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We introduce an expected utility approach to price insurance risks in a
dynamic � nancial market setting. The valuation method is based on
comparing the maximal expected utility functions with and without
incorporating the insurance product, as in the classical principle of
equivalent utility. The pricing mechanism relies heavily on risk prefer-
ences and yields two reservation prices—one each for the underwriter and
buyer of the contract. The framework is rather general and applies to a
number of applications that we extensively analyze. Key words: Dynamic
insurance risks, reservation prices, incomplete markets, expected utility,
Hamilton -Jacobi -Bellman equations.

1. INTRODUCTION

The purpose of this work is to introduce a coherent method for the valuation of
insurance risks in a dynamic market setting. Generally, actuaries have analyzed
and priced such risks by using methods that rely primarily on static strategies. Due
to the ever-increasing complexity of the products introduced daily in insurance
markets, it is imperative to � nd mechanisms that are more sophisticated and able
to accommodate the individual features of the inherent insurance risks.

The valuation of dynamic risks has been a fundamental issue in � nancial
markets, primarily in the area of derivative securities. One successful pricing theory
is based on a strategy in which one creates a portfolio that accurately replicates
the payoff of the product. The risk associated with the � nancial product is
thereby completely eliminated or hedged. Thus, one can argue that the value of the
product must be the cost of setting up the hedging portfolio. This is the key
ingredient of the celebrated Black-Scholes method that has been a landmark in
derivative asset pricing (Black & Scholes, 1973). Despite its success, which resulted
in the great growth of derivative markets, the Black-Scholes approach breaks
down entirely once the fundamental assumptions of the characteristics of the
market are removed. These assumptions include completeness of the market,
liquidity, absence of transaction costs and trading constraints, constant volatility,
and perfectly observable assets, to name a few. For an overview, see Wilmott et al.
(1995).
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In the case of incomplete markets, there is no universal theory to date that
successfully addresses all aspects of pricing, for example, numeraire properties,
speci� cation of hedging strategies, and robustness of prices. Various alternative
pricing mechanisms have been developed that are strongly oriented towards the
speci� c nature of each market friction. For example, the assumption of constant
volatility can be relaxed, and a number of stochastic volatility models have been
proposed for valuating and calibrating volatility (Hull & White, 1987; Heston,
1993; Dupire, 1994; Renault & Touzi, 1996). In the case of other frictions, such as
transaction costs or trading constraints, imperfect replicating or super-replicating
strategies have been introduced that minimize the slippage error in a (model-re-
lated) appropriate sense (Leland, 1985; Jouini & Kallal, 1995; Cvitanic & Karatzas,
1996; Karatzas & Kou, 1996; Cvitanic et al., 1999).

A different approach is one that is based on expected utility arguments and
produces the so-called reservation prices. This methodology is built around the
investors’ preferences towards the risks that cannot be eliminated due to market
frictions. The risk preferences are introduced via utility functionals for the buyer
and the writer of the � nancial claim. To establish the writer’s reservation price, for
example, one examines her maximal expected utility with and without writing the
claim. The compensation at which the writer is indifferent between the two
alternative investment opportunities yields his reservation price. The fundamental
idea for this approach stems from the basic economic principle of certainty
equivalent, but modi� ed and extended to accommodate the dynamic aspects of the
market environment. It was introduced by Hodges & Neuberger (1989) for the
valuation of European calls in the presence of transaction costs and later extended
by Davis et al. (1993). Since then, a substantial body of work has been produced by
using either stochastic control methods (Davis & Zariphopoulou, 1995; Constan-
tinides & Zariphopoulou, 1999, 2001; and Barles & Soner 1998) or by using
martingale theory arguments (Davis, 1997; Karatzas & Kou, 1996; and Rouge & El
Karoui, 2000).

Our purpose herein is to extend an expected utility method, the principle of
equivalent utility, to price dynamic insurance risks. The motivation to undertake
this task comes from the fact that insurance markets are de facto incomplete
markets. In fact, the risks we want to price are related to uncertainties that do not
correspond to � uctuations of a tradable asset; therefore, we are not able to use the
classical Black-Scholes analysis and thereby eliminate the relevant risk. This is a
fundamental dif� culty, and we are going to introduce pricing criteria based on
utility arguments in order to overcome it and to construct meaningful prices. Our
approach extends the one applied in earlier work in actuarial science (for example,
Borch, 1961; Bowers et al., 1997; and Gerber & Pafumi, 1998), in which actuaries
use expected utility of terminal wealth to calculate prices in a static setting—the
so-called principle of equivalent utility.

As will be apparent in subsequent sections, the speci� cation of the reservation
price is a formidable task. Indeed, one needs to solve two stochastic optimization
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problems and to extract the argument that makes their value functions equal.
In general, explicit solutions are not readily available. However, it turns out
that using exponential utility facilitates the computations and, thus, the speci� ca-
tion of the price. Because our purpose is primarily to introduce the principle of
equivalent utility in a dynamic setting, our examples use only this class of utility
functions.

We start our presentation with the stochastic optimization model of expected
utility of terminal wealth. This fundamental model was introduced by Merton
(1969 and 1971; or Chapters 4 and 5 in 1992) and subsequently revisited, general-
ized, and extended by a number of authors. In Section 3, we introduce the
principle of expected utility and de� ne the reservation prices of insurance claims.
To illustrate the use of expected utility arguments, we start with a claim of � xed
expiration time and derive its fair price in the simple case of a complete market. In
the absence of market frictions, the price naturally coincides with the Black-Sc-
holes price of the claim and can be directly calculated by replication arguments.
Even though, under market completeness, the utility method appears redundant,
we choose to present the relevant arguments so that the audience becomes accus-
tomed with the stochastic control framework and the underlying structure of the
reservation prices.

In Section 4, we consider liabilities that are payable at a � xed time T and are
independent of the underlying risky asset. We begin by regarding a single insured
life and calculate the reservation prices for term life insurance; then, we extend that
model to one that includes more than one independent life. We next consider pure
endowment insurance, and we end the section by modeling insurance risks as
diffusion and Poisson processes. In each case, the reservation prices we obtain are
calculated via the so-called value functions (optimal expected utility of terminal
wealth) that are shown to be solutions of certain non-linear partial differential
equations, known as the Hamilton-Jacobi-Bellman equations.

In Section 5, we consider insurance payable at the time of incurrence of the loss,
and in Section 6, we look at claims involving a random time, t, such as the time of
death. In both Sections 5 and 6, we parallel the topics from Section 4. In the
examples using exponential utility, we � nd in Sections 4 and 5 that the prices are
independent of the risky stock process. Thus, the prices are identical to the ones
obtained when investment is limited to the riskless bond. For that reason, our
method may appear to be rather complicated—perhaps unnecessarily so. How-
ever, in Section 6, we learn the rather interesting fact that when the horizon is
random, the prices depend on the parameters of the risky stock process. Also, our
method applies to any smooth (increasing and concave) utility function; therefore,
our method can be applied to other utility functions, such as power or logarithmic
utility. In those cases, the prices will depend on the risky stock process, in contrast
with the examples in Sections 4 and 5. In Section 7, we conclude our paper with a
summary and suggestions for further research.
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2. BACKGROUND RESULTS ON STOCHASTIC OPTIMIZATION AND
EXPECTED UTILITY

In this section, we review the fundamental classical model of optimal portfolio
management for expected utility of terminal wealth. This model was introduced by
Merton in his seminal papers (1969 and 1971; or Chapters 4 and 5 in 1992), and its
extensions have attracted great interest both from academics and practitioners. Two
main methodologies have been used in the analysis of expected utility models—one
relies on martingale techniques and the other uses optimal stochastic control and
non-linear partial differential equations. For an overview of the two approaches,
see the monograph of Karatzas (1996) and the review papers by Zariphopoulou
(1999b, 2001).

Merton’s model examines the optimal investment strategies of an individual who,
endowed with initial wealth, seeks to maximize her expected utility of terminal
wealth, i.e., wealth at the end of a (prespeci� ed) trading horizon. The investor has
the opportunity to trade between a riskless bond and a risky stock account. The
price of the stock Ss is modeled as a geometric Brownian motion:

dSs ¾Ss (m ds»s dBs ),

St ¾S\0.
(2.1)

The process Bs is a standard Brownian motion on a probability space (V, F, P), and
the coef� cients m and s are given positive constants, known, respectively, as the
mean rate of return and the volatility coef� cient. It is assumed throughout the
analysis that m\ r\0, in which r is the rate of return of the riskless bond.

The investor is given, at time t\0, an initial endowment wE0, and she trades
dynamically between the two accounts; in other words, the investor chooses the
amounts p s

0 and ps, t0 s0T to invest in the bond and the stock account,
respectively. The constant T\0 represents the end of the trading horizon. The total
current wealth satis� es the budget constraint Ws ¾p s

0 »ps and follows the state
dynamics

dWs ¾ rWs ds»(m¼ r)ps ds »sps dBs, t0 s0T. (2.2)

One can easily derive this equation by using the de� nition of Ws and the dynamics
in (2.1); see Merton (1969). Note that the budget constraint, together with the
log-normality assumption on the stock dynamics, enables us to eliminate one of the
control policies in the controlled wealth diffusion process.

In the absence of any additional risk, for example, a random liability or payoff,
the investor seeks to maximize the expected utility of terminal wealth

V(w, t)¾ sup
{pt}ÏA

E [u(WT ) Wt ¾w ]. (2.3)

The set A is the set of admissible policies, {ps }, that are F s -progressively
measurable (in which F s is the augmentation of s (Wu : t0u0s )) and that satisfy
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the integrability condition E t
T

p s
2 dsB »Ä. The utility function u : R“R is

assumed to be increasing, concave, and smooth.
The solution of (2.3) is known as the value function, and it satis� es the

Hamilton-Jacobi-Bellman (HJB) equation

Vt »max
p

(m¼ r)pVw »
1
2

s
2
p

2Vww »rwVw ¾0, (2.4)

V(w, T)¾u (w). (2.5)

The HJB equation is the offspring of the principle of dynamic programming and of
stochastic calculus. If it can be shown a priori that the value function is smooth
(C2,1(R½ [0, T ])), then results, which are well known by now, yield that the value
function equals the unique smooth solution of the HJB equation. Additionally, the
optimal policies can be speci� ed via the � rst-order conditions arising in (2.4).
Indeed, the concavity of the utility function u, together with the linearity of the
state equation (2.2) with respect to the wealth and the portfolio process, implies
that the value function itself inherits this property of concavity. Therefore, the
maximum in (2.4) is well de� ned and achieved at

p*(w, t )¾ ¼
(m¼ r)

s
2

Vw (w, t)
Vw w (w, t)

. (2.6)

One can establish that the optimal policy is given via (2.6) in a feedback law in the
following sense: The optimal investment process in the stock account is

P*s ¾p*(W*s , s )¾ ¼
(m¼ r)

s
2

Vw (W*s , s )
Vw w (W*s , s)

, t0 s0T, (2.7)

in which V solves (2.4) and W*s is the optimal wealth process solving (2.2) with P*s
used for ps. The above classical optimality results are known as the Veri� cation
Theorem (Fleming & Soner, 1993, Chapter 6).

2.1 Remark. Because we assume that the stock price follows a lognormal process,
it does not appear as an extra state variable. This is not the case if the dynamics are
non-linear (Zariphopoulou, 1999a) or if the volatility is modeled as a correlated
process (Zariphopoulou, 2001).

2.2 Remark. If the HJB equation does not have smooth solutions, as is usually the
case in incomplete markets, one needs to work with a relaxed class of solutions and
to de� ne optimality concepts therein. It turns out that a rich class of weak
solutions, which are appropriate for the applications at hand, are the so-called
viscosity solutions. They were introduced by Crandall & Lions (1983) for � rst-order
non-linear equations and by Lions (1983) for second-order ones. In the context of
expected utility models, Zariphopoulou (1992, 1994) � rst introduced viscosity
solutions, which have by now become a standard tool for the analysis of stochastic
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optimization models in markets with frictions. For an overview, see the review
articles by Zariphopoulou (1999b, 2001).

2.3 Remark. Note that in our analysis, the expiration is a � xed time; this is a
natural feature in models of asset pricing and portfolio management. However,
when we analyze insurance models, this is not necessarily the case, and one may
need to consider stochastic horizons, a natural property of random events that
affect the entire pricing mechanism. We do this in Section 6 at the expense of
increasing the complexity of the model.

2.4 EXAMPLE. Suppose u(w)¾ ¼ (1:a ) e¼ aw , for some a\0. Then, a straight-
forward, but tedious, calculation shows that

V(w, t)¾ ¼
1

a
exp ¼aw e r(T ¼ t) ¼

(m¼r )2

2s
2 (T¼ t) .

By using (2.7), we � nd that the optimal investment in the risky asset is

P*t ¾
(m¼r )

s
2

e¼ r(T ¼ t)

a
.

Observe that P*t is not stochastic; in particular, it is independent of wealth. In
models of lognormal stock dynamics, such independence from wealth is generally
observed in calculations with exponential utility because the absolute risk aversion
¼u (w ):u Æ(w) (Pratt, 1964) is constant (equal to a). Note that as the risk aversion
of the decision maker increases, as measured by a, and as the time until expiry
increases, the amount of money invested in the risky asset decreases.

For arbitrary utility functions, a closed form solution is not generally available,
except in the case of hyperbolic absolute risk aversion (HARA) utilities that are of
the form u(w)¾(A»Bw)g, for given constants A, B, and gB1. In the general
case, the standard way to proceed is to linearize the HJB equation and thereby
work with the dual function VÑ (y, t)¾supw (V (w, t)¼wy). Equivalently, one may
introduce the transformation Vw ( f(y, t), t)¾y and determine the function f. The
latter turns out to solve a linear partial differential equation that is easy to
analyze. For related arguments, see Karatzas & Shreve (1998, Chapter 3).

In the optimization models that we will encounter for valuating insurance
risks, such transformations do not linearize the HJB equation, because the market
is incomplete. In fact, the technically-oriented reader will recognize that lineariza-
tion is always compatible with completeness. Because of the technical dif� culties
that arise for general utility functions, we work examples using only exponential
utility whose scaling properties are convenient for the speci� cation of the related
value functions. However, we present the HJB equations for general utility func-
tions.
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3. RESERVATION PRICES

In this section, we extend the principle of equivalent utility to price dynamic
insurance risks. The main ingredient of the pricing methodology is the use of
individual risk preferences towards the risks that cannot be eliminated through
trading in the � nancial market. Both parties involved in the insurance claim,
namely, the insurer and the buyer, are endowed with a utility function of terminal
wealth. We denote both utility functions by u ; however, our framework allows for
each party to possess a different utility function. For example, one expects that an
insurer will be less risk averse than a buyer of insurance, so that in the notation of
Example 2.4, aInsurer BaBuyer. Both parties have the opportunity to invest in a
riskless asset and a risky one with the goal of maximizing their expected utility of
terminal wealth. The relevant stochastic optimization problem is identical to the
one described in the previous section. We introduce an insurance claim that, for the
sake of exposition only, is taken to be of European type, namely, it is represented
as the insurer’s liability or the (potential) buyer’s obligation YT at expiration T.

For the insurer, the utility-based pricing mechanism relies on considering and
subsequently comparing the following possibilities: Either the insurer can choose to
accept the risk, receive some premium, and invest in the � nancial market, or the
insurer can choose not to insure the risk and simply invest his wealth in the market
with resulting value function V, as in (2.3). The reservation price is de� ned as the
premium at which the insurer is indifferent between these two options; see De� ni-
tion 3.1 below. Similarly, the buyer of insurance considers two possibilities: Either
the buyer can purchase insurance for some premium and invest in the � nancial
market with resulting value function V, as in equation (2.3), or the buyer can retain
the risk and invest in the market. The reservation price of the buyer is de� ned as
the premium at which the buyer is indifferent between these two options; see
De� nition 3.1 below.

If the insurer (the potential buyer of insurance) insures (retains) the risk, then we
need to de� ne a value function similar to the one for V in Section 2. As we
mentioned earlier, we assume that the insurance liability YT is payable at time T by
either an individual who has not yet purchased insurance or by an insurance
company that has underwritten the liability. We also assume that the liability
cannot be traded after its transfer from the buyer to the insurer and before its
expiration. In this time horizon, only trading between the two available market
assets is permitted. Then, the value function of the agent is de� ned to be

U(w, y, t)¾ sup
{pt} ÏA

E [u(WT ¼YT ) Wt ¾w, Yt ¾y ], (3.1)

in which A is the set of admissible policies for the agent. The process Yt is the loss
process, in the sense that it models the cumulative loss incurred up to time t.

If the agent is the insurance company, then U is the value function if the
insurance company insures the risk YT , while V in (2.3) is the value function if the
insurance company does not accept the risk. If the agent is the (potential) buyer of
insurance, then U is the value function if the buyer does not buy insurance but
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instead retains the risk YT , while V in (2.3) is the value function if the buyer does
buy insurance.

A fundamental assumption is that Yt is independent of Bt, the Brownian motion
that derives the stock price. It is important to observe that the loss process does not
represent an asset on which one can trade and thereby create a hedging portfolio.
The fact that Yt is not tradable results in a fundamental dif� culty for the
speci� cation of the price via classical arbitrage -free arguments based on perfect
replication. Another important issue is how one de� nes admissible strategies in A .
If one insists on having the constraint WT ¼YT E0 a.s., in analogy with the
non-negativity constraint of wealth in Merton’s problem, then in� nite prices may
result due to the non-perfect correlation between Yt and St. Such admissibility
constraints generate many technical dif� culties and, in general, alter the prices in a
rather complex way; see the discussion in Constantinides & Zariphopoulou (1999).
We do not assume that such constraints are binding herein, but we will deal with
this issue in future work; see Young & Zariphopoulou (2001). This is, in fact, one
reason we chose to work examples with exponential utility, which is well de� ned for
negative arguments.

3.1 DEFINITION. The (state dependent) reservation price of the underwriter (or
insurer ), P I(w, y, t), is de� ned as the compensation P I such that

V(w, t)¾U (w»P I, y, t), (3.2)

for a given (w, y, t ). Similarly, the (state dependent) reservation price of the buyer,
PB(w, y, t ), is de� ned as the obligation P B such that

V(w¼P B, t)¾U(w, y, t), (3.3)

for a given (w, y, t).

Essentially, we equate the value of not insuring the risk with the value of insuring
the risk for a price P I received at time t. One can think of P I as the minimum
premium that the insurer is willing to accept at time t, given the state (w, y), to
insure the liability YT at time T. Respectively, we equate the value of buying
complete insurance for a price of P B with the value of not insuring the risk. One
can think of P B as the maximum premium that the buyer is willing to pay at time
t, given the state (w, y), for insurance against the liability YT at time T.

The static analogues of the above prices are presented in Bowers et al. (1997,
Equations (1.3.6) and (1.3.1)) in the context of insurance risks. They are the essence
of the principle of equivalent utility for pricing insurance; see also Gerber & Pafumi
(1998). Similar static criteria are related to the notion of indifference and compen-
sating prices in classical economics. The speci� cation of such prices is much more
complex if intermediate trading in a � nancial market is allowed, and this is the task
undertaken herein.
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In general, due to the non-linearity of the criteria (3.2) and (3.3) and the market
incompleteness, the prices P I and P B do not coincide. Moreover, because of the
way P I and P B are de� ned, it is inevitable that they depend not only on the liability
process but also on the current wealth. In this sense, P I and P B are not universal,
as opposed to the Black-Scholes price that is independent of the individual’s
portfolio holdings and depends only on the dynamics of the asset on which the
claim is written (as well as the riskless interest rate). Overall, universality is a highly
desirable property that is not, in general, valid in incomplete markets. In fact, one
may easily verify that if the loss process Yt and the stock price St are not perfectly
correlated, the pricing equalities (3.2) and (3.3) cannot be valid for all levels of
(y, t), if one insists on price functions P I and P B that are wealth independent.
Besides the dependence on wealth, P I and P B are also expected to depend on risk
preferences as represented by the utility function; after all, these prices are intro-
duced in order to price risks that cannot be hedged away.

From the above discussion, we see that there are two pitfalls of the pricing
mechanism that uses the principle of equivalent utility—the dependence on wealth
and on risk aversion. We will see that the latter cannot be eliminated because it is
the direct consequence of market incompleteness and risks that cannot be hedged.
However, the dependence on wealth can be addressed in two ways—one may use
exponential utility or work with universal price bounds. Pratt’s measure of absolute
risk aversion is independent of wealth for exponential utility (as mentioned in
Example 2.4). This property, in turn, yields investment strategies that are indepen-
dent of wealth, which, together with certain scaling properties, implies wealth-inde-
pendent reservation prices. We will observe this phenomenon in our examples. An
alternative approach is to seek price bounds that are independent of wealth but
satisfy (3.2) and (3.3) as inequalities, instead of equalities, for all w.

3.2 DEFINITION. The universal write price, PÉ I(y, t), is de� ned as the minimum
price that satis� es

V(w, t)0U (w»PÉ I, y, t), (3.4)

for all wealth levels w. Similarly, the universal buy price, P B(y, t ), is de� ned as the
maximum price that satis� es

V(w¼P B, t)EU(w, y, t) , (3.5)

for all wealth levels w.

According to the above de� nition, the insurer (respectively, buyer) should not
accept to write, or insure, (respectively, buy) the liability at a price lower (respec-
tively, higher) than PÉ I (respectively, P× B). Therefore, two agents with the same risk
preferences must trade the liability at prices within the above spread. Constan-
tinides & Zariphopoulou (1999) introduced universal prices in markets with trans-
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action costs, and subsequently others used them for different market imperfections
(see, for example, Constantinides & Zariphopoulou, 2001; Munk, 2000; and Maza-
heri, 2001). We do not pursue this approach in this paper.

We conclude this section by illustrating how the principle of equivalent utility can
be used to price dynamic risks that are perfectly correlated with the underlying
risky security. This is the well known complete market setting, and the risks can be
priced by classical arbitrage arguments which yield the Black-Scholes price. The
latter is unique and independent of the current wealth and the individual prefer-
ences (Black & Scholes, 1973). Clearly, one expects the reservation prices to be
equal to each other and to coincide with the Black-Scholes price. Moreover, the
same price satis� es both inequalities (3.4) and (3.5), which reduce to a universal
equality among the relevant value functions. Even though the notion of reservation
price is redundant in such a perfect market setting, in the calculations below we
rederive the Black-Scholes price. We choose to do this in order to familiarize the
audience with the involved technical steps and also to have a benchmark case with
which to compare when we analyze risks that cannot be priced with traditional
methods.

To this end, we assume that the insurer can choose to underwrite a liability YT

at expiration time T, such that YT ¾g(ST ) for some function g : R» “R» and Ss

given by equation (2.1). We look for a function h I(S, t) such that

V(w, t)¾U (w»h I(S, t), S, t), (w, S, t)ÏR½R» ½ [0, T ], (3.6)

in which U here is de� ned somewhat differently than in equation (3.1), namely,

U(w, S, t)¾ sup
{pt} ÏA

E [u(WT ¼g(ST )) Wt ¾w, St ¾S].

We de� ne U this way because the liability in this case is a function of the
underlying risky asset. Similarly, the buyer of insurance against the liability is
willing to pay hB(S, t) that solves

V(w¼hB(S, t), t)¾U(w, S, t), (w, S, t)ÏR½R» ½ [0, T ]. (3.7)

Note we postulate that the price does not depend on the current wealth level.
This independence is not known a priori nor can be seen easily from the model in
general. On the other hand, one can argue if there exists a function that satis� es
both (3.6) and (3.7), then it coincides with the unique Black-Scholes price. In fact,
one can easily argue that if the claim is written (respectively, bought) at a price
higher (respectively, lower) than the Black-Scholes price, then there exist strategies
that create arbitrage opportunities (Musiela & Rutkowski, 1997). Therefore, in the
calculations below, it suf� ces to � nd a candidate that is wealth independent and to
justify that the corresponding pricing equalities hold. As the calculations below
demonstrate, this candidate price solves the Cauchy problem (3.10), which has a
unique solution (Fleming & Soner, 1993, Chapter 6).

Alternatively, one could start with prices that are wealth dependent and follow
the calculations as done below. After more tedious analysis, the candidate price
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would turn out to satisfy a nonlinear partial differential equation. Using argu-
ments from the theory of viscosity solutions, one could show that the partial
differential equation has a unique viscosity solution (Ishii & Lions, 1990), say
H(w, S, t). From the terminal data, however, one sees that H is wealth indepen-
dent, because H(w, S, T)¾g(ST ). By the uniqueness of viscosity solution, one
concludes that the solution is unique and coincides with the wealth independent
solution of (3.10).

In the following calculation, we compute the buyer’s price. To this end, the HJB
equation for U turns out to be

Ut »max
p

(m¼r )pUw »
1
2

s
2
p

2Uww »s
2
pUw S »

1
2

s
2S 2USS »mSUS »rwUw ¾0,

U (w, S, T )¾u(w¼g(S)),

or, equivalently,

Ut ¼
[s 2SUwS »(m¼r )Uw ]2

2s
2Uww

»
1
2

s
2S 2USS »mSUS »rwUw ¾0,

(3.8)

U (w, S, T )¾u(w¼g(S)).

Differentiating (3.7) yields

¼htVw »Vt ¾Ut, Vw ¾Uw, Vw w ¾Uww, ¼hSVw ¾US,

¼hSSVw »h S
2 Vw w ¾US, ¼hSVw w ¾UwS ,

in which h¾hB. After inserting these expressions in (3.8) and rearranging terms,
we obtain

Vw ¼ht »rh¼
1
2

s
2S 2hSS ¼rShS » Vt ¼

(m¼r )2

2s
2

Vw
2

Vw w

»r(w¼h(S, t ))Vw ¾0,

(3.9)

in which all the derivatives are evaluated at (w¼h(S, t), t). Observe that the
second bracketed term in (3.9) vanishes because V solves the HJB equation (2.4).
Therefore, hB satis� es

rh B ¾h t
B »

1
2

s
2S 2h SS

B »rShS
B ,

hB(S, T)¾g(S),
(3.10)

the seminal Black-Scholes equation. By using equation (3.6) in place of (3.7), a
similar argument shows that the insurer’s price, h I, also satis� es (3.10). The reason
that the insurer’s and the buyer’s prices are equal and independent of the utility
function u is that the market is complete.
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4. INSURANCE CLAIMS PAYABLE AT EXPIRATION TIME T

In this section, we apply the principle of equivalent utility to determine the value of
insurance products when payment occurs at a terminal, prespeci� ed time T. We will
consider a variety of such products. We will start with the simplest class of
insurance claims—static losses of a single life in Section 4.1 and of a group of
insured lives in Section 4.2, as in term life insurance payable at time T. In that case,
T could be taken to be one year, so that we are considering term life insurance
payable at the end of the year of death. Next, we consider the problem of pricing
pure endowment insurance on a single life in Section 4.3. Finally, we consider losses
modeled as stochastic processes, namely, diffusion and Poisson processes in Sec-
tions 4.4 and 4.5, respectively. We derive the reservation prices and compare them
with the benchmark premia derived through traditional methods based on present-
value arguments.

To specify the reservation prices for insurance, we need to solve stochastic
optimization problems of expected utility that are generalizations of Merton’s
model in a non-trivial way. In fact, the complexity of the payoff results in HJB
equations with non-local terms and forms that cannot be manipulated in a
straightforward fashion. In our analysis, we derive the associated HJB equation for
general utility functions, but we specify the reservation prices only for exponential
utility. Generally speaking, under arbitrary choice of preferences, one can establish
that the value function of the agent (the buyer or seller of insurance) is a solution
to the HJB equation, at least in the viscosity sense. As a matter of fact, one can
show that the value function is the unique solution in the class of viscosity
solutions. The arguments used to show the viscosity properties are routine adapta-
tions of by-now classical results in the area of stochastic optimization, and we only
discuss formally the main steps of the analysis. For a detailed exposition of the use
of viscosity solutions for HJB equations arising in asset valuation models, we refer
the reader to the review articles of Zariphopoulou (1999b, 2001).

4.1. Single insured life— term life insurance

We start with the case of a claim that pays, at expiration T, a random variable
taking the values 0 or 1 with probabilities that depend on the current time t. To be
concrete, we consider an individual aged x, who is seeking to buy term life
insurance that will pay 1 unit at time T if the individual dies before time T, and 0
otherwise. For the rest of this section, we write (x) to refer to this individual. To
this end, denote by T ¼ tqx » t the probability that (x) will die before time T given
that (x) is alive at time t. Then,

T ¼ tqx » t ¾
Fx (T)¼Fx (t)

1¼Fx (t)
,

in which Fx is the cumulative distribution function of the time until death of (x ).
Other life functions can be obtained similarly. By assuming enough differentiability
for the distribution function, we will employ the hazard function, otherwise known
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as the force of mortality, lx (t ), given by lx (t)¾ fx (t):(1¼Fx (t)), in which fx is the
probability density function of the time until death of (x).

Next, we consider the optimization problem of the seller of the insurance
product, as introduced in equation (3.1) and rewritten here for convenience,

U(w, t )¾ sup
{pt} ÏA

E [u(WT ¼YT ) Wt ¾w ]. (4.1)

Recall that the current wealth Ws is de� ned as in Section 2 and solves (2.2). The
expectation is with respect to the product measure P½Q, in which (VÆ, G , Q) is
a probability space on which YT is de� ned. Observe that the liability, even though
it is indexed by T, is not a function of time (compare, for example, with
YT ¾g(ST ) at the end of Section 3). In fact, the liability is a static risk, and this is
the reason that U depends explicitly on (w, t), with the dependence on y being
absorbed in the measure according to which we calculate the expectation at
terminal time.

The classical principle of dynamic programming yields

U(w, t )EE [U(Wt » h, t»h) Wt ¾w ]; (4.2)

see Fleming & Soner (1993).
We continue with a formal derivation of the HJB equation. Let us assume that

{p*s : t0s0t»h} is the optimal strategy that the insurer follows. Denote by W*s
the wealth under {p*s }. If the individual (x »t) dies during [t, t»h ], in which time
is measured from age x, then we are in the certain situation with respect to the
insurance risk in the following sense: The insurer will pay 1 at time T for this
death and will have to charge e¼ r(T ¼ t) at time t to cover this payout. Therefore,
for this problem, the insurer’s value function equals

E [V(W*t » h ¼e¼ r(T ¼ t ¼ h), t»h) Wt ¾w ]

multiplied by hqx » t, the probability that (x»t) dies during [t, t»h ], in which time
is measured from age x. If the individual (x»t) survives to time t»h, an event
that happens with probability h px » t, the insurer’s value function is

E [U (W*t » h, t»h) Wt ¾w Wt ¾w ]

multiplied by h px » t.
Therefore,

U(w, t )EE [U(W*t » h, t»h) Wt ¾w ]h px » t

»E [V (W*t » h ¼e¼ r (T ¼ t ¼ h ), t»h ) Wt ¾w ]h qx » t. (4.3)
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By assuming enough regularity conditions and appropriate integrability on the
value functions and their derivatives (Bjørk, 1998), we get

E [U (W*t » h, t»h ) Wt ¾w ]¾U(w, t )

»E
t » h

t

{Ut (W*s , s)»(rW*s »(m¼ r)p*s )Uw (W*s , s)} ds Wt ¾w

»E
t » h

t

1
2

s
2
p*s

2Uww (W*s , s) ds Wt ¾w . (4.4)

We obtain a similar expression for E [V (W*t » h ¼e¼ r(T ¼ t ¼ h), t»h) Wt ¾w ] that
combined with (4.3) and (4.4) yields

U(w, t )EU (w, t)h px » t »V(w¼e¼ r(T ¼ t), t)h qx » t

»E
t » h

t

{Ut (W*s , s)»(rW*s »(m¼ r)p*s )Uw (W*s , s)

»
1
2

s
2
p* s

2Uww (W*s , s)} ds Wt ¾w h px » t

»E
t » h

t

{Vt (W*s ¼e¼ r(T ¼ s), s )

»(rW*s »(m¼ r)p*s )Vw (W*s ¼e¼ r(T ¼ s), s)} ds Wt ¾w

½ h qx » t »E
t » h

t

1
2 s

2
p* s

2Vww (W*s ¼e¼ r(T ¼ s), s) ds Wt ¾w h qx » t.

(4.5)

By subtracting U(w, t )h px » t from both sides and dividing by h, we obtain

U(w, t ) hqx » t

h
EV (w¼e¼ r(T ¼ t), t) hqx » t

h

»E
1
h

t » h

t

Ut (W*s , s)»(rW*s »(m¼ r)p*s )Uw (W*s , s)

»
1
2

s
2
p*s

2Uw w (W*s , s ) ds Wt ¾w h px » t

»E
1
h

t » h

t

{Vt (W*s ¼e¼ r (T ¼ s ), s)
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»(rW*s »(m¼r )p*s )Vw (W*s ¼e¼ r(T ¼ s), s )} ds Wt ¾w h qx » t

»E
1
h

t » h

t

1
2

s
2
p*s

2Vww (W*s ¼e¼ r(T ¼ s ), s) ds Wt ¾w h qx » t. (4.6)

By taking the limit as h goes to 0 from the right, we get

0E Ut »(rw »(m¼ r)p)Uw »s
2
p

2

2
Uw w »lx (t )[V(w¼e¼ r (T ¼ t), t )¼U (w, t)],

which in turn yields, along the optimum, the HJB equation

Ut »max
p

(m¼ r )pUw »
1
2

s
2
p

2Uw w »rwUw

»lx (t)[V (w¼e¼ r(T ¼ t), t)¼U(w, t)]¾0, (4.7)1

U (w, T)¾u(w).

By following routine arguments, we can show that the value function U is concave,
which implies, as in (2.6), that the above maximum is well de� ned and achieved at

p*(w, s )¾ ¼
(m¼ r )

s
2

Uw (w, s )
Uww (w, s)

.

Similarly to (2.7), the optimal investment policies are given via the latter function
in a feedback form. Speci� cally, the optimal investment process in the stock
account is

P*s ¾p*(W*s , s)¾ ¼
(m¼ r)

s
2

Uw (W*s , s )
Uw w (W*s , s )

, (4.8)

in which U solves (4.7) and W*s is the optimal wealth solving (2.2) with P*s used for
ps. Therefore, we can rewrite (4.7) as

Ut »rwUw ¼
(m¼r )2

2s
2

Uw
2

Uw w

»lx (t )[V(w¼e¼ r (T ¼ t), t )¼U (w, t)]¾0,

U (w, T)¾u(w).
(4.9)

1 The reader familiar with Merton’s work will recognize that equation (4.7) resembles the equation
related to an expected utility maximization problem with discount factor lx (t) and intermediate utility
payoff lx (t)V(w¼e¼ r (T ¼ t), t).
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One may derive equation (4.7) rigorously by using arguments from the theory of
viscosity solutions. We refer the reader to the review article of Zariphopoulou
(2001) for a concise exposition.

Next, we calculate the reservation prices for the case of exponential utility.

4.1 EXAMPLE. Suppose u(w)¾ ¼ (1:a ) e¼ aw , in which a\0 is the risk aversion
coef� cient. Because of the uniqueness of solutions to the HJB equation, it suf� ces
to construct a candidate solution. To this end, let U(w, t)¾V(w, t )f(t), with
f(T)¾1 and V as in Example 2.4. Then, (4.9) becomes

Vtf»Vf Æ »rwVwf¼
(m¼ r)2

2s
2

Vw
2

Vww
f»lx (t) [V ea¼Vf ]¾0.

The � rst, third, and fourth terms cancel because V satis� es the HJB equation (2.4),
and we can cancel a factor of V from the remaining three terms to obtain the
ordinary differential equation for f :

0¾f Æ»lx (t)[e a¼f ],

with boundary condition f (T)¾1. The solution to this equation is given by

f(t)¾e¼ T
t lx (s) ds »ea 1¼e¼ T

t lx (s) ds ¾ T ¼ tpx » t »e a
T ¼ tqx » t ¾MY T

(a ), (4.10)

the moment generating function of YT evaluated at a. The reservation prices, P I

and PB , both equal

P I(w, t)¾PB(w, t)¾
1

a
e¼ r(T ¼ t) ln MY T

(a ), (4.11)

in which the distribution of YT depends on the current time t. Note that the price
increases with respect to the absolute risk aversion a. As a approaches 0, the price
approaches e¼ r(T ¼ t)

T ¼ t qx » t, the net premium for this risk. Also, note that the
price is independent of the risky asset; thus, this price is identical to the one
obtained by allowing only investment in the riskless bond.

In this example, the reservation prices of the insurer and the buyer of insurance
are equal. In reality, one expects that the insurer’s risk aversion will be less than the
buyer’s, from which it will follow that P I BPB because the price increases with
respect to a. This spread allows for the trade of insurance.

4.2. Group of insured lives— term life insurance

Suppose the loss payable at time T equals 1 for each of YT people who have
died from a group of n people alive at time 0. Assume that the n people are all
aged x with independent and identically distributed times until death. Then, the
number who die in the interval [t, t»h ] is distributed according to the Binomi-
al(n¼Yt,hqx » t ), in which Yt is the number who have died by time t. One can follow
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the reasoning in Section 4.1 to show that the value function U(w, y, t ; n) given by
(3.1) solves the following recursive HJB equation:

U (w, n, t ; n)¾V(w¼n e¼ r(T ¼ t), t);

For y¾0, 1, . . . , n¼1,
(4.12)

Ut »rwUw ¼
(m¼r )2

2s
2

Uw
2

Uww

»(n¼y )lx (t)[U (w, y»1, t ; n)¼U (w, y, t ; n)]¾0,

U (w, y, T ; n)¾u(w¼y).

4.2 EXAMPLE. Suppose u(w)¾ ¼ (1:a ) e¼ aw , in which a\0 is the risk aversion
coef� cient, as in Examples 2.4 and 4.1. From Example 4.1, we know that
U(w, 0, t ; 1)¾V(w, t )f (t), in which f is given by (4.10) and V is as in Example 2.4.
As in Example 4.1, one can show that

U(w, y, t ; n)¾V (w, t) eay
f (t)n ¼ y.

It follows that both the reservation prices equal

P I(w, y, t ; n)¾PB(w, y, t ; n)¾y e¼ r(T ¼ t) »
n¼y

a
e¼ r(T ¼ t) ln f (t), (4.13)

an immediate generalization of the price given in (4.11) for a single life (y¾0, n¾1).
Note that this price contains a riskless provision for the y people who have died by
time t and a risk-loaded price for each of the remaining n¼y people. The
risk-loaded price for each person equals the one in equation (4.11).

4.3. Single insured life—pure endowment insurance

Pure endowment insurance for the period [0, T ] pays 1 unit at time T if (x ) survives
to time T and 0 otherwise. This insurance is the building-block of life annuities; see
Bowers et al. (1997). We � nd the reservation prices for pure endowment insurance
in this section, then later use our result when we consider pricing a temporary life
annuity in Section 5.3.

In this case, the HJB equation for U reduces to

Ut »rwUw ¼
(m¼r )2

2s
2

Uw
2

Uw w

»lx (t )[V(w, t)¼U (w, t)]¾0,

U (w, T)¾u(w¼1).
(4.14)

4.3 EXAMPLE. Suppose u(w)¾ ¼ (1:a ) e¼ aw , in which a\0 is the risk aversion
coef� cient. Write U(w, t )¾V (w, t)h(t), in which V is given in Example 2.4. Then,
h solves the � rst-order differential equation

0¾h Æ »lx (t)[1¼h],
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with boundary condition h(T)¾ea. It follows that h equals

h(t)¾e a
T ¼ t px » t »T ¼ tqx » t ¾MY T

(a ), (4.15)

and that both reservation prices equal

P I(w, t)¾PB(w, t)¾
1

a
e¼ r(T ¼ t) ln MY T

(a ). (4.16)

Again, if the insurer is less risk averse than the buyer, we will have P I BPB .
Compare the expression for h in equation (4.15) with the one for f in equation
(4.10). Note the parallel between the two equations in that p and q switch roles in
the two equations, which re� ects the fact that 1 unit is paid if the person dies under
life insurance but lives under pure endowment insurance.

Also, note that the sum of the premiums for life insurance and for pure endowment
insurance equals

e¼ r(T ¼ t) 1»
1

a
ln 1» ea:2 ¼e¼ a:2

2

T ¼ tpx » t ¼ T ¼ t qx » t ,

which is greater than e¼ r(T ¼ t), the present value at time t of 1 payable at time T,
a direct consequence of the non-linear pricing mechanism induced by market
incompleteness.

4.4. Losses modeled as a diffusion process

In this section, we allow losses to follow a diffusion process; that is, Yt follows the
process

dYs ¾u(Ys, s) ds»z(Ys, s ) dBÑ
s,

Yt ¾yE0,
(4.17)

with BÑ
s a standard Brownian motion independent of Bs, the Brownian motion for

the stock process (2.1). Assume that the drift and volatility coef� cients u(y, t) and
z(y, t) satisfy the usual growth and Lipschitz conditions

u(y, t )¼u (x, t) » z(y, t)¼z(x, t ) 0K y¼x ,

u(y, t ) 2 » z(y, t) 2 0K(1 »y)2,

for some positive constant K. These conditions guarantee that a unique solution to
equation (4.17) exists (Gihman & Skorohod, 1972, Chapter 6).

A diffusion equation is often used to model insurance losses, especially from the
point of view of the insurer. See, among others, Grandell (1990), Asmussen &
Taksar (1997) and Højgaard & Taksar (1997).
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The corresponding HJB equation for the value function U (w, y, t) reduces

Ut »rwUw ¼
(m¼r )2

2s
2

Uw
2

Uw w

»u(y, t)Uy »
1
2

z
2(y, t)Uyy ¾0,

U (w, T, y)¾u(w¼y ).
(4.18)

4.4 EXAMPLE. Suppose u(w)¾ ¼ (1:a ) e¼ aw , in which a\0 is the risk aversion
coef� cient. Also, suppose u and z are independent of y. Then, U(w, y, t)¾
V(w, t) eay » c(t), in which V is as in Example 2.4 and c solves the ordinary
differential equation

c Æ(t)»au(t)»
1
2

a
2
z

2(t)¾0,

c (T)¾0.

Thus, both reservation prices equal

P I(w, y, t)¾P B(w, y, t )¾y e¼ r (T ¼ t) »e¼ r(T ¼ t)
T

t
u (s)»

1
2

az
2(s) ds, (4.19)

a term for the loss already incurred and a term for the discounted expected loss plus
a loading proportional to the variance of the loss during the period [t, T ]. That is,
the exponential premium principle in this case is a variance premium principle.

4.5 EXAMPLE. Suppose u(w)¾ ¼ (1:a ) e¼ aw , in which a\0 is the risk aversion
coef� cient. Also, suppose u and z are given by

u(y, t )¾(n¼y)lx (t)

and

z(y, t)¾ (n¼y)lx (t),

in which n is a � xed positive number, Y0 ¾0, and lx is the hazard function for a
person aged x. One can think of this as a limiting case of the model presented in
Section 4.2. Speci� cally, as n¼Yt gets large, one can approximate the Binomial
(n¼Yt,h qx » t ) by the

Normal((n¼Yt )hqx » t, (n¼Yt )hqx » t h px » t )

¾Normal (n¼Yt )
hqx » t

h
h, (n¼Yt )

hqx » t h px » t

h
h

:Normal((n¼Yt )lx (t)h, (n¼Yt )lx (t)h).

Suppose that lx (t )Ål, a positive constant. After a fair amount of work, we obtain
that

U(w, y, t ; n)¾V (w, t) exp a n¼
2(n¼y)

(2 »a) el(T ¼ t) ¼a
.
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It follows that both reservation prices equal

P I(w, y, t)¾P B(w, y, t )¾y e¼ r (T ¼ t) »(n¼y) e¼ r(T ¼ t) (2 »a)(1¼e¼ l(T ¼ t))
(2 »a)¼a e¼ l(T ¼ t) ,

similar in form to the expression given in (4.13) with (1:a) ln[(1¼e¼ l(T ¼ t))»
ea e¼ l(T ¼ t)] replaced by (2 »a)(1¼e¼ l(T ¼ t)):[(2»a)¼a e¼ l(T ¼ t)]. The two prices
are nearly equal if a

3 :0 and e¼ 3l(T ¼ t) :0.

4.6 EXAMPLE. Suppose u(w)¾ ¼ (1:a ) e¼ aw , in which a\0 is the risk aversion
coef� cient. Also, suppose u(y, t)¾uy and z(y, t)¾zy, for some constants u and z,
with z\0. Set U (w, y, t )¾V (w, t)f(y, t ), with f(y, T)¾eay. Then, by substituting
this form of U into (4.18), we learn that f solves

ft »uyfy »z
2y2

2
fyy ¾0,

f (y, T)¾eay.

By using standard arguments related to the Feynman-Kac representation (Karatzas
& Shreve, 1991, Theorem 5.7.6), we can represent the solution of the above linear
partial differential equation in terms of the expectation of the exponential of a
diffusion process with generator

L ¾uy É

Éy
»

1
2

z
2y 2 É

2

Éy2 .

It then follows that

f(y, t )¾E [exp(k1 e k2Z)],

in which k1 ¾ay e (u¼ (z
2:2))(T ¼ t), k2 ¾z T¼t, and ZºN (0, 1). Thus, both reserva-

tion prices equal

P I(w, y, t)¾P B(w, y, t )¾
1

a
e¼ r(T ¼ t)E [exp(k1 e k2Z)]¾

1

a
e¼ r (T ¼ t)MX (k1),

in which X¾e k2Z is lognormally distributed and MX is the moment generating
function of X.

4.5. Losses modeled as a Poisson process

In this section, we allow losses to follow a Poisson process; that is, Yt follows the
process

dYs ¾L(Ws, Ys, s ) dNs,

Yt ¾y, (4.20)
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with Ns a non-homogeneous Poisson process with deterministic parameter f(s ).
We assume that Ns is independent of Bs, the Brownian motion for the stock pro-
cess (2.1). Also, L is the (random) loss amount at time s, independent of Ns.
Note that we allow the loss to depend on the wealth at time s and the losses to
date.

The corresponding HJB equation for the value function U (w, y, t) reduces to

Ut »rwUw ¼
(m¼r )2

2s
2

Uw
2

Uw w

»f(t )[EU(w, y»L(w, y, t), t)¼U(w, y, t)]¾0,

U (w, y, T)¾u(w¼y ).
(4.21)

See Merton (1992, Section 5.8).

4.7 EXAMPLE. Suppose u(w)¾ ¼ (1:a ) e¼ aw , in which a\0 is the risk aversion
coef� cient, and suppose that the loss L(w, y, t) is independent of w and y. Set
U(w, y, t)¾V(w, t) e ay

j(t) with V given in Example 2.4. Then, j solves

j Æ»f (t )[ML (t)(a)¼1]j¾0,

j(T)¾1.

Thus,

j(t )¾exp
T

t
f(s)[ML (s)(a )¼1] ds ,

and both reservation prices equal

P I(w, y, t)¾P B(w, y, t )¾y e¼ r (T ¼ t) »
1

a
e¼ r(T ¼ t)

T

t
f(s )[ML (s)(a )¼1] ds. (4.22)

There is an interesting relationship between the premia given by equations (4.19)
and (4.22) when the expected losses and the variances of the loss during [t, T ] are
equal. In that case, the Poisson premium in (4.22) is greater than the diffusion
premium in (4.19). Indeed, if the expected losses are equal, then

T

t
u(s) ds¾

T

t
f(s )E [L(s)] ds,

and if the variances of the loss are equal, then

T

t
z

2(s ) ds¾
T

t
f(s)E [L 2(s )] ds.
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Thus, the premium in (4.19) becomes

y e¼ r(T ¼ t) »e¼ r(T ¼ t)
T

t
u(s )»a

2
z

2(s ) ds

¾y e¼ r(T ¼ t) »e¼ r(T ¼ t)
T

t
f (s) EL(s)»a

2
E [L2(s)] ds

By e¼ r(T ¼ t) »e¼ r(T ¼ t)
T

t
f (s)(ML (s)(a )¼1) ds,

where the latter is the premium in (4.22). This inequality between the premiums is
what one expects because the Poisson process is a jump process and the diffusion
process is a continuous one. The latter is, thereby, less risky, and the reservation
prices re� ect that.

5. INSURANCE PAYABLE AT INCURRENCE—MAXIMIZING EXPECTED
UTILITY AT TIME T

We assume, as before, that the agent (whether buyer or seller of insurance) seeks to
maximize expected utility of wealth at time T. Unlike in Section 4, the insurance
now is payable when the loss is incurred. In Sections 5.1 through 5.6, we parallel
Sections 4.1 through 4.5.

5.1. Single insured life— term life insurance

Consider again the problem from Section 4.1, but this time the insurance will be
paid at the time of death of (x ) if (x ) dies before time T. We still seek to maximize
the expected utility of terminal wealth at time T. By following reasoning similar to
that in Section 4.1, the HJB equation for U reduces to

Ut »rwUw ¼
(m¼r )2

2s
2

Uw
2

Uw w

»lx (t )[V(w¼1, t)¼U(w, t)]¾0,

U (w, T)¾u(w).
(5.1)

Note that this equation is essentially the same one given in (4.9) with
V(w¼e¼ r (T ¼ t), t ) replaced by V(w¼1, t) because the insurance is payable at the
moment of death of (x).

5.1 EXAMPLE. As in Example 4.1, we can derive the price for exponential utility
to be

P I(w, t)¾PB(w, t)¾
1

a
e¼ r(T ¼ t) ln c (t),

in which c (t) is given by

c(t)¾e¼ T
t lx (s) ds »

T

t
lx (s ) ea er (T ¼ s) ¼ s

t lx (u) du ds

¾ T ¼ t px » t »
T

t

ea e r (T ¼ s )

lx (s)s ¼ tpx » t ds.



V. R. Young & T. Zariphopoulou Scand. Actuarial J. 4268

As before, the price is independent of the risky asset, and it equals the price we get
if we restrict investing only to the riskless bond. The price is also the same whether
we are calculating the reservation price of the insurer or of the buyer of insurance,
unless the insurer is less risk averse than the buyer. Both of these phenomena occur
because we are using exponential utility. Also, note that this price is greater than
the one from Example 4.1 because the insurance bene� t here is payable when the
insured dies, instead of at time T.

5.2. Group of insured lives— term life insurance

Consider again the problem from Section 4.2, but this time the insurance will be
paid at the time of death of (x ) if (x ) dies before time T. We still seek to maximize
the expected utility of terminal wealth at time T. By following reasoning similar to
that in Section 5.1, one can show that the value function U (w, y, t ; n) given by (3.1)
solves the following recursive HJB:

U (w, n, t ; n)¾V(w, t );

For y¾0, 1, . . . , n¼1,
(5.2)

Ut »rwUw ¼
(m¼r )2

2s
2

Uw
2

Uww

»(n¼y )lx (t)[U (w¼1, y»1, t ; n)¼U(w, y, t ; n)]¾0,

U (w, y, T ; n)¾u(w).

Note that this equation is parallel to the one given in (4.12) with changes because
the insurance bene� t is payable at the moment of death.

5.2 EXAMPLE. As in Example 4.2, we can derive the price for exponential utility
to be

P I(w, y, t ; n)¾PB(w, y, t ; n)¾
n¼y

a
e¼ r(T ¼ t) ln c (t ),

in which c(t) is given in Example 5.1. Note that the premium is simply (n¼y)
times the premium for term insurance on a single life, as we saw in Example 4.2 for
term insurance payable at time T. There is no provision for the y lives who have
already died because those bene� ts have been paid.

5.3. Insurance on a single life—temporary life annuity immediate

In this section, we build on the work in Section 4.3 to � nd the reservation prices for
a temporary life annuity that pays 1 unit to (x) at the end of each period for T
periods as long as (x) is alive. We assume that T is a positive integer. For
tÏ (T¼n, T¼n»1], write U(w, t ; n) for U. Then, the HJB equation for the value
function U reduces to

Ut »rwUw ¼
(m¼ r)2

2s
2

Uw
2

Uww

»lx (t)[V(w, t)¼U (w, t)]¾0,

U(w, T¼n ; n»1)¾U (w¼1, T¼n ; n), for n¾1, 2, . . . , T¼1,

U(w, T ; 1)¾u(w¼1).

(5.3)
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5.3 EXAMPLE. Suppose u (w)¾ (1:a) e¼ aw, in which a\0 is the risk aversion
coef� cient. Then, by using the work in Example 4.3 and induction on n, we obtain
that the reservation prices at time 0 equal

P I(w, 0)¾P B(w, 0)¾
1

a
e¼ rT ln[qx »ea e(T ¼ 1)r

pxqx » 1 »ea(e (T ¼ 1)r » e (T ¼ 2)r)
2pxqx » 2

»···»ea(e (T ¼ 1)r » ··· » 1)
Tpx ].

5.4. Insurance on a single life—temporary continuous life annuity

In this section, we assume that the temporary life annuity is payable continuously
at a rate of 1 unit per period for as long as (x ) is alive or until time T expires. In
this case, we incorporate the loss of 1 unit per period into the wealth equation so
that wealth Ws follows

dWs ¾ [rWs »(m¼r )ps ¼1] ds»sps dBs,

Wt ¾w.

The corresponding HJB equation for U reduces to

Ut »(rw¼1)Uw ¼
(m¼ r)2

2s
2

Uw
2

Uww

»lx (t)[V(w, t )¼U (w, t)]¾0,

U (w, T)¾u(w).
(5.4)

5.4 EXAMPLE. Suppose u (w)¾ (1:a) e¼ aw, in which a\0 is the risk aversion
coef� cient. Let U (w, t)¾V(w, t )h(t), in which h(T )¾1. Then, h solves the follow-
ing � rst-order differential equation

h Æ» [lx (t )¼a e r(T ¼ t)]h(t)¼lx (t)¾0,

so h is given by

h(t)¾
T

t
lx (s) exp

s

t

[a e r(T ¼ u) ¼lx (u )] du ds»exp
T

t

[a e r(T ¼ s) ¼lx (s )] ds

¾
T

t

e
s
t a e r(T ¼ u ) du

lx (s)s ¼ tpx » t ds»e
T
t a e r (T ¼ s ) ds

T ¼ t px » t. (5.5)

It follows that the reservation prices equal

P I(w, t)¾PB(w, t)¾
1

a
e¼ r(T ¼ t) ln h(t),

in which h is given in equation (5.5).

5.5. Losses modeled as a diffusion process

Since we assume that the insurance claims are payable at the time of loss, it makes
sense to incorporate those losses into the wealth equation, if possible, as in Section
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5.4. Thus, U is given by

U(w, y, t)¾ sup
{pt}

E [u(WT ) Wt ¾w, Yt ¾y ], (5.6)

in which Ws follows

dWs ¾ [rWs »(m¼r )ps ] ds»sps dBs ¼dYs,

Wt ¾w,
(5.7a)

and

dYs ¾u(Ws, Ys, s) ds»z(Ws, Ys, s ) dBÑ
s,

Yt ¾y,
(5.7b)

where BÑ
s is a standard Brownian motion, independent of the Brownian motion Bs

for the stock process (2.1). Note that we allow u and z to depend on the current
wealth Ws, in addition to the loss Ys.

The corresponding HJB equation for U is

Ut »max
p

(m¼ r)pUw »
1
2

s
2
p

2Uw w »(rw¼u(w, y, t))Uw »u(w, y, t)Uy

»
1
2

z
2(w, y, t )Uww ¼z

2(w, y, t )Uwy »
1
2

z
2(w, y, t)Uyy ¾0,

U(w, y, T)¾u(w),

(5.8)

which reduces to

Ut »(rw¼u (w, y, t))Uw »u (w, y, t)Uy ¼
(m¼r )2

2s
2

Uw
2

Uw w

»z
2
1

2
z

2(w, y, t)Uww ¼z
2(w, y, t)Uwy »

1
2

z
2(w, y, t)Uyy ¾0,

U(w, y, T)¾u(w).

5.5 EXAMPLE. Assume the same set up as in Example 4.4; that is, u(w)¾
¼(1:a) e¼ aw, for some a\0, and u and z are independent of w and y. Then, U is
independent of y and U(w, t )¾V (w, t) ec(t), in which V is as in Example 2.4. The
function c solves the ordinary differential equation

c Æ(t)»a e r(T ¼ t)
u (t)»a

2 e 2r(T ¼ t)

2
z

2(t)¾0,

c (T)¾0.
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Thus, both reservation prices equal

P I(w, t)¾PB(w, t)¾e¼ r(T ¼ t)
T

t

e r (T ¼ s)
u (s)»a e 2r(T ¼ s)

2
z

2(s) ds,

the discounted expected loss plus a loading proportional to the variance of the loss
during the period [t, T ]. That is, the exponential premium principle in this case is a
variance premium principle, as in Example 4.4. Also, this premium is greater than
the one in Example 4.4 because insurance is payable at incurrence rather than at the
end of the period.

5.6. Losses modeled as a Poisson process

As in the previous two sections, because the insurance claims are payable at the
time of loss, we incorporate those losses into the wealth equation. The wealth Ws

follows

dWs ¾ [rWs »(m¼r )ps ] ds»sps dBs ¼L(Ws, s ) dNs,

Wt ¾w,
(5.9)

in which Ns is a Poisson process with deterministic parameter f (s). We assume that
Ns is independent of the Brownian motion Bs. Also, L is the (random) loss amount
at time s, independent of Ns.

Then, we de� ne the value function by U (w, t)¾ sup{pt}
E [u(WT ) Wt ¾w ], and

U ’s HJB equation reduces to

Ut »rwUw ¼
(m¼r )2

2s
2

Uw
2

Uw w

»f(t ) [EU(w¼L(w, t), t )¼U (w, t)]¾0,

U (w, T)¾u(w).
(5.10)

Compare this equation with equation (4.21).

5.6 EXAMPLE. Suppose u (w)¾ ¼ (1:a ) e¼ aw, for some a\0, and suppose that
the loss L(w, t) is independent of w, similar to Example 4.7. Set U (w, t)¾
V(w, t)c (t) with V given in Example 2.4; then, c solves

c Æ»f(t)[E (exp{aL(t) e r(T ¼ t)})¼1]c¾0,

c (T)¾1.

Thus,

c(t)¾exp
T

t
f (s)[ML (s)(a e r (T ¼ s))¼1] ds ,

and both reservation prices equal

P I(w, t)¾PB(w, t)¾
1

a
e¼ r(T ¼ t)

T

t
f(s)[ML (s)(a e r(T ¼ s))¼1] ds.
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Note that this premium is greater than the one in Example 4.7 because insurance is
payable at incurrence rather than at the end of the period. As at the end of Section
4.5, one can show that when the expected losses and the variances of the loss during
[t, T ] are equal, the Poisson premium in Example 5.6 is greater than the diffusion
premium in Example 5.5.

6. INSURANCE PAYABLE AT INCURRENCE—MAXIMIZING EXPECTED
UTILITY AT A RANDOM TIME t

Throughout Section 6, we assume that decision maker seeks to maximize expected
utility of wealth at a random time. For example, if the decision maker is the buyer
of insurance, then the random time may be the buyer’s time of death t. This is the
point of view we take throughout this section. In Sections 6.1 through 6.4, we
parallel Sections 5.1 and 5.4 through 5.6, respectively.

In this case, the value function V without the insurance risk is

V(w, t)¾ sup
{pt}ÏA

E [u(Wt) Wt ¾w ], (6.1)

in which the wealth Ws follows the process in (2.2). The HJB equation for V
reduces to

Vt »rwVw ¼
(m¼ r)2

2s
2

Vw
2

Vww

»lx (t)[u(w)¼V(w, t)]¾0. (6.2a)

The boundary condition becomes

lim
t “Ä

E e¼ t
0 lx (s) dsV (W t*, t) ¾0; (6.2b)

see Merton (1992, Section 4.6).

6.1 EXAMPLE. Suppose u (w)¾ ¼ (1:a ) e¼ aw, for some a\0, and suppose that
r¾0. As a trial solution, set V(w, t)¾u(w)c (t ) with the natural transversality
condition limt “Ä e¼ t

0 lx (s) ds
c (t )BÄ; the latter follows from the fact that

limt “Ä E [u(W t*)]¾0. The function c solves the differential equation

c Æ(t )¼ lx (t)» m
2

2s
2 c (t )»lx (t)¾0.

It is straightforward to show that

c(t)¾
Ä

t

e¼ d(s ¼ t)
lx (s )s ¼ tpx » t ds¾AÉ

x » t
d ,

the net single premium for a whole life insurance of 1 issued to (x»t), payable at
moment of death, evaluated at the force of interest d¾m

2:2s
2.
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6.1. Single insured life—whole life insurance

Paralleling Section 5.1, we consider 1 unit payable to (x) when (x) dies. However,
in this section, the insurance is not term but rather whole life. In this case, the value
function U with the insurance risk is

U(w, t )¾ sup
{pt} ÏA

E [u(Wt¼1) Wt ¾w ],

in which the wealth Ws follows the equation given by (2.2). The HJB equation for
U reduces to

Ut »rwUw ¼
(m¼r )2

2s
2

Uw
2

Uww

»lx (t)[u(w¼1)¼U(w, t )]¾0,

lim
t “Ä

E e¼ t
0 lx (s) dsU(W t*, t) ¾0.

(6.3)

6.2 EXAMPLE. Suppose u (w)¾ ¼ (1:a ) e¼ aw, for some a\0, and suppose that
r¾0. Then, U (w, t)¾V(w, t) ea, in which V is given in Example 6.1. It follows that
the reservation prices both equal

P I(w, t)¾PB(w, t)¾1.

It is interesting that the premium is independent of the risk aversion coef� cient a.

6.2. Single insured life—continuous life annuity

We parallel Section 5.4 by considering a continuous life annuity payable until (x)
dies. We maximize expected utility at the random time of death of (x), t. The HJB
equation for U reduces to

Ut »(rw¼1)Uw ¼
(m¼ r)2

2s
2

Uw
2

Uww

»lx (t)[u(w)¼U(w, t )]¾0,

lim
t “Ä

E e¼ t
0 lx (s) dsU(W t*, t) ¾0.

(6.4)

Compare this equation with the one given in (5.4).

6.3 EXAMPLE. Suppose u (w)¾ ¼ (1:a ) e¼ aw, for some a\0, and suppose that
r¾0. Then, set U(w, t )¾u(w)h(t). The function h solves the differential equation

0¾h Æ(t)¼ [lx (t)»d¼a ]h(t)»lx (t),

in which d¾m
2:2s

2, as in Example 6.1, so that h equals

h(t)¾
Ä

t

e¼ (d¼ a)(s ¼ t)
lx (s )s ¼ tpx » t ds¾AÉ

x » t
d¼ a.

The reservation prices equal
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P I(w, t)¾PB(w, t)¾
1

a
ln

AÉ
x » t
d¼ a

AÉ
x » t
d

.

Note that the reservation prices depend on the parameters of the stock process
through d, unlike the examples in Sections 4 and 5. To understand why this occurs,
consider the expansion of this premium up to second-order moments:

P(w, t):E(tx » t )»a¼2d

2
Var(tx » t ),

in which tx » t is the time of death of (x»t), where time is measured from age x.
The parameter d affects the price only through the higher-order terms. Thus, as the
horizon becomes less random, that is, as the variance of tx » t decreases, then the
premium approaches the present value of the annuity at the risk-free rate, r¾0.

If we compare this premium after setting d¾0 with the one in Example 5.4 after
setting r¾0 and T¼ t¾eÊ x » t, the expected future years lived of (x»t), then the
latter is less than the former. Indeed,

PT ¾
1

a
ln(AÉ

x » t:eÊ x » t

¼ a )B
1

a
ln(AÉ

x » t
¼ a )¾Pt,

because the ‘‘force of interest,’’ ¼a, is negative. One expects the premium to be
higher in the case of the random horizon because of the greater uncertainty in that
case.

6.3. Losses modeled as a diffusion process

Paralleling Section 5.5, we incorporate the losses into the wealth equation, but we
assume that the expected utility is maximized at the random time of death t. Thus,
U is given by

U(w, y, t)¾ sup
{pt} ÏA

E [u(Wt ) Wt ¾w, Yt ¾y ], (6.5)

in which Ws and Ys follow the processes given in (5.7a) and (5.7b), respectively.
The corresponding HJB equation for U reduces to

Ut »(rw¼u (w, y, t))Uw »u (w, y, t)Uy ¼
(m¼r )2

2s
2

Uw
2

Uw w

»
1
2

z
2(w, y, t)Uww

¼z
2(w, y, t )Uw y »

1
2

z
2(w, y, t)Uyy »lx (t)[u (w)¼U (w, y, t)]¾0,

lim
t “Ä

E e¼ t
0 lx (s) dsU (W t*, t) ¾0.

(6.6)

6.4 EXAMPLE. Suppose u (w)¾ ¼ (1:a ) e¼ aw, for some a\0, and suppose that
r¾0, u(w, y, t)¾u(t), and z (w, y, t)¾z(t). Then, by using a similar calculation as
in Examples 6.1 through 6.3,
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U(w, t )¾u(w)
Ä

t

e¼ s
t (d¼ au(u) ¼ a2z

2(u):2) du
lx (s )s ¼ tpx » t ds,

in which d¾m
2:2s

2. It follows that the reservation prices equal

P I(w, t)¾PB(w, t)¾
1

a
ln

Ä

t

e¼ s
t (d¼ au(u )¼ a2z

2(u ):2) du
lx (s)s ¼ tpx » t ds

AÉ
x » t
d

.

Note that the reservation prices depend on the parameters of the stock process
through d, unlike the examples in Sections 4 and 5. To understand why this occurs,
consider the expansion of this premium up to second-order moments:

P(w, t):E
tx » t

t
u(s)»a

2
z

2(s) ds »a

2
Var

tx » t

t
u (s ) ds

¼d Cov tx » t,
tx » t

t
u(s) ds ,

in which tx » t is the time of death of (x»t), where time is measured from age x.
The parameter d affects the price only through the higher-order terms. Thus, as the
horizon becomes less random, that is, as the variance of tx » t decreases, then the
premium approaches the premium in Example 5.5 with r¾0 and T¾E(tx » t ).

If we compare this premium after setting d¾0 with the one in Example 5.5 after
setting r¾0 and T¼ t¾eÊ x » t, the expected future years lived of (x»t), then the
latter is less than the former. Indeed,

PT ¾
eÊ x » t » t

t
u (s)»az

2(s )
2

dsB
1

a
ln E e

t
t (au(u) » a2z

2(u ):2) du ¾Pt,

by Jensen’s inequality because g (x )¾e x is convex. One expects the premium to be
higher in the case of the random horizon because of the greater uncertainty in that
case.

6.4. Losses modeled as a Poisson process

Paralleling Section 5.6, we assume that wealth Ws follows (5.9), but U is given by

U(w, t )¾ sup
{pt} ÏA

E [u(Wt) Wt ¾w ].

In this case, the HJB equation U reduces

Ut »rwUw ¼
(m¼r )2

2s
2

Uw
2

Uww

»f (t )[EU(w¼L(w, t ), t)¼U(w, t )]

»lx (t)[u(w)¼U(w, t )]¾0, (6.7)

lim
t “Ä

E e¼ t
0 lx (s) dsU(W t*, t) ¾0.
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6.5 EXAMPLE. Suppose u(w)¾ (1:a ) e¼ aw , for some a\0, and suppose that
r¾0 and L(w, t)¾L (t ). Then, as in the previous few examples,

U(w, t )¾u(w)
Ä

t

e¼ s
t (d¼ f(u)[M L (u )(a)¼ 1]) du

lx (s)s ¼ tpx » t ds,

in which d¾m
2:2s

2. It follows that the reservation prices equal

P I(w, t)¾PB(w, t)¾
1

a
ln

Ä

t

e¼ s
t (d¼ f(u )[M L (u )(a) ¼ 1]) du

lx (s )s ¼ tpx » t ds

AÉ
x » t
d

.

If the expected loss in the diffusion case, Example 6.4, equals the expected loss here,
as well as the variances of the loss, then the Poisson premium is greater than the
diffusion premium, as before. Note that the prices depend on the parameters of the
stock process, unlike the examples in Sections 4 and 5. To understand why this
occurs, consider the expansion of this premium up to second-order moments:

P(w, t):
1

a
E

tx » t

t
f (s)[ML (s )(a)¼1] ds »

1
2a

Var
tx » t

t
f (s )[ML (s)(a)¼1] ds

¼d

a
Cov tx » t,

tx » t

t
f(s )[ML (s)(a )¼1] ds ,

in which tx » t is the time of death of (x»t), where time is measured from age x.
The parameter d affects the price only through the higher-order terms. Thus, as the
horizon becomes less random, that is, as the variance of tx » t decreases, then the
premium approaches the premium in Example 5.6 with r¾0 and T¾E(tx » t ).

If we compare this premium after setting d¾0 with the one in Example 5.6 after
setting r¾0 and T¼ t¾eÊ x » t, the expected future years lived of (x»t), then the
latter is less than the former. Indeed,

PT ¾
1

a

eÊ x » t » t

t
f (u )(ML (u )(a )¼1) dsB

1

a
ln E e

t
t f(u)(M L (u )(a) ¼ 1) du ¾Pt,

by Jensen’s inequality because g (x )¾e x is convex. One expects the premium to be
higher in the case of the random horizon because of the greater uncertainty in that
case.

7. SUMMARY AND FUTURE RESEARCH

We showed how one can apply the principle of equivalent utility in a case for which
one invests in a risky asset, as well as a riskless asset. Generally, actuaries have
applied the principle of equivalent utility by assuming one invests in a riskless asset.
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This static-ness masks the stochastic nature of the assets and liabilities, while our
method allows for pricing risks in a dynamic framework in which assets and liabilities
are represented by stochastic processes.

In the examples using exponential utility, we � nd in Sections 4 and 5 that the prices
are independent of the risky stock process. Thus, the prices are identical to the ones
obtained when investment is limited to the riskless bond. However, in Section 6, we
learn the interesting fact that when the horizon is random, the prices depend on the
parameters of the risky stock process, but only through second- and higher-order
terms. Also, our partial differential equations allow any smooth (increasing and
concave) utility function; therefore, one can apply our method to other utility
functions, such as power or logarithmic utility. In those cases, the prices depend on
the risky stock process, in contrast with the examples in Sections 4 and 5.

An intuitively pleasing result that we obtained repeatedly in our examples is that
if the losses are modeled as a Poisson process, then the reservation prices are higher
than when losses are modeled as a diffusion process with the same expected loss and
same variance of loss. One expects this result because of the jump nature of a Poisson
process versus the continuous nature of a diffusion process.

Throughout our examples, we found that the reservation prices of the insurer and
of the buyer of insurance are equal, an artifact of using exponential utility. If the
absolute risk aversion of the insurer is less than the one of the buyer, then we will
have P I BP B. This gives the insurance market a spread in which to trade. On the
other hand, if one uses this approach to price derivatives in markets with imperfections,
such as transaction costs (Hodges & Neuberger, 1989), one gets a spread under
exponential utility because both the seller and buyer of the derivative contract have
simultaneous payoffs from the contract that are equal in absolute value but with
opposite signs. In contrast, in our insurance model, either the insurer or the insured
bear all the risk. This results in the absence of any spreads under exponential utility
if the insurer and insured have the same absolute risk aversion.

In future work, we plan to extend our model by considering consumption during
the interval [0, T ] or during the random lifetime [0, t ], in addition to wealth at the
end of the period. Such consumption could represent ‘‘ordinary’’ consumption if we
take an individual’s viewpoint. If we take the viewpoint of an insurer, then
consumption could represent dividends paid to shareholders or salaries paid to
employees. Also, in future work we will calculate reservation prices for more exotic
insurance products, such as annuities with options tied to a � nancial market.

We plan to consider the case in which premium is paid continuously during the
interval [0, T ] or [0, t ]. We will also allow for independent income sources, say, from
a job if we take the buyer’s point of view. Finally, we will consider stock price processes
more general than geometric Brownian motion, as in Zariphopoulou (1999a).
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