
Journal of Economic Theory 96, 180�207 (2001)

Optimal Environmental Management in
the Presence of Irreversibilities

Jose� A. Scheinkman1

Department of Economics, Princeton University, Princeton, New Jersey 08544-102

joses�princeton.edu

and

Thaleia Zariphopoulou2

Business School and Department of Mathematics, University of Wisconsin, Madison
zariphop�math.wisc.edu

Received December 16, 1998; revised October 9, 1999;
final version received October 22, 1999

We consider an environment of a fixed size that can be converted to another use.
This conversion can be made in steps, but it is irreversible. The future benefits (per
unit) from the original use, and from the alternative use, follow a diffusion process.
For a fairly general case, we show that the value function must be the unique
(viscosity) solution to the associated Hamilton-Jacobi-Bellman equation. We also
exhibit several properties of the solution for the case of constant relative risk aver-
sion between 0 and 1, and a log-linear diffusion for the benefits. Journal of
Economic Literature Classification Numbers: C61, D90, Q30. � 2001 Academic Press

1. INTRODUCTION

In this paper we study a class of dynamic optimization problems,
inspired by questions on the economics of environmental management,
which are characterized by uncertainty and irreversibility. We consider an
environment of a fixed size that can be converted to another use. Though
this conversion can be made in steps, it is irreversible. The future flow of
benefits from each possible use is uncertain. We model these future flows as
following a diffusion. The utility flow in turn depends on these benefit
flows. The presence of irreversibilities, together with the increase over time
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in the quality of information about the future values of the benefits, gives
rise to what Arrow and Fisher [2] named a ``quasi-option value'' and
Henry [12] the ``irreversibility effect''3, that typically creates a bias towards
a more conservative conversion policy. In fact our model is basically a
generalization to many periods of the example used by Arrow and Fisher
to discuss the ``quasi-option'' value.

We first consider a fairly general type of optimization problem and show
that its value function must be the unique (viscosity) solution to the
associated Hamilton�Jacobi�Bellman equation. We then specialize to
utility functions that exhibit constant relative risk aversion parameter 1& p
satisfying 0�p�1, and a log-linear diffusion for the benefits. In this case
we can characterize the solution much more explicitly. First, the optimal
action becomes simply a function of the fraction % of the environment that
has not yet been converted and of the ratio z of the benefit flows from the
alternative use to the benefit flows from the original environment. Hence
our problem becomes essentially one dimensional. As in [15], the optimal
policy is fully determined by an exercise boundary, that is a map � from
the ratio of benefits z to the ``optimal'' fraction of the environment to be
preserved. If %0��(z), the optimal policy is to immediately ``jump'' to �(z).
Of course, since conversion is not reversible, if %0��(z), it is optimal to
``stay put''. The optimal policy after time zero is to continually ``deflect''
from the region, %��(z). We discuss this particular case in Section 4. As
usual, we start by using heuristic arguments. We first write down the
optimization problem and proceed in Subsection 4.1 to show that the exer-
cise boundary must satisfy a particular equation.

In Subsection 2, we present several qualitative properties of the exercise
boundary. We show that there is a value z

�
( p)>1, such that if z�z

�
( p), the

optimal policy is to stay put, even if %=0. That is, development should not
start at all until the benefits of the alternative project exceed that of the
original environment by a certain amount. This is one of the implications
of the presence of the quasi-option effect. Property 4.3 then characterizes
the amount z� ( p) such that if z�z� ( p) then the optimal policy is to set %=1
(full conversion). In the case of risk-neutrality ( p=1), z

�
(1)=z� (1) that is,

the quasi-option effect implies that a minimum threshold z
�
(1)>1 must be

reached before conversion starts, but once this threshold is reached full
conversion occurs. When risk aversion is present ( p<1) the level of z� ( p)
that leads to full conversion is finite, but strictly exceeds the level of z

�
( p)

required to start conversion.
Several results comparing solutions are also established. An increase in

the expected rate of growth of X (or a decrease on the expected rate of
growth of Y) leads to a more conservative policy. The decrease in the rate
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of growth of X makes it less likely that the irreversibility constraint is ever
binding in the future and hence, as argued earlier by Kolstad [16], lowers
the ``quasi-option'' value. Similarly, an increase in the discount factor leads
to a less conservative policy. We also show that an increase in the correla-
tion between innovations in X and in Y, lowers the option value of remain-
ing at a given % and hence leads to a less conservative policy. Finally we
argue that an increase in risk-aversion, because it makes diversification
more valuable, leads to a less conservative policy when % is small (that is,
when much of the original environment is still preserved) and to a more
conservative policy when % is large.

The effect of irreversibilities and changes in information have also been
studied in the literature on irreversible investments (e.g. [1], [19]). In fact,
the optimal investment policies in the models of Pindyck [20], Bertola [3]
or Dixit [8] exhibit the same ``deflection'' behavior of our model in Section
4 and Kobila [15] analyzes models of irreversible investments in a singular
stochastic control set up similar to ours. One novelty in our analysis is that
we allow for two capital stocks instead of one. In addition, we admit risk
aversion4. Finally, the economic problem that we study leads naturally to
different comparative statics questions and results.

Even though our formulation is motivated by questions about the
economics of environmental management, our results should prove useful
in other set-ups in which one can convert at a fixed price from one project,
or asset, to another but this conversion is irreversible. We hope to develop
these connections in future work.

2. THE MODEL

As discussed in the introduction, we model an environment of fixed size
which can be developed into an alternative use. The development is
irreversible and the benefits (per unit) of the original environment and of
the alternative project are random. More precisely, we suppose the per unit
benefits of the environment, at instant t�0, are given by a diffusion that
satisfies

dXt=+1 (Xt) dt+_1 (Xt) dW 1
t . (1)

The alternative project has a flow of (per unit) benefits Yt that is also a
diffusion and satisfies

dYt=+2 (Yt) dt+_2 (Yt) dW 2
t . (2)
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Here, W 1
t and W 2

t are Brownian motions defined on a probability space
[0, F, P] and have a correlation coefficient # # (&1, 1). We assume that
X0�0, Y0�0 and that the coefficients +i and _i satisfy conditions that
guarantee that Xt�0 and Yt�0.5 We will also assume that for i=1, 2 the
functions +i and _i are Lipschitz, that is:

|+1 (X)&+1 (X$)|�K +
1 |X&X$|, (3)

and

|+2 (Y)&+2 (Y$)|�K +
2 |Y&Y$|, (4)

and similarly for the functions _1 and _2 . Finally we assume that the
dynamics are ``concave'' i.e. for each (t, |) the functions that map the initial
conditions X0 into Xt (|) and Y0 into Yt (|) are concave.

Remark 2.1. This concavity holds if e.g. for each i=1, 2 +i is concave
and _i is linear. This can be shown by letting X xi

t denote the solution to
equation (1) with initial condition x1 , x2 or x3=*x1+(1&*) x2 , * # (0, 1).
Let X� t=*X x1

t +(1&*) X x2
t . Finally, let 2t=X� t&X x3

t . Using the concavity
of +, the linearity of the volatility term and standard iteration arguments
for establishing classical comparison results for the solutions of stochastic
differential equations (e.g. [14], Chapt. 5, Propositions 2.13 and 2.18), we
get that E[max[2t , 0]]=0 a.s. for all t�0. Hence, X� t�X x3

t a.s.

If at time t a fraction %t of the environment has been transformed, then
the utility flow is given by U((1&%t) Xt , %tYt), where U is a continuous,
concave function that is increasing in its arguments, with U(0, 0)=0.

The initial data is given by X0=x, Y0= y and the fraction of the
environment that has been transformed %0=%. We will write Ft for the
_-field generated by the realizations of the pair of Brownian motions up
to t. The objective is to choose an Ft-progressively measurable non-
negative, non-decreasing process of cumulative development Mt , to
maximize

E |
�

0
e&;tU((1&%t) Xt , %t Yt) dt, (5)

where Xt solves (1) with X0=x, Yt solves (2) with Y0= y and

0�%t=%+Mt�1. (6)
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For convenience we assume that M0=0. Note that the above equation
indicates that % is a state variable, and Mt is the control process that we
have to specify in order to maximize the payoff given in (5). The fact that
Mt is non-decreasing captures the irreversibility of the development process
and the constant ; measures the time rate of discounting. We will write A%

for the set of non-negative, non-decreasing Ft-measurable processes Mt

that satisfy (6).

Remark 2.2. The formulation of the objective in equation (5) is
justified if we assume that the benefits of the natural environment and of
the new project are not spanned by existing assets. This is different than
what is done in the irreversible investment literature where spanning is
typically assumed; but seems more natural in our context. Further, we set
the cost of development to zero. Equivalently, we may assume that the
costs of the development are linear and that Y is the flow of net benefits,
already accounting for the cost of development. In any case, we could
easily accommodate a constant marginal cost of development.

We define the value function associated with the expected payoff (5) via:

v(x, y, %)=sup
A%

E |
�

0
e&;tU((1&%t) Xt , %t Yt) dt. (7)

Proposition 2.1. If ;>max[K +
1 , K +

2], then the value function is con-
cave, non-decreasing in x and y and non-increasing in %.

Proof. Since U is concave, and 0�%t�1, we know that there are
constants M, C1 and C2 such that:

E |
�

0
e&;tU((1&%t) Xt , %t Yt) dt�E |

�

0
e&;t (M+C1Xt+C2 Yt) dt.

Since Xt�0 and +1 ( } ), _1 ( } ) are Lipschitz functions we have E(Xt)=
x+ �t

0 E+1 (Xs) ds� [x++1 (0) t]+K +
1 � t

0 E(Xs) ds and hence, from
Gronwall's inequality, E(Xt)�c1eK +

1 t for some c1 . Similarly, E(Yt)�
c2eK +

2 t. Hence the value function is finite. The concavity follows from the
concavity of U and the ``concave dynamics''. The fact that U is increasing
and 0�%t�1 guarantees that v is non-decreasing with respect to x and y.
Finally, since A%1

�A%2
if %2�%1 , v is non-increasing in %.

Notice that the role of the bound on ; given by the Lipschitz constants
is to insure the finiteness of the value function. In order to establish unique-
ness or, more generally, comparison results, it is more convenient to
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strengthen the assumption on the size of the discount factor relative to the
Lipschitz constant slightly to:

;>max[K +
1 , K +

2]+1. (8)

This assumption is only apparently stronger. If ;>max[K +
1 , K +

2] we may
always (linearly) change the measurement of time so that (8) holds.

Remark 2.3. Since %t is non-decreasing, v(x, y, 1)=E ��
0 e&;tU(0, Yt) dt.

Remark 2.4. If +1 (0)=_1 (0)=0, then if x=0, Xt#0 for each t�0.
Consequently,

v(0, y, %)=sup
A%

E |
�

0
e&;tU(0, %t Yt) dt=E |

�

0
e&;tU(0, %Yt) dt.

Remark 2.5. Similarly, if +2 (0) = _2 (0) = 0, then if y = 0, Yt # 0
for each t�0. Hence v(x, 0, %)=sup

A%

E ��
0 e&;tU((1&%t) Xt , 0) dt=

E ��
0 e&;tU((1&%) Xt , 0) dt.

Recall that a stopping time { is a non-negative random variable such that
the event [{�t] is in Ft , for each t�0. We next state the dynamic
programming principle:

Theorem 7. If { is a stopping time then:

v(x, y, %)=sup
A%

E _|
{

0
e&;sU((1&%s) Xs , %s Ys) ds+e&;{v(X{ , Y{ , %{*)&

(9)

where %{*=%+M {* with M {*, the optimal control process at time {.

Proof. See [10].

As is standard in stochastic control problems, we first assume that
the value function is smooth and derive the associated Hamilton�
Jacobi�Bellman equation heuristically. This equation turns out to be a non-
linear variational inequality with a gradient constraint. Due to inherent
degeneracies in the HJB equation, it is convenient to work with weak solu-
tions in the appropriate class. These turn out to be the so-called viscosity
solutions, presented in subsequent sections. It is in this class that the value
function turns out to be the unique solution of the HJB equation.

In the case of a HARA utility function and log-linear laws of motion, the
homogeneity of the problem allows us to reduce the dimensionality and
obtain a solution to the HJB equation in closed form. This solution is
smooth and thus it is a viscosity solution. Therefore this solution coincides

185IRREVERSIBILITIES AND THE ENVIRONMENT



with the value function because of the uniqueness of viscosity solutions to
the HJB equation (see Section 3).

There are two possibilities at each instant: preserve the environment or
develop. If the decision is to preserve for a time period [0, h], then %t=%
in [0, h]. Hence by the dynamic programming principle:

v(x, y, %)�E _|
h

0
e&;sU((1&%) Xs , %Ys) ds+e&;hv(Xh , Yh , %h)], (10)

with equality if the optimal decision is to keep %t=% in [0, h].
Assuming that Ito's rule applies to e&;hv(Xh , Yh , %h) in (10), dividing

both sides by h and taking the limit as h � 0, we obtain:

;v�Lv+U((1&%) x, %y), (11)

with equality if %t=% in [0, h].
Here, L is the differential operator associated with the diffusion (Xt , Yt),

that is:

Lf =+1 (x) fx++2 ( y) fy+

1
2 [_2

1(x) fxx+_2
2( y) fyy]+#_1 (x) _2 ( y) fxy . (12)

Next, assume that the optimal decision is to develop part of the environ-
ment and that 2% represents the instantaneous share that is developed.
Then, %0+=%+2% and (9) implies:

v(x, y, %)�Ev(x, y, %0+).

Clearly, if the optimal decision at the point (x, y, %) is to move instan-
taneously to (x, y, %+2%) with 2%>0, then a singular transaction of
magnitude 2%&(%� &%) is also optimal for any point %� # (%, %+2%).
Dividing the above equality by 2%>0 and sending 2% a 0 yields at the
point (x, y, %)

v%=0.

In general, an instantaneous admissible displacement 2%
t

>0 from the
point (x, y, %) to (x, y, %+2%

t
) is suboptimal which, in view of (10) yields

v(x, y, %)�Ev(x, y, %+2%
t

).

Dividing by 2%
t

and passing to the limit as 2%
t

a 0 gives

v%�0.
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In any case we obtain:

v%�0. (13)

Writing (11) and (13) in a concise form gives the Hamilton�Jacobi�
Bellman (HJB) equation:

min[;v&Lv&U((1&%) x, %y), &v%]=0 (14)

for x>0, y>0 and 0�%<1.

3. VISCOSITY SOLUTIONS OF THE HJB EQUATION

A classical approach in the theory of stochastic control is to derive infor-
mation about the value function and the optimal policies via the associated
HJB equation. In fact, if it is a priori known that the value function is
smooth then it is a classical solution of the HJB equation and, moreover,
the optimal policies can be obtained in a feedback form via the first order
conditions.

In many applications, like the one we study here, the value function may
fail to be smooth and therefore the notion of a solution to the HJB equa-
tion needs to be relaxed. It turns out that the ``right'' class of weak solu-
tions are the so called viscosity solutions, introduced by Crandall and Lions
[7] for first order equations and by Lions [18] for second order equa-
tions6.

The main advantage of employing viscosity solutions is that under fairly
general assumptions the value function turns out to be the unique viscosity
solution of the HJB equation. Furthermore, the stability properties of
viscosity solutions ensures that the value function and optimal policies of
more tractable approximations to the original problem, approach the value
function and optimal policies of this original problem. This convergence is
valid even in cases where the original value function is merely continuous.
The theorems presented in this section elaborate on these ideas.

When state and control constraints are binding, as for instance the state
constraint (6) above, the value function can be characterized as a con-
strained viscosity solution of the HJB equation. The following notion of
constrained viscosity solutions was introduced by Soner [21], and
Capuzzo-Dolcettta and Lions [5]7.
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Consider a nonlinear second order partial differential equation

F(Z, v, Dv, D2v)=0 for Z # D, (15)

where D is an open subset of Rn, F : D� _R_Rn_M(n, n) � R, and M(n, n)
denotes the set of n_n matrices. We assume that F is continuous, and if
0�B # M(n, n), then

F(Z, t, p, A+B)�F(Z, t, p, A)

i.e. F is (possibly degenerate) elliptic. Here Dv # Rn denotes the gradient of
v and D2v # M(n, n) the matrix of second-order derivatives of v. We denote
by D� the closure of the open domain D.

Definition 3.1. A continuous function v: D� � R is a constrained
viscosity solution to (15) if and only if:

(i) For any function , # C2 (D� ), (i.e. for any , that can be extended
as a C2 function to an open set containing D� ) and any point Z0 # D� where
v&, achieves a maximum,

F(Z0 , v(Z0), D,(Z0), D2,(Z0))�0.

(ii) For any function , # C2 (D� ), and any point Z0 # D where v&,
achieves a minimum,

F(Z0 , v(Z0), D,(Z0), D2,(Z0))�0.

If only condition (i) (or condition (ii)) is satisfied we call v a viscosity
subsolution (resp. supersolution) of equation (15).

Let

O=[(x, y, %) # R3 : x>0, y>0, 0<%<1],

and O� its closure.

Theorem 3.1. The value function v is a constrained viscosity solution of
the HJB equation (14) on O� .

The proof of this result is essentially as in [22] or as in Theorem
VIII.5.1 of [10]. For completeness, we present some of the main steps
assuming the existence of an optimal trajectory8. The proof will require the
following Lemma:
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To ease the presentation we introduce the generic argument Z=(x, y, %)
and we will use��by slight abuse of notation��v(z) to denote v(x, y, %).

Lemma 3.1. Suppose Z0=(x0 , y0 , %0) # O� and , # C2 (O� ) are such that
v�,, ,(Z0)=v(Z0) and, ,% (Z)>0 for each Z # B(Z0), a neighborhood of
Z0 . Consider the optimal trajectory Zt* starting at t=0 at Z0 . Let = be such
that (x0 , y0 , %0+=) # B(Z0) and let A be the event that the optimal trajec-
tory has a jump of size at least = at time t=0. Then P(A)=0.

Proof. By the dynamic programming principle, we have that

v(x0 , y0 , %0)=|
A

v(x0 , y0 , %0+=) dP+|
0"A

v(x0 , y0 , %0) dP. (16)

Hence, �A [v(x0 , y0 , %0+=)&v(x0 , y0 , %0)] dP=0. Since v&, has a
maximum at Z0 , we have that:

|
A

[,(x0 , y0 , %0+=)&,(x0 , y0 , %0)] dP�0, (17)

and also that the function v is subdifferentiable at Z0 . This together with
the fact that v is non-decreasing in %, yields ,(x0 , y0 , %0)�
,(x0 , y0 , %0+=). Letting = � 0, and using Fatou's Lemma, inequality (17)
yields:

|
A

lim inf
= � 0

,(x0 , y0 , %0)&,(x0 , y0 , %0+=)
=

dP�0. (18)

Which, in turn, implies that P(A) ,% (Z0)�0. Hence, P(A)=0.

Proof of Theorem 3.1. (a) We first show that v is a viscosity subsolution
on O� i.e. that if , # C2 (O� ) and v&, has a maximum at Z0=(x0 , y0 , %0) # O�
then:

min[;v(Z0)&L,(Z0)&U(Z0), &,% (Z0)]�0, (19)

where U(Z0)=U((1&%0) x0 , %0 y0). Without loss of generality we assume
that v(Z0)=,(Z0) and v�, elsewhere. To prove (19) we argue by con-
tradiction. Let us assume that ,% (Z0)<0 and that there exists a $>0 such
that ;,(Z0)&L,(Z0)&U(Z0)>$. Since , is smooth there must exist a
neighborhood of Z0 , B(Z0) such that for Z # B(Z0),

,% (Z)<0, (20)

and

;,(Z)&L,(Z)&U(Z)>$. (21)
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We write Zt* for the optimal trajectory that starts at t=0 at Z0 and let
{(|)=inf[t>0 : Zt*(|) � B(Z0)]. By the preceding lemma, {(|)>0 P-a.s.
and inequalities (20) and (21) imply:

E |
{(|)

0
e&;t$ dt�E |

{(|)

0
e&;t[;,(Zt*)&L,(Zt*)&U(Zt*)] dt

&E |
{(|)

0
e&;t,% (Zt*) dmt* , (22)

where, M t*=� t
o dms* is the optimal policy.

By Ito's formula:

E[e&;{(|),(Z*{(|))]

=,(Z0)+E |
{(|)

0
e&;t[&;,(Zt*)+L,(Zt*)] dt

+E |
{(|)

0
e&;t,% (Zt*) dmt*. (23)

The dynamic programming principle together with the assumptions for
the maximum of v&, at Z0 , yields:

,(Z0)�E _|
{(|)

0
e&;tU(Zt*) dt+e&;{(|),(Z*{(|))& . (24)

Adding (22) to (23) and (24), we obtain:

E |
{(|)

0
e&;t$ dt�0,

which is a contradiction.

(b) We now show that v is a viscosity supersolution of (14) in O i.e.
that if , # C2 (O� ) and v&, has a minimum at Z0=(X0 , Y0 , %0) # O then:

min[;v(Z0)&L,(Z0)&U(Z0), &,% (Z0)]�0. (25)

Again we assume without loss of generality that v�,, v(Z0)=,(Z0),
and we will show that both arguments in (25) are non-negative.

Since choosing %s=%0 for 0�s�t is feasible, the dynamic programming
principle implies that:

v(Z0)�E _|
t

0
e&;sU((1&%0) Xs , %0Ys) ds+e&;t,(Xt , Yt , %0)& . (26)
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Applying Ito's formula to e&;t,(Xt , Yt , %0) and using the assumptions on
the minimum of v&, at Z0 , yields:

E {|
t

0
e&;s (&;,(Xs , Ys , %0)+L,(Xs , Ys , %0)

+U((1&%0) Xs , %0Ys)) ds=�0.

Dividing by t and letting t � 0, we get that ;v(Z0)&L,(Z0)&U(Z0)�0
(for details see [22]).

Suppose now that %0<1 and that %0<%0+M0�1. Again the dynamic
programming principle implies that:

,(x0 , y0 , %0)=v(x0 , y0 , %0)�v(x0 , y0 , %0+M0)�,(x0 , y0 , %0+M0).

Dividing by M0 and letting M0 � 0, since , is smooth, we obtain
,% (Z0)�0 and thus (25) is established.

Our next task is to characterize the value function as the unique con-
strained viscosity solution of the HJB equation (14). This characterization
will be used in the next section to establish that the solution we obtain for
(14), actually coincides with the value function.

Remark 3.1. As it is usually the case in the literature of nonlinear par-
tial differential equations, we present the uniqueness result via a com-
parison theorem. This is done only to provide more general properties of
the solutions of (14), since the uniqueness property follows easily from the
theorem below. In fact, suppose that besides the value function v, there
exists another viscosity solution to (14) say u which belongs to the same
class of solutions that are continuous, concave in x and y and nondecreas-
ing in %. Since both u and v are viscosity solutions of (14), they are both
sub- and supersolutions as the Definition 3.1 requires. In other words, v is
a subsolution and u is a supersolution of (14). Then the comparison result
stated below yields that v�u on O� . Reversing the arguments yields that
v�u and the uniqueness follows.

Theorem 3.2. Let u, v: O� � R be continuous functions which are also
concave in x and y and non-increasing with respect to %. Also assume that v
is bounded from below and that, u is a viscosity subsolution of (14) on O� and
v is a viscosity supersolution of (14) in O. The u�v on O� .

Sketch of proof. The proof parallels arguments in [13], so we present
only the main steps here. We start by constructing a strictly positive super-
solution to the HJB equation (14). To this end, let the function h: O� � R+

be given by h(x, y, %)=N(1+x+ y)&C% with N and C being positive
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constants such that N&C>M>0, where M is large enough so that for
x�0, y�0,

U(x, y)�M(1+x+ y). (27)

Let

H(Z, v(Z), Dv(Z), D2v(Z))=min[;v(Z)&Lv(Z)&U(Z), &v% (Z)].

Then the Hamiltonian H(Z, h(Z), Dh(Z), D2h(Z))>0. In fact,

H(Z, h(Z), Dh(Z), D2h(Z))

=min[;N(1+x+ y)&;C%&N+1 (x)&N+2 ( y)&U((1&%) x, %y), C]

�min[;N(1+x+ y)&;C&N(K +
1 x+K +

2 y)&M(1+x+ y), C]

=min[(;(N&C)&M)+(x+ y)[(;&max(K +
1 , K +

2)) N&M], C].

(28)

Here, we used (27), together with the fact that U((1&%) x, %y)�U(x, y)
and that K +

1 (resp. K +
2) is the Lipschitz constant associated with X (resp.

Y). Using (8), we get:

H(Z, h(Z), Dh(Z), D2h(Z))

�min[(;(N&C)&M)+(x+ y)(N&M), C]

�min {;&
M

N&C
, C=

�min[;&1, C]=M� >0. (29)

Next let w*=*v+(1&*) h for 0<*<1. Notice that w* is a viscosity
supersolution of H&(1&*) M� =0. In fact, let � # C2 (O� ) and assume that
w*&� has a minimum at Z0 . Then if ,= 1

* (�&(1&*) h), then v&, also
has a minimum at Z0 . Since v is a viscosity supersolution of H=0 and
inequality (29) holds, we have:

*H(Z0 , v(Z0), D,(Z0), D2,(Z0))

+(1&*) H(Z0 , h(Z0), Dh(Z0), D2h(Z0))�(1&*) M� . (30)

Since the Hamiltonian H(z, p, q, A) is jointly concave with respect to
( p, q, A), the above inequality yields:

H(Z0 , �(Z0), D�(Z0), D2�(Z0))�(1&*) M� , (31)
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which in turn implies that w* is a viscosity supersolution of
H&(1&*) M� =0. Applying the comparison results of Theorem VI.5 of
[13] to u and w*, we get

u�w* on O� .

Letting * � 1 we obtain the result.

Remark 3.2. For completeness, we note that the above comparison
results hold if we relax the continuity assumption and allow for u and v to
be, respectively, upper- and lower-semicontinuous functions.

Moreover, one could also drop the concavity assumption on v by allow-
ing v to be of sublinear growth9 and bounded from below. (We refer the
technically oriented reader to [13].)

4. THE CASE OF AN ADDITIVE HARA UTILITY FUNCTION

In this section we assume that the dynamics of Xt and Yt are linear i.e.
that equations (1) and (2) are specialized to:

dXt=+Xt dt+_Xt dW 1
t (32)

and

dYt=+1Yt dt+_1Yt dW 2
t . (33)

For definiteness we will assume that _>0 and _1>0. This will allow us
to state that when #>0, (#<0) the innovations to Xt and Yt are positively
(resp. negatively) correlated. We also specialize our utility function10 to

U((1&%) x, %y)=
[(1&%) x+%y] p

p
, 0<p<1. (32)

The homogeneity of the value function of degree p follows from the
homogeneity of degree p of U and the linearity of the state equations. As
we observed in Remark 2.4, the problem is trivial whenever x=0. The
homogeneity enables us to reduce the dimensionality of the original
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problem from three to two whenever x=% 0. If x=% 0, for z= y�x,
homogeneity yields:

v(x, y, %)=x pv(1, z, %). (33)

Define:

u(z, %)=v(1, z, %)=x&pv(x, xz, %). (34)

Then, at least formally, u solves:

min[;� u& 1
2k2

1 z2uzz&k2zuz&U(1&%+%z), &u%]=0, (35)

where

;� =;+ p(1& p) _2�2&+p

k2
1=_2&2#_1_+_2

1 (36)

k2=_2 (1& p)+#_1 _( p&1)&+++1 .

We will assume that ; is large enough, so that

;� >max(k2
1 , k2). (37)

This growth condition will be subsequently used in the construction of the
solution and the specification of the optimal exercise boundary.

We can show that in fact, u is the value function associated with the
reduced problem:

u(z, %)=sup
A� %

E |
�

0
e&;� t ((1&%t)+%tzt)

p dt, (38)

subject to:

dzt=k2 zt dt+k1 zt dW 1
t ,

(39)
d%t=dMt ,

where W 1
t is a Brownian motion and A� % is defined along the same lines as

A% .

Remark 4.1. The drift in the stochastic differential equation (39) is not
equal to the drift of the variable z= y

x under the law of motion given by
equations (30) and (31) (although the volatility is). This change in drift
and of discount factor is necessary because the objective function in (38)
does not account for the level of the variable X.

194 SCHEINKMAN AND ZARIPHOPOULOU



Remark 4.2. As pointed out in Remarks 2.3 and 2.5, u satisfies:

u(z, 1)=E |
�

0
e&;� tz p

t dt, (40)

u(0, %)=
(1&%) p

;�
. (41)

Also, u(., %) is concave and strictly increasing and u(z, .) is concave and
nonincreasing.

4.1. Optimal Exercise Boundary

Since the HJB equation is associated with a singular control problem, it
is expected that the state space is partitioned in two regions, say region I
and region II. In region I, u%<0 and hence, ;� u&(1�2) k2

1 z2uzz&
k2 zuz&U(1&%+%z)=0, while in region II, u%=0. If (z, %) # I, then no
action is taken. If (z, %) # II the optimal policy is singular. The next task is
to characterize these two areas. We first assume that the common bound-
ary of the two regions is described by a curve z=,(%), and we provide an
explicit description of this boundary. Later we show that, in fact, this
boundary characterizes an optimal policy, in the sense that if
(z, %) # II=[(z, %) : z>,(%)], an optimal policy is to jump instantaneously
to the %0 that satisfies z=,(%0), while, if (z, %) # I=[(z, %) : z�,(%)] then
no action should be taken.

Remark 4.3. The concavity of u implies that u% is monotone. Hence, if
(z, %) # I and %$>%, then (z, %$) # I. Also from Remark 2.5, we know that
(0, %) � II.

Remark 4.4. The function , must be monotone. In fact if z<z$, for
any %0 ,

%0+ (z, %0)�%0+ (z$, %0). (42)

To see this, first suppose that z$>z�1. Let T be the first time that
zt (z$, %0)�z. Notice that, by the dynamic programming principle,
%T+ (z$, %0)�%0+ (z, %0). For each 0<t�T, let

%� t (z$, %0)=max[%t (z$, %0); %0+ (z, %0)],

and for t�T let %� t=%t . If (42) does not hold, since z�1, the %� t path
dominates the candidate optimum. If 1�z$>z, an analogous reasoning
can be made by choosing T to be the first time at which the path starting
at z crosses the level z$ and choosing for t�T,

%� t (z, %0)=min[%t (z, %0); %0+ (z$, %0)].
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We proceed by assuming that the function , has an inverse
�: [,(0), ,(1)] � [0, 1] and we construct the solution u of the Variational
Inequality (35) by imposing the appropriate smooth pasting condition

u%z(,(%), %)=0 (43)

across the optimal exercise boundary.
The solution u: [0, +�)_[0, 1] � R+ is given by

û(z, %) z # [0, ,(%))

u(z, %)={ û(z, �(z)) z # [,(%), ,(1)) (44)

u(z, 1) z # [,(1), +�)

where u(z, 1) is given in (40) and û solves

;û&
1
2

k2
1z2ûzz&k2zûz&

[1&%+%z] p

p
=0 z # [0, ,(%)) (45)

with the boundary condition

û%(,(%), %)=0. (46)

As it is explained in Appendix A, (43)�(46) imply that

û(z, %)=A(%) z\1+
2

(\1&\2) _2 _z\2 |
z

0

(1&%+%x) p

px\2+1 dx

+z\1 |
+�

z

(1&%+%x) p

px\1+1 dx& (47)

where

A(%)=
2

(\1&\2) _2 _|
1

%
|

+�

,(%)

(x&1)(1&%+%x) p&1

x\1+1 dx d%& (48)

and \1>0>\2 are the roots of the quadratic equation

1
2k2

1\2+(k2&k2
1 �2) \&;� =0. (49)

In order to guarantee that the solution u��together with the optimal
exercise boundary��is well defined, we need the roots \1 , \2 to satisfy
\2<p&1 and \1>111. In Appendix A we show that these properties
follow from the assumptions on the discount factor ;� in (37).
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A simple computation using (43) and (46) yields that the optimal
exercise boundary must satisfy:

,(%)=sup {l : |
l

0

(x&1)[1&%+%x] p&1

x\2+1 dx<0= . (50)

This is easily seen since the integrand on (50) is monotone, negative for
small values of l, and the integral must vanish at ,(%).

4.2. Qualitative Properties of the Optimal Exercise Boundary

We present here some properties of the optimal exercise boundary:

Property 4.1.

,(0)=
1+|\2 |

|\2 |
>1.

Proof. From equation (50), we know that,

|
,(0)

0
x&\2 dx=|

,(0)

0
x&(\2+1) dx.

The above condition holds for ,(0)=0, or for ,(0)=
1+|\2 |

|\2 | >1. We claim
that ,(0){0. In fact, recall from Remark 4.3 that ,(%)>0, if %>0. If
,(0)=0, let z<1 be in the range of ,, say z=,(%1). Then:

|
,(%1)

0

(x&1)[1&%+%x] p&1

x\2+1 dx<0,

which gives a contradiction. Therefore, ,(0)=(1+|\2 | )�|\2 |.

Property 4.1 guarantees that there exists a value z
�
( p)>1 such that if

z�z
�
( p), the optimal policy is to stay put, even if %=0.

Property 4.2. Equation (50) defines an increasing function ,: [0, 1]
[ R.

Proof. Define for each 0�%�1,

F(k, %)=|
k

0

(x&1)[1&%+%x] p&1

x\2+1 dx. (51)
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The following properties are immediate:

(i) F(0, %)=0,

(ii) Fk (k, %)<0, if k<1, Fk (k, %)>0, if k>1, and limk � �Fk (k, %)
=�.

Hence, for each 0�%�1 there exists exactly one ,(%)>1 such that
F(,(%), %)=0, and furthermore, this ,(%) satisfies (50). Further, F(1, %1)<
F(1, %2) if, %1<%2 . Hence:

|
,(%1)

1

(x&1)[1&%+%x] p&1

x\2+1 dx&|
,(%2)

1

(x&1)[1&%+%x] p&1

x\2+1 dx�0,

that is, ,(%1)<,(%2).

Property 4.3. The function ,(%) satisfies:

,(1)=
p+|\2 |

p+|\2 |&1
.

Proof. Since p+|\2 |&1>0 (see Appendix A) we know that

|
,(1)

0
x p+|\2|&1 dx=|

,(1)

0
x p+|\2|&2 dx.

Hence:

,(1)=
p+|\2 |

p+|\2 |&1
.

Remark 4.5. As stated above, the growth conditions on the roots of the
characteristic quadratic (49), namely \2<p&1 and \1>1 are needed in
order to guarantee that the solution in (47) is well posed. In addition it is
worth observing at this point that if the condition \2<p&1 is violated,
then (50) will yield ,(1)=+�, i.e. for this range of parameters, full
conversion is never optimal. We do not examine these cases herein.

Remark 4.6. If z�z� ( p)# p+|\2 |
p+ |\2 |&1 , then the optimal policy leads to full

conversion. Observe that as p � 1 (linear utility) then ,(0) � ,(1) �
(1+|\2 | )�|\2 | , which together with the monotonicity of , implies that the
optimal boundary converges as ( p � 1) to the vertical line ,(%)=

1+|\2 |
|\2 | .

That is, the optimal policy converges to: ``do nothing if z<,(%) and
convert everything if z�,(%).''
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The next Proposition studies the behavior of , when the parameters of
the problem change. Notice that if a change in a parameter value makes ,
increase (for every value of %), this change in parameter value implies a
more conservative policy. To help analyze the effect of parameters on the
solution to the problem, we will slightly abuse the notation and write the
optimal exercise boundary curve as ,(;, +, +1 , #, _, _1 , %).

Property 4.4. The function , satisfies:

(i) �,
�;<0,

(ii) �,
�+>0,

(iii) �,
�+1

<0,

(iv) �,
�#<0,

(v) If #�0, ( �,
�_)>0,

(vi) If #�0, ( �,
�_1

)>0.

Proof. Recall that , satisfies:

F(,, %, ;, +, +1 , #, _, _1)=0, (52)

where F is the obvious analogue to the function defined in (51) above,
obtained by making the dependence on the parameters ;, +, +1 , #, _, and _1

explicit. Hence, if & # [;, +, +1 , #, _, _1], we know from the implicit func-
tion theorem that:

�,
�&

=&
F& (,(;, +, +1 , #, _, _1 , %), %, ;, +, +1 , #, _, _1)
Fk (,(;, +, +1 , #, _, _1 , %), %, ;, +, +1 , #, _, _1)

. (53)

Further:

F&=&
�\2

�& |
,(;, +, +1, #, _, _1, %)

0

(x&1)[1&%+%x] p&1

x\2+1 ln x dx. (54)

Notice that the integrand in equation (54) is always positive and thus

sign(F&)=&sign \�\2

�& + .

Further, from Properties 4.1 and 4.2 we know that ,(;, +, +1 , #, _, _1 ,
%)>1 and, as a consequence, that Fk (,(;, +, +1 , #, _, _1 , %), %, ;, +, +1 , #,
_, _1)>0. Hence

sign \�,
�&+=sign \�\2

�& + .
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Hence it suffices to establish the sign of
�\2

�& . In Appendix A, we show that
\2 is the negative (in fact less than p&1) root of the quadratic equation
(49), whose coefficients, ;� , k2

1 and k2 are given by (36) in terms of the vec-
tor of parameters (;, +, +1 , #, _, _1). Hence, if we write (49) as follows:

G(;, +, +1 , #, _, _1 , \)# 1
2 k2

1 \2+(k2&k2
1�2) \&;� , (55)

then implicit differentiation again yields, for each & # [;, +, +1 , #, _, _1],

�\2

�&
=&\�G

�\+
&1 �G

�&
. (56)

Since G is convex in \ and \2 is the smallest of the two roots of equation
(55), �G

�\ (;, +, +1 , #, _, _1 , \2)<0. Hence

sign \�,
�&+=sign \�G

�& + ,

and by using (36) we can easily establish (i). To show that (ii) holds,
observe that:

�G
�+

(;, +, +1 , #, _, _1 , \2)= p&\2>0. (57)

Similarly:

�G
�+1

(;, +, +1 , #, _, _1 , \2)=\2<0, (58)

and therefore (iii) holds. Also:

�G
�#

(;, +, +1 , #, _, _1 , \2)=&\2_1_+\_1 _+\_1_( p&1)

=_1_(&\2
2+\2p)<0. (59)

Hence (iv) holds. Further,

�G
�_

(;, +, +1 , #, _, _1 , \2)=_(\2
2+\2&2\2 p& p(1& p))+#_1\2 ( p&\2)

=_(\2& p)(\2&( p&1))+#_1\2 ( p&\2). (60)

Since \2<p&1, the first term of the right hand side of (62) is always
positive. The second term is non-negative if #�0. Hence (v) is established.
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Finally:

�G
�_1

(;, +, +1 , #, _, _1 , \2)=_1 (\2
2&\2)+#_\2 ( p&\2).

Again, the first term in the right hand side is positive and the second is
non-negative if #�0, and this establishes (vi).

The last Proposition states that an increase in the expected rate of return
of X leads to a more conservative policy (an increase in ,). An increase in
the discount factor or in the expected rate of return of Y in turn, leads to
a less conservative policy. An increase in the correlation between innova-
tions in X and in Y, lowers the option value of remaining at a given % and
hence leads to a less conservative policy. The comparative statics with
respect to the volatilities _ or _1 are more complicated. Unless the correla-
tion coefficient # is negative, an increase in the log volatility of X, can have
an arbitrary effect on the variance of log X&log Y, and the variance of this
difference is what determines the effect on the map ,. In fact, if we increase
k2

1 , the variance of the innovations of log X&log Y, and change the other
parameters in [;, +, +1 , #, _, _1] in order to keep ;� and k2 unchanged,
then one can easily verify that , goes up.

Remark 4.7. The comparative statics with respect to the risk-aversion
parameter p are more complicated. A benchmark can be obtained by
examining the case where the two flow processes are identical and inde-
pendent martingales i.e. _=_1 , #=0 and +=+1=0. Since \2 is the
negative root of equation (49) we have, using the formulas for the coef-
ficients given in (36) above, that:

�\2

�p
=

( p&\2&1�2)
p&2\2

.

Since \2<p&1, we have that:

0<
�\2

�p
<1.

Using Property 4.1 we have that

�,(0)
�p

>0,
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and, similarly, using Property 4.3,

�,(1)
�p

<0.

That is, if we assume more risk aversion ( p goes down), the optimal policy
is less conservative for low values of % and more conservative for high
values of %. To understand the economic intuition behind the first part of
this result, imagine that Xt and Yt satisfy the same diffusion, that #=0,
that %0=0 and that X0=Y0 . In this case, if we ignored the irreversibility,
the usual diversification result would lead to an optimal choice of %=1�2.
The cost of departing from the policy of %=1�2 is larger if the utility func-
tion exhibits more risk aversion (a smaller p) and hence risk-aversion tends
to decrease the threshold z

�
( p). As risk-aversion increases, the same

tendency towards diversification increases the threshold z� ( p) at which full
conversion occurs.

Write ,p (%) for the exercise boundary when the risk-aversion parameter
is p and consider the decomposition:

,p (%)=,1 (%)+(,p (%)&,1 (%)). (61)

The first term in the right hand side of (61) is the quasi-option effect. The
second term results from risk-aversion and is negative for low % 's and
positive for high % 's.

5. A VERIFICATION RESULT AND CONCLUSION

We first state the main theorem which characterizes the value function of
the original problem (7) when the utility function is of the form given by
(4). The proof of the theorem is presented in Appendix B.

Theorem 5.1. Let a(x, y, %)=x pu( y
x , %) where u is the value function of

the reduced problem given by (44). Moreover, consider the curve given by
(50). Then:

(i) a#v is the value function of (7) and,

(ii) the optimal policy M t* is such that if %t*=%+M t* and �=,&1

then

%t*=min[%, sup
s�t

�(Ys �Xs)].
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In this paper we considered a problem of developing portions of an
original environment when the development is irreversible and the benefits
of preservation and of the development project are uncertain. In the general
case, we were able to establish that the value function associated with the
problem is the unique viscosity solution of a Hamilton�Jacobi�Bellman
equation. For the case where the utility function exhibits constant relative
risk aversion between zero and one, and the benefits satisfy a log-linear dif-
fusion, we were able to characterize the solution much more explicitly. In
this case, we showed that the optimal policy was given by an exercise
boundary. Given the ratio of the benefits at any time t, zt , if the fraction
converted up to that point in time is below that given by a function �(zt),
then the optimal policy prescribes that the fraction converted be brought
to the level �(zt). On the other hand, since conversion is irreversible, if the
fraction converted exceeds �(zt), then no action should be taken.

This exercise boundary was shown to have several properties. We
showed that there exists a z

�
( p)>1 such that if z�z

�
( p), then even if noth-

ing has been converted, no action should be taken. This means that conver-
sion should not start until the benefits from conversion exceed the benefits
from preservation by a certain margin. This, of course, reflects the fact that
development is irreversible. The function � is monotone, i.e. larger current
relative benefits to conversion lead to conversion of a higher fraction of the
environment. We also established several comparison results relating
changes in parameters of the problem to changes in the optimal policy.

The problem we discussed is of course similar to that of converting one
asset into another. In complete markets set-ups such as that of exercising
an American option in the classical Black�Scholes framework, the optimal
policy leads to full conversion at a point in time. However, in the presence
of incomplete markets, though it is usually assumed that agents choose a
point in time to convert the full amount, there is no reason why this would
be the case in an optimal policy, when we permit fractional conversion. The
framework of this paper should prove useful to investigate this type of
question.

APPENDIX A

Derivation Concerning the Optimal Exercise Boundary

In this Appendix, we prove two claims made in Subsection 4.1 where we
established the properties of the optimal exercise boundary.
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Since \2<0 any bounded solution of (45) is given by

û(z, %)=A(%) z\1+H(z, %) (A.1)

where

H(z, %)=
2

(\1&\2) _2 _z\2 |
z

0

(1&%+%x) p

px\2+1 dx

+z\1 |
+�

z

(1&%+%x) p

px\1+1 dx& . (A.2)

The definition of the value function yields u(z, 1)=H(z, 1) and hence

A(1)=0.

Imposing (43) and (46) implies

A$(%) ,(%)\1+H%(,(%), %)=0 (A.3)

and

\1 A$(%) ,(%)\1&1+H%z(,(%), %)=0. (A.4)

Finally the last two relations give (48) and (50).
We now show that (48) and the restrictions on the roots \2<p&1 and

\1>1 hold. In fact, evaluating (49) at the point p&1 we get

C1=
1
2

k2
1( p&1)2+\k2&

k2
1

2 + ( p&1)&;�

=
k2

1

2
( p&1)( p&2)+k2 ( p&1)&;� (A.5)

and, at the point 1,

C2=k2&;� . (A.6)

To establish that \2<p&1 and \1>1, it suffices to show that C1<0
and C2<0. Notice that for 0<p<1, C1<k2

1&;� . Therefore, we need to
have max[k2

1&;� , k2&;� ]�0 which holds given (37).
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APPENDIX B

Proof of Verification Theorem

Proof of (i). First we observe that the function a(x, y, %) is a classical
solution in the interior of the domain O� . Moreover, by using the definition
of constrained viscosity solutions, we can show that a is a constrained
viscosity solution on O� . Moreover, a is concave in x and y and nondecreas-
ing on % (the latter argument can be proven directly using the form of u.)
Using the fact that the value function is the unique (constrained) viscosity
solution in the above class (see Theorem 3.2), we easily conclude that a
coincides with the value function.

Proof of (ii). For ease of presentation, we present the optimal policy for
the reduced one-dimensional problem. Once we establish the optimality,
the verification of the original two dimensional problem is routine (e.g.
[9]). Although the verification arguments follow along the lines of [15],
we present them here for completeness.

A straightforward computation using (44), (47), (48) and (50) yields

u%(z, %)�0. (B.1)

Applying Ito's formula to e&;� tu(zt , %t), where t is arbitrary, yields:

e&;� tu(zt , %t)=u(z, %)+|
t

0
e&;� s (&;u(zs , %s)+L� u(zs , %s)) ds+

+|
t

0
e&;� su% (zs , %s) m~ s ds

+e&;� t :
i

[u(zti
, %+

ti
)&u(zti

, %ti
)], (B.2)

where, m~ t represents the density of the absolutely continuous part of the
control process Mt , and the last summation is over all times t i<t at which
Mt jumps. Taking expectations in (B.2) and using (44) and (B.1) yields:

u(z, %)�E _|
t

0
e&;� s [1&%s+%s zs]

p

p
ds+e&;� tu(zt , %t)& .
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Letting t � � and using the monotone convergence theorem as well as the
fact that limt � � e&;� tu(zt , %t)=0 (this follows from the form of u and the
growth conditions) we get:

u(z, %)�E |
�

0
e&;� s [1&%s+%szs]

p

p
ds.

Next assume that we use the policy Mt* such that:

%t*=min[%, sup
s�t

�(zs)]. (B.3)

In other words, Mt* represents a vertical reflection on the curve %=�(z).
Then the optimality of (B.3) follows from the fact that %t never enters the
interior of the region [%: %��(z)] for t�0, and that u%=0 whenever %t

increases.

REFERENCES

1. K. J. Arrow, Optimal capital policy with irreversible investment, in ``Value, Capital and
Growth, Essays in Honor of Sir John Hicks'' (J. N. Wolfe, Ed.), Edinburgh Academic
Press, Edinburgh, Scotland.

2. K. J. Arrow and A. C. Fisher, Environmental preservation, uncertainty and irreversibility,
Quarterly J. Econ. 88 (1974), 312�319.

3. G. Bertola, Irreversible investment, Princeton University, 1989, unpublished.
4. F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ.

81 (1973), 637�659.
5. I. Capuzzo-Dolcetta and P.-L. Lions, Viscosity solutions of Hamilton�Jacobi equations,

Trans. Amer. Math. Soc., to appear.
6. M. Crandall, H. Ishii, and P.-L. Lions, User's guide to viscosity solutions of second order

partial differential equations, Bull. Amer. Math. Soc. 27 (1992), 1�67.
7. M. Crandall and P.-L. Lions, Viscosity solutions of Hamilton�Jacobi equations, Trans.

Amer. Math. Soc. 277 (1983), 1�42.
8. A. Dixit, Irreversible investment with uncertainty and scale economies, J. Econ. Dyn.

Control 19 (1995) 327�350.
9. D. Duffie, W. Fleming, H. M. Soner, and T. Zariphopoulou, Hedging in incomplete

markets with HARA utility, J. Econ. Dyn. Control, 21 (1997), 753�782.
10. W. Fleming and H. M. Soner, ``Controlled Markov Processes and Viscosity Solutions,''

Springer-Verlag, 1993.
11. X. Freixas and J.-J. Laffont, The irreversibility effect, in ``Bayesian Models in Economic

Theory'' (M. Boyer and R. Khilstrom, Eds.), North Holland, 1984.
12. C. Henry, Investment decisions under uncertainty: the irreversibility effect, Amer. Econ.

Rev. 64 (1974), 1006�1012.
13. H. Ishii and P.-L. Lions, Viscosity solutions of fully nonlinear second-order elliptic partial

differential equations, J. Diff. Eq. 83 (1990), 26�78.
14. I. Karatzas and S. Shreve, ``Brownian Motion and Stochastic Calculus,'' Springer-Verlag,

1996.
15. T. O. Kobila, A class of solvable stochastic investment problems involving singular

controls, Stochastics Stochastics Rep. 43 (1993), 29�63.

206 SCHEINKMAN AND ZARIPHOPOULOU



16. C. D. Kolstad, Fundamental irreversibilities in stock externalities, J. Public Econ. 60
(1996), 221�233.

17. T. Kurtz, A control formulation for constrained Markov processes, mathematics of ran-
dom media, in ``Lectures in Applied Mathematics,'' Vol. 27, American Mathematical
Society, Providence (1984), 139�150.

18. P. L. Lions, Optimal control of diffusion processes and Hamilton�Jacobi�Bellman equa-
tions, Part 1: The Dynamic Programming Principle and Application and, Part 2:
Viscosity Solutions and Uniqueness, Commun. PDE 's 8 (1983), 1101�1174 and 1229�1276.

19. F. R. McDonald and D. R. Siegal, The value of waiting to invest, Quarterly J. Econ. 101
(1986), 707�728.

20. R. S. Pyndick, Irreversible investments, capacity choice and the value of the firm, Amer.
Econ. Rev. 78 (1988), 969�985.

21. H. Soner, Optimal control with state space constraints, SIAM J. Control Optim. 26
(1986), 552�562 (Part I) and 1110�1122 (Part II).

22. T. Zariphopoulou, Investment-consumption models with constraints, SIAM J. Control
Optim. 32 (1994), 59�84.

23. H. Zhu, ``Characterization of Variational Inequalities in Singular Control,'' Ph.D. thesis,
Brown University, 1986.

207IRREVERSIBILITIES AND THE ENVIRONMENT


	1. INTRODUCTION 
	2. THE MODEL 
	3. VISCOSITY SOLUTIONS OF THE HJB EQUATION 
	4. THE CASE OF AN ADDITIVE HARA UTILITY FUNCTION 
	5. VERIFICATION RESULT AND CONCLUSION 
	APPENDIX A 
	APPENIDX B 
	REFERENCES 

