
[1
γ

(ST − g(ST ))γ/St = S , Yt = y
]
. (4.2)

The “write price”, sayhW (S , y , t) must satisfy
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u(x , y , t) ≤ FW (x + hW (S , y , t), S , y , t).

Similar criteria are applied for the “purchase price” but we concentrate on the
“write price” only. Mazaheri (1998) established that ifH (S , y , t) : D → R+ is
such that

u(S , y , t) = FW (S + H (S , y , t), S , y , t)

or, equivalently,

u(S − H (S , y , t), y , t) = FW (S , S , y , t), (4.3)

thenH provides an upper bound for the write pricehW .
The results obtained herein can be used to provide reduced form solutions

for this price bound.
In fact, from (3.17), (4.2) and (4.3) we have

[S − H (S , y , t)]γ

γ
v(y , t)δ = E

[1
γ

(ST − g(ST ))γ/St = S , Yt = y
]

which in turn yields

H (S , y , t) = S −
{

E [(ST − g(ST ))γ/St = S , Yt = y ]

v(y , t)
1−γ

1−γ+ρ2γ

} 1
γ

,

with v being the solution of (3.11) and (3.12).
It is worth mentioning that the above utility-based analysis can be readily

generalized for other types of derivatives, namely American-type and some path-
dependent ones even when they are written on multi-securities. (See Mazaheri
and Zariphopoulou 1999).

D Discussion and future work

In this paper we studied an optimal investment model in markets with stochasti-
cally changing investment opportunity sets. More precisely, the underlying stock
prices are modelled as diffusion processes whose coefficients depend on another
correlated process, called the “stochastic factor”. For the specific class of sepa-
rable CRRA utilities, we derived reduced form solutions for the value function
and the optimal policies in terms of a power transformation of the solution of
a simple linear partial differential equation. This transformation enables us to
express the value function in terms of an expected payoff that depends on a new
stochastic factor whose dynamics are the same as the original ones but with a
modified drift.

Even though at first sight the results herein appear rather technical, the discus-
sion that follows indicates an interesting connection with stochastic differential
utilities and, also, with distorted measures of risk. The discussion that follows
is informal and it is intended only to provide some economic insights for the
obtained representation formulae.
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We start with an interpretation for the representation formulae (3.17) and
(3.18) which involve the pseudo-stochastic factor processỸs , given in (3.16).
Specifically, one may use ideas from the theory of stochastic differential utility
to interpret the second component of the value function, namely
V (y , t) = v(y , t)δ. The idea is to interpret the nonlinearities appearing in the re-
duced HJB Eq. (3.8) appropriately in order to representV in terms of a recursive
utility. The main references are the papers by El Karoui et al. (1997) and Duffie
and Lions (1992).

First we recall that ifZ α
s is a family of solutions of the backward stochastic

differential equations (BSDEs)−dZ α
t = f α(Z α

t , Z̃t , t)dt − Z̃ α
t dWt

Z α
T = ξ ,

with solution (Z α
t , Z̃ α

t ) and f (Zt , Z̃t , t) ≡ essinf
α

f α(Zt , Z̃t , t) then the solution

(Zt , Z̃t ) of −dZt = f (Zt , Z̃t , t)dt − Z̃t dWt

ZT = ξ,

satisfiesZt = essinf
α

Z α
t . Moreover, letg be the solution of the terminal value

problem 
gt + L g + f (t , y , g(y , t), Σ(y , t)gy (y , t)) = 0

g(y , T ) = Ψ (y)
(4.4)

with the differential operator being given by

L v =
1
2
Σ2(y , t)vyy + B (y , t)vy . (4.5)

Then, under the appropriate regularity conditions, ifỸs solves dỸs = B (Ỹs , s)ds + Σ(Ỹs , s)dWs

Ỹt = y

and we define
Zt ≡ g(Ỹt , t) and Z̃t ≡ Σ(Ỹt , t)gy (Ỹt , t)

then (Zs , Z̃s ) is the solution of the FBSDE−dZs = f (Ỹs , Zs , Z̃s , s)ds − Z̃s dWs

ZT = Ψ (ỸT ).

Comparing (3.8) to (4.4) and (4.5) we have the identificationsg ≡ V ,

Σ(y , t) ≡ a(y , t), B (y , t) ≡
[
b(y , t) + ρ γ

1−γ
(µ(y,t)−r)

σ(y,t) a(y , t)
]

and
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f (t , y , V , V̂ ) =
[
rγ + γ(µ(y,t)−r)2

2(1−γ)σ2(y,t)

]
V + ρ2 γ

2(1−γ)
V̂ 2

V with V̂ ≡ a(y , t)Vy .

We also observe thatf can be written as

f = max
ξ

f ξ

with

f ξ(t , y , V , W ) =
[
rγ +

γ(µ(y , t) − r)2

2(1− γ)σ2(y , t)

]
V + ρ2 γ

2(1− γ)
V̂ 2
(
ξ − V

4
ξ2
)
.

Given all the above, we can readily relatef ξ to the generator of a recursive
utility function. Specifically, ifỸs solves (3.16), rewritten here for convenience, dỸs =

[
b(Ỹs , s) + ρ

γ(µ(Ỹs , s) − r)a(Ỹs , s)

(1 − γ)σ(Ỹs , s)

]
ds + a(Ỹs , s)dWs

Ỹt = y

(4.6)

andZ ξs
s satisfies −dZ ξs

s = f ξs (Ỹs , Z ξs
s , Z̃ ξs

s )ds − Z̃ ξs
s dWs

Z ξT
T = 1

thenZ ξs
s can be written as the recursive stochastic differential utility

Z ξs
s = E

[
1 +
∫ T

s

{
rγ +

γ(µ(Ỹu , u) − r)2

2(1− γ)σ2(Ỹu , u)

}
Z ξu

u du

+ρ2 γ

2(1− γ)a2(Ỹu , u)

(
ξu − Z ξs

u

4
ξ2

u

)
d [Z ξu

u ]
/
Fs

]
.

In terms of the recursive utility terminology, theaggregator is

α(Ỹs , Z ξs
s , s) ≡

[
rγ +

γ(µ(Ỹs , s) − r)2

2(1− γ)σ2(Ỹs , s)

]
Z ξs

s

and thevariance multiplier

A(Ỹs , Z ξs
s , s) =

ρ2γ

2(1− γ)a2(Ỹs , s)

(
ξs − Z ξs

s

4
ξ2

s

)
.

Then the solutionV of the non-linear Eq. (3.8) can be written as

V (y , t) = max
ξ

Z ξ
t .

The above interpretation indicates that the stochastic utility depends on a
hidden factor with coincides with the pseudo-assetỸs defined in (3.13); see also
(4.6). It is the process̃Ys which affects directly the overall maximal utility of
the agent and not the original one,Ys . Of course,Ỹs degenerates toYs in the
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orthogonal caseρ = 0. (A class of models with recursive utilities for affine market
coefficients has been studied recently by Schroder and Skiadas 1999.)

From an entirely different point of view, one may possibly study the com-
ponentV using elements from the theory of the so-called distorted probability
measures. For the sake of exposition, we assume thath(y), see (2.8), is given
by h(y) = 11{y≥K} with K a given constant, and the potential termk (y , t), see
(3.14), is assumed to be zero. Then one sees thatv may be interpreted as the
survival probability of the process̃Ys ; this in turn yields thatV may be written
as the distorted survival probability of̃Ys , i.e.

V (y , t) = (Q [ỸT ≥ K/Ỹt = y ])δ (4.7)

for some probability measureQ andδ being the distortion power in (3.10).
Distorted survival probabilities have been successfully associated to non-

additive measures which have been of central interest in the valuation of static
insurance risks (see Wang 1996; Wang and Young 1998; Wang et al. 1997).
They are proved to have desirable properties – like for example subadditivity
and comonotonicity – which provide a good underlying structure for measuring
risks generated by insurance claims. Due to the ever-increasing complexity of
the markets, it is imperative to extend the above notions to dynamic settings
in the presence of market frictions. Preliminary work in the context of dynamic
insurance risks, has been recently done by Young and Zariphopoulou (1999) who
provided a complete variational characterization of distorted survival probabilities
of diffusion processes. In particular, they considered the survival probability
ṽ(y , t ; z , T ) = Q(YT ≥ z/Yt = y ] of a diffusion process, sayYs solving (2.3) and
they studied its distortion, i.e.̃V (y , t ; z , T ) = g(ṽ(y , t ; z , T )) with g : [0, 1] →
[0, 1]. In Young and Zariphopoulou (1999), it is shown that under mild conditions,
Ṽ can be written as the survival probability of a new diffusion process with a
modified drift and with a combination of killing and splitting components. We
note that (4.7) corresponds to the special case of concave distortiong(z ) = z δ,
0 < δ < 1. An interesting question therefore arises, whether one can represent
the value function, see (2.7), in terms of an integral with respect to a distorted
probability measure (under a concave distortion). Such a representation would
possibly facilitate the study of the effects of the unhedgeable risks – generated by
the non-traded correlation factors – especially for the optimal hedging demand.

Of course, a more challenging question is whether one can represent the
value function in terms of an integral with respect to a distorted measure – or
in general with respect to a coherent measure – under general assumptions on
the individual preferences. In the latter case, the homogeneity properties are lost
and the decomposition (3.3) is not valid. Therefore, a concave distortion along
the lines of (3.9) cannot hold.

Finally, the results herein may be also applied to a different category of
stochastic optimization problems arising in models of imperfect hedging. Indeed,
one might look into the case of a derivative security written on an underlying
stock whose price depends on a non-traded asset. A hedging policy might then
be specified by minimizing a loss criterion of the form
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E
[
(XT − C )p/Xt = x , Yt = y

]
wherep even andC is a constant liability. The

processXs represents the value of the hedging portfolio and its coefficients de-
pend on another process, sayYs , which models the non-traded asset. Such models
have been studied, for particular cases of the correlation between the stock and
the stochastic factor, via mean-variance criteria (see Duffie and Richardson 1991;
Schweizer 1992, 1996); these criteria correspond top = 2. Recently Hipp and
Taksar (1999) introduced general loss criteria, forp �= 2, and they produced
explicit solutions for a certain range of correlation and market parameters. One
may obtain their results in a somewhat more general setting, by applying the
same transformation that was earlier employed herein adapted for the case of
convex optimization. In fact, let the “hedging portfolio” processXs to follow
(2.4) and the stochastic factorYs to satisfy (2.3) withρ2 = 1. The minimal ex-
pected asymmetric loss may be viewed as the value function of the stochastic
minimization problem,u(x , y , t) = inf

{π}
E [(XT − C )p/Xt = x , Yt = y ]. The homo-

geneity of degreep is then preserved and one expects to have the decomposition
u(x , y , t) = (x −C )pV (y , t). Following arguments along the lines of the previous
section one gets, forρ2 = 1, u(x , y , t) = (x − C )pv(y , t)p−1 with v solving the
appropriate linear equation. We note that ifρ2 = 1, the analysis of the central
problem of minimizing the expected hedging loss is similar to the one of constant
liability. This reduction, to a constant liability, may not be feasible forρ2 �= 1
and the solution approach we developed herein must be extended.

Appendix A

The notion ofviscosity solutions was introduced by Crandall and Lions (1983)
for first-order equations, and by Lions (1983) for second-order equations. For a
general overview of the theory we refer to theUser’s Guide by Crandall et al.
(1992) and the book by Fleming and Soner (1993). Next, we recall the notion
of constrained viscosity solutions which was introduced by Soner (1986) and
Capuzzo-Dolcetta and Lions (1990) for first-order equations (see also Ishii and
Lions 1990). To this end, we consider a nonlinear second order partial differential
equation of the form

F (X , V , DV , D2V ) = 0 in D × [0, T ] (A .1)

whereD ⊆ R2, DV andD2V denote the gradient vector and the second derivative
matrix of V , and the functionF is continuous in all its arguments and degenerate
elliptic, meaning that

F (X , p, q , A + B ) ≤ F (X , p, q , A) if B ≥ 0. (A.2)

Definition: A continuous function V : D × [0, T ] → R is a constrained viscosity
solution of (A.1) if the following two conditions hold: i) V is a viscosity subsolution

of (A.1) on D × [0, T ]; that is, if for any
φ ∈ C 2,1(D × [0, T ]) and any local maximum point X0 ∈ D × [0, T ] of V − φ,
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F (X0, V (X0), Dφ(X0), D2φ(X0)) ≤ 0,

ii) V is a viscosity supersolution of (A.1) in D × [0, T ]; that is, if for any
φ ∈ C 2,1(D × [0, T ]) and any local minimum point X0 ∈ D × [0, T ] of V − φ,

F (X0, V (X0), Dφ(X0), D2φ(X0)) ≥ 0.
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