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Abstract. The aim herein is to analyze utility-based prices and hedging strategies.
The analysis is based on an explicitly solved example of a European claim written
on a nontraded asset, in a model where risk preferences are exponential, and the
traded and nontraded asset are diffusion processes with, respectively, lognormal
and arbitrary dynamics. Our results show that a nonlinear pricing rule emerges with
certainty equivalent characteristics, yielding the price as a nonlinear expectation
of the derivative’s payoff under the appropriate pricing measure. The latter is a
martingale measure that minimizes its relative to the historical measure entropy.
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1 Introduction

The purpose of this paper is to provide new insights and ideas for pricing and
hedging in incomplete markets. Incompleteness is generated by nontraded assets
and the underlying problem is how to price and hedge derivatives that are written on
such securities. The level of the nontraded assets can be fully observed across time
but it is not feasible to create a perfectly replicating portfolio. Therefore, the market
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is incomplete and alternatives to the arbitrage pricing must be developed in order
to specify the appropriate price concept and to define the related risk management.

A popular by now pricing methodology is based on utility maximization criteria
which produce the so called indifference prices via the related optimal investment
opportunities with and without the derivative at hand. The underlying idea aims at
incorporating an investor’s attitude towards the risks that cannot be eliminated.

So far, indifference prices have been studied either through the underlying
(primary) expected utility problems or through their dual counterparts (see, respec-
tively, Davis et al. 1993 and Rouge and El Karoui 2000, and other references listed
in the bibliography). The first approach relies on the theories of stochastic control
and nonlinear partial differential equations. The duality approach concentrates on
certain measures and entropic criteria arising in relevant reduced optimization prob-
lems. In Markovian settings, one may readily work across the two methodologies
and produce equivalent results.

So far, prices have been typically represented as solutions to simpler optimiza-
tion problems or to quasilinear pdes. However, despite the existing volume of work
in this direction, the available price formulae often appear as mere technical outputs
with no intuitive value. Indeed, no price formula enticing the elegant and, at the
same time, simple representation of the price as expectation, under the risk neutral
measure, of the derivative’s payoff has been produced.

The goal herein is not to reinvent techniques for the solution of the underlying
problems but, rather, using an explicit example, to expose some fundamental in-
gredients and intuitive elements of the indifference valuation theory. We consider a
market environment with lognormal dynamics for the stock and general diffusion
dynamics for the (correlated) nontraded asset. We establish that the indifference
price of a European claim, written exclusively on the nontraded asset, is given as a
nonlinear functional of the payoff represented solely in terms of the risk aversion,
the correlation and the pricing measure. The nonlinearities of the pricing functional
resemble the ones appearing in traditional static certainty equivalent valuation rules.
However, it is interesting to note that we do not encounter a naive extension of this
pricing device but rather a conditional dynamic analogue of it. The pricing measure
is independent of risk preferences and, among all martingale measures, it has the
minimal, with respect to the historical measure, entropy.

2 The indifference price

We assume a dynamic market environment with two risky assets, namely a stock
that can be traded and a nontraded asset on which a European claim is written. We
model the assets as diffusion processes denoted by S and Y, respectively.

The stock price is a lognormal diffusion satisfying

dSs = µSsds + σSsdW 1
s , t ≤ s, (1)

with St = S > 0. The level of the nontraded asset is given by

dYs = b(Ys, s)ds + a(Ys, s)dWs, t ≤ s, (2)

with Yt = y ∈ R.
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The processes W 1
s and Ws are standard Brownian motions defined on a prob-

ability space (Ω, F , (Fs) , P),where Fs is the augmented σ-algebra generated by(
W 1

u , Wu, 0 ≤ u ≤ s
)
. The Brownian motions are correlated with correlation

ρ ∈ (−1, 1). Assumptions on the drift and diffusion coefficients b(·, ·) and a(·, ·)
are such that the above equation has a unique strong solution.

We also assume that a riskless bond B = 1 with maturity T is available for
trading, yielding constant interest rate r = 0. The case r �= 0 can be treated using
standard arguments. The derivative to be priced is of European type with the payoff
at T of the form G = g (YT ) , where the function g is bounded.

The valuation method used herein is based on the comparison of maximal
expected utilities corresponding to investment opportunities with and without in-
volving the derivative. In both situations, trading occurs in the time horizon [t, T ],
0 ≤ t ≤ T , and only between the two traded assets, i.e., the riskless bond B and the
risky asset S. The investor starts, at time t, with initial endowment x and rebalances
his portfolio holdings by dynamically choosing the investment allocations, say π0

s

and πs, t ≤ s ≤ T, in the bond and the risky asset, respectively. It is assumed
throughout that no intermediate consumption nor infusion of exogenous funds are
allowed. The current wealth Xs = π0

s+πs satisfies the controlled diffusion equation

dXs = µπsds + σπsdW 1
s , t ≤ s ≤ T, (3)

with Xt = x ∈ R (see, for example, Merton 1969). It is worth noticing that the
specific model assumptions enable us to work with a single state Xs and control
variable πs, respectively. The latter is deemed admissible if it is Fs-progressively
measurable and satisfies the integrability condition E

∫ T

t
π2

sds < ∞. The set of
admissible controls, also referred to as policies, is denoted by Z .

The individual risk preferences are modelled via an exponential utility function

U(x) = −e−γx, γ > 0 . (4)

Next, we consider two expected utility problems via which the indifference
price of the writer will be defined. The first problem arises in the classical Merton
model of optimal investment, namely

V (x, t) = sup
Z

E
(−e−γXT |Xt = x

)
. (5)

The investor seeks to maximize the expected utility of terminal wealth without
taking into account the claim G. The second problem corresponds to the situation
in which the derivative G is written at time t and no trading of the asset Y is allowed
in the horizon [t, T ] . The writer’s maximal expected utility (value function) of
terminal wealth, denoted by uw, is

uw (x, y, t) = sup
Z

E
(
−e−γ(XT −G) |Xt = x, Yt = y

)
. (6)

Due to the choice of exponential preferences and the absence of trading constraints,
one may directly define the buyer’s value function and proceed with intuitively clear
parity relations. For this, we do not consider the buyer’s price.
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Definition 1 (cf., Hodges and Neuberger 1989). The indifference writer’s price of
the European claim G = g (YT ), is defined as the function hw ≡ hw (x, y, t),
such that the investor is indifferent towards the following two scenarios: optimize
the expected utility without employing the derivative and optimize it taking into
account, on one hand, the liability G = g (YT ) at expiration T, and on the other,
the compensation hw (x, y, t) at time of inscription t. Therefore,

V (x, t) = uw (x + hw (x, y, t) , y, t) (7)

with V and uwdefined in (5) and (6), respectively.

To ease the presentation we skip the w−notation.
In what follows, we construct the writer’s indifference price by first calculating

the value functions (5) and (6) and, subsequently, using the pricing condition (7).
To this end, we recall (see Merton 1969) that

V (x, t) = −e−(γx+ 1
2

µ2

σ2 (T−t)). (8)

We next compute the writer’s value function u. The arguments follow closely
the ones in Zariphopoulou (2001b) and we refer the reader to the latter paper for
the rigorous arguments and verification results.

Theorem 2 The writer’s value function u is given by

u(x, y, t) = −e−γx

(
EQ

(
eγ(1−ρ2)g(YT )− 1

2 (1−ρ2) µ2

σ2 (T−t) |Yt = y

)) 1
1−ρ2

,

(9)

for (x, y, t) ∈ R × R × [0, T ], with

Q(A) =EP

(
exp

(
−µ

σ
W 1

T − 1
2

µ2

σ2 T

)
IA

)
, A ∈ FT . (10)

The above measure is a martingale measure that has the minimal, relative to P,
entropy, i.e.

min
Q

H(Q |P ) = min
Q

EP

(
dQ

dP
ln

dQ

dP

)
= H(Q |P ) (11)

over all martingale measures Q.

Proof First consider the HJB equation satisfied by u, namely,

ut + max
π

(
1
2
σ2π2uxx + π (ρσa(y, t)uxy + µux)

)
+ (12)

+
1
2
a2(y, t)uyy + b(y, t)uy = 0.

Using the scaling properties of the utility function and the structure of the controlled
state dynamics, we postulate a solution of the form

u(x, y, t) = −e−γxF (y, t). (13)
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Substituting in (12), we deduce that F solves a quasilinear equation. The latter can
be linearized via a power transformation, in the sense,

F (y, t) = v(y, t)
1

1−ρ2 (14)

with v solving the linear partial differential equation

vt +
1
2
a2(y, t)vyy +

(
b(y, t) − ρ

µ

σ
a(y, t)

)
vy =

1
2

(
1 − ρ2) µ2

σ2 v (15)

with terminal condition v(y, T ) = eγ(1−ρ2)g(y), for (y, t) ∈ R × [0, T ].
Observe that under the measure defined in (10), the process W̃s = Ws + ρµ

σ s,
0 ≤ s ≤ T is a Brownian motion and the dynamics of Y are given by

dYs =
(
b(Ys, s) − ρ

µ

σ
a(Ys, s)

)
ds + a(Ys, s)dW̃s, t ≤ s (16)

with Yt = y ∈ R.
Using the Feynman-Kac representation of solutions to (15), we deduce that

v(y, t) = EQ(eγ(1−ρ2)g(YT )− 1
2 (1−ρ2) µ2

σ2 (T−t) |Yt = y). (17)

Combining (13), (14) and (17) yields the claimed value function formula (9).
It remains to show that the pricing measure Q is a martingale measure and

minimizes the entropy relative to the historical measure P. These facts are already
well established; for example, we refer the reader to Frittelli (2000a) for the detailed
arguments. ��

We are now ready to derive a closed form formula for the writer’s indifference
price.

Theorem 3 Assume exponential preferences and that the dynamics of the traded
and nontraded asset are given respectively by (1) and (2). Then, the writer’s indif-
ference price of a European claim G = g(YT ) is given by

h(y, t) =
1

γ(1 − ρ2)
lnEQ(eγ(1−ρ2)g(YT ) |Yt = y ) (18)

with Q defined in (10).

The proof follows directly from the pricing equality (7) and the value function
representations (8) and (9).

The above pricing formula brings out important ingredients of the utility-based
valuation approach. We first observe that, in contradistinction to existing method-
ologies in incomplete markets, the price is not given in terms of the payoff’s expec-
tation under a suitably chosen measure. Note that such representations may involve
pricing measures dependent on the payoff, an unnatural pricing ingredient.

The pricing mechanism herein is nonlinear yielding the price in terms of a
conditional nonlinear expectation

h(y, t) = EQ(g(YT ) |Yt = y ).
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The form of the pricing functional E , following directly from (18), shows that the
utility based mechanism distorts the original payoff. This is a direct and natural
consequence of the role of risk preferences in the valuation approach. The distor-
tion has insurance type certainty equivalent characteristics and its specific form
reflects the choice of exponential utility. However, the presence of the coefficient
γ

(
1 − ρ2

)
, which depends exclusively on the risk aversion and the conditional vari-

ance, indicates that the pricing formula is not the direct dynamic analogue of the
standard actuarial pricing device. The involved pricing measure is the martingale
measure that minimizes the relative to the historical measure entropy. A pleasing
observation is its independence of risk aversion. Neither the pricing functional nor
the pricing measure depends on the specific payoff.

Reverting to the nonlinear nature of (18), we mention that nonlinear pricing
structures have been produced in Frittelli (2000b), Rouge and El Karoui (2000)
and others. But, to our knowledge, a price formula similar to (18) is new.

One should not forget however, that we were able to derive explicit formulae
for the involved value functions, and subsequently for the prices, because of the
underlying model assumptions. Namely, the dynamics of the traded asset are log-
normal and the payoff of the derivative does not depend on the traded asset. If
either assumption is violated, one cannot linearize the relevant equation and the
indifference price cannot have the above closed form. For example, if the dynamics
of the traded asset are nonlinear, the value function of the corresponding Merton’s
problem depends on two state variables, the wealth and the stock price. As a matter
of fact, it is given by V (x, S, t) = −e−γxG(S, t) where G solves a linear partial
differential equation (see Zariphopoulou 1999). The writer’s value function will in
turn be a function of three variables, namely, x, S and the level of the nontraded
asset. This is also the case when the European payoff depends on both the stock
price and the level of the nontraded asset even if the dynamics of the traded asset
remain lognormal. For both models, one can easily derive a quasilinear equation for
the price either by duality methods or just from the primal problem (see, Sircar and
Zariphopoulou 2002; Musiela and Zariphopoulou 2002). However, no closed form
solution is available due to the asymmetries of the involved gradient nonlinearities.

In order to obtain a viable pricing scheme, one needs to extend the nonlinear
indifference pricing formula (18) to more complex algorithms that can accommo-
date general market situations. From a work in progress of the authors (see Musiela
and Zariphopoulou 2003), an iterative nonlinear probabilistic algorithm seems to
emerge as the appropriate pricing device for claims of arbitrary payoffs in market
models of high dimension and of not necessarily Markovian nature.

Finally, we note that the assumption of no intermediate consumption was made
only for computational ease. One may easily verify that if intermediate consumption
is allowed for all involved models and utility from consumption is of exponential
type, the indifference prices are still given by the above formulae. This is a direct
consequence of the scaling properties of the exponential function and the behavior
of the HJB equation with respect to the gradient of its solution.



An example of indifference prices under exponential preferences 235

3 Payoff decomposition and price representation

In this section, we provide a comparative analysis of the pricing methodology based
on the concept of indifference with the arbitrage free pricing approach of a nested
complete Black and Scholes framework. We concentrate on the following two
cornerstones of the classical theory, namely, the martingale representation theorem
and the related payoff decomposition and the price representation. Recall that in
complete models both payoff decomposition and price calculation are done under
the unique risk neutral martingale measure. In our framework, the minimal relative
entropy martingale measure Q, defined in (10), is used for the price calculation.

In a complete model setting, the price is essentially equal to what it costs to
manufacture the option payoff. In other words, in view of the martingale repre-
sentation theorem, the payoff is equal to the price plus the proceeds from trading
the stock and the bond, due to the execution of the self-financing and replicating
strategy. Consequently, all risk can be hedged completely by taking positions in the
market, with the price being uniquely determined.

In incomplete models, however, not all risk can be hedged. The ‘total risk’
contains both, hedgeable and unhedgeable components. As a result, one would
expect the payoff to be decomposed as a sum of the following three components: the
price plus the wealth generated by the hedge execution plus the accumulated residual
risk. This section provides such a decomposition under the historical measure P.
As expected, when the correlation increases to 1, the residual risk decreases to 0,
and the decomposition converges to the one of the Black and Scholes model.

Note that the historical measure P plays an important role in our analysis, in
contrast to the case of complete models, where the pricing and risk management
are carried out under the unique risk neutral measure. The historical data are used
to identify the appropriate model for the dynamics of the nontraded asset. The
correlation between the traded and nontraded asset is also estimated historically.
Finally, specification of the parameter µ

σ , which is in fact well known to the funds
management industry and often referred to as Sharpe ratio, depends entirely on the
assessment of the actual market conditions.

We begin with some auxiliary results. To this end, we consider a partial dif-
ferential equation that the indifference pricing function h (y, t) satisfies. It follows
from Theorem 3 that

h (y, t) =
1

γ (1 − ρ2)
lnw (y, t) (19)

with w being the solution to the Cauchy problem

wt +
1
2
a2 (y, t) wyy +

(
b (y, t) − ρ

µ

σ
a (y, t)

)
wy = 0, (20)

with w (y, T ) = eγ(1−ρ2)g(y). Consequently, h solves the quasilinear equation

ht +
1
2
a2(y, t)hyy +

(
b(y, t) − ρ

µ

σ
a(y, t)

)
hy +

1
2
γ(1 − ρ2)a2(y, t)h2

y = 0

(21)
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with h(y, T ) = g(y).The classical regularity results yield that h ∈ C2,1(R×[0, T ])
(see, for example, Pham 2002).

Next, we introduce the price process

Hs = h(Ys, s) t ≤ s ≤ T. (22)

The following results are a direct consequence of (21) and stochastic calculus.

Proposition 4 The indifference price process Hs satisfies

dHs = −1
2
γ(1 − ρ2)a2(Ys, s)h2

y(Ys, s)ds + ρ
µ

σ
a(Ys, s)hy(Ys, s)ds

+a(Ys, s)hy(Ys, s)dWs. (23)

Because the indifference price is extracted from the arguments of the relevant
value functions (see (5), (6) and (7)), we expect the price process to be directly
related to the optimally controlled state wealth process with and without employing
the derivative contract. So we consider the writer’s optimal wealth process X∗

s ,
t ≤ s ≤ T evaluated at the optimal portfolio process Π∗

s , t ≤ s ≤ T. The optimal
control is provided in the feedback form

π∗ (x, y, t) = ρ
a(y, t)

σ
hy (y, t) +

1
γ

µ

σ2 . (24)

Therefore,

Π∗
s = ρ

a(Ys,s)
σ

hy (Ys, s) +
1
γ

µ

σ2 , (25)

with its optimality following from the regularity properties of the value function
u and classical verification results (see, for example, Zariphopoulou 2001a). The
wealth Eq. (3) at optimum becomes

dX∗
s = µΠ∗

s ds + σΠ∗
s dW 1

s , t ≤ s ≤ T, (26)

with initial condition X∗
t = x+h (y, t), reflecting the compensation received at the

contract’s inscription. Respectively, the optimal wealth process X0,∗
s , t ≤ s ≤ T ,

of the classical Merton problem (5) is given by

dX0,∗
s = µΠ0,∗

s ds + σΠ0,∗
s dW 1

s , t ≤ s ≤ T, (27)

with Π0,∗
s = 1

γ
µ
σ2 and initial condition X0,∗

t = x. It may be derived directly from
the writer’s optimization problem for the degenerate payoff G ≡ 0. In fact, one can
see that in this case, h ≡ 0 is the unique solution to (7) and Π∗

s in (25) reduces to
Π0,∗

s .

Definition 5 Let Hs, X
∗
s and X0,∗

s be given, respectively, by (22), (26) and (27).
We define the residual optimal wealth process,

Ls = X∗
s − X0,∗

s , t ≤ s ≤ T, Lt = h (y, t)

and the residual risk process

Rs = Ls − Hs, t ≤ s ≤ T, Rt = 0.
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A key observation, justifying calling Rs the residual risk is that, under market
completeness, Rs = 0 for all t ≤ s ≤ T. In this case, the residual wealth process
reduces naturally to the derivative price process, and represents the wealth that
needs to be put aside in order to hedge the derivative liability in (6).

The dynamics of the process Ls follow from (25), (26) and (27), namely

dLs = µ
(
Π∗

s − Π0,∗
s

)
ds + σ

(
Π∗

s − Π0,∗
s

)
dW 1

s (28)

=
ρ

σ
a (Ys, s) hy (Ys, s)

(
µds + σdW 1

s

)
.

Hence, L is a local martingale under the measure P and a martingale subject to the
appropriate integrability conditions.

Comparison of the above with the price dynamics in Proposition 4 yields

dRs = dLs − dHs = −
√

1 − ρ2a (Ys, s) hy (Ys, s) dW⊥
s (29)

+
1
2
γ

(
1 − ρ2) a2 (Ys, s) h2

y (Ys, s) ds,

where the process W⊥ is defined by

W⊥
s =

1√
1 − ρ2

Ws − ρ√
1 − ρ2

W 1
s , t ≤ s ≤ T.

Clearly W⊥ is a Brownian motion orthogonal to W 1 and as such should naturally
be linked to the unhedgeable risk components.

Proposition 6 The preference-adjusted exponential of the residual risk process

Zs = −e−γRs t ≤ s ≤ T, Zt = 1

is a local martingale (and a martingale under the appropriate integrability con-
ditions) under the historical measure P. Therefore, the expected utility under the
historical measure of the residual risk remains constant.

Proof Combining the definition of Z and the dynamics of R as in (29) yields

dZs = Zsγ
√

(1 − ρ2)a(Ys, s)hy(Ys, s)dW⊥
s ,

and the (local) martingale property follows. Moreover, for the exponential utility
(4) we get

EP(U(Rs)) = U(0) = −1, t ≤ s ≤ T. (30)

��
The following theorem provides the optimal payoff decomposition and the

hedging strategies. We recall that throughout the analysis, the interest rate is as-
sumed to be zero and therefore, no presence of the bond price B is expected in the
payoff formula.
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Theorem 7 The payoff G = g (YT ) admits the following decomposition

g (YT ) = h (Yt, t) +
∫ T

t

ρ

σ
a (Ys, s) hy (Ys, s)

dSs

Ss
(31)

+
√

1 − ρ2

∫ T

t

a (Ys, s) hy (Ys, s) dW⊥
s

−1
2
γ

(
1 − ρ2) ∫ T

t

a2 (Ys, s) h2
y (Ys, s) ds.

Proof Integrating (29) yields

g (YT ) = LT +
√

1 − ρ2

∫ T

t

a (Ys, s) hy (Ys, s) dW⊥
s

−1
2
γ

(
1 − ρ2) ∫ T

t

a2 (Ys, s) h2
y (Ys, s) ds.

Moreover, using (28) we get that

LT = h (Yt, t) +
∫ T

t

ρ

σ
a (Ys, s) hy (Ys, s)

dSs

Ss

and hence the statement follows. ��
The first term in (31) is the indifference price. The integrand in the second

represents the hedge one should put into the traded asset. Indeed, Π∗
s − Π0,∗

s is
the optimal residual amount invested into the traded asset due to the presence of an
option. Hence,

Π∗
s − Π0,∗

s

Ss
= ρ

a(Ys, s)
σSs

hy(Ys, s) (32)

is the optimal number of shares of a correlated asset to be held in the portfolio.
The last two terms quantify the risk that cannot be hedged. When ρ = 0 there is
no distortion, the pricing takes place under the historical measure, and the optimal
policy is the same as in the classical Merton problem. Also, when ρ = 1, b (y, t) =
µy and a (y, t) = σy, the integrand in the second term reduces to the usual delta
of the Black-Scholes model.
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