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The observed discrepancies of derivative prices from their theoretical, arbitrage-free values are
examined in the presence of transaction costs. Analytic upper and lower bounds on the reservation
write and purchase prices, respectively, are obtained when an investor’s preferences exhibit constant
relative risk aversion between zero and one. The economy consists of multiple primary securi-
ties with stationary returns, a constant rate of interest, and any number of American or European
derivatives with, possibly, path-dependent arbitrary payoffs.
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1. INTRODUCTION

The paper examines the role of one market imperfection, namely, transaction costs, on
the observed discrepancies of derivative prices from their theoretical, arbitrage-free val-
ues. We derive an upper bound on the reservation write price of a derivative and a lower
bound on its reservation purchase price. We then discuss the equilibrium implications of
transaction costs on the transaction prices of derivative securities.

The market setup is general. The economy consists of N positive-net-supply primary
securities, a riskless short-term bond with constant rate of interest, and any number of
exotic derivatives of a wide range. The derivatives may be of European or of American
type; they may have different expiration dates but all expire at or prior to some given
time. Each derivative may also have a path-dependent payoff at one or more, exogenously
given, random stopping times. Examples of exotic derivatives to which the bounds apply
are packages, nonstandard American options, compound options, barrier options, look-
back options, Asian options, and options involving several assets.
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The main assumption throughout is that the prices of the primary securities have i.i.d.
returns and rebalancing between the various accounts is charged with transaction costs.
Trading may take place in discrete or in continuous time and the transaction costs may
be proportional or quasi-linear. The restrictions on the prices of derivatives are obtained
from the requirement that, in equilibrium, an investor cannot increase her expected utility
by further trade. The investor is endowed with a utility function with constant relative risk
aversion coefficient between zero and one. No restrictions are imposed on the preferences
of other investors in the economy.

In order to better demonstrate the valuation approach and to explain the methodology,
we concentrate the analysis on models in a market with proportional transaction costs
with multiple primary securities with prices modeled as log-normal price processes.
Subsequently, we look at a more general structure of transaction fees and discuss their
implications on the derivative prices in a discrete-time framework.

Our results apply to options traded in high-volume markets (exchanges and over-the-
counter markets) in which it is plausible to assume that there are numerous competitive
buyers and sellers with preferences satisfying the rather weak assumptions made in this
paper. The results may be inapplicable to the pricing of illiquid customized derivatives
traded between financial institutions and their clients.

The paper is organized as follows. In Section 2, we define the economy of N positive-
net-supply risky primary securities and a riskless short-term bond, in a continuous-time
framework and with price processes being modeled as diffusions. We also introduce
the utility maximization problem of a single investor whose preferences are described
via a constant relative risk aversion function. In Section 3, we introduce the M exotic
derivatives that are available for trading and whose reservation prices we would like to
specify. The main result is then derived in Theorem 3.1 which states that if the payoff
of a derivative related (unit-cost) portfolio satisfies certain growth conditions, namely
inequalities (3.1) and (3.2), then the investor may trade and increase her expected utility.
Therefore, in equilibrium, a payoff that satisfies the condition (3.1) must also satisfy the
complement to condition (3.2), stated as inequality (3.5).

In Section 4, we relax the assumption of proportional transaction costs to nonlin-
ear fees and we examine the derivative valuation problem in a discrete-time setting. In
Section 5, we discuss various applications of the derived price bounds. We illustrate
the bounds in the case that the stock price distribution is log-normal and address the
observed discrepancies in the transaction prices of exchange-traded index options from
their Black–Scholes (1973) value. Such discrepancies are known as the implied volatility
smile. It turns out that the bounds impose tight restrictions on the slope of the volatil-
ity smile. Discussion on the case of more general price processes, for example mixed
diffusion/Poisson processes, is presented together with concluding remarks and future
research directions.

In a related paper, Constantinides and Zariphopoulou (1999) derived an upper bound
on the reservation write price of a European call option for, relatively, general individual
preferences. Their main assumptions were that the utility function is bounded by two
other utility functions, each with a (common) constant relative-risk-aversion coefficient
that lies between zero and one, that there is only one positive-net-supply primary security,
and, finally, that the price is a geometric Brownian motion. The present paper restricts
the utility function to the subset of utility functions with constant relative-risk-aversion
coefficient between zero and one. However, it generalizes the work of Constantinides
and Zariphopoulou in various ways. In fact, it allows for multiple primary securities, as
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well as for multiple derivatives. The latter may be of general type: European, or Amer-
ican, path-dependent and, in general, of arbitrarily specified payoff. Also, the primary
prices may be modeled as jump-diffusions processes. Finally, the existing results are
considerably extended in the context of discrete-time trading for primary prices of sta-
tionary returns and for quasi-linear transaction costs, departing from the standard case
of proportional ones.

In another related paper, Constantinides and Perrakis (2001) derived upper bounds on
the reservation write price of European call and put options and lower bounds on the
reservation purchase price of these derivatives in a multiperiod economy with propor-
tional transaction costs, general individual preferences, and arbitrarily small holding of
the derivative. The present paper allows for multiple primary securities and derivatives,
allows derivatives that are path dependent and have arbitrary payoffs, and allows for
finite holding of the derivatives.

A review of the literature on pricing derivative securities in markets with transaction
costs is provided in Zariphopoulou (2000).

2. THE CONTINUOUS-TIME MODEL

We consider an economy with N +1 securities, a bond with price Bt , and N stocks with
prices Si

t , 1 ≤ i ≤ N , at date t ≥ 0. The bond pays no coupons, is default free, and has
price dynamics

Bt = ertB0, t ≥ 0,(2.1)

where r is the constant rate of interest.
We denote by W̃ (t) = (W 1

t , . . . ,W
N
t )T an N -dimensional standard Brownian motion

that generates the filtration F t on a fixed, complete probability space (�,F, P ). The
stock prices are diffusion processes given by

Si
t = Si

0 +
∫ t

0
µiSi

u du+
∫ t

0
Si

u

N∑
j=1

σij dW
j
u , 1 ≤ i ≤ N,(2.2)

where �µ = (µ1, . . . , µN)T is the mean rate of return vector and σ = {σij }, 1 ≤ i, j ≤ N

is the volatility matrix for t ≥ 0; Si
0 = S0 ≥ 0 for 1 ≤ i ≤ N . The values µ1, . . . , µN

and σij , 1 ≤ i, j ≤ N are assumed to be positive constants.
The investor holds xt dollars of the bond and yi

t dollars of the stock Si at date t ,
for 1 ≤ i ≤ N . We consider pairs of right-continuous with left limits (CADLAG)
nondecreasing processes (Li

t , L̃
i
t ), 1 ≤ i ≤ N , such that Li

t represents the cumulative
dollar amount transferred from the bond account into the ith stock account and L̃i

t the
cumulative dollar amount transferred from the ith stock account to the bond account. By
convention, we set Li

0 = L̃i
0 = 0, 1 ≤ i ≤ N .

The stock account processes �yt = (y1
t , . . . , y

N
t ) are given, for yi

0 = yi , 1 ≤ i ≤ N , by

yi
t = yi

0 +
∫ t

0
µiyi

u du+
∫ t

0
yi
u

N∑
j=1

σij dW
j
u +

∫ t

0
dLi

u −
∫ t

0
dL̃i

u.(2.3)

Transfers between the stock and the bond accounts incur proportional transaction costs.
In particular, the cumulative transfer Li

t into the ith stock account reduces the bond
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account by βiLi
t and the cumulative transfer L̃i

t out of the ith stock account increases
the bond account by αiMi

t , where 0 < αi < 1 < βi .
The investor consumes at the rate ct dollars out of the bond account. There are no

transaction costs in transfers from the bond account into the consumption good.
The bond account process is

xt = x +
∫ t

0
{rxu − cu} du−

N∑
i=1

βiLi
t +

N∑
i=1

αiL̃i
t ,(2.4)

with x0 = x. The integral represents the accumulation of interest and the drain due to
consumption. The last two terms represent the cumulative transfers between the stock
and bond accounts, net of transaction costs. Note that in general, transactions may be
allowed between stock accounts. It is only to simplify the exposition that we assume that
all transactions take place directly through the bond account.

A policy is an Ft -progressively measurable triple (ct , L
i
t , L̃

i
t ), 1 ≤ i ≤ N and t ≥ 0.

We restrict our attention to the set of admissible policies A such that

ct > 0 and E

∫ t

0
cu du < ∞ a.s. for t ≥ 0,(2.5)

wt = xt +
N∑
i=1

(
αi

βi

)
yi
t ≥ 0 a.s. for t ≥ 0,(2.5′)


where, for the rest of the presentation, we adopt the notation(

α

β

)
z =

{
αz if z ≥ 0

βz if z < 0.
(2.6)

We refer to wt as the net worth. It represents the investor’s bond holdings if the
investor were to transfer the holdings from the stock accounts into the bond account,
incurring in the process the transaction costs.

The investor has von Neumann–Morgenstern preferences E
[∫ +∞

0 e−ρt (c
γ
t /γ ) dt

]
over

the consumption stream {ct , t ≥ 0}, where ρ is the subjective discount rate and 1− γ is
the relative risk aversion coefficient with 0 < γ < 1.

Given the initial endowment (x, y1, . . . , yN) on

�D =
{
(x, y1, . . . , yN) ∈ R

N+1 : x +
N∑
i=1

(
αi

βi

)
yi ≥ 0

}
,

we define the value function V as

V (x, y1, . . . , yN) = sup
(c, L, L̃)∈A

E

[∫ +∞

0
e−ρt c

γ
t

γ
dt/x0 = x,(2.7)

y1
0 = y1, . . . , yN

0 = yN

]
.

In order to guarantee that the value function is well defined, we assume that

ρ > rγ + γ

2(1 − γ )
( �µ− r�)(σσ T )−1( �µ− r�)T .(2.8)

The above condition yields that the value function in the absence of transaction costs,
which corresponds to αi = βi = 1, 1 ≤ i ≤ N , and U(c) = cγ /γ , is finite, and therefore,
all value functions with 0 ≤ αi < 1, βi ≥ 1 are finite (e.g., see Merton 1973).1

1 The growth condition (2.8) was subsequently relaxed by Shreve and Soner (1994) in the case of only
two securities being available, a bond and a stock. Their conditions (stated in Theorem 2.1) provide a useful
insight for the value function and the nature of the optimal trading policies, but similar conditions have not
been explored to date for the case of multiple risky securities as in the model introduced herein.
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Models of optimal investment and consumption with transaction costs and with two
securities, a bond and a stock, were introduced by Constantinides (1979, 1986) and
subsequently studied extensively by others. Note that in these models, because there is
a single risky asset, the value function depends only on two state variables, say (x, y)

with x and y corresponding to the holdings in the bond and the stock accounts.
Using the special form of the power utility functions, Davis and Norman (1990)

obtained a closed form expression for the value function employing the homogeneity
of the problem. They also showed that the optimal policy confines the investor’s portfo-
lio to a certain wedge-shaped region in the wealth plane and they provided an algorithm
and numerical computations for the optimal investment rules. The same class of util-
ity functions was later further explored by Shreve and Soner (1994) who relaxed some
of the technical assumptions on the market parameters of Davis and Norman and pro-
vided further results related to the regularity of the value function and the location of
the exercise boundaries. The case of general utilities was examined through numerical
methods by Tourin and Zariphopoulou (1994) (see also Tourin and Zariphopoulou 1995
and 1997) who built a coherent class of approximation schemes for investment models
with transaction costs.

A straightforward argument along the lines of Constantinides (1979) shows that the
value function is increasing and jointly concave in (x, y); it can also be shown that it
is uniformly continuous (see Tourin and Zariphopoulou 1994). Furthermore, the value
function is expected to solve the Hamilton–Jacobi–Bellman (HJB) equation associated
with the two-dimensional analogue of the stochastic control problem (2.7).

The HJB equation turns out to be a Variational Inequality with gradient constraints
given by

min

[
LV, β

∂V

∂x
− ∂V

∂y
, −α

∂V

∂x
+ ∂V

∂y

]
= 0,(2.9)

where the differential operator L is

LV = ρV − 1

2
σ 2y2 ∂

2V

∂y2 − µy
∂V

∂y
− rx

∂V

∂x
− max

c≥0

{
−c

∂V

∂x
+ U(c)

}
.(2.10)

The following theorem can be found in Davis and Norman (1990) and Shreve and
Soner (1994). The conditions on the market coefficients, stated below, were introduced
respectively, by Davis and Norman and Shreve and Soner.

Theorem 2.1. Assume that there are only two securities in the market, a bond and a
stock, and that the interest rate r , the mean rate of return µ, and the volatility σ satisfy
the growth conditions ρ > rγ+γ (µ−r)2/2σ 2(1−γ ) or ρ > rγ+γ 2(µ−r)2/2σ 2(1−γ )2.
Then the value function V is the unique concave C2((0,+∞) × (0,+∞)) solution of
the Variational Inequality (2.9) associated to the differential operator (2.10).

Using classical results from the theory of singular stochastic control (e.g., see Fleming
and Soner 1993, Chap. 5), the following well-known Dynamic Programming Principle
(DPP) holds.

Proposition 2.1. Let τ be a stopping time, that is, a nonnegative random variable
such that the event {τ ≤ t} is in Ft , for each t ≥ 0. Then

V (x, y) = sup
A

E

[∫ τ

0
e−ρs c

γ
s

γ
ds + e−ρτV (xτ , yτ )/x0 = x, y0 = y

]
,(2.11)

where xτ and yτ are the controlled state processes at time τ .
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When there are multiple securities available and traded in the market, as in the case
we study herein, a number of the above arguments can be extended in a direct, albeit
tedious, way.

Below we state some elementary properties of the value function together with the
multidimensional analogue of the HJB equation (2.9).

Proposition 2.2. The value function V , given in (2.7), is increasing and jointly
concave in (x, y1, . . . , yN), uniformly continuous on �D, and homogeneous of degree γ .

The proof follows along similar arguments as in Proposition 2.2 of Tourin and
Zariphopoulou (1994) and therefore it is omitted.

The associated HJB equation turns out to be the multidimensional Variational Inequal-
ity with gradient constraints

min

{
L̃V, min

1≤i≤N

{
β1 ∂V

∂x
− ∂V

∂y1 , . . . , β
i ∂V

∂x
− ∂V

∂yi
, . . . , βN ∂V

∂x
− ∂V

∂yN

}
,

min
1≤i≤N

{
−α1 ∂V

∂x
+ ∂V

∂y1 , . . . ,−αi ∂V

∂x
+ ∂V

∂yi
, . . . ,−αN ∂V

∂x
+ ∂V

∂yN

}}
= 0,(2.12)

where the differential operator L̃ is

L̃V = ρV − 1

2
tr
(
(σσ T ),D2V

)− 〈�µ,DV 〉 − rx
∂V

∂x
− max

c≥0

{
−c

∂V

∂x
+ cγ

γ

}
(2.13)

with D2V and DV being, respectively, the second-order derivative matrix and the gra-
dient vector of V .

The value function is also expected to satisfy the DPP stated in Proposition 2.1. Note
that even though the DPP is a natural consequence of the Markovian nature of the
controlled state processes involved, as well as the optimality of the relevant controls, the
multidimensional analogue of (2.11) has not been established yet. We do not attempt to
establish it either because such an effort would be beyond the interests of the audience;
rather, we introduce it formally as our main assumption.

Assumption 2.1. The value function V satisfies the Dynamic Programming Principle

V (x, y1, . . . , yN) = sup
A

E

[∫ τ

0
e−ρs c

γ
s

γ
ds + e−ρτV (xτ , y

1
τ , . . . , y

N
τ )/x0(2.14)

= x, y1
0 = y1, . . . , yN

0 = yN

]
,

where τ is a stopping time and (xτ , y
1
τ , . . . , y

N
τ ) is the vector of the controlled state

processes at time τ . Moreover, the above supremum is obtained at the optimum vector
of control processes, say (c∗t , L

1, ∗
t , . . . , L

N, ∗
t , L̃

1, ∗
t , . . . , L

N, ∗
t ); that is,

V (x, y1, . . . , yN) = E
[∫ τ

0
e−ρs (c

∗
s )

γ

γ
ds + e−ρτV (x̃∗

τ , ỹ
1, ∗
τ , . . . , ỹN, ∗

τ )
]
,(2.15)

where x̃∗
τ , ỹ

1, ∗
τ , . . . , ỹN, ∗

τ are the state processes, given by (2.4) and (2.3), at time τ with
the optimal policies (c∗s , L

1, ∗
s , . . . , LN,∗

s , L̃1,∗
s , . . . , L̃N, ∗

s ), 0 ≤ s ≤ τ , being used.
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3. BOUNDS ON THE PRICES OF DERIVATIVES

We now enrich the investment opportunity set by introducing M , M ≥ 1, derivatives
at initial time t = 0. The derivatives are allowed to be of European or American type.
They may have different expiration dates, but all expire at or prior to some given time
T , with T > 0. Each derivative may also have a path-dependent payoff at one or more,
exogenously given, random stopping times.

We assume that the M derivatives may be bought or sold only at time zero. Neither
these M derivatives nor additional derivatives may be traded thereafter.2 Whereas these
assumptions are counterfactual, they are sufficient for our goal at hand: the derivation
of an upper bound on the reservation write price of derivatives and the derivation of a
lower bound on the reservation purchase price of derivatives. If we were to relax these
assumptions and allow these and other derivatives to be traded at later times, one may
be able to tighten our bounds. In any case, by relaxing these assumptions, the bounds
that we derive in this paper remain valid.

Next, we consider a portfolio of long and short positions in the M derivatives and in the
N + 1 primary securities. The portfolio is normalized so that the cost, net of transaction
costs, in setting it up is one. The portfolio is managed according to some specified
self-financing and nonanticipating strategy. We denote by h(ω; τ, T ) the value of the
component assets in the portfolio when they are converted into cash at the liquidation
time τ ≤ T .

Generally speaking, the value h(ω; τ, T ) depends on the specific nature of the deriva-
tives involved, as well as on the possibly random liquidation time τ and the trading
horizon [0, T ]. Note that the stopping time τ is exogenously specified and is not neces-
sarily given by the optimal exercise time of any relevant derivative security. Moreover,
we use ω in the argument of h in order to incorporate possible path dependence of var-
ious derivative components. At this point, we choose to keep h general enough and we
present concrete applications in Section 5.

The next theorem contains the main results of our work. To ease the presentation, we
assume that the initial endowment is entirely invested in the bond account.

Theorem 3.1. Assume that the initial endowment of the investor is (x, 0, . . . , 0),
with x > 0 and that the investor’s utility without the derivatives is V (x, 0, . . . , 0).
Moreover, assume that the investor faces the opportunity of investing in a unit cost
portfolio with payoff h(ω; τ, T ) such that

h(ω; τ, T ) ≥ 0 a.s.(3.1)

and

E
[
e−ρτ (h(ω; τ, T ))γ − 1/F0

]
> 0.(3.2)

Then, there exists a policy under which the investor’s utility is higher than V (x, 0, . . . , 0)
if the investor chooses to invest λx in this portfolio, where λ ∈ (0, 1).

Proof. First recall that the investor’s preferences are modeled via a power function
which, together with the special form of the state processes (xt , y

1
t , . . . , y

N
t ), results in

V being concave and homogeneous of degree γ . Let us also assume that the optimal

2 The choice of introducing the derivatives at t = 0 instead of at a future time t > 0 is done only for the
sake of simplicity. The key assumption is that all derivatives are introduced at the same time.
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policy for the point (x, 0, . . . , 0) is given by (c∗t , L
1,∗
t , . . . , L

N,∗
t , L̃

1, ∗
t , . . . , L̃

N, ∗
t ) for

0 ≤ t ≤ T . Then, Assumption 2.1 yields that

V (x, 0, . . . , 0) = E

[∫ τ

0
e−ρs (c

∗
s ))

γ

γ
ds + e−ρτV (x∗

τ , y
1, ∗
τ , . . . , yN, ∗

τ )/x0(3.3)

= x, y1
0 = · · · = yN

0 = 0

]
,

where (x∗
τ , y

1, ∗
τ , . . . , yN, ∗

τ ) are the optimal state trajectories starting at (x, 0, . . . , 0) and
using the above optimal strategies.

Let λ ∈ (0, 1) be fixed and consider the following admissible, but in general subopti-
mal, policy. At initial time t , split the available wealth x into two components, namely
x1 = (1 − λ)x and x2 = λx. Consider the points (x1, 0, . . . , 0) and (x2, 0, . . . , 0) on
�D, and follow the policy ((1 − λ)c∗t , (1 − λ)L

1, ∗
t , . . . , (1 − λ)L

N, ∗
t , (1 − λ)L̃

1, ∗
t , . . . ,

(1 − λ)L̃
N, ∗
t ) for the first component (x1, 0, . . . , 0). Moreover, invest the rest of

the initial wealth, x2 = λx, in the portfolio. This policy will result in a payoff of
λxh(ω; τ, T ) dollars.

Denote by J (x, 0, . . . , 0) the utility coming from the above investment and consump-
tion plan. We claim that

J (x, 0, . . . , 0) ≥ V (x, 0, . . . , 0).(3.4)

To this end, observe that at the random time τ ≤ T , the above policy yields the payoff

J (x, 0, . . . , 0) = E

[∫ τ

0
e−ρs

(
(1 − λ)c∗s

)γ
γ

ds + e−ρτV ((1 − λ)x∗
τ + λxh(ω; τ, T ),

(1 − λ)y1, ∗
τ , . . . , (1 − λ)yN, ∗

τ )/x0 = x, y1
0 = · · · = yN

0 = 0

]
.

Using the concavity of the value function V , the above equality implies

J (x,0,. . . ,0) ≥ (1−λ)E

[∫ τ

0
e−ρs (c

∗
s )

γ

γ
ds+e−ρτV (x∗

τ ,y
1,∗
τ ,. . . ,yN,∗

τ )/x0=x,

y1
0 =···=yN

0 =0

]
+λE

[
e−ρτV (xh(ω;τ,T ),0,. . . ,0)/F0

]
.

Using (3.3), the above inequality becomes

J (x,0,. . . ,0)≥(1−λ)V (x,0,. . . ,0)+λE
[
e−ρτV (xh(ω;τ,T ),0,. . . ,0)/F0

]
.

Using the fact that V is homogeneous of degree γ , the above inequality yields

J (x,0,. . . ,0) ≥ (1−λ)V (x,0,. . . ,0)+λV (x,0,. . . ,0)E
[
e−ρτ (h(ω;τ,T ))γ /F0

]
= V (x,0,. . . ,0)

(
1+λE

[
e−ρτ (h(ω;τ,T ))γ −1/F0

])
> V (x,0,. . . ,0),

where we used that λ>0 and that h satisfies the inequality (3.2). ✷

The important implication of the above theorem is that, in equilibrium, the payoff
h(ω; τ, T ) must satisfy the restriction

E[e−ρτ (h(ω; τ, T ))γ − 1/F0] ≤ 0.(3.5)
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4. MODELS OF GENERAL TRANSACTION COSTS

In this section, we derive bounds on derivative prices under a class of convex transaction
costs that are more general than the proportional transaction costs studied above. Our
generalization of transaction costs does not involve a fixed-cost component because with
a fixed-cost component the value function is no longer homogeneous and concave in
the asset holdings, two crucial properties employed in the proof of Theorem 3.1. With-
out a fixed-cost component in the transaction cost structure, the powerful method of
impulse control is inapplicable and the formulation and study of the problem becomes
cumbersome.3 We bypass this difficulty by recasting the continuous-time model as a
discrete-time model.

We consider an infinite-horizon economy defined over discrete dates t = 0, 1, . . . ; the
present date is denoted by t = 0. There is one riskless security, the bond, and N risky
securities, the stocks.

The bond is default free, pays no coupons, and has constant one-plus-rate-of-return
R0. The bond can be held long or short by the investors and the trading in the bond does
not incur transaction costs. Essentially we assume that there is unlimited borrowing and
lending at the constant rate of interest R0 − 1 per time period.

The stocks pay no dividends. Their prices at date t are represented by the N×1 vector
S(t + 1). The price dynamics are

S(t + 1) = R(t + 1)S(t),(4.1)

where R(t+1) is an N×N diagonal matrix with diagonal elements the random variables
Rn(t + 1), n = 1, . . . , N , representing the return on the stocks from date t to t + 1.

We make the following assumptions:

1. The initial stock prices are nonnegative Sn(0) ≥ 0, n = 1, . . . , N .
2. The stock returns are nonnegative; that is, Rn(t + 1) ≥ 0 for all n and t .
3. The system of stock and bond prices does not admit arbitrage opportunities in the

absence of transaction costs.
4. The matrices R(t), t = 1, 2, . . . are identically and independently distributed, with

the distribution known to the investor.

Next, we consider an investor who enters at date t with dollar holdings in the bond
account denoted by the scalar x(t) and dollar holdings in the N stock accounts denoted
by the N -entry vector y(t). The investor makes investment decisions at sequential times,
rebalances the entire portfolio, and consumes out of the bond account. We denote by
v(·) = (v1(·), . . . , vN(·)) the vector of account transfers in the sense that vi(s), 1 ≤ i ≤
N and s = t + n, n ≥ 1 represents the number of units of account by which the investor
increases (decreases) his holdings in the ith asset at time s. After each transaction, the
investor’s holdings of the N assets are y(s) + v(s) with v(s)I being the total amount
transferred to them and I being an N -dimensional unit column vector. The amount
v(s)I is entirely subtracted from the riskless asset. The underlying assumption is that

3 Bensoussan and Lions (1973, 1975) introduced the optimal control technique of impulse control.
Constantinides and Richard (1978) presented an early application of impulse control in proving the existence
and addressing the form of the optimal inventory policy and cash management policy in a continuous-time
model with fixed and proportional transaction costs. Korn (1998) presented a more recent application in port-
folio optimization. Bielecki and Pliska (2000) applied impulse control in the study of asset management with
a transaction cost structure that represents a generalization of the class of fixed and proportional costs.
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any transfer is charged with transaction fees that depend on the level of transactions via a
nonlinear cost functional T : Ñ → R, where Ñ is the space of N vectors. We introduce
the following assumptions:

5. T satisfies T (0) = 0 and |T (v)− T (ṽ)| ≤ ‖v − ṽ‖.
6. The mapping v → T (v) is convex and for positive scalars λ, T (λv) = λT (v).

example 4.1. The transaction cost functional is defined as

T (v(s)) = k1

∣∣∣ m∑
i=1

vi(s)

∣∣∣+ k2

∣∣∣ j∑
i=m+1

vi(s)

∣∣∣+ · · · + kp

∣∣∣ N∑
7

vi(s)

∣∣∣;
1 < j ≤ · · · ≤ 7 < N,

where k1, k2, . . . , kp ≥ 0. Essentially, we assume that transfers between the pth and qth
stocks incur no transaction costs if 1 ≤ p ≤ i and 1 ≤ q ≤ i; but transfers between the
pth and qth stocks incur proportional transaction costs at the rate k1, if 1 ≤ p ≤ i and
i < q. This example captures the notion that, whereas the investor is generally charged
proportional transaction costs in transferring funds between two unrelated mutual funds p

and q, the fee is often waived if the two funds belong to the same mutual fund company.

The investor consumes c(t) dollars out of the bond account at date t . There are no
transaction costs in transfers from the bond account into the consumption good.

Given the consumption and investment decisions (c(t), v(t)) at date t , the bond account
dynamics are

x(t + 1) = R0(x(t)− c(t)− v(t)I − T (v(t)))(4.2)

and the stock accounts dynamics are

y(t + 1) = R(t + 1) · (y(t)+ v(t)).(4.3)

The investor chooses consumption and investment policies {c(t), v(t); t = 0, 1, . . . },
which are processes measurable with respect to the information up to time t . Moreover,
these processes satisfy the state and control constraints, for t = 0, 1, . . .

c(t) ≥ 0 and w(t) = x(t)+ y(t)I − T (−y(t)) ≥ 0 a.s.,(4.4)

where x(t) and y(t) are given by (4.2) and (4.3) using the policies {c(t), v(t)}. We denote
by A the set of admissible policies. We refer to w(t) as the net worth.

The investor’s utility, at date t = 0, of the consumption stream {c(t), t = 0, 1, . . . }
is the date-zero expectation of

∑+∞
t=0 δt (c(t))γ . The subjective discount factor δ is con-

strained as 0 < δ < 1 and the relative risk aversion coefficient 1 − γ is constrained as
0 < 1 − γ < 1.

Given the initial endowment x(0) = x, y(0) = y such that the initial net worth satisfies
w(0) = x + yI − T (−y) ≥ 0 , the investor’s optimization problem is to maximize, over
all admissible policies, the above payoff, E0

[∑∞
t=0 δ

t (c(t))γ
]
, where E0 denotes the date-

zero expectation. The value function V (x, y) is then defined as

V (x, y) = sup
{c, v}∈A

E0

[ ∞∑
t=0

δt (c(t))γ
]
.(4.5)

The value function is bounded from below by zero since c(t) ≥ 0 and 0 ≤ γ < 1
and it is also bounded from above by the corresponding value function of the zero-
transaction-costs problem. We assume that the subjective discount factor δ is sufficiently
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small such that the latter value function is well defined. This, in turn, will guarantee that
the value function V is everywhere finite as well.

In Constantinides (1979), the value function in (4.5) was extensively analyzed under
the aforeintroduced Assumptions 1 to 6. We refer the reader to the arguments used in
Constantinides (1979) which yield the following properties.

Proposition 4.1. The value function V is homogeneous of degree γ and a jointly
concave function of (x, y).

Next, we enrich our investment opportunity set by introducing M , M ≥ 1, derivative
securities at initial time t = 0. These derivatives have the same general characteristics
as the ones introduced in Section 3. We also impose the same restrictions as before with
regard to when we may trade these derivatives. We also consider a portfolio of long and
short positions in the M derivatives and in the N+1 available primary securities. Trading
takes place at discrete intervals and the cost of the portfolio is normalized to one.

The portfolio is managed according to a specific self-financing and nonanticipating
strategy at times ti , i = 1, . . . , N with tN = T . We denote by h(ω; τ, T ) the value of the
component assets in the portfolio when they are converted into cash at liquidation time
τ ≤ T . The value h(ω; τ, T ) depends on the specific characteristics of the derivatives as
well as the possibly random liquidation time τ . The latter is exogenously given and may
take the values ti , i = 1, . . . , N , according to some specified distribution. For example,
in the case of early exercise instruments, τ may be the optimal exercise time of the
same American instrument but in the absence of transaction costs. Finally, we use the ω

argument in h to denote possible path dependence.
The next theorem contains the main results for the bounds on the prices of the deriva-

tives. For simplicity, we assume that the initial endowment is entirely invested in the
bond account; that is, y(0) = �0.

Theorem 4.1. Assume that the initial endowment of the investor is (x, 0, . . . , 0),
with x > 0, and that his utility without the available derivatives is V (x, 0, . . . , 0). Also,
assume that the investor faces the opportunity of investing in a unit cost portfolio with
payoff h(ω; τ, T ) such that

h(ω; τ, T ) ≥ 0(4.6)

and

E0

[
δτ (h(ω; τ, T ))γ − 1

]
> 0.(4.7)

Then there exists a policy under which his utility is higher than V (x, 0, . . . , 0) if the
investor chooses to invest λx in this portfolio, with λ ∈ (0, 1).

The proof, available from the authors upon request, parallels the proof of Theorem 3.1.
The important implication of the proposition is that, in equilibrium, the payoff h(ω; τ, T )

must satisfy the restriction

E0[δ
τ (h(ω; τ, T ))γ − 1] ≤ 0.(4.8)
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5. APPLICATIONS AND EXTENSIONS

5.1. Bounds on the Implied Volatility Smile

We derive an upper bound on the reservation purchase price and a lower bound on the
reservation write price of a vertical call (or, put) spread consisting of two T -expiration
European call (or put) options, struck, respectively, at prices K1 and K2 with K1 < K2.
We then translate these bounds into the language of implied volatility as upper and lower
bounds on the slope of the volatility smile.

Typically, we observe that the implied volatility is a decreasing function of the ratio
K

S
, where K is the exercise price. We obtain an upper bound on the absolute value of the

slope which can be attributed to transaction costs or, more generally, to illiquidity over
the term of the options. To this end, we consider a portfolio at initial time t = 0, which
consists of writing n call options struck at K1, buying n call options struck at K2, and
investing ne−rT (K2 −K1) in the riskless asset.

To keep the notation simple, we denote by C(Ki), i = 1, 2, the prices of the European
calls with expiration at time T and strike prices Ki , i = 1, 2. The cost of the above
portfolio is n[C(K2) − C(K1) + e−rT (K2 − K1)] and is nonnegative for n > 0, by the
absence of arbitrage. We assume that the cost of the portfolio is strictly positive and we
normalize it to one by setting

n = [C(K2)− C(K1)+ e−rT (K2 −K1)]
−1.(5.1)

The payoff at date T is nonnegative and is given by

h(ω; T ) = n{(ST −K2)
+ − (ST −K1)

+ + (K2 −K1)}.(5.2)

Theorem 3.1 restricts the prices of the call options as

E[e−ρT (h(ω; T ))γ − 1/F0] ≤ 0.

Combining the above inequality with (5.1) and (5.2) yields that the prices C(K1) and
C(K2) must satisfy

e−ρT E
[{

(ST −K2)
+ − (ST −K1)

+ + (K2 −K1)
}γ

/F0

]
(5.3)

≤ {C(K2)− C(K1)+ e−rT (K2 −K1)}γ .

Next, we look at the probability of finishing below the lowest strike price K1, and we
observe that

E[{(ST −K2)
+ − (ST −K1)

+ + (K2 −K1)}γ /F0](5.4)

≥ (K2 −K1)
γ P (ST < K1/F0).

Therefore, if we introduce the differences δK and δC(K) defined by δK = K2 −K1 and
δC(K) = C(K2)− C(K1), the above inequality, together with (5.3), yields

δC(K)

δK
≥ {e−ρT P (ST < K1/F0)}1/γ − e−rT .(5.5)

For simplicity, we drop the F0-notation in the above cumulative probability.
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Next, we translate this bound into the language of implied volatility. The implied
volatility, σ̂ (K/S), is defined implicitly through the equation

CB−S(S; T ,K, σ̂ (K/S)) = C(S; T ,K),(5.6)

where CB−S(·) denotes the Black–Scholes price of a call (or put) option and C(S; T ,K)

is the actual market price of the option. The slope of the implied volatility, as a function
of K/S is obtained by implicit differentiation of equation (5.6) with respect to K:

∂CB−S

∂K
+ ;

S

dσ̂ (K/S)

d(K/S)
= ∂C

∂K
or

dσ̂ (K/S)

d(K/S)
= S

;

[
∂C

∂K
− ∂CB−S

∂K

]
,(5.7)

where ; ≡ ∂CB−S/∂σ̂ .
We combine equations (5.5) and (5.7), interpreting equation (5.5) in the limit as

δK → 0, and obtain
dσ̂ (K/S)

d(K/S)
≥ S

;

[{
e−ρT P (ST < K)

}1/γ − ∂CB−S

∂K
− e−rT

]
.(5.8)

The right-hand side, which is negative, provides a lower bound on the volatility skew,
dσ̂ (K/S)/d(K/S). We may further simplify the bound by recalling that

∂CB−S

∂K
+ e−rT = e−rT (1 − N (d2)) = QB−S,(5.9)

where QB−S is the Black–Scholes price of a cash-or-nothing binary put option with
payoff of one dollar if ST < K .4 Then we may rewrite equation (5.8) as

dσ̂ (K/S)

d(K/S)
≥ S

;

[{
e−ρT P (ST < K)

}1/γ −QB−S

]
.(5.10)

remark 5.1. The bound in equation (5.10) was obtained by writing n vertical call
spreads and investing ne−rT (K2 − K1) in the riskless asset. An alternative procedure is
to buy n vertical put spreads. We proceed as before and arrive at the identical bound,
equation (5.10).

Next, we obtain an upper bound on the slope of the volatility smile by considering a
project that consists of buying n calls struck at K1 and writing n calls struck at K2 with
K1 < K2. We set n = [C(K1)− C(K2)]

−1.
The payoff at date T is nonnegative and is given by

h(ω; T ) = n{(ST −K1)
+ − (ST −K2)

+}.(5.11)

We apply the result in Theorem 3.1, retrace our earlier steps, and finally obtain the upper
bound

dσ̂ (K/S)

d(K/S)
≤ S

;

[
e−rT N (d2)−

{
e−ρT P (ST > K)

}1/γ ]
.(5.12)

In Figure 5.1, the solid line illustrates the slope of the volatility smile on the S&P 500
index on March 19, 1999, implied by one-month options, as a function of the ratio K/S.
The dotted lines illustrate the lower bound stated in equation (5.10) and the upper bound
stated in equation (5.12). Finally, the grey lines illustrate non arbitrage bounds. The
interest rate is taken to be r = 5.5%, the volatility is taken to be σ = 21.8%, matching the
observed at-the-money volatility, γ = 0.2, µ = 12%, and ρ = 0.03. The figure indicates
that the preference-dependent bounds are considerably tighter than the non arbitrage
bounds. The observed slope of the volatility smile is within the preference-dependent
bounds. The same conclusion applies to six-month options, illustrated in Figure 5.2.

4 N is the cumulative normal distribution and d2 the familiar argument.
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Figure 5.1 Bounds on the slope of the smile on 1-month options with ATM vol. 21.8%
and RRA coefficient 0.8.

5.2. A Lower Bound on the Reservation Purchase Price of an American Put

We illustrate the applicability of Theorem 3.1 to early exercise claims by deriving a
lower bound on the reservation purchase price of American puts. We consider a project
that consists of simply purchasing p−1 American put options struck at K and expiring
at date T , where p = p(S0, 0) is the purchase price of the put at time t = 0.

The payoff at an arbitrary random stopping time τ , τ ≤ T , is given by h(ω; τ, T ) =
(K − Sτ )

+. We apply Theorem 3.1 and obtain, after rearranging terms, the following
lower bound on the reservation purchase price of the put:

p ≥
{

max
τ≤T

E[e−ρτ ((K − Sτ )
+)γ /F0]

}1/γ
.(5.13)

One may solve numerically for the bound.

Figure 5.2 Bounds on the slope of the smile on 6-month options with ATM vol. 24.3%
and RRA coefficient 0.8.
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We present below a closed-form expression for the above bound by constructing an
explicit solution to the optimal stopping time problem that appears in the right-hand side
of the latter inequality. We define the function f (S, t) as

f (S, t) = sup
τ≥t

E
[
e−ρτ ((K − Sτ )

+)γ /St = S
]
.(5.14)

Using standard arguments from the analysis of optimal stopping problems, one readily
gets that the above function is given by

f (S, t) = e−ρt (K −�S)γ
(
S

�S

)−n

, S ≥ �S,(5.15)

where

n = (µ− σ 2/2)+
√

(µ− σ 2/2)2 + 2ρσ 2

σ 2 > 0

and
�S =

(
n

n+ γ

)
K < K.

Evaluating (5.15) at t = 0 and using (5.13) yields the following lower bound on the
purchase price of the perpetual put is

p(S0, 0) ≥ (K −�S)
( �S
S0

)n/γ

, S0 ≥ �S.

5.3. Alternative Price Processes

One could extend the existing results to the case that the prices of primary securities
are modeled as more general processes. For example, an alternative price process for a
risky security could be a diffusion process with a Poisson component. To simplify the
exposition, we assume for the moment that there is a single risky security whose price
St , t ≥ 0 is given by the mixed-diffusion process dSt = µStdt + σStdWt + StdPt . We
also assume that the transaction costs are proportional to the transfers, as in Section 3.

The processes Wt and Pt are, respectively, a standard Brownian motion and a Poisson
process. The state trajectories xt and yt satisfy, respectively, (2.4) for N = 1, and

dyt = µytdt + σytdWt + ytdPt + dLt − dL̃t .(5.16)

Because the individual preferences are modeled by a homogeneous of degree γ utility
function and because the state wealth processes (2.4) and (5.16) preserve the linear
dynamics with respect to the states xt and yt , as well as the relevant controls ct , Lt , and
L̃t , the value function also turns out to be a homogeneous function of the same degree.
Using in turn the Dynamic Programming Principle—the generalized version of (3.3) to
incorporate the jump component—one could reproduce the arguments used in the proof
of Theorem 3.1 and derive the analogous desired pricing condition.

Observe that the assumption regarding the Poisson nature of the alternative price pro-
cess can be easily replaced by any other jump Markov process. The underlying consid-
eration remains that the state dynamics and the transaction cost functional are such that
the homogeneity is preserved and also the probabilistic structure leads to a Markovian
behavior of the value function so that the Dynamic Programming Principle holds.
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