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Abstract

This paper treats a  general
consumption and investment problem for a
single agent who consumes and distributes his
wealth, dynamically, between a bond and a
stock. The agent faces trading constraints:
bankruptcy never occurs and the amount
invested in stock must not exceed an
exogeneous function of the current wealth.
The objective is to maximize the expected
utility of consumption. The value function is-
shown to be smooth solution of the associated
Bellman equation and the optimal policies are
determined.

1. Introduction

This paper treats a  general
consumption and investment problem for a
single agent. The investor consumes his
wealth X, at a nonnegative rate C, and he

distributes it between two assets continuously
in time. One asset is a bond, i.e. a riskless
security with instantaneous rate of return r.
The other asset is a stock whose value is
driven by a Wiener process.

The objective is to maximize the total
ezpected (discounted) utility from consumption
over an infinite trading horizon. The investor
faces the following trading constraints: his
wealth must stay nonnegative, i.e. bankruptcy
never occurs. Moreover, the amount LA

invested in stock must not exceed an
exogeneous function f(Xt) of the wealth.

Finally, the agent does not pay transaction
fees when he trades.

This financial model gives rise to a
stochastic control problem with control
variables the consumption rate Ct and the

portfolio vector (12, 1rt), where rg and =,
are the amount of wealth invested in bond
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and stock respectively. The state variable Xt

is the total wealth at time t. Finally, the
value function is the maximum total expected
discounted utility.

The goal of this paper is to determine
the value function of this control problem, to
examine how smooth it is and to characterize
the optimal policies. The basic tools come
from the theory of partial differential
equations, in particular the theory of viscosity
solutions for second order partial differential
equations and elliptic regularity. We first
show that the value function is the unique
constrained  viscosity solution of the
associated Hamilton—Jacobi—Bellman (HJB)
equation. Then we prove that concave
viscosity solutions of these equations are

smooth.  Finally, we obtain an explicit
feedback form for the optimal policies
(C*,7*).

Section 1

We consider a market with two assets:
a bond and a stock. The price P[t) of the
bond is given by

aP? = rPlat  (t2 0)

0
PO = Py » (PO > 0)
where r > 0 is the interest rate.

The price
Pt of the stock satisfies

dP

t (t 2 0)

= thdt + chtth

PO = P, (p>0)

where b is the mean rate of return, o is the
dispersion coefficient and the process W,
which represents the source of uncertainty in
the market, is a standard Brownian motion
defined on the underlying probability space



(Q,F,P). We will denote by F
augmentation under P of
FW = o(Wg 0¢s<t) for 0<t<+a

The interest rate r, the mean rate of return
b and the dispersion coefficient o are
assumed to be constant with ¢ # 0 and
b>r>0.

¢ the

The total current wealth Xt = 72 + ”t

is the state variable; it evolves (see [20])
according to the equation

dX, = 1X,dt+(b-r)m dt—C,dt+om dW,

X = x, (xe€[0.40)).

Here x is the initial endowment of the
investor.

The control processes are
consumption rate Ct and the portfolio

They are admissible if

(i) C, is Z—progressively measurable,
Ct >0 a.e. Yt>0 and satisfies

ErCsds<+m.
0

@ = s

the

ﬂ%.

%—progressively measurable

and satisfies Er 7r§ds <+ o
0

Moreover T < f(Xt) as. Vt20

where the function f [0, +o) —
[0,4o)  represents the borrowing
constraints and it has the following
properties:

f 1is increasing, concave,

2 =)y <K|x—y| ¥x,y20
£(0) > 0.

(i) X, 20 as. Vt20, where X, isthe
trajectory given by the state equation

(1) using the controls (C,).
All the results hold for the case f= +o
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which was studied in [10] provided that some
of the arguments are slightly modified.

We denote by A the set of admissible
controls.

The total expected discounted utility
J coming from consumption is given by

I(x,C,m) = Erm ePhy(c,)at
0

with (C,m) € 4, where U is the utility
functionand B > 0 is the discount factor.

The value function is given by

+o
3) v(x)= sip EJ e U(C,)dt

0

The utility function U:

[0,+m) —
[0,+0) has the following properties:

(U is astrictly increasing,
concave, 02(0,+m) function with
{1im U’(¢) = 4w, lim U’(c)=0,
c-0 C-m

U(0) 20, U(c) < M(1+c)?

lwhere 0 < y<1and M > 0.

Our goal is to characterize v as
classical solution of the Hamilton—Jacobi—
Bellman (HJB) equation associated with this
control problem and use the regularity of v
to provide the optimal policies.

We now state the main results.

Theorem 1: The value function v is the
unique C%(0,+s) N C([0,+w)) solution of

(4) 12 2

fv= max [5o"7"v  + (b-1)7v ]

< f(x)

+ max[—cv_ + U(c)] + rxv,
c20

in the class of concave functions.

* *
Theorem 2: The optimal policies Ct and L



*
are given in the feedback form C, = ¢ (Xt)’

* *
7, =7 (X,) where

¢ (x) = (U) v, (x)),

T (x) = min{f(x), - %‘ZE %%] .

The single
portfolio problem was
Merton in 1969, 1971
considered utility functions belonging to the
HARA family ("HARA" = hyperbolic
absolute risk aversion). Another important
contribution is the work of Karatzas,

agent consumption—
rst investigated by

(@4, [15) who

Lehoczky, Sethi and Shreve [10], and of
Karatzas, Lehoczky and Shreve [11]. Pliska
[17], Cox and Huang [2] and Pages [16] have

used a martingale representation technology
to study optimal consumption and portfolio
policies.

In all the above work, trading
constraints are not active. The main
contribution of this paper is that it examines
models with constraints (see also
Zariphopoulou 1;]20], Fleming and
Zariphopoulou [7], Fitzpatrick and Fleming [5]
and Vila and Zaniphopoulou [19]).

Section 2

In this section we show that the value
function v is the unique constrained viscosity
solution of the HIB equation associated with
the underlying stochastic control problem.
The characterization of v as a constrained
viscosity solution is natural because of the
presence of the state (X, > 0) and control

(m, <f(X,)) constraints.

The notion of wviscosity solution was
introduced by Crandall and Lions [4] for first
order and by Lions [13] for second order
equations. For a general overview of the
theory we refer to the wuser’s guide by
Crandall, Ishii and Lions [3].

Next we rec the notion of
constrained wviscosity solutions, which was
introduced by  Sonmer [18 and
Capuzzo—Dolcetta and Lions [1] for first
order equations (see also Ishii and Lions [9]).
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To this end, consider a nonlinear second order
partial differential equation of the form

(5) F(x,u,ux,uxx) =0 in Q

where § is an open subset of R and F:  x
R x R x R — R is continuous and (degenerate)
elliptic, i.e.

F(x,t,PX+Y) ¢ F(x,t,PX) if Y 0.

Definition 1: A continuous function u: I —
R is a constrained viscosity solution of (5) iff
(i) u is a viscosity subsolution of (5)

on (I, ie. if for any ¢ ¢ Cz(ﬁ) and any
maximum point X € Tof u—-gp

F(xg,u(xg), ¢y (x0)s (%)) € 0

and
(ii) u is a wviscosity supersolution of

(5)in R, i.e. ifforany ¢ C2(D') and any
minimum point X € {2 of u—¢

F(x, u(xo), gox(xo), ® xx(xo)) 2 0.

Theorem 2.1: The value function v 1is a
constrained viscosity solution of (4) on

0= [0,+m).

The fact that, in general, value
functions of control problems and differential
games turn out to be viscosity solutions of the
associated partial differential equations is a
direct consequence of the principle of dynamic
programming and the definition of viscosity
solutions (see for example: Lions [13L). The
main difficulty, however, in the problem at
hand is that the consumption rates and the
portfolios are not uniformly bounded. This
gives rise to some serious complications in the
proofs of the results of the aforementioned
papers. To overcome these difficulties we
need to introduce a number of approximations
of the original problem and make use
repeatedly of the stability properties of
viscosity solutions. a]

We next present a comparison result
for constrained viscosity solutions of (4).
Comparison results for a large class of



boundary problems were given by Ishii and
Lions [a,. The equation on hand, however,
does not satisfy some of the assumptions in
[9], view of the fact that the controls are not
uniformly bounded. It is therefore necessary
to modify some of the arguments of Theorem
I1.2 of [9] to take care of these difficulties.

Theorem 2.2: If % s an
upper—semicontinuous  concave  ViSCoSity

subsolution of (4) on T and v is a bounded
from below, sublinearly growing, wuniformly

continuous on 1 and locally Lipschitz in
viscosity supersolution of (4) in S, then

u<v on . a

Section 3

In this section we show that the value
function is smooth solution of the
Hamilton—Jacobi—Bellman equation and we
characterize the optimal policies.

Theorem 3.1: The value function v 13 the
unique continuous on [0,+w) and twice
continuously differentiable in (0,+w) solution
of (4) in the class of concave functions.

The main idea of the proof is to work
in intervals (x;,x,) C [0,4=) and show that

v solves a uniformly elliptic HJB equation in
(xl,xz) with boundary conditions v(x,) and

v(x,). Standard elliptic regularity theory (c.f.

Krylov [12]? and the uniqueness result about
viscosity solutions will yield that v is smooth

in (x;,%,)-
We next explain how we come up with
the uniformly elliptic HJB equation.

Formally, according to the constraints, the
optimal 7 is either f(x), if -
b—r 'x\* b—r 'x\¥ .
- > fl - , if
A B o =2
b—r 'x\*
- < f(x). In the second case, we
pA=e

*
want to get a positive lower bound of 7 in
[x;%p]. ~Since v, is nonincreasing and

strictly positive, it is bounded from below
away from zero. Therefore, it suffices to find
a lower bound for v -
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Sketch of the proof: We first approximate v

bg a family of concave functions (v€) such
that

v¢ — v, locally uniformly on @

and the v®s are constrained viscosity
solutions on Q0 of the regularized equation

2,22, ¢

12 €
Bv€ = max [po(r“+e“x“WE_ + (b-r)nvS]
7FS f(x) 2 XX X
+ max[—cv; + U(c)] + rxvE.
c>0 x
Moreover, it can be shown that v¢ is the
unique smooth solution of
12, 2, 2.2
fu= max [5o°(7“+e“x%)u__+
0< 7<f (x) 2 xx

(6)

(b-r)ru ] +1::1§.J6[—cux+U (¢) J+rxu,

_u(xl) = ve(xl), u(x2) = Ve(xg)

Next we show that there are positive
constants Rl’ R.z and R, independent of ¢,

such that

() Ry<vi(x) <Ry on [x, %,
and
(8) [V ()] <R on [x;, x5].

To get (8), we let ¢ :RT —[0,1] to
be as follows:

i) (eCy (ie ¢ isa smooth function
with compact support),

i) (=1 on [x;x), (=0 on R\[x;x,),
with [xl,xz] C [1?1,32] and il >0,
16| ¢ MCP, [ ¢ | < M(P with
0<p<1and M>0.



We consider a function z given by
z(x) = sz?cx + Avi — pv, where A and pu

are appropriately chosen positive constants,
and we look at the maximum of 2z on

[x;.x5)- Using the conditions at the
maximum point X, i.e. z(xo) =0 and
z(x;) <0, and the equation (6) we get (8).

Combining (7) and (8) we see that

€
Vv
_E;.L23>o

on [x;,%x)
o“ v

Let us now consider the equation

Pu= max
B<r<f(x)

(9} (b—r)m_] +max[-cu_+U(c)]+rxu
c20

[ %-02( 12+ 2 xz)uxx-i-

u(x,)=v(x;) , -u(x2)=v (x5)-
In view of the above analysis, we know

that v¢ solves (9). Let ¢ — 0. Since

v¢ — v, locally uniformly, v is a viscosity

solution of

122
[

fu= max 50T uxx+(b—r)1rux]

B<r<f(x)
(10){ + max[-cu +U(c)]+rxu
c20

u(xy)=vix), u(xy)=v(xy.

On the other hand, (10) admits a
unique smooth solution (see [12]) which is the

unique viscosity solution (see [9], Theorem
I1.2); therefore v is smooth. ]

Theorem 3.2: The feedback optimal controls
* * . *
C and T aregivenby c (z) = I(vz(z))

and **(z) = min[— ti%:')): f(z)} for
o

z > 0. The state equation (1) has a strong
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unique solution X:, corresponding to

C’: = c*(X;) and w: = w*(X:) and starting
at > 0 at t = 0 which is unique in
probability law up to the first time T such that
X =0

Proof: The formulae for 7* and C* follow
from a standard verification theorem (see [6])
and the equation. We now show that r* and

C* are locally Lipschitz functions of x. It is
clear that Ve is locally Lipschitz because in

any compact set K there exists a constant
C = C(K) such that |v | < C(K), (xeK).

Therefore C* is locally Lipschitz. Moreover,
from the Bellman equation we have that
Ve = H(x,v,v)

where H is a locally Lipschitz function.
Since v is locally Lipschitz we get that v x

is locally Lipschitz too.  Therefore (see
Gikhman and Skorchod [Sl) equation (1) has a
unique strong solution Xt in probability law

up to the first time 7 such that X’,‘;_ =0. o
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