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Abstract. A probabilistic iterative algorithm is constructed for indifference prices
of claims in a multiperiod incomplete model. At each time step, a nonlinear pricing
functional is applied that isolates and prices separately the two types of risk. It is
represented solely in terms of risk aversion and the pricing measure, a martingale
measure that preserves the conditional distribution of unhedged risks, given the
hedgeable ones, from their historical counterparts.
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1 Introduction

The aim herein is to build a probabilistic pricing algorithm for indifference prices
and to offer new insights for the utility based valuation methodology. In recent years,
this approach has gained considerable ground as a number of new applications
and results appear to support more and more its potential contribution. Generally
speaking, the indifference price is specified through two stochastic optimization
problems of expected utility for the plain investor and for the writer, or the buyer,
of the claim. Existing price representations are the direct outcome of the specific
technique used to solve the underlying optimization problems.

A popular method is based on duality principles which reduce the primary prob-
lems to simpler ones, exposing at the same time certain measures that characterize
the dual solutions. Its appeal comes both from its elegance and applicability in non
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Markovian settings (see, for example, Rouge and El Karoui 2000). An alternative
approach is based on the analysis of the primary optimization problems via their
Hamilton-Jacobi-Bellman equations (Davis et al. 1993) and the quasilinear partial
differential equations that indifference prices turn out to satisfy (Musiela and Za-
riphopoulou 2002, 2004). In Markovian settings, this approach has yield robustness
and approximation results for the specification of price spreads and convergence of
numerical schemes. Additional references for both methodologies are listed in the
bibliography section.

Despite the emphasis that has been given to the technical elements and the
specific methodological advantages of each approach, a satisfactory understanding
of the economic nature of indifference prices is still limited. Indeed, a constitutive
analogue of the arbitrage free theory, and its ultimate alignment with classical asset
equilibrium concepts are still lacking. Towards the first direction, a lot of insight
for the measurement of unhedgeable risks has been gained from the recent work on
coherent risk measures, originated by Artzner et al. (1999). Besides its generality
and intuitive character, their theory exposes the importance of nonlinear valuation
structures when the assumption of market completeness is abandoned. In many
aspects, there is a lot of common ground between this direction and our work, with
the main difference being that the aforementioned approach is oriented towards
quantifying risks rather than producing a concept of value.

Aiming at a deeper understanding of the nature of indifference prices, it is im-
perative that one reexamines their representation. So far, indifference prices have
been primarily represented either as solutions to new optimization problems or, in
certain special cases, through explicit formulae. Departing from such representa-
tion, an iterative integrated pricing procedure was proposed by Smith and McCardle
(1998). Their basic idea of cash flow valuation is to use subjective believes and risk
preferences to determine the cash flow values, conditional on the occurrence of a
particular market state, and then use the risk neutral valuation procedure to evaluate
these market-state contingent cash flows. The proposed scheme depends heavily
on the use of two different pricing measures, an element that makes the general
economic structure of their result non transparent.

Our work contributes in further exploring the indifference pricing mechanism
through a representation of prices as iterative output of a probabilistic valuation
scheme. The scheme is essentially nonlinear and, at each time step, has the ability
to identify, isolate and price the unhedgeable risks. This is executed via a sequential
pricing procedure that combines actuarial and arbitrage type arguments. Despite
the underlying highly nonlinear nature of the utility based valuation, the algorithm
yields prices that preserve the time consistency (semigroup) property, a rather in-
dispensable ingredient of any viable pricing theory.

Throughout the scheme iterations, a single pricing measure is being used. This
measure is chosen under a natural and intuitively pleasing criterion, namely, as a
martingale measure that does not alter the conditional distribution of the unhedge-
able risks, given the hedgeable ones, from their historical counterparts.

The entire analysis is based on the assumption of exponential preferences. This
has various advantages. Due to scaling properties, this class of utilities yields prices
that are wealth independent, a feature desirable and natural in many situations.
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Moreover, exponential utilities allow for arbitrary wealth levels and, therefore,
stringent non negativity admissibility constraints are not binding. Such constraints,
emerging, for example, when power utilities are being used, distort significantly the
class of admissible strategies and the size of the solvency domain, and may produce
prices of little economic value (see, among others, the discussion in Constantinides
and Zariphopoulou 1999 and references therein).

2 Price representation in one period model

Consider a one-period model in a market environment with one riskless and two
risky assets. Only one of the risky assets is traded. For simplicity, assume zero
interest rate. The current values of the traded and nontraded risky assets are denoted,
respectively, by S0 and Y0. At the end of the period T , the value of the traded asset
is ST with ST = S0ξ, ξ = ξd, ξu and 0 < ξd < 1 < ξu. Similarly, the value of
the nontraded asset YT satisfies YT = Y0η, η = ηd, ηu,with ηd < ηu.

Denote by Ω = {ω1, ω2, ω3, ω4} the probability space and by P the historical
probability measure on the σ−algebra F =2Ω of all subsets of Ω. For each i =
1, 2, 3, 4 let pi = P {ωi} > 0. The random variables ST and YT can then be written
as

ST (ω1) = S0ξ
u, YT (ω1) = Y0η

u ST (ω3) = S0ξ
d, YT (ω3) = Y0η

u

ST (ω2) = S0ξ
u, YT (ω2) = Y0η

d ST (ω4) = S0ξ
d, YT (ω4) = Y0η

d.

Consider a portfolio consisting of α shares of stock and the amount β invested
in the riskless asset. Its current value X0 = x is equal to β + αS0 = x. Its wealth
XT , at the end of the period [0, T ], is given by

XT = β + αST = x + α (ST − S0) .

Now introduce a claim settling at time T and yielding payoff CT ∈ F . In pricing of
CT , we need to specify our risk preferences. We choose to work with exponential
utility of the form

U(x) = −e−γx, x ∈ R and γ > 0.

Optimality of investments, which will ultimately yield the indifference price of CT ,
is examined via the value function

V CT (x) = sup
α

EP

(
−e−γ(XT −CT )

)
= e−γx sup

α
EP

(
−e−γα(ST −S0)+γCT

)
.

(1)

Below, we recall the definition of indifference prices.

Definition 1 The indifference price of the claim CT = c(ST , YT ) is defined as the
amount ν(CT ) for which the two value functions V CT and V 0, defined in (1) and
corresponding, respectively, to the claims CT and 0 coincide. Namely, ν(CT ) is
the amount which satisfies

V 0 (x) = V CT (x + ν(CT )) , (2)

for all initial wealth levels x.
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Looking at the classical arbitrage free pricing theory, we recall that derivative
valuation has two fundamental components which do not depend on specific model
assumptions. Namely, the price is obtained as a linear functional of the (discounted)
payoff representable via the (unique) risk neutral equivalent martingale measure.

Our goal is to understand how these two components, namely, the linear valu-
ation operator and the risk neutral pricing measure change when markets become
incomplete. In the context of pricing by indifference, we will look for a valuation
functional and a naturally related with it pricing measure under which the price is
given as

ν(CT ) = EQ(CT ). (3)

Before we determine the fundamental features that E and Q should have, let us look
at some representative cases.

Examples

i) We first consider a claim of the form CT = c (ST ) . Naturally, an indifference
price of the above form (3) must coincide with the arbitrage free price, for there
is no risk that cannot be hedged. In fact, one can construct a nested complete
one-period binomial model and represent the price as

ν(c(ST )) = EQ∗(c(ST )) (4)

with Q∗ being the relevant risk neutral measure. The indifference price mecha-
nism reduces to the arbitrage free one and any effect on preferences dissipates.

ii) Next, we look at a claim of the form CT = c (YT ) and assume for simplic-
ity that the random variables ST and YT are independent under the measure
P. Intuitively, the presence of the traded asset should not affect the price. In-
deed, working directly with the value function (1) and the definition (2) it is
straightforward to deduce that

ν(c(YT )) =
1
γ

log EP(eγc(YT )). (5)

The indifference price coincides with the classical actuarial valuation principle,
the so-called certainty equivalent value which is nonlinear in the payoff and
the involved measure remains the historical one. Observe that (5) cannot be
put in the form of (4), unless we allow for dependence of the measure on the
payoff and/or the risk preference, deducing, in this case, a rather unnatural price
representation.

iii) We finally examine a claim of the form CT = c1 (ST ) + c2 (YT ) . One could
be, wrongly, tempted to price CT by first pricing c1 (ST ) by arbitrage, next
pricing c2 (YT ) by certainty equivalent, and adding the results. Intuitively, this
should work when ST and YT are independent. However, this cannot possibly
work under strong dependence between the two variables, for example, when
YT is a function of ST . In general,

ν(c1(ST ) + c2(YT )) �= EQ∗(c1(ST )) +
1
γ

log EP(eγc2(YT )). (6)
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The above illustrative examples indicate certain fundamental characteristics the
E and Q should have. We first realize that a nonlinear valuation functional must be
sought. Clearly, any effort to represent indifference prices as expected payoffs under
an appropriately chosen measure must be abandoned. Indeed, no linear pricing
mechanism can be compatible with the concept of utility based valuation. Note that
this fundamental observation comes in contradistinction to the central direction of
existing approaches in incomplete markets that yield prices as expected payoffs
under an optimally chosen measure. There is no justification nor intuition why
such a choice of measure must be performed and why prices must preserve a linear
structure. An immediate flow of this approach is model dependence and numeraire
inconsistency.

We also see that risk preferences may affect the valuation device given their
inherent role in price specification. However, intuitively speaking, we should not
expect any dependence on risk preferences to the pricing measure. Finally, no
dependence on the specific payoff should be allowed on neither the pricing measure
nor the valuation device.

The next Proposition yields the indifference price in the desired form (3).

Proposition 2 Let Q be a measure under which the traded asset is a martingale
and, at the same time, the conditional distribution of the nontraded asset, given the
traded one, is preserved with respect to the historical measure P, i.e.

Q(YT |ST ) = P(YT |ST ). (7)

Let CT = c(ST , YT ) be the claim to be priced under exponential preferences with
risk aversion coefficient γ. Then, the indifference price of CT is given by

ν(CT ) = EQ(CT ) = EQ

(
1
γ

log EQ

(
eγCT |ST

))
. (8)

Proof We prove the above result by constructing the indifference price via its
definition (2). We start with the specification of the value functions V 0 and V CT .We
represent the payoff CT as a random variable defined on Ω with values CT (ωi) =
ci ∈ R, for i = 1, 2, 3, 4. Elementary transformations lead to

V CT (x) = e−γx sup
α

(
−e−γαS0(ξu−1) (eγc1p1 + eγc2p2)

−e−γαS0(ξd−1) (eγc3p3 + eγc4p4)
)

.

Further straightforward, albeit tedious, calculations yield

V CT (x) = −e−γx 1
qq (1 − q)1−q (eγc1p1 + eγc2p2)

q (eγc3p3 + eγc4p4)
1−q

,

(9)

where

q =
1 − ξd

ξu − ξd
. (10)
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For CT = 0, the value function takes the form

V 0 (x) = −e−γx

(
p1 + p2

q

)q (
p3 + p4

1 − q

)1−q

. (11)

From the definition of the indifference price (2) and the representations (9), (11) of
the relevant value functions, it follows that

ν(CT ) = q

(
1
γ

log
eγc1p1 + eγc2p2

p1 + p2

)
+ (1 − q)

(
1
γ

log
eγc3p3 + eγc4p4

p3 + p4

)
.

(12)

We next show that the above price admits the claimed probabilistic representation
(8).

We start with the specification of the pricing measure defined in (7). Elementary
calculations yield that a martingale measure Q, with Q {ωi} = qi > 0 needs to
satisfy

q1 + q2 = q (13)

with q as in (10). We now consider the terms involving the historical probabilities
in (12) and we note that they can be actually written in terms of the conditional
historical expectations, namely,

eγc1p1 + eγc2p2

p1 + p2
= EP

(
eγCT |ST = S0ξ

u
)

and

eγc3p3 + eγc4p4

p3 + p4
= EP

(
eγCT

∣∣ST = S0ξ
d
)
.

It is important to observe that conditioning is taken with respect to the terminal
values of the traded asset.

Next, we specify the martingale measure satisfying (7). For this, we denote
(with a slight abuse of notation) by q1, q2, q3, q4 the elementary probabilities of the
sought measure Q.To compute q1, we look at the conditional historical probability
of {YT = Y0η

u} , given {ST = S0ξ
u} , and we impose (7), yielding

p1

p1 + p2
=

q1

q
.

The probabilities q2, q3 and q4, computed in a similar manner, are written below in
a concise form

qi = q
pi

p1 + p2
, i = 1, 2 and qi = (1 − q)

pi

p3 + p4
i = 3, 4.

Therefore,

1
γ

log EP(eγCT |ST ) =
1
γ

log EQ(eγCT |ST )

and using (12) we conclude. ��
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We next discuss the key ingredients and highlight the intuitively natural features
of the probabilistic pricing formula (8).

Interpretation of the indifference price. Valuation is done via a two-step nonlin-
ear procedure and under a single pricing measure.

i) Valuation procedure In the first step, risk preferences are injected into the val-
uation process. The original derivative payoff is being distorted to the preference
adjusted payoff

C̃T =
1
γ

log EQ

(
eγCT |ST

)
.

This new payoff has actuarial type characteristics and reflects the weight that risk
aversion carries in the utility based methodology. However, certainty equivalent is
not applied in a naive way. Indeed, we do not consider any classical actuarial type
functional,

C̃T �= 1
γ

log EP

(
eγCT

)
and C̃T �= 1

γ
log EQ

(
eγCT

)
.

Rather, the indifference price mechanism creates a conditional certainty equivalent
of the payoff, under the pricing measure Q.

In the second step, the pricing procedure picks up arbitrage free pricing char-
acteristics. It prices the preference adjusted payoff C̃T , dependent only on ST ,
through an arbitrage free method. The same pricing measure is being used in both
steps.

The price is then given by

ν(CT ) = EQ(CT ) = EQ(C̃T ).

It is important to observe that the two steps are not interchangeable and of
entirely different nature. The first step prices in a nonlinear way as opposed to the
second step that uses linear, arbitrage free, valuation principles. In a sense, this
is entirely justifiable: the unhedgeable risks are identified, isolated and priced in
the first step and, thus, the remaining risks become hedgeable. One should then
use a nonlinear valuation device for the unhedgeable risks and, linear pricing for
the hedgeable ones. A natural consequence of this is that risk preferences enter
exclusively in the conditional certainty equivalent term, the only term related to
unhedgeable risks. Both steps are payoff independent.

ii) Pricing measure One pricing measure is used throughout. Its essential role is
not to alter the conditional distribution of risks, given the ones we can trade, from
their respective historical values.

Naturally, there is no dependence on the payoff. The most interesting part how-
ever is its independence on risk preferences. This universality is expected and quite
pleasing. It follows from the way we identified the pricing measure, via (7), a selec-
tion criterion that is naturally independent of any risk attitude. The distorted payoff
C̃T is invariant when seen through the historical and the pricing measure,

C̃T =
1
γ

log EQ

(
eγCT |ST

)
=

1
γ

log EP

(
eγCT |ST

)
.
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The following result highlights an important property of the indifference price
operator. We see that any hedgeable risk is automatically scaled out from the non-
linear part of the pricing rule and it is priced directly by arbitrage. Hedgeable
risks do not generate conditional certainty equivalent payoffs. In this sense, we say
that the pricing operator has the property of translation invariance with respect to
hedgeable risks.

Note that this property is stronger, and more intuitive, than requiring mere
invariance with respect to constant risks.

Corollary 3 The indifference pricing operator is translation invariant with respect
to hedgeable risks, i.e. if CT = c1(ST ) + c2(ST , YT ), then

ν(c1(ST ) + c2(ST , YT )) = EQ(c1(ST ) + c2(ST , YT ))
= EQ (c1 (ST )) + ν(c2 (ST , YT )). (14)

The proof follows from (12) directly.

We conclude this section by looking at two extreme cases of (14).

Special cases

i) Let YT depend functionally on ST . Then, the payoff c2 is measurable with
respect to ST and

c̃2(ST , YT ) =
1
γ

log EQ(eγc2(ST ,YT ) |ST ) = c2(ST , YT ).

In turn, the second term in (14), yields the expectation under Q of the original
claim c2, and Q reduces to the nested risk neutral measure Q∗. The indifference
price of c1 + c2 is given by the classical arbitrage free price, namely,

ν(c1(ST ) + c2(ST , YT )) = EQ∗(c1(ST ) + c2(ST , YT )).

ii) Let YT and ST be independent under P and c2 to depend only on YT . Then,

c̃2(YT ) =
1
γ

log EQ

(
eγc2(YT ) |ST

)
=

1
γ

log EP

(
eγc2(YT )

)
.

The conditional certainty equivalent term becomes the traditional actuarial cer-
tainty equivalent value and the indifference price of c1 + c2 reduces to

ν(c1(ST ) + c2(ST , YT )) = EQ∗(c1(ST )) +
1
γ

log EP

(
eγc2(YT )

)
.

3 The multiperiod model and the pricing algorithm

We construct a general pricing algorithm in a multiperiod incomplete market envi-
ronment. We aim at representing the indifference price νt(CT ) in a natural valuation
format that will preserve the intuitive and universal characteristics of the single pe-
riod case namely, a single pricing measure and a nonlinear structure that isolates
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and prices effectively the two types of risk. Departing from the static case, how-
ever, in order to develop a meaningful valuation algorithm, we should also aim at
constructing a pricing scheme with the fundamental property of time consistency,

νt(CT ) = νt(νs(CT )) for t ≤ s ≤ T. (15)

This property states that the current price can serve as a new payoff that is in turn
priced, moving backwards in time, via the time-adjusted price operator. This is a
fundamental feature of arbitrage free prices and, clearly, indispensable in incom-
plete markets as well. No pricing algorithm can be viable if such semigroup price
property fails.

Given the inherent nonlinearities of the indifference pricing mechanism, we
stress that, a priori, it is not at all obvious what are the multiperiod analogues of (7)
and (8), and why the semigroup price property (15) must follow. We will see that
there is a delicate interplay among optimality of policies, semigroup properties of
the involved value functions, the nature of the pricing measure and the structure of
the valuation scheme that ultimately yields the desired pricing ingredients.

We start with the probabilistic set-up of the multiperiod model. We denote by
St, t = 0, 1, ..., T the values of the traded risky asset. It is assumed throughout that
St > 0. We define the random variables ξ via

ξt+1 =
St+1

St
, ξt+1 = ξd

t+1, ξ
u
t+1 with 0 < ξd

t+1 < 1 < ξu
t+1.

The second traded asset is riskless and is assumed to yield zero interest rate. We
also denote by Yt, t = 0, 1, ..., T the values of a nontraded asset and we introduce
the random variables η satisfying

ηt+1 =
Yt+1

Yt
, ηt+1 = ηd

t+1, η
u
t+1 with ηd

t+1 < ηu
t+1.

We then view {St, Yt : t = 0, 1, ..., T} as a two-dimensional stochastic process de-
fined on the probability space (Ω, (Ft) , P) , where the filtration Ft is generated by
the random variables Ss, Ys, s = 1, ..., t, or, equivalently, by the random variables
ξs, ηs, s = 1, ..., t. We denote by FS

t and FY
t the filtrations generated respectively

by the random variables Ss and Ys, s = 1, ..., t.
The real (historical) probability measure on Ω and FT is denoted by P. We

assume that it satisfies for all t = 0, 1, ..., T − 1

P (ξt+1 |Ft ) = P
(
ξt+1

∣∣FS
t

)
. (16)

The above condition characterizes a model in which the movements of the
traded asset are not affected by the dynamics of the nontraded one. This is, for
example, the case when the stock dynamics depend in a nonlinear way on the stock
levels. However, this condition fails if the traded stock has stochastic volatility and
the latter plays the role of the nontraded asset (see, Musiela and Zariphopoulou
2003).

To facilitate the analysis, we provide the multiperiod definition of indifference
prices and related quantities. To this end, using notation compatible with the single
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period case, we let Xs, s = 1, ..., T represent the wealth process associated with a
multiperiod self-financing portfolio, with X0 = x being the initial wealth. We will
denote by αs, s = 1, 2, ..., T the number of shares of the traded asset held in this
portfolio over the time period [s − 1, s]. Then, �Xs = Xs − Xs−1 = αs � Ss

and hence, XT = x +
∑T

s=1 αs � Ss.
Consider a claim CT expiring at time T ≥ 0. The value function V CT (Xt, t; T ),

corresponding to a short position in CT is defined as the dynamic analogue of (1)

V CT (Xt, t; T ) = sup
αt+1,...,αT

EP

(
−e−γ(XT −CT ) |Ft

)
. (17)

The indifference price νt(CT ) is an Ft-measurable random variable such

V 0(Xt, t; T ) = V CT (Xt + νt(CT ), t; T ) (18)

holds P a.s.
Let Zs, 0 ≤ s ≤ T be an Fs-adapted process and Q a martingale measure. For

each 0 ≤ t ≤ s, define the iterative functional

E(t,s)
Q (Zs) = E(t,s−1)

Q (E(s−1,s)
Q (Zs)) (19)

where

E(s−1,s)
Q (Zs) = EQ

(
1
γ

log EQ

(
eγZs

∣∣Fs−1 ∨ FS
s

) |Fs−1

)
(20)

and

E(s,s)
Q (Zs) = Zs.

We caution the reader that for t < s − 1,

E(t, s)
Q (Zs) �= EQ

(
1
γ

log EQ

(
Zs

∣∣Ft ∨ FS
s

) |Ft

)
. (21)

Lemma 4 For 0 ≤ t ≤ s, E(t,s)
Q (Zs) is an Ft adapted process. Moreover, for

t ≤ s ≤ T,

E(t,T )
Q (Zs) = E(t,s)

Q (Zs),

E(t,s)
Q (Zs) = E(t,t+1)

Q (...E(s−2,s−1)
Q (E(s−1,s)

Q (Zs))),

E(t,s)
Q (Zs) = E(t,s−t)

Q (E(s−t,s)
Q (Zs)).

The theorem below presents the multiperiod pricing algorithm, the main result
of this section.

Theorem 5 Let Q be a martingale measure satisfying, for t = 0, 1, ..., T,

Q(ηt+1

∣∣Ft ∨ FS
t+1 ) = P(ηt+1

∣∣Ft ∨ FS
t+1 ) (22)
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i) The indifference price νt(CT ), defined in (18), satisfies

νt(CT ) = E(t, t+1)
Q (νt+1(CT )), (23)

νT (CT ) = CT ,

with E(t,t+1)
Q defined in (20) for Q = Q.

ii) The indifference price process is given by

νt(CT ) = E(t, T )
Q (CT ) (24)

with E(t, T )
Q defined in (19) for Q = Q.

iii) The pricing algorithm is consistent across time in that, for 0 ≤ t ≤ s ≤ T , the
semigroup property

νt (CT ) = E(t, s)
Q (E(s, T )

Q (CT )) = E(t, s)
Q ((νs (CT )) = νt(E(s, T )

Q (CT ))
(25)

holds.

Proof We are going to establish (23) for t = T − 1 and (25) for t = T − 2,
s = T − 1. The rest of the proof follows by the above lemma and routine, albeit
tedious, induction arguments. We start by showing that

νT−1 (CT ) = EQ

(
1
γ

log EQ

(
eγCT

∣∣FT−1 ∨ FS
T

) |FT−1

)
. (26)

For this, we first consider the value function V CT (XT−1, T − 1; T ), given by

V CT (XT−1, T − 1; T ) = sup
αT

EP

(
−e−γ(XT −CT ) |FT−1

)

= sup
αT

EP

(
−e−γ(XT −1+αT �ST −CT ) |FT−1

)
.

Imitating the one period calculations, presented in the proof of Proposition 2 and
appropriately modified to accommodate the conditioning on FT−1, we obtain

V CT (XT−1, T − 1; T ) = −e−γXT −1−hT −1+γλT −1(CT ) (27)

where

hT−1 = qT log
qT

P (AT |FT−1 )
+ (1 − qT ) log

1 − qT

1 − P (AT |FT−1 )
, (28)

AT = {ω : ξT (ω) = ξu
T } and

λT−1 (CT ) = EQ

(
1
γ

log EQ

(
eγCT

∣∣FT−1 ∨ FS
T

) |FT−1

)
. (29)
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Similarly, we deduce that

V 0(XT−1, T − 1; T ) = −e−γXT −1−hT −1

which, in view of (27) and (18) readily enables us to identify λT−1 (CT ) with
νT−1 (CT ) and, thus, proving the validity of (26).

Next we establish the semigroup property (25) for two time steps, i.e.

νT−2(CT ) = E(T−2,T−1)
Q (νT−1(C)), (30)

with νT−1 (CT ) given by (26).
We first construct νT−2(CT ) directly via the pricing formula (18).
To this end, we compute V CT (XT−2, T − 2; T ) defined as

V CT (XT−2, T − 2; T ) = sup
αT −1,αT

EP

(
−e−γ(XT −CT ) |FT−2

)
.

Using direct arguments, we see that it can be written in terms of a single period
value function, from T − 2 to T − 1, namely,

V CT (XT−2, T − 2; T )

= sup
αT −1

EP

(
sup
αT

EP

(
−e−γ(XT −1+αT �ST −CT ) |FT−1

)
|FT−2

)

and, in turn, as

V CT (XT−2, T − 2; T ) = sup
αT −1

EP

(
−e−γXT −1−hT −1+γνT −1(CT ) |FT−2

)

= sup
αT −1

EP

(
−e−γ(XT −1−(νT −1(G)− 1

γ hT −1)) |FT−2

)
with hT−1 given by (28).

We note that the last expression corresponds to the calculation of the value
function in a single period binomial case, in the time interval [T − 2, T − 1], under
conditional, on FT−2, distribution. Following arguments used for the derivation of
(27) , we obtain

V CT −1(XT−2, T − 2; T − 1) = e−γXT −2−hT −2+γµT −2(CT −1),

where

hT−2 = qT−1 log
qT−1

P (AT−1 |FT−2 )
+ (1 − qT−1) log

1 − qT−1

1 − P (AT−1 |FT−2 )
,

(31)

AT−1 = {ω : ξT−1(ω) = ξu
T−1} and

µT−2(CT−1)=EQ

(
1
γ

log EQ

(
eγ(νT −1(CT )− 1

γ hT −1) ∣∣FT−2 ∨ FS
T−1

)
|FT−2

)
.



A valuation algorithm for indifference prices in incomplete markets 411

Next, we observe that, because of (16), hT−1 ∈ FS
T−1. Then, Corollary 3

yields that the above (single time step) price functional µ is translation invariant
with respect to the risks that can be hedged. Therefore,

µT−2(CT−1) = EQ

(
1
γ

log EQ

(
eγνT −1(CT )

∣∣FT−2 ∨ FS
T−1

)
|FT−2

)
+

+EQ (−hT−1 |FT−2 ) .

This in turn yields

V CT (XT−2, T − 2; T ) = −e−γXT −2−EQ(hT −2+hT −1|FT −2 )+γλT −2(CT ), (32)

with νT−1(CT ) given by (26) and

λT−2 (CT ) = EQ

(
1
γ

log EQ

(
eγνT −1(CT )

∣∣FT−2 ∨ FS
T−1

)
|FT−2

)
.

Observe that

λT−2 (CT ) = E(T−2,T−1)
Q (νT−1(CT )).

Similarly, we deduce that

V 0(XT−2, T − 2; T ) = −e−γXT −2−EQ(hT −2+hT −1|FT −2 ) (33)

with hT−1 and hT−2 given respectively by (28) and (31). Combining the above
equality, (32) and the definition of the indifference price (18) yields

νT−2(CT ) = λT−2 (CT ) = E(T−2,T−1)
Q (νT−1(CT ))

and (30) is proved. ��
Proposition 6 The indifference price process νt(CT ) is a supermartingale un-
der Q.

The claim is an immediate consequence of Jensen’s inequality for concave func-
tions.

Interpretation of the pricing algorithm. Valuation is done via an iterative pricing
scheme applied backwards in time.

i) Valuation functional At the beginning of each time step, say (t, t + 1),
t = 0, 1...T − 1, the price νt(CT ) is computed via a price functional, denoted
by E(t, t+1)

Q , applied to the end of the period payoff νt+1(CT ). Its pricing role is in
many aspects similar to the one of its single period counterpart, analyzed in detail
in the previous section.

Highlighting the main properties of E(t, t+1)
Q (.), we first observe that it is non-

linear and time dependent. Nonlinearity arises due to the way unhedgeable risks
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are priced. Risk preferences are injected and, the end of the period payoff νt+1(CT )
is altered to the preference adjusted dynamic payoff

ν̃t+1(CT ) =
1
γ

log EQ

(
eγνt+1(CT )

∣∣Ft ∨ FS
t+1

)
.

This step amounts to the specification, isolation and valuation of the unhedgeable
risks and is inherently of nonlinear nature. Once this sub-step is executed, the
remaining risks are hedgeable and, thus, priced by arbitrage free arguments yielding
the price as

νt(CT ) = EQ(ν̃t+1(CT )).

It is worth noticing that E(t, t+1)
Q (.) is naturally affected by risk preferences

only at its first step, the one that considers the unhedgeable risks. It is interesting
to notice its independence on the specific payoff and its universality with respect
to the pricing measure Q.

ii) Pricing measure Throughout the scheme iterations, the martingale measure Q,
defined in (22), is being used. As it was pointed out, its essential role is to preserve
the conditional distribution of unhedgeable risks, given the hedgeable ones, at its
historical value. In order to gain some insights about its selection criterion, let us
first look at all martingale measures, Q. For any such measure, the joint distri-
butions of (ξ1, ξ2, ...ξT , η1, η2, . . . ηT ) can be then computed via their conditional
counterparts, namely,

Q(ξ1, . . . ξT , η1, . . . ηT ) =
T−1∏
s=0

Q(ξs+1, ηs+1 |Fs ).

However, we note that

Q(ξt+1, ηt+1 |Ft ) = Q(ξt+1 |Ft )Q(ηt+1
∣∣Ft ∨ FS

t+1 )

with the term Q(ξt+1 |Ft ) depending exclusively on ξd
t+1 and ξu

t+1. Therefore,
the choice of pricing measure amounts only to the specification of the last term,
Q(ηt+1

∣∣Ft ∨ FS
t+1 ).This conditional distribution essentially reflects the statistical

vision of the unhedgeable risks that the pricing mechanism must carry through. But
given their nature, these risks, need to be identical, when viewed, both by the real
and the candidate pricing measure. This intuitive and natural condition is expressed
in (22).

We conclude this section by adding an interesting remark. As it was mentioned
in the introduction, indifference prices have been produced as solutions to reduced
optimization problems with criteria involving relative entropy terms. The presence
of entropy is anticipated due to the use of exponential preferences. One might
wonder how the minimal relative entropy measure is related to the pricing measure
Q. It is interesting to realize that, even though their specification was motivated and
implemented by entirely different criteria, scope and techniques, the two measures
actually coincide.
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Proposition 7 A martingale measure Q satisfies (22) if and only if it has the min-
imal relative to P entropy.

Proof In the single period case, the claim follows by straightforward cal-
culations. For the multiperiod case, we first observe that the relative to
P(ξ1, ...ξT , η1, ...ηT ) entropy of Q(ξ1, ...ξT , η1, ...ηT ) satisfies

H (Q |P ) = EQ

(
log
∏T−1

t=0 Q (ξt+1, ηt+1 |Ft )∏T−1
t=0 P (ξt+1, ηt+1 |Ft )

)
(34)

=
T−1∑
t=0

EQ

(
log

Q (ξt+1, ηt+1 |Ft )
P (ξt+1, ηt+1 |Ft )

)
.

Looking at the elementary events At = {ω : ξt (ω) = ξu
t } and Bt =

{ω : ηt (ω) = ηu
t } , and manipulating expressions involving conditional expecta-

tions with respect to martingale measures, we deduce that the minimization problem
is essentially reduced to the single period case. Straightforward, albeit tedious cal-
culations then yield that the martingale measure Q satisfying

Q (AtBt |Ft−1 )
Q (At |Ft−1 )

=
P (AtBt |Ft−1 )
P (At |Ft−1 )

,
Q (Ac

tB
c
t |Ft−1 )

Q (Ac
t |Ft−1 )

=
P (Ac

tB
c
t |Ft−1 )

P (Ac
t |Ft−1 )

is indeed the claimed minimizer. In fact, we may show, that

EQ

(
log

Q (ξt+1, ηt+1 |Ft )
P (ξt+1, ηt+1 |Ft )

)
≥ EQ

(
log

Q (ξt+1, ηt+1 |Ft )
P (ξt+1, ηt+1 |Ft )

)

and the result follows. ��
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