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Abstract. This paper is a contribution to the valuation of derivative securities in a stochastic
volatility framework, which is a central problem in financial mathematics. The derivatives to be
priced are of European type with the payoff depending on both the stock and the volatility. The val-
uation approach uses utility-based criteria under the assumption of exponential risk preferences. This
methodology yields the indifference prices as solutions to second order quasilinear PDEs. Two sets
of price bounds are derived that highlight the important ingredients of the utility approach, namely,
nonlinear pricing rules with dynamic certainty equivalent characteristics, and pricing measures de-
pending on correlation and the Sharpe ratio of the traded asset. The problem is further analyzed by
asymptotic methods in the limit of the volatility being a fast mean-reverting process. The analysis
relates the traditional market-selected volatility risk premium approach and the preference-based
valuation techniques.
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1. Introduction. We study the utility indifference pricing mechanism for Eu-
ropean derivative contracts in financial markets with uncertain volatility. As is well
known, in such incomplete markets, there are many possible no-arbitrage pricing (or
“risk-neutral”) measures and typically an interval of arbitrage-free option prices. The
traditional pricing methodology is that the market selects a pricing probability mea-
sure that is reflected in the prices of liquidly traded derivative contracts (for example,
at-the-money call options). Indifference pricing is an alternative mechanism whereby
a no-arbitrage price is selected according to investment optimality criteria of a risk-
averse investor. Our analysis, using bounds and asymptotic approximations, sheds
some light on the relation between the two. Specifically, Theorem 3.2 shows that the
nonlinear utility pricing rule lies between a linear no-arbitrage pricing rule and an
insurance-type certainty equivalent pricing rule.

Stochastic volatility models are popular because they capture the deviation of
stock price data from the Black–Scholes geometric Brownian motion model in a par-
simonious way. They were originally introduced in the late 1980’s by Hull and White
[22] and others for option pricing. Much of their success derives from their predicted
option prices exhibiting the implied volatility skew that is observed in many options
markets. See [17], for example, for details.

However, a market with stochastic volatility is incomplete in that volatility is a
source of uncertainty that is not traded. Therefore, enforcement of no arbitrage does
not lead to a unique derivative pricing rule. The usual way to “close” the model is
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to assume the market chooses a pricing measure which is implicit in the prices of
liquidly traded options. The indifference pricing mechanism is an alternative in which
the price is uniquely (and endogenously) determined at the cost of depending on the
preferences of the pricer. It has been studied in various incomplete market problems,
for example, when there are transaction costs [6, 11, 21] or nontraded assets [10, 31],
and under exponential utilities [33].

Our analysis is presented as follows. In section 2, we describe the mechanism in the
context of a standard stochastic volatility model and characterize the indifference price
in terms of solutions of related Hamilton–Jacobi–Bellman (HJB) equations. We derive
a quasilinear PDE (2.32) that the pricing function satisfies. In addition, a specific
measure, Q in Definition 2.7, emerges as a natural “prior” pricing measure, and the
indifference price can be characterized as a worst-case expected payoff, penalized by
relative entropy with respect to this prior (section 2.1).

In section 3, we derive two sets of bounds for the indifference price by analy-
sis of the associated HJB equations. Section 4 presents asymptotic approximations
that relate the indifference price to a particular no-arbitrage price. Finally, section 5
concludes and lists some remaining questions about the mechanism for future inves-
tigation.

2. Indifference prices. We assume a dynamic market setting with two assets,
a riskless bond B, and a stock S. The stock price is modeled as a diffusion process
satisfying

dSs = µSs ds + σ(Ys, s)Ss dW
1
s , s ≥ 0,(2.1)

with µ > 0. The volatility coefficient of the stock is driven by the stochastic factor
Y ∈ R which is modeled as a correlated diffusion satisfying

dYs = b(Ys, s) ds + a(Ys, s) (ρ dW 1
s + ρ′dW 2

s ),(2.2)

with ρ ∈ (−1, 1) the correlation coefficient and ρ′ =
√

1 − ρ2.
The processes W 1 and W 2 are independent standard Brownian motions defined on

a probability space (Ω,F , (Fs),P), where Fs is the augmented σ-algebra generated by
((W 1

u ,W
2
u); 0 ≤ u ≤ s). We assume that a riskless bond with maturity T is available

for trading, yielding constant interest rate r = 0. The case r �= 0 can be treated
using standard discounting arguments and it is not presented herein. The derivative
to be priced is of European type with payoff g(ST , YT ) at expiration T . We make the
following assumptions throughout.

Assumption 1.

1. The volatility function σ(·) and the diffusion coefficient a(·, ·) are smooth and
bounded above and below away from zero.

2. The drift coefficient b(·, ·) in (2.2) is Lipschitz continuous on R × [0, T ].
3. The payoff function g(·, ·) is smooth and bounded.

Under these assumptions, (2.1) and (2.2) have a unique solution with Ss ≥ 0
P-a.s., s ≥ 0 a.e. The assumption on the payoff excludes put options (whose payoff
has discontinuous first derivative) and call options (which are unbounded). Handling
these issues will require regularization methods (see, for example, [19]) which we do
not address in this paper.

The utility-based valuation method relies on the comparison of maximal expected
utilities corresponding to investment opportunities with and without the derivative. In
both settings, trading takes place between the bond and the stock, and the objective
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is to maximize the terminal utility of wealth. The investor starts, at time t ≥ 0,
with initial endowment x and dynamically rebalances his portfolio allocations, say, π0

s

and πs, representing the amounts invested at time s ≥ t in the bond and the stock
accounts. It is assumed that no intermediate consumption or infusion of extraneous
funds is allowed. The total current wealth satisfies

Xs = π0
s + πs, t ≤ s ≤ T,(2.3)

and thus solves the state controlled diffusion equation{
dXs = µπs ds + σ(Ys, s)πs dW

1
s , t ≤ s ≤ T,

Xt = x.
(2.4)

The above equation can be easily derived from (2.1) and the budget constraint
(2.3) (see Merton [30]). Note that because the coefficients in (2.1) are linear in
S, the latter does not appear explicitly in (2.4). Moreover, the budget constraint
results in eliminating the first control variable π0

s . The single control variable πs

is called admissible if it is Fs-measurable and satisfies the integrability constraint

E
∫ T
t
σ(Ys, s)

2π2
s ds < +∞. The set of admissible policies is denoted by A .

The next task is to introduce and analyze the three fundamental optimal in-
vestment problems via which the indifference prices for the writer and the buyer of
the derivative will be constructed. Throughout the analysis, it is assumed that the
individual preferences are modeled via an exponential utility function

U(x) = −e−γx, x ∈ R,(2.5)

with risk-aversion parameter γ > 0, and that they remain the same, independently of
whether the derivative is written, bought, or not traded at all. The first is the classi-
cal Merton portfolio optimization problem, appropriately modified to accommodate
stochastic volatility. Its value function is

V (x, y, t) = sup
A

E(−e−γXT | Xt = x, Yt = y),(2.6)

where X and Y solve (2.4) and (2.2), respectively. The investor seeks to maximize
his terminal expected utility.

If the derivative with payoff g(ST , YT ) is written, the writer’s value function is

uw(x, S, y, t) = sup
A

E(−e−γ(XT−g(ST ,YT )) | Xt = x, St = S, Yt = y),(2.7)

and if the derivative is bought, the buyer’s value function is

ub(x, S, y, t) = sup
A

E(−e−γ(XT +g(ST ,YT )) | Xt = x, St = S, Yt = y).(2.8)

It is immediate that

uw(x, S, y, t; g) = ub(x, S, y, t;−g).(2.9)

The payoffs in (2.7) and (2.8) reflect, respectively, the obligation of the writer and
the compensation of the buyer at expiration T .

A fundamental assumption is that both the writer and the buyer optimize over
the same set of admissible strategies . Moreover, the traditional no-bankruptcy con-
straint Xs ≥ 0 a.e. t ≤ s ≤ T is not imposed herein due to the fact that exponential
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utilities may allow for negative wealth levels. Imposing such constraints affects signif-
icantly the nature of the indifference prices and, in most cases, yields prices that are
considerably high and not applicable. For models with transaction costs, such issues
were studied by Constantinides and Zariphopoulou [6, 7].

We next review the definition of indifference prices (see Hodges and Neuberger
[21]). The writer’s indifference price of the European claim g(ST , YT ) is defined as
the amount hw = hw(x, S, y, t), such that the writer is indifferent to the following
two scenarios: optimize the utility payoff without writing the derivative and optimize
the utility payoff with the liability g(ST , YT ) at expiration, but with an initial com-
pensation hw(x, S, y, t) at the time of inscription t. Similarly, the indifference buyer’s
price of the European claim g(ST , YT ) is defined as the amount hb = hb(x, S, y, t)
such that the buyer is indifferent to the following two scenarios: optimize the utility
payoff without buying the derivative and optimize the utility payoff with the payoff
g(ST , YT ) at expiration, but with the initial cost hb(x, S, y, t) at the time of inscription
t.

Definition 2.1. The indifference prices hw and hb are defined by

V (x, y, t) = uw
(
x + hw(x, S, y, t), S, y, t

)
,(2.10)

V (x, y, t) = ub
(
x− hb(x, S, y, t), S, y, t

)
.(2.11)

The above definition allows for derivative prices that depend on the investor’s
wealth, as reflected in their x-argument. Such dependence might look like an undesir-
able feature given the wealth-independent prices that arbitrage-free theory yields in
complete markets. As the calculations below show, the choice of exponential utility
leads to wealth-independent prices, at least for the case of European claims and in
the absence of trading constraints. Wealth independence, however, might not hold
for other choices of risk preferences and/or trading constraints. In such situations,
universality may be achieved by relaxing the notion of indifference price to reservation
prices. The latter prices are defined as wealth-independent price bounds for which
the price equalities (2.10) and (2.11) hold as inequalities (see, for example, [6, 7]).

The value functions V , uw, and ub, whose arguments will yield the indifference
prices, may be studied via their associated HJB equations. Although these equations
are fully nonlinear, the convenience of the exponential utility function allows us to
construct classical solutions after an initial separation of variables. It follows from a
standard viscosity solution argument that these solutions coincide with the respective
value functions.

To facilitate the presentation, we introduce the following operators and Hamilto-
nians:

A(S,y)u =
1

2
σ(y, t)2S2uSS + ρσ(y, t)a(y, t)SuSy(2.12)

+
1

2
a(y, t)2uyy + µSuS + b(y, t)uy,

A(y)u =
1

2
a(y, t)2uyy + b(y, t)uy,(2.13)

H(S,y)(uxx, uxy, uxS , ux) = max
π

(
1

2
σ(y, t)2π2uxx + π(ρσ(y, t)a(y, t)uxy

+σ(y, t)2SuxS + µux)

)
,(2.14)

H(y)(uxx, uxy, ux) = max
π

(
1

2
σ(y, t)2π2uxx + π(ρσ(y, t)a(y, t)uxy + µux)

)
.(2.15)
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Note that A(S,y) is the infinitesimal generator of the Markov process (S, Y ), and A(y)

is the infinitesimal generator of Y , which is a Markov process by itself in our stochastic
volatility models.

The HJB equation associated with the value function uw defined in (2.7) is

ut + A(S,y)u + H(S,y)(uxx, uxy, uxS , ux) = 0,(2.16)

u(x, S, y, T ) = −e−γ(x−g(S,y)),

on D = R×R
+ ×R× [0, T ]. The relevant PDE for ub, defined in (2.8), is the same as

(2.16), with the sign of g changed in the terminal condition. For V , defined in (2.6),
we simply set g to zero and remove the S-derivatives from the equation (i.e., A(S,y)

and H(S,y) are replaced by A(y) and H(y), respectively).
In the theorems below, we produce a closed form expression for the value function

V and we provide regularity results for uw,b. The proofs are based on the construction
of a candidate solution that is actually smooth and therefore a classical solution of
the HJB equation. We readily identify it also as the unique viscosity solution and,
from there, by a standard argument, with the value function. The intermediate step
is required because classical verification theorems require polynomial growth (in x)
restrictions on the value functions, which do not hold with exponential utility.

For convenience, we introduce

L(S,y)u = A(S,y)u− ρ
µ

σ(y, t)
a(y, t)uy,(2.17)

L(y)u = A(y)u− ρ
µ

σ(y, t)
a(y, t)uy,(2.18)

M(GS , Gy, G) =
1

2
σ(y, t)2S2G

2
S

G
+ ρσ(y, t)a(y, t)S

GSGy

G
+

1

2
ρ2a(y, t)2

G2
y

G
.(2.19)

Theorem 2.2. The value function V is given by

V (x, y, t) = −e−γxf(y, t)
1

1−ρ2 ,(2.20)

where f solves

ft + L(y)f =
1

2
(1 − ρ2)

µ2

σ(y, t)2
f(2.21)

in y ∈ R, t < T , with f(y, T ) = 1 for y ∈ R.
Proof. We first consider a candidate solution of the form Ṽ (x, y, t) = −e−γxF (y, t).

This form is suggested by the scaling properties of the exponential utility. We recall
that V solves the HJB equation (2.16) for g = 0 which reduces to

Vt + H(y)(Vxx, Vxy, Vx) + A(y)u = 0,(2.22)

with V (x, y, T ) = −e−γx. Evaluating this equation at the candidate solution Ṽ yields
that F must satisfy the quasilinear equation

Ft + L(y)F =
1

2

µ2

σ(y, t)2
F +

1

2
ρ2a(y, t)2

F 2
y

F
,(2.23)

with F (y, T ) = 1. A power transformation F = fδ for δ = 1
1−ρ2 yields that f must

solve the linear PDE (2.21), with f(y, T ) = 1. The fact that the linear equation
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(2.21) has a unique smooth and bounded solution follows from Assumption 1 on
the coefficients (see [26, Theorem 2.9.10], for example). We then deduce that the
candidate Ṽ satisfies the HJB equation (2.22), with terminal value −e−γx, and it
is also smooth. Therefore, it is a classical solution of (2.22). To conclude, we use
uniqueness results for viscosity solutions of the HJB equation. This approach has
become by now familiar in incomplete market models (see [34] for an overview).

Following the arguments of Theorems 4.1 and 4.2 in [13], we deduce that the
value function V defined in (2.6) is the unique viscosity solution of (2.22). Uniqueness
holds in the class of functions that are concave and of exponential growth in the wealth
argument and are uniformly bounded in the variable y. (We note that in the model
analyzed in [13], market incompleteness was generated by stochastic labor income
modeled as a correlated diffusion. The two associated HJB equations have similar
nonlinearities, and the technical arguments work under rather minor modifications.)
We next observe that the candidate Ṽ is smooth and therefore a viscosity solution of
(2.22). Moreover, the assumptions on the model coefficients yield that it belongs to the
class of viscosity solutions in which uniqueness holds. Therefore, Ṽ ≡ V and the result
follows. Note that classical verification results (for instance, [14, Theorem III.8.1])
require more stringent polynomial growth conditions on the candidate solution, a
requirement that is bypassed by the viscosity arguments.

Definition 2.3. Let P be the historical measure. We define an equivalent mea-
sure P̃ by

dP̃

dP
= exp

(
−
∫ T

0

µ

σ(Ys, s)
dW 1

s − 1

2

∫ T

0

µ2

σ(Ys, s)2
ds

)
.

By Girsanov’s theorem, the dynamics of (S, Y ) under P̃ are

dSs = σ(Ys, s)Ss dW̃
1
s ,(2.24)

dYs =

(
b(Ys, s) − ρ

µ

σ(Ys, s)
a(Ys, s)

)
ds + a(Ys, s) (ρ dW̃ 1

s + ρ′dW̃ 2
s ),(2.25)

where W̃ 1
s = W 1

s +
∫ s
0

µ
σ(Yu,u) du and W̃ 2

s = W 2
s are independent P̃-Brownian motions.

The measure P̃ is often known as the minimal martingale measure [16].

From the formula (2.20) for V , the Feynman–Kac representation of the solution

to (2.21), and the definition of the measure P̃, we obtain the following proposition.

Proposition 2.4. The solution f of (2.21) admits the probabilistic representation

f(y, t) = E
P̃

(
e
−
∫ T

t

µ2(1−ρ2)

2σ(Ys,s)2
ds | Yt = y

)
,(2.26)

where the process Y satisfies (2.25). The value function V is then given by

V (x, y, t) = −e−γx

(
E

P̃

(
e
−
∫ T

t

µ2(1−ρ2)

2σ(Ys,s)2
ds | Yt = y

)) 1
1−ρ2

.(2.27)

Theorem 2.5. The writer’s value function uw is given by

uw(x, S, y, t) = −e−γxG(S, y, t),(2.28)
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where G ∈ C2,2,1(R+ × R × [0, T ]) is the unique bounded solution of the quasilinear
equation

Gt + L(S,y)G =
1

2

µ2

σ(y, t)2
G + M(GS , Gy, G),(2.29)

with G(S, y, T ) = eγg(S,y).
Proof. We look at a candidate solution of the form ũ(x, S, y, t) = −e−γxG(S, y, t).

Straightforward calculations in (2.16) imply that G must satisfy the quasilinear equa-
tion (2.29). Note that G must be positive as u is negative.

A logarithmic transformation G = eφ gives that φ should solve a quasilinear
equation with quadratic nonlinearity, namely,

φt + L(S,y)φ +
1

2
a(y)2(1 − ρ2)φ2

y =
µ2

2σ(y)2
,(2.30)

with φ(S, y, T ) = γg(S, y). Equation (2.30) is the familiar HJB equation of a quadratic
cost stochastic control problem (see Fleming and Rishel [15, section VI.5]). Under
Assumption 1, we obtain that φ is bounded, φ ∈ C2,2,1(R+ × R × [0, T ]), and that
it is the unique solution in this class (see, for example, Ladyzenskaja, Solonnikov,
and Uralceva [27], Fleming and Rishel [15], or Pham [32]). This in turn yields the
same properties for G. Following similar arguments as in the proof of Theorem 2.2 to
identify ũ as the unique viscosity solution of (2.16) and therefore the value function,
we conclude that uw = ũ.

We note that even though a simple power transformation can linearize the re-
duced equation (2.23) in the one dimensional case, quasilinear equations of the form
(2.29) cannot be linearized in higher dimensional settings unless the nonlinearity is a
quadratic in ∇G, where ∇ denotes the gradient with respect to the spatial variables,
and there are no cross-derivative terms. Of course under a logarithmic transformation,
one may reduce (2.29) to (2.30).

Before we construct the indifference prices, we introduce some convenient nota-
tion.

Lemma 2.1. Let

L(y, t) =
1

ρ′
a(y, t)

fy(y, t)

f(y, t)
,(2.31)

with f given in (2.26). Then under Assumption 1, L is smooth, and bounded.
Proof. From (2.21), f is positive, smooth, and bounded for fixed t < T under

Assumption 1. To establish that fy(y, t) is also smooth and bounded, it suffices to
differentiate (2.21) with respect to y and use the relevant probabilistic representation
of fy.

Theorem 2.6. (i) The writer’s indifference price hw is the unique C2,2,1(R+ ×
R × [0, T ]) bounded solution of the pricing equation

hw
t + L(S,y)hw + ρ′a(y, t)L(y, t)hw

y +
1

2
γ(1 − ρ2)a(y, t)2(hw

y )2 = 0(2.32)

with hw(S, y, T ) = g(S, y).
(ii) The buyer’s indifference price satisfies

hw(S, y, t; g) = −hb(S, y, t;−g)(2.33)
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and solves

hb
t + L(S,y)hb + ρ′a(y, t)L(y, t)hb

y −
1

2
γ(1 − ρ2)a(y, t)2(hb

y)
2 = 0(2.34)

with hb(S, y, T ) = g(S, y).
Proof. We discuss only the arguments for hw. To this end, we first observe that

the pricing equality (2.10) together with the representations (2.20) and (2.28) of the
value functions V and uw yield that hw is given by

hw(S, y, t) =
1

γ
ln

G(S, y, t)

f(y, t)1/(1−ρ2)
,(2.35)

and as such is independent of x. Direct substitution shows that hw solves the claimed
quasilinear equation (2.32). It also satisfies the terminal condition hw(S, y, T ) =
g(S, y). In (2.32), the coefficient of the additional hw

y term is smooth and bounded by
Lemma 2.1. The uniqueness and regularity results for hw follow from an appropriate
adaptation of Theorem 4.1 in Pham [32], which utilizes that (2.32), like (2.30) for φ,
is the HJB equation of a quadratic cost control problem. The parity property (2.33)
follows from the definition of the indifference prices and the properties of the value
functions uw and ub.

The indifference price equation (2.32) indicates that a new measure, defined below,
emerges from the utility-based valuation.

Definition 2.7. We define Q by

dQ
dP

= exp

(
−
∫ T

0

µ

σ(Ys, s)
dW 1

s +

∫ T

0

L(Ys, s) dW
2
s

− 1

2

∫ T

0

(
µ2

σ(Ys, s)2
+ L(Ys, s)

2

)
ds

)
.

In the language of stochastic volatility models, the function −L is a particular
market price of volatility risk (and Q a particular equivalent martingale measure),
as described in section 4.1.1. In fact, Q is the minimal relative entropy martingale
measure, as we discuss in section 2.1.

It is worth observing that the price equation (2.32) does not have a zeroth order
term or drift terms in S. It does not have a nonlinear term involving hS either. This is
an immediate consequence of the assumptions of zero interest rate and that the stock
is tradeable. We also observe that the only place where the risk-aversion coefficient γ
appears is in front of the non-linear term that directly reflects market incompleteness.
The latter has also a fixed sign with respect to γ which, in turn, yields the following
intuitive result.

Theorem 2.8. The writer’s (resp., buyer’s) indifference price is nondecreasing
(resp., nonincreasing) with respect to the risk-aversion parameter γ. As γ → 0, the
writer’s and buyer’s indifference prices satisfy

lim
γ↓0

hw,b(S, y, t) = EQ(g(ST , YT ) | St = S, Yt = y),(2.36)

where the measure Q is defined above.
Proof. We denote by hγ1 and hγ2 the writer’s indifference prices corresponding to

risk-aversion coefficients γ1 and γ2 with γ1 < γ2. Straightforward calculations show
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that hγ1 is a subsolution of the indifference pricing equation that hγ2 satisfies and that
hγ1(S, y, T ) = hγ2(S, y, T ). Using classical comparison results for (2.32), we conclude.

We observe that as γ → 0, the indifference pricing equation (2.32) formally con-
verges to the linear equation

h0
t + L(S,y)h0 + ρ′a(y, t)L(y, t)h0

y = 0(2.37)

with terminal condition h0(S, y, T ) = g(S, y). Under Assumption 1, the latter has a
unique smooth (and thus viscosity) solution given by the Feynman–Kac formula

h0(S, y, t) = EQ(g(ST , YT ) | St = S, Yt = y).(2.38)

The stability properties of viscosity solutions (see Lions [29, Proposition I.3]) yield
that {hγ(S, y, t)} converges, along subsequences, to the viscosity solution of (2.37)
and, by uniqueness, we conclude.

The analogous result for the buyer’s price follows from similar calculations.
Expressions such as (2.38) have also been obtained in other utility-based pricing

approaches [9, 25, 24]. It is well known that the indifference price (buyer’s or writer’s)
of α > 0 derivative contracts with bounded payoff g, written h(α; γ) as a function of
the quantity and risk-aversion parameter, satisfies

h(α; γ) = αh(1;αγ),

as is clear in the current context from the PDEs (2.32) and (2.34) by replacing g by
αg in the terminal condition and making the change of variable h = αh′. Therefore,
taking the limit of zero risk-aversion is analogous to taking the limit of the price per
unit h(α; γ)/α as α goes to zero (with γ > 0 fixed). This is how the “fair” price
is defined in [9], and the measure Q that arises in its characterization is labeled the
neutral pricing measure in [24]. In the next section, we also point out that Q is in
fact the minimal relative entropy measure.

2.1. Interpretation via relative entropy penalization. One way to inter-
pret the utility-based valuation mechanism is in terms of relative entropy penalization.
This is a specific example of the well-known connection between exponential utility
and entropy as discussed, for example, in [12, 33].

Recall that Q denotes the probability measure under which the dynamics of (S, Y )
are

dSs = σ(Ys, s)Ss dW
Q(1)
s ,(2.39)

dYs =

(
b(Ys, s) − ρ

µ

σ(Ys, s)
a(Ys, s) + ρ′a(Ys, s)L(Ys, s)

)
ds

+a(Ys, s) (ρ dWQ(1)
s + ρ′dWQ(2)

s ),

where W
Q(1)
s = W 1

s +
∫ s
0

µ
σ(Yu,u) du and W

Q(2)
s = W 2

s −
∫ s
0
L(Yu, u) du are independent

Q-Brownian motions. Note that Q is already a “risk-neutral” martingale measure
because S is a Q-martingale.

Then, let P
(λ) be any equivalent local martingale measure, which, in this context,

is parameterized by an adapted process, λ, say, with
∫ T
0
λ2
s ds < ∞ a.s., such that

dP
(λ)

dQ = exp

(
−
∫ T

0

λs dW
Q(2)
s − 1

2

∫ T

0

λ2
s ds

)
.
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That is, defining W
λ(2)
s = W

Q(2)
s +

∫ s
0
λu du, (WQ(1),Wλ(2)) are independent Brow-

nian motions under P
(λ), and the dynamics of (S, Y ) are described by (2.39) and

dYs =

(
b(Ys, s) − ρ

µ

σ(Ys, s)
a(Ys, s) + ρ′a(Ys, s)(L(Ys, s) − λs)

)
ds

+a(Ys, s) (ρ dWQ(1)
s + ρ′dWλ(2)

s ).

We can think of Q as a prior risk-neutral measure, and we define the relative entropy
Ht(P

(λ) | Q) between the conditional laws on the process {(Ss, Ys), t ≤ s ≤ T} starting
at the same point (S, y) at time t as follows. First, let (ξs) denote the Radon–Nikodym
process

ξs = EQ

(
dP

(λ)

dQ | Fs

)
.

We then define

Ht(P
(λ) | Q) = EP(λ) (ln(ξT /ξt) | Ft) .

By direct calculation, this is a quadratic penalization on the “additional” volatility
risk premium λ:

Ht(P
(λ) | Q) =

1

2
EP(λ)

(∫ T

t

λ2
s ds | Ft

)
.(2.40)

We denote by Mf the set of λ with

EP(λ)

(∫ T

0

λ2
s ds

)
< ∞,

which guarantees finiteness of the relative entropies Ht(P
(λ) | Q).

Therefore, we can interpret the writer’s indifference pricing mechanism as choos-
ing a measure which tries to maximize the derivative’s expected payout but is con-
strained from deviating too far from the prior in terms of relative entropy:

hw = sup
λ∈Mf

[
EP(λ) (g(ST , YT ) | Ft) −

1

γ
Ht(P

(λ) | Q)

]
.(2.41)

This is because the HJB equation associated with this stochastic control problem is
(2.32), as follows from using the formula (2.40). Notice that the upshot of the utility
mechanism is to identify the prior Q which does not depend on the risk-aversion γ
or the claim g being priced. The relative entropy arises naturally as the dual of the
exponential utility, and γ−1 weights the penalty term.

In [12], the writer’s indifference price (at time t = 0) is characterized as

hw = sup
Q∈Pf

[
EQ(g(ST , YT )) − 1

γ
H0(Q | P)

]
− sup

Q∈Pf

[
− 1

γ
H0(Q | P)

]
(2.42)

(their equation (5.6)) under quite general conditions. The set Pf consists of measures
Q that are absolutely continuous with respect to P, such that the wealth process X
is a (Q,F)-local martingale, and H0(Q | P) < ∞. In (2.42), the indifference price
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is given as the difference between the solutions of two optimization problems, with
P as the prior measure. Our expression (2.41) gives the indifference price under our
diffusion stochastic volatility models as the solution of a single optimization problem
with prior (risk-neutral) measure Q (which arises from the solution of the Merton
problem).

In fact, it is easy to show from the associated HJB equations that Q is the minimal
relative entropy martingale measure (see Fritelli [20]) solution of

sup
Q∈Pf

(−H0(Q | P))

and that

H0(Q | P) = − 1

1 − ρ2
ln f |t=0,

sup
Q∈Pf

[
EQ(g(ST , YT )) − 1

γ
H0(Q | P)

]
=

1

γ
lnG |t=0,

which connects (at time t = 0) our expression (2.35) with (2.42), which is taken from
[12].

Relative entropy minimization has been extensively used for calibration from mar-
ket data, with additional constraints that some benchmark derivative contracts are
priced exactly [2, 4]. The prior measure Q will also emerge later in section 3.1 in
obtaining bounds for the indifference prices.

3. Indifference price spreads. The indifference pricing equations (2.32) and
(2.34) do not in general have explicit solutions. Given that risk aversion is taken
into account in the utility-based valuation, one would naturally expect to recover
indifference prices in terms of the so-called certainty equivalent pricing rule. This is
in fact the classical risk-based pricing device used in the de facto incomplete insurance
market (see, for example, Bowers et al. [3]). However, as simple calculations show,
indifference prices do not correspond to straightforward generalizations of certainty
equivalents given that they result from an interplay between dynamic optimization
among investment opportunities and risk monitoring. We note that classical arbitrage-
free financial markets use a risk-neutral measure and incomplete insurance markets
use the historical one.

In what follows we aim at addressing some of the above issues by looking at
price bounds. We derive bounds on the indifference prices that involve characteristics
of linear and nonlinear prices, namely, expected payoffs, certainty equivalents, and
related pricing measures.

Proposition 3.1. Let P̃ be the minimal martingale measure described in Defini-
tion 2.3, and define

R(y, t) =
1

2γ

(
µ

σ(y, t)

)2

,

with µ/σ(y, t) being the (time-varying) Sharpe ratio of the traded stock, and

ζ(S, y, t) =
1

γ(1 − ρ2)
ln E

P̃

(
e
−γ(1−ρ2)

∫ T

t
R(Ys,s) ds | St = S, Yt = y

)
.
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(i) The writer’s indifference price hw satisfies

hw(S, y, t) ≤ 1

γ
ln E

P̃

(
e
γ
(
g(ST ,YT )−

∫ T

t
R(Ys,s) ds

)
| St = S, Yt = y

)
− ζ(S, y, t),(3.1)

hw(S, y, t) ≥ E
P̃

(
g(ST , YT ) −

∫ T

t

R(Ys, s) ds | St = S, Yt = y

)
− ζ(S, y, t).(3.2)

(ii) The buyer’s indifference price hb satisfies

hb(S, y, t) ≤ E
P̃

(
g(ST , YT ) +

∫ T

t

R(Ys, s) ds | St = S, Yt = y

)
+ ζ(S, y, t),

hb(S, y, t) ≥ − 1

γ
ln E

P̃

(
e
−γ
(
g(ST ,YT )+

∫ T

t
R(Ys,s) ds

)
| St = S, Yt = y

)
+ ζ(S, y, t).

Proof. We first present the arguments for the derivation of the lower bound (3.2).
We recall that

h(S, y, t) =
1

γ
ln

G(S, y, t)

V (y, t)
=

1

γ
ln

G(S, y, t)

f(y, t)1/(1−ρ2)
(3.3)

and that G solves (2.29). Because ρ2 ≤ 1 and G > 0, we easily conclude that G is a
supersolution of

Ḡt + L(S,y)Ḡ =
1

2

µ2

σ(y, t)2
Ḡ +

1

2
a2(y, t)

Ḡ2
y

Ḡ
+ ρσ(y, t)a(y, t)S

ḠSḠy

Ḡ
+

1

2
σ2(y, t)S2 Ḡ

2
S

Ḡ

(3.4)

and, thus,

G(S, y, t) ≥ Ḡ(S, y, t).(3.5)

The solution Ḡ to (3.4) can be derived via an exponential transformation Ḡ = eφ̄,
with φ̄ solving

φ̄t + L(S,y)φ̄ =
µ2

2σ2(y, t)
, φ̄(S, y, T ) = γg(S, y).(3.6)

Under the boundedness assumptions on the coefficients and payoff, (3.6) has a unique
classical solution, and φ̄ has the probabilistic representation

φ̄(S, y, t) = γE
P̃

(
g(ST , YT ) −

∫ T

t

R(Ys, s) ds | St = S, Yt = y

)
.(3.7)

Combining G ≥ eφ̄ with (3.3) and (2.26) gives the lower bound (3.2) for the writer’s
indifference price hw.

Following similar arguments, we can derive the upper bound for the indifference
price. In fact, from (2.19), M(GS , Gy, G) ≥ 0, so (2.29) yields

Gt + L(S,y)G ≥ µ2

2σ2(y, t)
G.
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Therefore, G is a subsolution to

Ĝt + L(S,y)Ĝ =
µ2

2σ2(y, t)
Ĝ, Ĝ(S, y, T ) = eγg(S,y).(3.8)

This in turn yields G(S, y, t) ≤ Ĝ(S, y, t), and, in view of the probabilistic represen-
tation of the solution of (3.8), gives

G(S, y, t) ≤ E
P̃

(
e
γ
(
g(ST ,YT )−

∫ T

t
R(Ys,s) ds

)
| St = S, Yt = y

)
.

The upper bound (3.1) follows easily. Part(ii) can be derived from the parity formula
(2.33).

3.1. Alternative bounds. We continue with the derivation of alternative reser-
vation prices. We stress that the bounds derived below have rather natural and desir-
able properties. The lower bound is given by an arbitrage-free–type price of the payoff
g. This price corresponds to the limiting case γ → 0 described in Theorem 2.8. The
upper bound is given in terms of a certainty-equivalent–type price of the payoff g. It
corresponds to what the writer would charge under a pricing device based entirely on
static certainty equivalent valuation without taking into account dynamic rebalancing
and optimal investments. It is important to observe that all bounds are expressed in
terms of the same measure Q.

Theorem 3.2. Let Q be the measure introduced in Definition 2.7.
(i) The writer’s indifference price satisfies

EQ

(
g(ST , YT ) | St = S, Yt = y

)
≤ hw(S, y, t)

≤ 1

γ
ln EQ

(
eγg(ST ,YT ) | St = S, Yt = y

)
.(3.9)

(ii) The buyer’s indifference price satisfies

− 1

γ
ln EQ

(
e−γg(ST ,YT ) | St = S, Yt = y

)
≤ hb(S, y, t)

≤ EQ

(
g(ST , YT ) | St = S, Yt = y

)
.

Proof. We first construct appropriate sub- and supersolutions of (2.29). In par-
ticular, we look for sub- and supersolutions of the separable form M(y, t)N(S, y, t).
Inserting the above function in (2.29) yields⎧⎪⎪⎪⎨⎪⎪⎪⎩

N

(
Mt + L(y)M − 1

2
ρ2a2(y, t)

M2
y

M
− µ2

2σ2(y, t)
M

)

+ M

(
Nt + L(S,y)N + (1 − ρ2)a2(y, t)

My

M
Ny −M(NS , Ny, N)

)
= 0,

where M was defined in (2.19), and with M(y, T )N(S, y, T ) = eγg(S,y). Next, we
choose M and N to solve, respectively,

Mt + L(y)M =
µ2

2σ2(y, t)
M +

1

2
ρ2a2(y, t)

M2
y

M
,(3.10)
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with M(y, T ) = 1, and

Nt + L(S,y)N + (1 − ρ2)a2(y, t)
My

M
Ny = M(NS , Ny, N),(3.11)

with N(S, y, T ) = eγg(S,y). We observe that M and F solve the same equations, (3.10)
and (2.23), and satisfy the same terminal condition. By uniqueness, we deduce that
M ≡ F or, equivalently,

M(y, t) = f(y, t)1/(1−ρ2),(3.12)

with f solving (2.21). Therefore, we can write the solution of (2.29) as G(S, y, t) =

f(y, t)1/(1−ρ2)N(S, y, t), with N solving (3.11). It is worth observing that N solves
the quasilinear equation (3.11) that is similar to (2.29) but with two modifications;
namely, (3.11) does not have a potential term, and, also, its first derivative coefficient

contains the extra term (1 − ρ2)a2(y, t)
My(y,t)
M(y,t) .

Because of (3.12), we have

My(y, t)

M(y, t)
=

1

1 − ρ2

fy(y, t)

f(y, t)
,(3.13)

which is smooth and bounded as observed in Lemma 2.1. Therefore, (3.11) can be
written as {

Nt + L(S,y)N + ρ′a(y, t)L(y, t)Ny = M(NS , Ny, N),

N(S, y, T ) = eγg(S,y),
(3.14)

where L(y, t) was introduced in (2.31). Observing that M(NS , Ny, N) ≥ 0 and that
ρ2 ≤ 1, by arguments similar to the ones used in the derivation of the lower and upper
bounds, (3.2) and (3.1), respectively, we readily deduce that

N
¯
(S, y, t) ≤ N(S, y, t) ≤ N̄(S, y, t),(3.15)

where N
¯

and N̄ solve, respectively,

N̄t + L(S,y)N̄ + ρ′a(y, t)L(y, t)N̄y = 0,(3.16)

with N̄(S, y, T ) = eγg(S,y), and

N
¯ t + L(S,y)N

¯
+ ρ′a(y, t)L(y, t)N

¯ y =
1

2
a2(y, t)

N
¯

2
y

N
¯

+ ρa(y, t)σ(y, t)S
N
¯SN

¯ y

N
¯

(3.17)

+
1

2
σ2(y, t)S2N

¯SS ,

with N
¯
(S, y, T ) = eγg(S,y). The linear equation (3.16) has a unique classical solution

under Assumption 1, and the Feynman–Kac formula yields

N̄(S, y, t) = EQ

(
eγg(ST ,YT ) | St = S, Yt = y

)
,(3.18)

with Q given in Definition 2.7. Using an exponential transformation N
¯
(S, y, t) =

ek(S,y,t) gives that k must solve

kt + L(S,y)k + ρ′a(y, t)L(y, t)ky = 0,
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with k(S, y, T ) = γg(S, y), which has a unique classical solution under our assump-
tions. The same then follows for (3.17). The probabilistic representation for k is

k(S, y, t) = EQ

(
γg(ST , YT ) | St = S, Yt = y

)
.

Using (3.12) and (3.3), we deduce

1

γ
lnN

¯
(S, y, t) ≤ hw(S, y, t) ≤ 1

γ
ln N̄(S, y, t),

which yields the desired upper and lower bounds (3.9).
From these bounds, we easily obtain the following bounds on the price spread.
Proposition 3.3. The price spread hw − hb is bounded by

0 ≤ hw − hb ≤ 1

γ
ln
[
EQ

(
e−γg(ST ,YT ) | St = S, Yt = y

)
EQ

(
eγg(ST ,YT ) | St = S, Yt = y

)]
.

4. Fast mean-reverting stochastic volatility. We now study the indifference
price using asymptotic approximations. In this section, we assume the European
contract is a claim on ST only and not on YT . That is, g = g(ST ), as is usually the
case.

4.1. Stochastic volatility framework. For clarity of exposition, we take the
volatility-driving process (Yt) to be an Ornstein–Uhlenbeck (OU) process, namely,

dYt = α(m− Yt) dt + β (ρ dW 1
t + ρ′dW 2

t ),

where α is the rate of mean-reversion, m the long-run mean, and β the volatility
of the volatility factor Y , which we shall call the “v-vol.” In terms of the previous
notation, we have b(y) = α(m − y) and a(y) = β. The process admits a unique
invariant distribution, N (m, ν2), where ν2 = β2/(2α). We also define at this stage
the density of this distribution Φ(y) and the average 〈·〉 with respect to this density:

〈χ〉 =

∫
χΦ.

In particular, we denote by σ̄ the long-run (root-mean-square) volatility

σ̄ =
√
〈σ2〉.(4.1)

The utility-based pricing equation (2.32) describes the indifference price h as the
solution of a quasilinear differential equation depending on the risk-aversion parame-
ter γ, the level of the volatility driving process y, and the parameters of this model
α, β,m, ρ as well as the function σ(·). Given a fully specified model and parameters
estimated from data, we could compute the utility price by numerically discretiz-
ing (2.32). Another approach is to use asymptotic approximations that are exact in
some limit in which the problem simplifies. These can be used in certain parame-
ter ranges which may be valid in some markets. They also give a deeper analytical
understanding of the pricing mechanism and its relationship to modeling assumptions.

The limit we focus on here is fast mean-reversion of the volatility process, meaning
that α is large. We write

α = 1/ε, 0 < ε << 1,
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and we are interested in the limit ε ↓ 0 with the variance of the invariant distribution
ν2 fixed. This implies the scaling β =

√
2 ν/

√
ε. The choice of scaling is natural,

because it allows us to pick up the effects of both mean-reversion and v-vol in the
correction (first order) term of the approximation (4.10) below.

Evidence of a rapidly mean-reverting volatility factor in the S&P 500 is presented
in the empirical study [18] of high-frequency data. Another recent empirical study [1]
has found evidence of a fast volatility scale in exchange rate dynamics. Chernov et
al. [5] propose and give evidence from data for two-factor stochastic volatility models
in which one factor mean-reverts on a short time-scale. For present purposes, the
method of this section can be regarded as yielding an approximation whose validity
will depend on specific market conditions, in particular over time horizons when other
slower factors can be considered effectively constant. The extension to incorporate
slower scales using mixed singular and regular perturbation techniques is the subject
of future investigation.

This method was previously used for no-arbitrage derivative pricing and hedging
problems in Fouque, Papanicolaou, and Sircar [17]. The arguments were extended
for stochastic control problems in [23]. We summarize the main findings from the
former for no-arbitrage pricing and hedging European claims in order to compare the
analogous results for the indifference pricing mechanism.

4.1.1. No-arbitrage pricing of European claims. Let P (S, y, t) be the pric-
ing function for a European claim with payoff g(ST ). By no-arbitrage arguments, this
price is given by

P (S, y, t) = E
(λm){g(ST ) | St = S, Yt = y},(4.2)

where the expectation is taken with respect to the equivalent martingale measure
P

(λm), and λm is the market price of volatility risk. We assume that λm = λm(Yt)
in that it is a bounded function of Yt only and therefore that (S, Y ) is also a Markov
process under P

(λm), which justifies the notation in (4.2). This premium is implicit in
the prices of liquidly traded options or the market-set implied volatility skew. Under
the measure P

(λm), the dynamics of (S, Y ) can be written

dSt = σ(Yt)St dW
�
t ,

dYt =

[
1

ε
(m− Yt) −

ν
√

2√
ε

(
ρ

µ

σ(Yt)
− ρ′λm(Yt)

)]
dt +

ν
√

2√
ε

(ρ dW �
t + ρ′dZ�

t ) ,

where (W �
t ) and (Z�

t ) are independent P
(λm)-Brownian motions.

We make the following assumption.
Assumption 2. The market price of volatility risk function λm(·) is smooth and

bounded.
The analysis of [17, Chapter 5] leads to the following approximation for P in the

limit of fast mean-reversion:

P (S, y, t) ≈ P (0)(S, t) + P̃ (1)(S, t),(4.3)

where P (0)(S, t) is the Black–Scholes pricing function for the claim using the long-
run average volatility parameter σ̄ which is related to the original stochastic volatility
model through (4.1). In other words, P (0)(S, t) solves the Black–Scholes PDE problem

LBS(σ̄)P (0) = 0; t < T,(4.4)

P (0)(S, T ) = g(S),
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where

LBS(σ̄) =
∂

∂t
+

1

2
σ̄2S2 ∂2

∂S2
,(4.5)

the Black–Scholes differential operator at volatility level σ̄. Under Assumptions 1 and
2, P (0) is smooth and bounded with bounded derivatives.

The correction term P̃ (1) accounting for stochastic volatility effects is given by

P̃ (1)(S, t) = −(T − t)
(
V2S

2P
(0)
SS + V3S

3P
(0)
SSS

)
(4.6)

for some constants V2 and V3 related to the original parameters and the functions σ
and λm by formulas given below. In the case of smooth payoff g, we have the following
convergence result, shown in [17]. We use the order notation

f(ε) = O(g(ε)), as ε ↓ 0 ⇒ lim
ε↓0

f(ε)

g(ε)
= c,

for some constant c independent of ε, and f(ε) = o(g(ε)) if c = 0.
Proposition 4.1. Under Assumptions 1 and 2, for a fixed point (S, y, t),

|P (S, y, t) − (P (0)(S, t) + P̃ (1)(S, t))| = O(ε).(4.7)

For the case of call and put options when the payoff is only C0, the following
convergence result is proved in [19] using a regularization technique.

Proposition 4.2. Under Assumptions 1 and 2, for a fixed point (S, y, t),

|P (S, y, t) − (P (0)(S, t) + P̃ (1)(S, t))| = o(ε| log ε|1+p)

for any p > 0.
In Theorem 4.3 below, we prove the analogue of (4.7) for smooth and bounded g

and the indifference pricing mechanism.
We note the following points about the approximation (4.3).
• To this level, namely, zeroth plus first order of approximation, the price is

insensitive to the present level of the stochastic volatility process σ(Yt).
• The group parameters V2 and V3 are related to the original model as follows:

V2 =
ν√
2α

(
2ρ〈σψ′

1〉 −
〈(µρ

σ
+ ρ′λm

)
ψ′

1

〉)
,(4.8)

V3 =
ρν√
2α

〈σψ′
1〉,(4.9)

where ν2 = β2/(2α) and ψ1(y) is a solution of the Poisson equation (4.23)
below. In practice, these relations are not used and V2 and V3 are estimated
directly from the market-implied volatility skew and then can be used for
pricing American and exotic claims to the same order of approximation.

• The formulas (4.8) and (4.9) show that V2 and V3 are of order 1/
√
α and

so are small under the assumption of fast mean-reversion. Moreover, V3 is
zero when ρ = 0 and in the case of nonzero correlation, the third-derivative
term describes the leverage effect. In the case of equities, ρ is typically neg-
ative and returns distributions are asymmetric with a fatter left tail. The
second-derivative term contains effects due to the extra kurtosis of stochastic
volatility models over geometric Brownian motion, and the market price of
volatility risk λm.
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• Finally, the approximation is robust in the sense that it does not depend on
specification of σ or λm within the class of functions described in Assumptions
1 and 2.

4.2. Approximation of indifference prices and interpretation. The main
result of this section is the following theorem.

Theorem 4.3. Let h denote either the writer’s or the buyer’s indifference price,
defined in (2.10) and (2.11). Under Assumption 1, for a fixed point (S, y, t),

|h(S, y, t) − (P (0)(S, t) − (T − t)(V3S
3P

(0)
SSS + V

(0)
2 S2P

(0)
SS ))| = O(ε).(4.10)

Here, V3 is defined in (4.9) and V
(0)
2 denotes V2 defined in (4.8), with λm = 0.

Comparing with the no-arbitrage fast mean-reverting stochastic volatility approx-
imation (4.6), we see from (4.8) that to this order of approximation, the (writer’s or
buyer’s) utility indifference price is exactly the no-arbitrage price in which there is
zero risk premium from the second Brownian motion (λm(·) ≡ 0). In particular, the
risk-aversion coefficient γ does not appear in these first two terms of the approxima-
tion.

The intuition for this is best understood from the relative entropy formulation of
the indifference pricing mechanism discussed in section 2.1. Given a prior risk-neutral
measure Q under which the volatility is fast mean-reverting, the utility pricer does
not use his freedom to deviate from this belief up to the level of accuracy we have
computed. In particular, he would have to choose a very large volatility risk premium
λ in (2.41) for the asymptotics to lead to a different approximation in the first two
terms, and this is penalized heavily by the entropy.

4.3. Expansions for indifference prices. To produce an asymptotic expan-
sion for the indifference price, one may either analyze the indifference price equation
(2.32) directly or, alternatively, approximate the value functions V and u involved
in the pricing mechanism and, subsequently, approximate h via (2.10). We choose
to proceed in the latter way because it also gives, as an intermediate output, useful
results for the optimization problems that are interconnected with the utility-based
prices.

We recall that the value functions u and V of the writer and the plain investor,
respectively, can be written u(x, S, y, t) = −e−γxG(S, y, t), with G solving (2.29), and
V (x, y, t) = −e−γxF (y, t), with F solving (2.23), and that the indifference price is
given by

h(S, y, t) =
1

γ
ln

G(S, y, t)

F (y, t)
.(4.11)

It is convenient to work with the logarithmic transformations of G and F . To this
end, we set

G = eφ, F = eψ,(4.12)

where φ(S, y, t) solves (2.30) and ψ(y, t) solves

ψt + L(y)ψ +
1

2
a(y)2(1 − ρ2)ψ2

y −
µ2

2σ(y)2
= 0,(4.13)

with ψ(y, T ) = 0. In the latter case, we could as easily work with f , which solves
the linear equation (2.21), but since we will need the expansion for φ, it is simpler to
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construct that and then obtain the expansion for ψ by setting g ≡ 0 and removing
the S dependence.

The first two terms of the asymptotic expansions of φ and ψ in powers of
√
ε are

summarized in the following proposition, which is proven in the following sections.
Proposition 4.4. Under Assumption 1, for a fixed point (S, y, t) the following

hold.
(i) The first two terms of the expansion for φ, solution of (2.30), lead to the

approximation

|φ(S, y, t) − (φ(0)(S, t) + φ̃(1)(S, t))| = O(ε),(4.14)

where

φ(0)(S, t) = γP (0)(S, t) − µ2

2σ2
�

(T − t),(4.15)

φ̃(1)(S, t) = −γ(T − t)

[
V3S

3P
(0)
SSS(S, t) + V

(0)
2 S2P

(0)
SS (S, t) +

µ3C4

γ

]
.(4.16)

Here, V3 is defined in (4.9), V
(0)
2 denotes V2 defined in (4.8), with λm = 0, C4 is a

market constant, C4 = ρν√
2α

〈ψ
′
2

σ 〉, with ψ2 defined below in (4.24), and

σ̄2 = 〈σ2〉, 1

σ2
�

=

〈
1

σ2

〉
.(4.17)

(ii) The first two terms of the expansion for ψ, solution of (4.13), lead to the
approximation

|ψ(S, y, t) − (ψ(0)(S, t) + ψ̃(1)(S, t))| = O(ε),(4.18)

where

ψ(0)(S, t) = − µ2

2σ2
�

(T − t), ψ̃(1)(S, t) = −(T − t)µ3C4.

Before we give the proof of Proposition 4.4, we introduce some convenient nota-
tion.

4.4. Operator notation. We write (2.30) in the compact form

Lεφ +
ν2

ε
(1 − ρ2)φ2

y =
µ2

2σ(y)2
,(4.19)

where we define

Lε =
1

ε
L0 +

1√
ε
L1 + L2,

L0 = ν2 ∂2

∂y2
+ (m− y)

∂

∂y
,(4.20)

L1 =
√

2 ρν

(
σ(y)S

∂2

∂S∂y
− µ

σ(y)

∂

∂y

)
,

L2 =
∂

∂t
+

1

2
σ(y)2S2 ∂2

∂S2
.

We notice that
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1. L0 is the infinitesimal generator of the OU process with unit rate of mean-
reversion;

2. L1 takes derivatives in y and so kills any function that does not depend on
y; and

3. L2 = LBS(σ(y)), where LBS(·) is the Black–Scholes differential operator as
a function of the volatility level defined in (4.5).

4.5. Proof of Proposition 4.4. We first describe an expansion of the form

φ(S, y, t) = φ(0)(S, y, t) +
√
εφ(1)(S, y, t) + εφ(2)(S, y, t)

+ ε3/2φ(2)(S, y, t) − Zε(S, y, t),(4.21)

and write an equation for the error term Zε.

We define φ(0) and
√
εφ(1) = φ̃(1) by (4.15) and (4.16), respectively. In particular,

φ(0) and φ(1) do not depend on y, and, by the smoothness assumptions on g, they are
also smooth.

We define φ(2) by

φ(2)(S, y, t) = −1

2
ψ1(y)S

2φ
(0)
SS +

µ2

2
ψ2(y),(4.22)

where ψ1 and ψ2 are solutions of the Poisson equations

L0ψ1 = σ(y)2 − σ̄2,(4.23)

L0ψ2 =
1

σ(y)2
− 1

σ2
�

.(4.24)

The average volatilities σ̄ and σ� are defined in (4.17) and are finite as σ is bounded.
The expressions (4.15), (4.16), and (4.22) are motivated by a formal expansion. Fi-
nally, we define φ(3)(S, y, t) by

φ(3)(S, y, t) =
ρν√

2

[
ψ3(y)(S

3φ
(0)
SSS + 2S2φ

(0)
SS) − µψ4(y)S

2φ
(0)
SS − µψ5(y)

]
,(4.25)

where ψ3, ψ4, and ψ5 are solutions of the Poisson equations

L0ψ3 = σ(y)ψ′
1(y) − 〈σψ′

1〉,(4.26)

L0ψ4 =
ψ′

1(y)

σ(y)
−
〈
ψ′

1

σ

〉
,(4.27)

L0ψ5 =
ψ′

2(y)

σ(y)
−
〈
ψ′

2

σ

〉
.(4.28)

Here, φ(3) has been chosen to be a solution of

L0φ
(3) + L1φ

(2) + L2φ
(1) = 0,

which is a Poisson equation (in y). Its solvability condition (see [17, section 5.2.2]) is

〈L2φ
(1) + L1φ

(2)〉 = 0,(4.29)

which is satisfied because that is how φ(1) and φ(2) were chosen.
Lemma 4.1. The functions φ(2) and φ(3) are smooth as functions of S and t and

can be chosen to be at most logarithmically growing in y at infinity.
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Proof. As shown in [19, Appendix C], the boundedness assumption on σ implies
that we can choose ψ1 and ψ2 to be at most logarithmically growing at infinity:

|ψ1,2(y)| ≤ c(1 + ln(1 + |y|))

for some constant c. In particular, the derivatives ψ′
1,2 are bounded, and the right-

hand sides of (4.26)–(4.28) are therefore bounded. Then we can also choose ψ3, ψ4,
and ψ5 to be at most logarithmically growing at infinity. Since φ(0)(S, t) and φ(1)(S, t)
are smooth, the result follows from the explicit expressions (4.22) and (4.25).

We assume hereon that φ(2) and φ(3) are chosen to be at most logarithmically
growing in y at infinity.

Inserting the expansion (4.21) into the PDE (2.30), we obtain the following equa-
tion and terminal condition for Zε:

LεZε + 2ν2(1 − ρ2)(φ(2)
y +

√
εφ(3)

y )Zε
y − ν2

ε
(1 − ρ2)(Zε

y)
2 = εJ,(4.30)

Z ε(S, y, T ) = εK(S, y).(4.31)

In this calculation, we have used the fact that φ(0), φ(1), φ(2), and φ(3) satisfy

L0φ
(0) + ν2(1 − ρ2)(φ(0)

y )2 = 0, L0φ
(1) + L1φ

(0) = 0,

L0φ
(2) + L1φ

(1) + L2φ
(0) =

µ2

2σ(y)2
,(4.32)

as well as the solvability condition (4.29) for (4.32).
In (4.30) and (4.31), the source term J and terminal data K are given by

J = L1φ
(3) + L2φ

(2) +
√
εL2φ

(3) + ν2(1 − ρ2)
(
φ(2)
y +

√
εφ(3)

y

)2

,(4.33)

K = φ(2)(S, y, T ) +
√
εφ(3)(S, y, T ).(4.34)

From Lemma 4.1, it follows that J and K are smooth and at most logarithmically
growing in y at infinity. Notice that Zε is the unique classical solution of a quasilinear
parabolic PDE problem. Defining

θ(S, y, t) = 2ν2(1 − ρ2)
(
φ(2)
y +

√
εφ(3)

y

)
,(4.35)

we can write (4.30) as

L̂εZε = εJ +
ν2

ε
(1 − ρ2)(Zε

y)
2,(4.36)

where L̂ε = Lε + θ(S, y, t) ∂
∂y is a linear parabolic operator. Notice that θ is bounded.

Lemma 4.2. Let Z̄ε(S, y, t) be the unique classical solution of the linear PDE
problem

L̂εZ̄ε = εJ,(4.37)

Z̄ε(S, y, T ) = εK(S, y).

Then Zε ≤ Z̄ε.
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Proof. The result follows from the nonnegativity of the nonlinear term in (4.36)
and classical comparison results for linear parabolic equations.

Lemma 4.3. Define Zε(S, y, t) by Zε = − ln q̄ε, where q̄ε(S, y, t) is the unique
classical solution of the linear PDE problem

L̂εq̄ε + εJq̄ε = 0,(4.38)

q̄ε(S, y, T ) = e−εK(S,y).

Then Zε ≥ Zε.
Proof. We first observe that qε = e−Zε

satisfies

L̂εqε + εJqε =
1

2qε

(
ρν

√
2√

ε
qεy + σ(y)SqεS

)2

,(4.39)

with terminal condition

qε(S, y, T ) = e−εK(S,y).

By the nonnegativity of the nonlinear term on the right-hand side of (4.39) and
classical comparison results for linear parabolic equations, the result follows.

We next need to show that the upper and lower bounds go to zero with ε.
Lemma 4.4. At fixed (S, y, t),

Z̄(S, y, t) = O(ε).

Proof. We can write the probabilistic representation of (4.37),

Z̄ε(S, y, t) = E
�

(
εK(ŜT , ŶT ) − ε

∫ T

t

J(Ŝu, Ŷu, u) du | Ŝt = S, Ŷt = y

)
,(4.40)

in terms of the processes (Ŝ, Ŷ ) defined by

dŜ = σ(Ŷ )Ŝ
(
ρ dB̂1 + ρ′dB̂2

)
,

dŶ =
1

ε

(
(m− Ŷ ) −

√
2ε

ρνµ

σ(Ŷ )
+ εθ(Ŝ, Ŷ , t)

)
dt +

ν
√

2√
ε

dB̂1,(4.41)

on some probability space (Ω̂, F̂ , (F̂t), P̂
�) where B̂1 and B̂2 are independent Brownian

motions and where E
� denotes expectation with respect to P̂

�. This is because the
infinitesimal generator of (Ŝ, Ŷ ) is L̂ε.

We recall that J(S, y, t) and K(S, y) are at most logarithmically growing as func-
tions of y and are bounded as functions of (S, t). Then the expectation (4.40) can be
bounded by a combination of terms of the form εE�{χ(Ŷu) | Ŝt = S, Ŷt = y}, with
t < u ≤ T , for some logarithmically growing functions χ. Using Lemma 4.6 below, for
ε sufficiently small, the terms E

�{χ(Ŷu) | Ŝt = S, Ŷt = y} are bounded independent
of ε. The result follows from (4.40).

Lemma 4.5. At fixed (S, y, t),

Z(S, y, t) = O(ε).
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Proof. The solution of (4.38) has the probabilistic representation, via the Feynman–
Kac formula

q̄ε(S, y, t) = E
�

{
exp

(
−εK(ŜT , ŶT ) + ε

∫ T

t

J(Ŝu, Ŷu, u) du

)
| Ŝt = S, Ŷt = y

}
,

where (Ŝ, Ŷ ) were defined in the previous lemma. From the properties of J and K,
this can be bounded above by

E
�

{
exp

(
εχ(ŶT , T ) + ε

∫ T

t

χ(Ŷu, u) du

)
| Ŝt = S, Ŷt = y

}

for some functions χ at most logarithmically growing in Ŷ . From the ε-independent
exponential moments of Ŷ given in Lemma 4.6 below, it follows that

q̄ε(S, y, t) = 1 + O(ε)

for fixed (S, y, t). The result follows from Zε = − ln q̄ε.
Lemma 4.6. For Ŷ defined in (4.41), there exist some ε0 > 0 and a constant

C(t, T, v, y), independent of ε, such that for any t ≤ s ≤ T and 0 < ε < ε0,

E
�{evŶs | Ŝt = S, Ŷt = y} < C(t, T, v, y).

Proof. The proof is a modification of [8, Proposition 2]. We first rewrite (4.41) as

dŶt =

(
1

ε
(m− Ŷt) −

ν
√

2√
ε

Λ(Ŝ, Ŷ , t)

)
dt +

ν
√

2√
ε

dB̂1
t ,

with

Λ(S, y, t) =
ρµ

σ(y)
−
√
ε
θ(S, y, t)

ν
√

2
,

where θ was defined in (4.35). Since θ is bounded, for any ε0 > 0 and 0 < ε < ε0, Λ
is bounded independent of ε.

Next, using Girsanov’s theorem, we define an equivalent measure P̂ under which
Ŷ is a standard OU process. Introducing Ŵ 1

t = B̂1
t −
∫ t
0

Λ(Ŝu, Ŷu, u) du, we define P̂

by

dP̂
�

dP̂
= M

(Λ)
T ,

where

M (Λ)
s = e

−
∫ s

t
Λ(Ŝu,Ŷu,u)dŴ 1

u− 1
2

∫ s

t
Λ(Ŝu,Ŷu,u)2du

.

Then Ŵ 1 is a P̂-Brownian motion and M (Λ) is a (P̂, (F̂t))-martingale.
Now we have

E
�{evŶs | Ŝt = S, Ŷt = y} = E{evŶsM (Λ)

s | Ŝt = S, Ŷt = y},(4.42)



UTILITY PRICES UNDER RANDOM VOLATILITY 1351

where E denotes the expectation under P̂. We rewrite (4.42) as

E{evŶsM (Λ)
s | Ŝt = S, Ŷt = y} = E

{
evŶse

1
2

∫ s

t
Λ(Ŝu,Ŷu,u)2du

√
M

(2Λ)
s | Ŝt = S, Ŷt = y

}
,

and, using the Cauchy–Schwarz inequality, we deduce that

E
�{evŶs | Ŝt = S, Ŷt = y} ≤

√
E

{
e2vŶse

∫ s

t
Λ(Ŝu,Ŷu,u)2du | Ŝt = S, Ŷt = y

}
,(4.43)

since M (2Λ) is a martingale with expected value equal to one. Therefore,

E
�{evŶs | Ŝt = S, Ŷt = y} ≤ e

1
2 (s−t)||Λ||2∞

√
E

{
e2vŶs | Ŝt = S, Ŷt = y

}
.(4.44)

Under P̂, the dynamics of Ŷ are given by

dŶt =
1

ε
(m− Ŷt) dt +

ν
√

2√
ε

dŴ 1
t .

That is, it is an autonomous standard OU process. From [8, Lemma 2], there exists
a constant c(v, y) such that for any t ≤ s ≤ T and ε > 0 we have

E{evŶs | Ŝt = S, Ŷt = y} ≤ c(v, y).

The result follows by setting

C(t, T, v, y) = e
1
2 (T−t)||λ||2∞

√
c(2v, y).

Combining these results, we have

O(ε) = − ln q̄ε(S, y, t) ≤ Zε(S, y, t) ≤ Z̄ε(S, y, t) = O(ε)

for fixed (S, y, t). It follows that

Zε(S, y, t) → 0 as ε ↓ 0,

and part (i) of Proposition 4.4 follows from (4.21).

The proof of convergence of the approximation (4.18) for the solution ψ of (4.13)
is a simpler version of the preceding, setting g ≡ 0 and thereby removing the S-
dependences.

4.6. Proof of Theorem 4.3. From (4.11) and (4.12), we have that

h(S, y, t) =
1

γ
(φ(S, y, t) − ψ(S, y, t)).

Using (4.14) and (4.18) and the triangle inequality trivially leads to (4.10), completing
the proof.
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5. Conclusions. The practical implications of the preceding analysis are pricing
spreads in section 3 that can be tuned by the pricer’s risk aversion; robust asymptotic
approximations in section 4 that do not require precise specification of a stochas-
tic volatility model; and analytical results for the problem of optimizing a portfolio
consisting of dynamic positions in a liquid underlying asset combined with a static
position in a derivative security. Such a problem is important in incomplete markets
when investors would like to use derivatives to “trade volatility” indirectly but cannot
rebalance frequently because of high transaction costs. Our results herein are applied
to this problem in work in preparation.

Many questions about the utility pricing mechanism remain for future investiga-
tion: the implications for hedging derivative risk; the effect on implied volatilities,
especially the term-structure, or variation with time-to-maturity; the multidimen-
sional problem, meaning both the case of multifactor stochastic volatility models
(where perhaps one factor is slow and another is fast mean-reverting), and the case
of options on a basket of stocks. Mathematically, the main challenge is in extending
the present analysis to the important cases of unbounded and nonsmooth payoffs.
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