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INVESTMENT-CONSUMPTION MODELS WITH TRANSACTION FEES
AND MARKOV-CHAIN PARAMETERS*

THALEIA ZARIPHOPOULOU

Abstract. This paper considers an infinite horizon investment-consumption model in which a single
agent consumes and distributes his wealth in two assets, a bond and a stock. The problem of maximization
of the total utility from consumption is treated. State (amount allocated in assets) and control (consumption,
rates of trading) constraints are present. It is shown that the value function is the unique viscosity solution
of a system of variational inequalities with gradient constraints.
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Introduction. In this paper we examine a general investment and consumption
decision problem for a single agent. The investor consumes at a nonnegative rate and
he distributes his current wealth between two assets continuously in time. One asset
is a bond, i.e., a riskless security with instantaneous rate of return r. The other asset
is a stock, whose rate of return zt is a continuous time Markov chain. In our version
of the model the investor cannot borrow money to finance his investment in bond and
he cannot short-sell the stock. In other words, the amount of money allocated in bond
and stock must stay nonnegative.

When the investor makes a transaction, he pays transaction fees which are assumed
to be proportional to the amount transacted. More specifically, let x, and Yt be the
investor’s holdings in the riskless and the risky security prior to a transaction at time
t. If the investor increases (or decreases) the amount invested in the risky asset to

Yt d-ht (or Yt- ht), the holding of the riskless asset decreases (increases) to X --ht-
(or x, + ht-/zh,). The numbers A and /x are assumed to be nonnegative and one of
them must always be positive. The control objective is to maximize, in an infinite
horizon, the expected discounted utility which comes only from consumption. Due to
the presence of the transaction fees, this is a singular control problem.

The paper is organized as follows. Section 1 is devoted to the description of the
model and its history; the two main theorems are also stated here. Section 2 contains
preliminaries about the value function. In 3 we approximate the problem by using
absolutely continuous controls. Finally, in 4 we show that the value function is the
unique constrained viscosity solution of a system of Variational Inequalities with
gradient constraints.

1. We consider a market with two assets" a bond and a stock. The price prO of the
bond is given by

dPt rPt dt,
(1.1) P:Po,
where r > 0. The price P, of the stock satisfies

dPt z(t) Pt dt,
(1.2) po= p"
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The rate of return z is a finite state continuous time Markov chain, defined on some
underlying probability space (f, F, P) with jumping rate qzz, from state z to state z’.
The state space is denoted by Z. The associated generator of the Markov chain has
the form

v(z)= 2 qzz,[V(Z’)-v(z)].
Z’Z

Let K =maxz z. A natural assumption is K-> r. The amount of wealth x, and y,,
invested at time in bond and stock respectively, are the state variables and they evolve
(see [17]) according to the equations

(1.3)

dx,=(rx,-C,) dt-(l+A) dMt+(1-tx) aNt,

dy, z( y, dt + dMt -dN,

Xo x, Yo Y, z(O) z.

For simplicity we assume here that all financial charges are paid from the holdings in
bond. The investor cannot borrow money or short-sell the stock. The control processes
are the consumption rate C, and the processes M, and N, which represent the cumulative
purchases and sales of stock respectively. The controls (C,, M,, N,) are admissible if

(i) C, is F,-measurable, where F, r(z 0=<s-< t), C,->0 almost everywhere for
all t=>0, and E o e C ds < +.

(ii) M,, N, are F,-measurable, right continuous, and nondecreasing processes.
(iii) x,-> 0, y,->_ 0 almost everywhere for all >-0, where x,, y, are the trajectories

given by the state equation (1.3) using the controls (C,, M,, N,). We denote by A the
set of admissible controls.

The total expected discounted utility J coming from consumption is given by

J(x, y, z, C, M, N) E e-tt U( C,) dt

with (C, M, N) A and z(0) z, where the utility function U :[0, +) [0, +m) is
assumed tO have the following properties:

U is strictly increasing, bounded, concave, C function,

and

U(0)-- 0, lim U’(c)-- +c, lim U’(c)--0.
C--O

The discount factor/3 > 0 weights consumption now versus consumption later, large
/3 denoting instant gratification. Note that the controls M and N are acting implic!:ly
through the constraint (iii).

The value function u is given by

u(x, y, z) sup E e-t’U(C,) dt.
A

Our goal is to derive the Bellman equation associated with this singular control
problem and to characterize u as its unique solution. It turns out that the Bellman
equation here is a system of variational inequalities.
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We now state one of the main results. (For the definition of constrained viscosity
solution, see Definition 3.1.)

THEOREM. The value function u is the unique constrained viscosity solution of
min [(1 + A ux Uy -(1 tx ux + Uy

(1.4) u-rxu-zyuy-max[-CUx+ U(c)]-u(z)]=O

with

V(x, y, z) z (0, +) x (0, +) x z

u(O,O, z) O, VzZ,

in the class of bounded and uniformly continuous functions.
We continue with a discussion about the history of the model.
Transaction costs are an essential feature of some economic theories, and many

times are incorporated in the two-asset portfolio selection model. In [3] Constantinides
assumes that the transaction costs deplete only the riskless asset and that the stock
price is a logarithmic Brownian motion. He shows that if an optimal policy exists, it
has to be simple. An investment policy is defined as simple if it is characterized by two
reflecting barriers 3, with _h =< , such that the investor does not trade as long as the
ratio Yt/Xt lies in [_,3, h,], and transacts to the closest boundary of the region of no
transactions [3, ] whenever this ratio lies outside this interval. He also shows that
proportional transaction costs have only a second-order effect on equilibrium asset
returns" the investors accommodate large transaction costs by drastically reducing the
frequency and the volume of trade. Finally, he proves that the investor’s expected
utility of consumption is insensitive to deviations of the asset proportions from those
proportions that are optimal in the absence of transaction costs. In a discrete-time
version of the model, Constantinides [2], [3] proves that an optimal investment policy
exists and it is simple.

In the continuous time framework, Taksar, Klass, and Assaf 16] assume that the
investor does not consume but maximizes the long term expected rate of growth of
wealth. In the same framework, but with more general assumptions, Fleming et al. [6]
study the finite horizon problem, the average cost per unit time problem, and the
growth problem and their relation.

Davis and Norman [5] relax the assumption that the transaction costs are charged
only to the nonrisky asset. They consider a particular class of utility functions of the
form U(c) cp (0 < p < 1), and they prove that the optimal strategy confines the inves-
tor’s portfolio to a certain wedge-shaped region in the portfolio plane.

Finally, there are several directions in which the two-asset problem with transaction
costs can be extended. First, more than one risky asset can be allowed. Although this
extension is straightforward, the computational requirements are enormous. Second,
fixed transaction costs can be introduced. Some single-period models with fixed
transaction costs are discussed in 1 ], [8], 11 ]-[ 14]. In multiperiod extensions of these
models the optimal investment policy is complex, because the derived value function
u(x, y) is no longer homogeneous in x and y. Kandel and Ross 10] introduce quasifixed
transaction costs. They use some aspects of fixed transaction costs and prove the
homogeneity of the derived value function.

2. We examine some of the properties of the value function. Throughout the paper
we assume

(2.1) fl>2K+l.
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PROPOSITION 2.1. For each z Z, u is jointly concave in x and y, strictly increasing
in x, and increasing in y.

Proof. Consider two points (Xl, Yl, z), (x2, Y2, z). Let e > 0 and (C, M, N),
(C, M, N) be e-optimal controls for these points respectively. Then

U(Xl, Yl, Z) E e-fit U(C) dt + e

and

u(x2,Y2, Z)<-_E e-’U(C) dt + e.

Moreover, the policy (aC +(1 a)C, aM+(1 a)M, aN +(1 a)N) is admis-
sible for the point (axl + (1 a)x2, ayl + (1 a)y2, z). Therefore u(ax + (1
ay+(1-a)y2, z)>=E -e-’U(aC+(la)C) dt. Using the concavity of U, the
inequalities above and sending e - 0 we conclude.

We now show that u(.,., z) is increasing. Consider the points (x, y, z) and
(x2, Y2, z) with xl _-> x2, y --> y2. Let e > 0 and (C, M, N) be an e-optimal policy for
(x, Yl, z). Since the policy (C, M, N) is admissible for the point (x2, Y2, Z), we have

U(Xl Yl Z) it(X2, Y2, z) + e.

Sending e - 0 yields that U(Xl, y, z) <= u(x, Y2, Z).
Finally, we show that u(., y, z) is strictly increasing. To this end, let us suppose

that there exist two points (x, y, z) and (x_, y, z) such that xl < x and u(x, y, z)=
u(x2, y, z). Then u(x, y, z) u(x, y, z), for all x [x, x2]. Since u is concave and
nondecreasing, the interval [x, x2] cannot be finite. Therefore there exists a point
Xo_-> 0 such that u(x, y, z)= U(Xo, y, z), for all x>=xo. Let (C, Me, N) be an e-optimal
policy for (Xo, y, z). Then

U(Xo, y, z) <- E e-OtU(C) dt + e.

However, if xl> max (Xo, (U-[fl(E e-t’U(C;) dt+e)]/r), the policy (rx, O, O)
is admissible for (xl, y, z). Therefore

U(xo, y, z) <- U(rXl) E e-13t U(rxl) dt <-- U(Xl, y, z),

which contradicts our assumption.
PROPOSITION 2.2. The value function u is uniformly continuous on

{(x,y)’x>--O,y>=O}.
Proof We first show that u is continuous on f. The value function is continuous

in 12, because it is concave. As a matter of fact, u is Lipschitz continuous in f with
Lipschitz constant of order t-ll uIll(x, y)l-.

We next show that u is continuous on the boundary. We start with the point (0, 0).
Since u(0, 0, z) 0 (this is an immediate consequence of the assumptions in the model),
we argue by contradiction.

Let us assume that for some fixed Zo Z there exists a positive constant M such
that lim(,.y)_.(o.o)u(x, y, Zo) M. Then there exists a sequence (x,, y,)0 such that
u(x,, y,, Zo) > M/2, for all n N. If (C", M", N") is an e-optimal policy for the point
(x,, y,, Zo) and (x’, y’) is the corresponding trajectory, let w’ x’ + (1 -/x)y’ and
w"= x, +(1-/z)y,. Since the process M’ is nondecreasing we get

"< (r+ K)w dt- C’ dtdwt
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and

E e-sC ds <= w E[el3tw] <= w n,

> 0, almost everywhere for all > 0. From Jensen’swhere we used (2.1) and w,=
inequality we have

u(x,,, Y., Zo) e <- E j-+oo
o

1
Wne-ttU(C’) dt<=-- U( ).

Sending n and using that U(0)=0, we get

Sending e 0 we get a contradiction.
We now show that lim),,y)-.xo,O)u(x, y, z)= U(Xo, O, z), for all z Z. As a matter

of fact, it will be an immediate consequence of the proof that limy_.o u(x, y, z)=
u(x, O, z) uniformly with respect to x. Consider a point (Xo, O, z) with Xo> 0 fixed and
a sequence (x y", z) such that x", y">O and lim,_.o (x", y")=(Xo, 0). Since u is
locally Lipschitz it suffices to show that lim,_ lU(Xo, y", z)- U(Xo, O, z)] O. Finally,
since u is increasing, we only need to show that U(Xo, y", z) <= U(Xo, O, z) + e for any
e > 0 and n sufficiently large.

Let (C", M", N") be an e-optimal policy at (Xo, y", z). Then

U(Xo, y", z) <= E e-tt U( CT) dt + e.

Moreover, the control (C", M", N"), where dMt dM7 + y"6o(t), is admissible
for (Xo + (1 + A)y", 0, z). Therefore

E e-t’U(CT) dt<=U(Xo+(l+A)y",O,z).

Combining the last two inequalities, we conclude. Note that all the above arguments
were uniform with respect to Xo.

We next show that limx.y)_(O,yo) u(x, y, z) u(O, Yo, z), /z Z. Moreover, it will be
an immediate consequence of the proof that lim(x.y)--,(O,yo)u(x, y, z)= u(O, Yo, z), uni-
formly with respect to y.

Let (0, Yo, z) with yo> 0 fixed. Arguing as before, we simply have to show that if
e > 0 and x" - 0 then u(x", Yo, z) <= u(O, Yo, z) + e.

Let (C ", M", N") be an e-optimal policy for (x ", Yo, z). Then

u(x", Yo, z) <= E e-’U(C) dt + e.

Moreover, the policy (C",M",N") is admissible for the point (0, yo+
(x"/1 Ix), z), where N" is given by dN7 dN7 + (x"/1 Ix)6o( t). Therefore

E e-ttU(CT) dt < u O, yo+.i_Ix
Combining the last two inequalities, we conclude.



618 T. ZARIPHOPOULOU

We now show that u is uniformly continuous on .
We argue by contradiction. If u is not uniformly continuous, then there exist

sequences (X) and (R,), X,, , such that, as n-, [X-R[-O and

(2.2) lu(X,,, Zo) u(;,,, Zo)l >- e

for some e > 0 and z0 e Z.
In view of the first pa of the proof, u is uniformly continuous on compact sets.

Hence either (X,) or (X.), and therefore by assumption both must be unbounded.
Let X, (x,, y,) and X, (,, ,). If li,+ x, > 0 and li,. y, > 0, then the same
holds for (,, ,). Since u is concave, locally Lipschitz with Lipschitz constant of order
Ixl-’, (2.2) cannot hold.

We finally need to check what happens when either lim,. x, 0 or li,+ y, 0.
Here we only study the first case, since the other is similar. Without any loss of
generality, we may assume that lim,+ x, 0 and lim,. y, +m, otherwise we work
along an appropriate subsequence. Then lim,. g, =0 and lim,. , +m. On the
other hand,

[u(x., y.)- u(ff., Y.)l [u(x., y.) u(x., y.)l+ u(x., y.)-

u(x., y.) u(x., fi.)l + lu(x., .) u(O,

-+ lu(0,

Letting n m above and using the fact that u is Lipschitz continuous with respect to
y uniformly with respect to x (the Lipschitz constant being of order y-) and that
limx+ u(x, y) u(O, y) uniformly with respect to y, we conclude.

We now consider a similar control problem in which the controls, which represent
the rates of trading, are assumed to be absolutely continuous processes. More precisely,
we fix a positive constant L and we consider a market which offers a bond and a stock
with prices evolving according to (1.1) and (1.2), respectively. The state variables x,
and y,, which are the amount of money invested in bond and stock, obey the state
equations

dx,=(rx,-C,) dt-(l +a)m, dt+(-)n, dt,

(2.3) dy, z( t)y, dt + m, dt- n, dt,

Xo x, yo y, z(O) z.

The controls of the investor are the consumption rate C, and the rates of trading m,
and n,, which are assumed to be almost everywhere bounded by L. The set of admissible
controls A consists of controls (C, m, n) such that

(i) C, is F,-measurable where F, (z," Os t), C,0 almost everywhere for
all 0 and E e-*C, ds < +.

(ii) m,, n, are F,-measurable right continuous and nonnegative processes.
(iii) 0 m,, n, L almost everywhere 0.
(iv) x, 0, y, 0 almost everywhere 0, where x,, y, are the solutions of (2.3)

using the controls (C, m, n).
The assumption that E e-*C, ds < m is redundant here. Indeed, one can easily

show that it follows from (iii) and (iv).
The control objective is to maximize the expected discounted utility from consump-

tion over the set of admissible controls. For each fixed L > 0, the value function is
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given by

uL(x, y, z) sup E e-3’U( Ct) dt,
AL

where U is the usual utility function and fl > 0 is the discount factor.
PROPOSITION 2.3. The value function u L is jointly concave in x and y, strictly

increasing in x, and increasing in y.
Proof The proof follows along the lines of Proposition 2.1.
PROPOSITXON 2.4. The value function u is uniformly continuous on uniformly

in L.
Proof u is concave and therefore locally Lipschitz in . Moreover, the Lipschitz

constant is independent of L, since u is uniformly bounded by 11UI]/. Therefore
u is continuous in uniformly in L. Working as in Proposition 2.2, we can prove
that u is continuous at the point (0, 0) independently of L.

We now show that u is continuous in {(x, y): x>0, y=0}. We argue by
contradiction. Since u is locally Lipschitz in and nondecreasing, it suffices to

u t(xo y, Zo)assume that there exist Zo Z and Xo > 0 such that u (xo, O, Zo) < limy.o
This is equivalent to assuming that there exist 0 > 0 and No > 0 such that

u(xo, O, Zo) + 0 ut(xo, y,, Zo), Vn No.
On the other hand, the principle of dynamic programming gives

u(xo, O, Zo) E e-’U(C) ds + e-’u(x, y, z,.)

for any random time z.

Let Ct 0, mt 1 and rt 0, for all -> 0, t, > 0 and z, t, ^ "rl, where T is the
first jump time of the process z,. Then (2.3) gives

x.. Xo e r’rn
l+h

(exp (r%)- 1)

and

exp (Zorn)- 1

Z0

Therefore

u(xo, O, zo) >= E [exp (-fl%)u (xo exp( r%

_1+__" (exp (rz,)-1),
exp 1

r Zo

and, since u is nondecreasing

1 + h exp (z0t,)uL(xo, O, Zo) >= exp (-13t,)u Xo- (exp (rt,) 1), Zo P(z. Zo).
r zo

We now choose t, such that (exp(zot,)-l)/zo=y,. Using that u L is Lipschitz con-
tinuous in 12 (with the Lipschitz constant k k(xo) independent of L), we obtain that

u(xo, O, zo)>=exp(-t.)P(z..:Zo)[U(xo, y.,zo)-k l+hr (exp(rt.)-l)].



620 T. ZARIPHOPOULOU

Combining the above yields

UL(Xo, O, Zo)--> exp (-t,)P(z Zo)[uL(xo, 0, Zo)+ O-k 1.+ h (exp (rtn)--1)].
We now send y, - 0. Then lim,_. t, 0 and lim,_ P(z. Zo) 1 and 0 _-< 0, which is
a contradiction. Therefore u is continuous in 1. It is also easily seen that the
continuity was proved uniformly in L. Working similarly we can show that u is
continuous in f2 {(x, y)" x 0, y > 0} uniformly in L. The proof that u is uniformly
continuous on is similar to the one of Proposition 2.2 and therefore we omit it.

3. In this section we characterize the value functions u/ and u. We show that u/
is the unique viscosity solution of the corresponding Hamilton-Jacobi equation. We
also show that the limit of u/ as L-, coincides with u, which is a unique viscosity
solution of a system of variational inequalities. We first give the definition of viscosity
solution, which was introduced by Crandall and Lions [4].

We consider a nonlinear partial differential equation of the form

(3.1) F(X, z, u(X, z), Du(X, z))= 0

where z Z, X (x, y) with (x, y) f, Du(X, z) (Ou(X, z)/Ox, Ou(X, z)/Oy) and
F" 1) x Z x x ,9i2 - ,t is continuous, for each z Z.

DEFINITION 3.1. A continuous function u’fxZ R is a constrained viscosity
solution of (3.1) if

(i) u is a viscosity subsolution of (3.1) on f, i.e., if for each z Z

F(X, z, u(X, z), r) <- O, /X (x, y) and r D(x,y)u(X, z),(3.2)

where

D+ ( u(X + h, z)- u(X, z)- r. h }(,,y)u(X, z) r 2: lim sup -< 0

(ii) u is a viscosity supersolution of (3.1) in f, i.e., if for each z Z

(3.3)

where

F(X,z,u(X,z),r)>=O, VX (x, y) f and r e D-(,,yu(X, z),

D(,y)u(X, z) { r e: lihm_)onf
u(X+h,z)-u(X,z)-r.h

We now give an equivalent definition.
LEMMA 3.1. The abovedefinition is equivalent to the following"
A continuous function u" 1 x Z R is a constrained viscosity solution of (3.1) if
(i) u is a viscosity subsolution of (3.1) on (, i.e., iffor all C () at any local

maximum point Xo f of u qb the following holds"

F(Xo, z, u(Xo, z), D(Xo, z)) =< 0,

for each z Z.
(ii) u is a viscosity supersolution of (3.1) in f, i.e., iffor all CI(f) at any local

minimum point Xo f of u the following holds"

F(Xo, z, u(Xo, z), D(Xo, z))_-> 0

for each z Z.
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For the proof see [4].
We next show that u L is the unique constrained viscosity solution of

L+max [-cu+ U(c)]+ uL(z)8u L rxu+ ZyUy
c>=o

(3.4) + max [-(l+A)u+Uy]m+ max [(1-- /Z)Ux
Om<=L

u(O, O, z) O, /zZ.

This fact follows along the results of Fleming, Sethi, and Soner [7] and Soner [15],
appropriately modified to deal with the generator of the process.

THEOREM 3.1. (i) U
L is a viscosity subsolution of (3.4) on ( Z.

(ii) u L is a viscosity supersolution of (3.4) in f Z.
Proof We first approximate u L by a sequence of functions {u L’N} defined by

u L’N sup E e-t3’U(C,) dt,
AL,

where

AL,n { C, m, n) AL 0 <-- C, <= N a.e. V => 0}.

Working exactly as in Propositions 2.3 and 2.4, we can prove that u L’N is concave in
(x, y) and continuous on Z. The corresponding Hamilton-Jacobi equation is

(3.5)
uL’N= rxu L’lx +zYu" + max [-cu" + U(c)]+uL’U(z)

L,N L,N L,N+ max [-(l+h)u, ---Uy ]m+max [(1--tz)uLx’N--Uy ]n.
O<mL O_n_L

We first prove that U L’N is a viscosity subsolution of (3.5) on . We will need the
following lemma.

LEMMA 3.2. Let v Cb() be concave, where is an open subset of ". Then
(i) D+v(x) , VX

and
(ii) if pD+v(Xo) and A(X-Xo)+Xo, VX and A[O, 1], then v(X)<=

v(Xo)+p(X-Xo).
Proof (i) Let Xo 0 be fixed and consider the functions v v p, where e > 0,

p is a standard molifier and denotes convolution. Since v - v as e 0 in B(Xo, r) ,
for some r> 0, the functions v are bounded in B(Xo, r) uniformly in e. Since the
v’s are also concave (recall that v is concave), the v’s are also Lipschitz continuous
in B(Xo, r) and the Lipschitz constant in dependent of e. By Taylor’s theorem and
concavity, we get

v(X) <- v(Xo)+ Dv(Xo)(X-Xo), VX 6 B(Xo, r).

Since IDv(Xo)[<-_C, along subsequences e,0 we have Dv.(Xo)p with pU.
Letting e, 0 above, we get

v(X) <= v(Xo) +p(X Xo), VX B(Xo, r),

which in turn yields that p D/v(Xo).
(ii) Let p D/v(Xo). Then

v(x)<- v(Xo)+p(X-Xo)+ o(lX-Xo[), vx 6.
Fix X C Since A(X-Xo)+Xo (Y, for all [0, 1], the concavity of v yields

v(h(X Xo) + Xo) >= hv(X) + (1 ,)v(Xo).
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Combining the last two inequalities, we get

,v(x) + ,)v(Xo) <- v(Xo) + ,p(X Xo) + o(l(x Xo) I).
Therefore

v(x) =< v(Xo) + p(X Xo) + o(lx Xo]).
Dividing first by A and then sending A 0, we conclude.

We continue now with the proof of Theorem 3.1.

Proof (i) In view of the definition of the constrained viscosity solution, we need
to show that, if (Xo, Yo, z) x Z is such that D+u’u (Xo, Yo, z) # , then

u’(xo,Yo, z)rxop+zyoqz+max[-cpz + U(c)]+ max [-(l+A)p+q]m
cO OmL

+ max [(1--)p--q]n+UC’N(Xo, Yo, Z)
OnL

for every (p, q) D+uL’N (Xo, Yo, z). To this end, assume that (Xo, Yo, z) and (p, q)
are such that (p, q) D+uL’ (Xo, Yo, z), z Z, and define " x x Z by

(x, y, z)= u L’N (Xo, Yo, z)+p(x- Xo)+ q(y- yo).

Lemma 3.2 yields

u L’N (x, y, z) (x, y, z), for all (x, y, z) x Z.

On the other hand, the dynamic programming principle implies that for any stopping
time r > 0,

u’(Xo, Yo, zo)=sup e-’U(C) ds+e-’u’(x,,y,,z())
AL,

Since u’ N, the above equality yields

(xo,Yo, Zo)Nsup e-’U(C) ds+e-’(x,,y,,z(r))

Let 0 be a positive constant and 1 be the first jump time of the process z(t). Using
Dynkin’s formula and the fact that x(Xo, Yo, Zo) Po and (xo, Yo, zo) qo we obtain

[e-((Xo,,, o,, z(o ,))- (xo, yo, Zo)]

e-m(-(x,, Ys, Zo)+ rpox, + zoqoY, + (Xs, y,, zo)

-poC +[-(1 + 1)Po + qo]m+[(1-)Po-qo]n,) ds I
Let O= 1/g and (Cq mq ne)A. be an 1/g-optimal policy. Then, combining the
above inequalities, we get

1 o{2 E e-m[ U(C) + rPzoXs + ZoqzoY, +(x, y,, Zo) -PzoC

-fi(x, y, Zo) + [-(1 + A)Po + qo]m+ [( 1 )Po- qo]nf] ds.

On the other hand, the state equations together with the constraint 0 mr, nt L for
almost every 0 give

e ert [1--#lx,-xol<( -1) Xo+
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Using the above and the form of , we can find a constant C such that

e-t[rPzoXo + zoqoYo+ dP(Xo, Yo, Zo)-fldP(Xo, Yo, Zo)] ds

+ E j"(1/e)^’l
o

ee-S[ U( Cf)-pzoCe+ (-(1 + A)Pzo + qzo)ms + ((1 )Pzo- qzo)nf] ds

+C1E e- (erS-1) Xo+ L +(e -1) yo+ ds.

Taking into account that the controls and the utility function are bounded and that
(Xo, Yo, Zo) <- UI]/, we can also find a constant C2 such that

1
{2 C.E 1 e-t3) ds

+ CaE e- (ers- 1) Xo+ L +(e 1) yo+ ds

+ [rpoxo+ oqoYo+(xo, Yo, zo)-(xo, Yo, zo)] ds
dO

+ E U(C) ds E PzoC ds
o

l/g) Al
+ E (-( 1 + A )Pzo + qzo) m e, ds + E 1 )pzo qo) n e, ds.

dO

We now divide both sides by El(l/g) r] and we pass to the limit as gm. The first
two terms will go to zero. Let

1 jA(=
E((1/e) rl)

E
o

U(Cf) ds

= ((/ o
c as

A=((1/g) r,) too ((1-)po-qo)n ds.

Let =lv(c , C,m,n} for ONCNNONm, nNL. Then
coF. Since the latter is a compact set, there is an element (A, A, A3, A4) tO which
(Af, A, Af, A) converges along a subsequence. We conclude easily that

(xo, Yo, o) N rxopo+ oyoq,+max [-cpo+ U(c)]+ max [-(1 + 1)po+ qo]m
cNO ONmNL

+ max [(1 I)Pzo- qzo]n + d(Xo, Yo, Zo).

Using that u L’N at (Xo, Yo, Zo), we get (3.2).
We will next show that limN_ uL’N u uniformly on compact subsets of 1 Z.

We will need the following lemma.
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LEMMA 3.3. Let C., m., n.) e At, and N> O. Then C. A N, m., n.) AL,N and

lim E e-s U( Cs ^ N) ds E e-3s U( Cs) ds.

We first prove the above claim and then we present the proof of Lemma 3.3. To
this end, fix (Xo, Yo, Zo) fl x Z and let (C., m., n.) AL be an e-optimal policy. Then

ut,(Xo, Yo, Zo) <= E e-su(c) ds + e.

On the other hand, Lemma 3.3 yields that, for each N > 0, (C. ^ N, rn., n.) A/.N
and

E e-3U(C)ds<=E e-3U(C^N) ds+e for N>-_N(e).

Combining the last two inequalities yields

ut,(xo,Yo, Zo)<-_E e-U(C^N) ds+2e<-ut,’N(xo,Yo, Zo)+2e forN>=N(e);

hence Ut,’N(Xo, YO, ZO) is a nondecreasing sequence that converges to ut,(Xo, Yo, Zo).
Since both u t‘’N and ut‘ are continuous functions, Dini’s theorem implies that u t‘’N - ut‘
locally uniformly.

Proof of Lernrna 3.3. The fact that (C. ^ N, rn., n.) At‘,u follows immediately
from the definitions of At, and At,,u.

On the other hand, since U is increasing, bounded and U(0)=0,

ONE e-U(C)ds-E e-W(C^N) ds<-llWllooE e-ds
C>= N}

To conclude we need to show that

lim Eli e-s ds] =0.

However,

NE e- ds <- E e-SCs ds <-_ E e-SCs ds < oo,
Cs>=N} Cs>=N}

where the last inequality follows from the facts that (C., m., n.) e At, and/3 > r. Hence

e-ds < 17 e-SCds.
C.

Letting N- oo, we conclude.
Finally, we show that ut, is a viscosity subsolution of (3.4) on

D-,yUt,(xo, Yo, zo). Then there exists (cf. [4]) a smooth function "such that (xo, Yo, o) Po, ,(xo, Yo, zo) qo, and ut,- has a strict local maximum
at (xo,yo, zo). Then (ut,’-4)(.,.,zo) has a local maximum at (x,yN, zo) and
(x, y, zo) (xo, Yo, zo). Moreover,
ut‘’ (x, yN, zo) <- rxp.+ zoYqo+ max [-cp + U(c)] + max [-(1 + 1)Po+ q.]m

c0 0NmNL

+ max [(1 )Po qo] n +u’(x, y, o).
ONnNL

Sending N m, we get that u is a viscosity subsolution of (3.4).
(ii) We now prove that u’ is a supersolution

and (p., qo) D,u’(xo, Yo, o). Since, by Lemma 3.2(i), D+u
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the properties of D+ and D- yield that u L’N is ditterentiable in the X-direction at the
point (Xo, Yo, Zo) (cf. [4]). Let be defined as in (i). There exists a continuous function
h with h(0)=0 such that

u L’rq (x, y, Zo) >-_ (x, y, Zo) + IX Xolh(lX Xo[).
Using again the dynamic programming principle, we get

(Xo, Yo, Zo) >- sup E e-3su(c,) ds + e-3(Xo, Yo, Zo)
(3.6)

/ e-lXo- Xolh(lXo- Xo[)|.
Let (C, m, n) A/.v with C, Co, mt mo, nt no, I >= 0 and r 0 ^ rl where 0 T ^oinf {r > 0: x 0} ^ inf {z > 0" yO, 0} and x, yO, are the corresponding trajectories.
Using Dynkin’s formula and (3.6), we get

0>= CIE e-’ (ers-1) Xo+ L +(e -1) yo+ ds

AT1
+c e-s) ds

AT1
+E [U(Co)-PoCo+rxoPo+Zoyoqo+[-(l+.)po+qo]mo

+ [(1 x)po- qo]no + (xo, Yo, o) (xo, Yo, zo)] ds

for some constants C and C. Dividing by [0 1], sending T 0 and using that
u’(xo, Yo, zo)= (xo, Yo, zo) we obtain (3.3). Finally, working similarly as in (i) we
can show that u is a viscosity supersolution of (3.4) in

THEOREM 3.2. Let u and v be bounded, uniformly continuous such that u is a
viscosicy subsolution of (3.4) on and v is a viscosity supersolution of (3.4) in . en
uNvon.

Proo Let X=(x,y)efi, P=(p,q)RxR and H’fixZxRR be given by

H(X,z,P)=rxp+zyq+F(p)+ max [(l+)p-q]m+ max [-(1-)p+q]n,
0NmNL ONnNL

where F(p) maxc>_o [-cp+ U(c)], p > O.
We argue by contradiction; i.e., we assume that

(3.7) max sup [u(X, z)-v(X, z)] > 0.
zZ

Then for sufficiently small 0 > 0

(3.8) max sup [u(X, z)-v(X, z)-OIXI2]>O.
zZ X(

Indeed, if not, there would be a sequence 0,$0 such that maxzz supxa[u(X, z)-
v(X, z) O lXl=] <- o, which in turn yields maXzz supxa[u(X, z)-v(X, z)]=<0,
contradicting (3.7).

Since the process z takes a finite number of values and u and v are bounded, we
can find points Zo e Z and X e f such that

(3.9) u(J?, Zo)-01 ?12- max sup [u(X, z)-v(X, z)-01x121.
zeZ Xe

In what follows we omit Zo.
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Next, for e > 0 we define 0" 12 x 12 - by

6(X, Y) u(X) v(Y)
Y-X
-4(1,1)

2

and we claim that q attains its maximum at a point, say (Xo, Yo), such that for e small
and some g> 0

(3.10) IYo-Xol-< &.
Indeed, observe that q is bounded. Let (X,, Y,) be a maximizing sequence. Then

lim u(X)-v(Y)- Y-’X-4(1, 1) -OIXI =sup (X, Y)<+oe.

However,

(3.11) sup b(X, Y)_-> (, 2+4e(1,

where to is the modulus of continuity of v and k > 0. Using (3.8) and (3.9), we see
that for e sufficiently small

(3.12) sup p(X, Y) > 0.

We also observe that if

u(X)-v(Y)- -4(1,1)
2

as nc we contradict (3.12). Therefore

u(X)-v(Y.)>-_ -4(1,1)
2

which implies (3.10). On the other hand, the choice of (X,, Y,) and (3.12) yield that
the sequence (X,), and, in view of the above observation, (Y,) are bounded as n oo.
Hence, along subsequences, (X,, Yn) converge to a maximum point of q which we
denote by (Xo, Yo).

Moreover, (3.10) and (3.11) give
2

(3.13) Y-X-4(1, 1) <-to,(ke)+w(e).

We can choose e small such that w,(ke)+ to(de)_-< 1. Then there is a vector e with
]e _-< 1 such that Yo Xo+ 4e(1, 1) + ee, which implies that Yo 12.

We now consider the functions

6( Y)= u(Xo)-

4(x) v(ro)+

-4(1,1)

-4(1,1)

2

2

+01xl

Since u-b has a maximum at Xo e 11 and v-b has a minimum at Yo e 11, applying
the definition of viscosity solution as in Lemma 3.1, we get

flu(Xo, Zo) <- H(Xo, Zo, P + 20Xo) + E qoz,[u(Xo, z) u(Xo, Zo)]
Zo =/:
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and

v( Yo, Zo) >- H( Yo, Zo, P) + Y qzoz’[ v( Yo, z) v( Yo, Zo)],
Z0,

where

2 (go-XoS 8

Combining the above inequalities yields

-4(1, 1)).
/3[u(Xo, Zo) v( Yo, Zo)] --< [H(Xo, Zo, P + 20Xo) H( Yo, Zo, P)]

(3.14) + Y qzoz,[u(Xo, z)-u(Xo, zo)-v(Yo, z)+v(Yo, zo)].
ZO :7.’

On the other hand, from the definition of H, we have that

]H(Xo, Zo, P + 20Xo) H( Yo, Zo, P)]
(3.15)

=< IH(Xo, Zo, P + 20Xo) H(Xo, Zo, P)[ + KIXo- Yol Ipl
for some K > 0. Let Xo (xo, Yo) and P (p, q). Then

H(xo, yo, Zo, 20xo+p, 20yo+ q)- H(xo, Yo, Zo, p, q) <- 20[rx,+ zy,]

+ L[oax [(1 + ,)(20Xo+p)- (20yo + q)]m] [(1 + ,)p-

+[[o=,tmax [-(1-1)(20xo+p)+(2Oyo+q)]n]-[-(1-)p+q]L]
<= COLIXol + 20[rx+ zy] <= OlXol2 + OCZL2 + 20[rx + zy]

<= OlXol2 / c2n20,
for some C > 0, where we used that K-> r, (2.1), and that F is a decreasing function.
Using the above inequality and (3.10), (3.13), and (3.15), we get

(3.16)
IH(Xo, Zo, P + 20Xo)- H( Yo, Zo,

<= 2Kf[w({e + w(ke )]1/2 q../0 ]Xo12 q.. C2L20.

Moreover, from (3.10) we have

u(Xo, z)- v(Xo, z)<= u(Xo, Zo)- v( Yo, Zo) + w(ke),

which combined with (3.11) gives

[u (Xo, z)- u(Xo, Zo)]-[ v( o, z)- v( Yo, Zo)]--< o(k)+ o,(&).

Finally, using that O=< qz,<= 1 and Yz,Z qzz,-1, we get

(3.17) u(Xo, zo)-v(Vo, zo)<=w(ke)+w(fe).

Using now (3.14), (3.16), and (3.17), we have

/3 [u(Xo, Zo) v( Yo, Zo)- OlXo123 -< 2K{[w,)(&)+ oov(ks,)] 1/2

if- C2L20 q- %(ke) + w({e),

and, using the definition of (Xo, Yo),

_ma_x O(X, y)_<_ [ ] C2L20
xa -fi
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Then, however, (3.9) and (3.11) yield

max sup [u(X, z)- v(X, z) oIxl
zZ X(

1
<= w(ke +-2 [2Kg[w(ge) + oo,( ke )]1/2 + (.Or ke + oo(ge )]+

which, in turn, implies that

u(x, z)- v(x, z) olxl
Letting 0 0 contradicts (3.7).

C2L2

O,

Remark 3.1. Although it was not necessary for the above proof, but it will be
used later on, we show that

(3.18) lim lim OlXo(O e)12= 0.
oo $o

Indeed, from (3.11) we have

0(Xo, Xo) + o%(ke >-_ u() v( olX’l=- co( ke ),

which yields

(3.19) u(Xo, Zo)-v(Xo, Zo)-OlXol=e[u( , Zo)-O];l]-2oo(ke),
and, in turn sup>o IXo(0, e)l < -Therefore there exists ’o(0) such that lim_o IXo(0, s)l= 7o(0), otherwise we
contradict (3.19). The limit here is taken along subsequences, which to simplify notation
we denote the same way as the whole family. By sending s $0, (3.19) combined with
(3.9) implies

(3.20) U(2o, Zo)- V(2o, Zo)- 012012_>- u(X, z)- v(X, z)- OIXI VX ,, Yz Z.

We now send 0- O. If limo,o 01ol2= a O, again along subsequences, (3.20) yields

max sup [u(X, z) v(X, z)] a _-> max sup [u(X, z) v(X, z)].
zeZ fi zeZ

Therefore maxz supc [u(X, z)-v(X, z)] <0, which contradicts (3.7).
PROPOSITION 3.1. As L- oo, u w e C(().
Proof Fix (Xo, Yo) e ft. The sequence u(xo, Yo) is increasing as L oe, therefore

lim_ u(xo, Yo) W(Xo, Yo) exists. Moreover, since the functions u are continuous
at (Xo, Yo) uniformly in L, w is continuous on

4. In this section we prove that w coincides with the value function u C(I)).
We first show that u is a constrained viscosity solution of a certain variational inequality
and second that this variational inequality has a unique constrained viscosity solution.

THEOREM 4.1. The value function u is a constrained viscosity solution of
min [(1 + A)u Uy, -(1 tx)u, + u, u rxu ZyUy F(u) u(z)] 0

(4.1)
V(x, y, z) (0, +) (0, +c) Z with u(0, 0, z) 0, Vz Z.

Proof We first show that u is viscosity subsolution of (4.1) on . To this end, let
(Xo, yo, Zo) be fixed with (Xo, yo) , consider (Po, qo) D.U(Xo, Yo, Zo) and define
"Z- by

(x, y, z)= U(Xo, Yo, z)+pz(X Xo) + qz(Y Yo),
where (Pz, qz) D/ U(Xo, Yo, z) Lemma 3.2 yields(x,y)

(4.2) u(x, y, z) <= dp(x, y, z).

C2L2

0 VXel) and VzeZ.
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We are going to show that

(4.3) min 1 + A)pzo qzo -( 1 tx )pzo + qzo flu rxoPzo ZoYoqzo F(Pzo) ou Zo) <= 0
where F(p)=maxc>_o[-cp+ U(c)].

If (1 + A)pzo qzo <- 0 or -(1 -/X)pzo + qzo <= O, the above inequality is obvious. So let
us assume that

(4.4) (1 +A)po-qzo>O and -(1-1X)pzo+qzo>O.
In the following, we are first going to assume that the control C is such that 0-< C, -< N
for almost every => 0, and then we will remove the upper bound. Since the arguments
are similar to the ones used in Theorem 3.1, we proceed as if there is no bound on C.
Later, we will mention when we use this upper bound.

Applying the dynamic programming principle at the point (Xo, yo, Zo) with stopping
time 0 (1/g) ^ ’1 min { 1/g, ’1}, where - is the first jump time of z,, we obtain

u(xo, 3’o, zo) <- E e-’U( Ce,) ds + e-u e xo- e ds

(4.5)

where (C Me, Ne) is an 1/g-optimal policy and

iomeo e dMf, trioe= exp (-zos) dM

and

rto e dNf, t$oe exp (-ZoS) dNe.

Let r_-> Zo (the case r < Zo is treated similarly). Then

(4.6) moe _-< tfieo and noe _<- toe.
Since the control (C e, Me, Ne) is admissible, we also have

(4.7)

and

(4.8)

Moreover,

(4.9)

and, similarly,

(4.10)

0

Xo- e-rSCes ds>-(l +A)meo-(1-tx)neo
o

(4.11)

yo_-> -rfioe + toe

tfieo=<(exp (r-zo)O) e dMf <- exp g meo

From (4.7)-(4.10) we get

Xo+ (1 -/x)yo
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where c>0 is such that (l+A)-(1-lx)exp((r-zo)/{)>--c for { sufficiently large.
Similarly,

2Xo+ (1 + A)yoexp ((r Zo)/{)Xo+(1 + A)yo<(4.12) neo=<
for t’ sufficiently large.

Moreover, since

Iomeo e dMe >- exp (-r/g)(Meoo Meo),

using (4.11) we obtain

(4.13) Meo-Meo<-exp(r/g) x+(1-x)Y<-kl
C

for some kl > 0, and, similarly

(4.14) Neo Noe--< k2
for some k2 > 0.

Therefore there exist constants C, K1 and K2 such that

fo K(4.15) tfieo- meo< E s dMe <-

and

(4.16) eo- n <= K2

Using that u is a nondecreasing function, r => Zo, (4.5), and (4.15), we have

U(Xo, Yo, Zo) <- UIIE(O)+ E[e-u(er(xo+ 2o), e"(Yo + f’o), Zo)

(4.17)

where

-e-U(Xo+ o, Yo + f’o, Zo)]

+ E[e-tU(Xo+ o, Yo + I7o, Zo)],

J?o =-( +;),o+ (I+A)K +(1-/)o

and

?o =,o- o
Let o) be the modulus of continuity of u. Then

E[e-t3u(e"(Xo+ o), er(yo+ f"o), Zo)- e-t3U(Xo+ o, yo+ f’o, Zo)]
(4.18)

<-- K3[llulloP(zo Zo)/ w(er 1)]

for some positive constant K3.
Moreover, (4.2), (4.17), and (4.18) yield

U(Xo, Yo, Zo) <= UIIE(O)/ K3EIlullP(zo Zo)+oo(er- 1)]

+ E e-[U(Xo, Yo, Zo)+ pzoO + qzo f’o 3.
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Since P[zo # Zo] 0(0), we get

E[((1 + A)Pzo- qzo)mo + (-(1 -/z)pz + qzo) eo]

=< K3[ ooE (0) + w (e 1) + u E(0) + (1 +A)K

Finally, in view of (4.4), we can find positive constants M1 and M2 such that

and

From (4.2) and (4.5) we get

U(xo, Yo, Zo)<=E e-U(Ce) ds+E[e-d(xeo,Yeo,Zo)]+,o

where Xeo, yeo are given by (1.3) with control (Ce, Me, Ne). Using Dynkin’s formula,
we have

0

U(Xo, Yo, Zo) <= E e-t3sU( Ce) ds + U(Xo, Yo, Zo)
o

+E e-ts[-/3(x, y Zo) + rxe Pzo + zoyqzo- C Pzo

+(xf, yf, zo)]ds+E e-S[(-(l+A)pzo+qo)dMe

’o 1
+ E e-ts((1-tx)po-qzo) dNe]+g-5.

o

Since Mt and Nt are nondecreasing processes, using (4.4), we get

O E e-t3"U(Ce) as+ E [rpzo(Xf -Xo)+ zoqo(yf -Yo)] ds

+ E e-t3s[-BU(Xo, Yo, Zo)+ rPoXo

1
+ ZoqzoYo-PzoCe+ y, Zo)] ds +-.

Let

A(O) E [rPo(Xe-Xo) + zoqo(Yf -Yo)] ds

and

B(O)=E e-t[-U(xo,Yo, Zo)+rXoPzo+ZoYoqzo-PzoCe+(x,ye,Zo)]ds.
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Then

A(O):E (rPzo[(erS-1)Xo-(l+A)e ms -(1-/x) e

+ Zoqzo[(exp (ZoS)- 1)yo+ (exp (Zos))rfie- (exp (ZoS))e]) ds.

Since E ehSke ds<-(1/g) eh/eE(keo)<=(K/g) eh/e[E(O)+w(l/g)+ 1/t’], where h is r
or Zo and ke is me, ms, ns, or ns, we have

lim
1 Io e-hsr(4.19)

-,oo E(O)
E ds=O.

Therefore lime_oo A(O)/E(O) =0.
Relations (4.7), (4.12), and/3 > r give

(4.20) e_mCes ds<__Xo+
(1-/x)[2Xo+ (1 + A)yo].

C

On the other hand,

(xes, yes, Zo) qz,z[Cb(xe ye z,)_dp(xe yes, Zo)]
Z5

Y qz’z[U(xo, Yo, Z’)+Pz’(xe-Xo)+qz’(Ye-Yo)s
Z’Z

U(Xo, Yo, Zo) pzo(Xs Xo) qzo(Y( Yo)].

Using that Z is a finite set and (4.19), we get

E e-m*(xe, y, Zo) ds
04.21 lim .u Xo, Yo, Zo).

e-oo E(O)

Finally, from (4.19)-(4.21) we conclude that

flU(Xo, Yo, Zo) <= rXoPzo + ZoYoqo + U(Xo, Yo, Zo) + F(Pzo).
This last conclusion follows along the lines of the analogous argument in the proof
of Theorem 3.1. To complete the proof, we need to remove the bound on C,, which
can be done again as in Theorem 3.1.

We finally show that u is a supersolution of (4.1) in f. To this end, fix (Xo, Yo, Zo) e
f x Z and consider (Pzo, qzo)e D-(x.y)U(Xo, Yo, Zo). Then there exists a smooth function

" ,9t x N x Z - N such that u 0 has a strict minimum at (Xo, Yo, Zo), U(Xo, Yo, Zo)
q(Xo, Yo, Zo) and Po Ox(Xo, Yo, Zo), qzo q,y(Xo, Yo, Zo). Then

(4.22) q(xo, yo, zo) >- sup e-mU( Cs) ds + e-q(xo, Yo, Zo)
A

In particular, if we use a control (C, M, N) such that C =0, for all _-> 0, Mo M,
No N and M N 0, for all > 0 in (4.22), we get

This yields

(4.23)

O(Xo, Yo, Zo) --> q(Xo- (1 + A)M + (1 -/z)N, yo+ M- N, Zo).

min [(1 + h)O,(Xo, Yo, Zo)- Oy(Xo, Yo, Zo), -(1-/z) ff(Xo, Yo, Zo)

+ qy (Yo, Yo, Zo)] -> 0.
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Now if we use a constant control (Co, 0, 0) in (4.22), we obtain

(xo, yo, zo)>- E e-’U( Cs) ds+ e-(Xo, Yo, Zo)

oo 0}, where g> 0 and x, is the corresponding trajectory.where 0 (1 / g) ^ inf { z" x,
We proceed as in Theorem 3.1 and we obtain

(4.24) U(Xo, Yo, Zo) -->- rXoPzo + zoYoqzo + F(Pzo) + U(Xo, Yo, Zo).

Combining (4.23) and (4.24), we get

min [(1 + A )pzo- qo, -(1 tX)Pzo- qo, u rXoPzo- ZoYoqzo

F(Pzo) U(Xo, Yo, z0)] ->- 0. [-1

THEOREM 4.2. The variational inequality (4.1) has a unique constrained viscosity
solution in the class of bounded uniformly continuous functions.

Proof We are going to show that if v and u are respectively a supersolution in
f and a subsolution on 1 of (4.1) then v -> u on f. To end this, we follow the strategy
of Ishii [9]. Let b" f o be defined by b(x, y) CIX + C2y + k, where C1, C2, k are
positive constants satisfying

(1 A,) C < C2 < (1 +/)C

and

3k > rC1 + KC2+ F(C1).

Let X=(x,y),, P=(p,q)x, and H’xZxx2o given by

H(X, z, v, P) min [(1 + A)p q, -(1 tx)p + q, 3v rxp zyq F(p) v].

An easy calculation shows that there exists a positive constant M such that

(4.25) H(X,z, ck, Vck)>=M>O, VXf\{O,O},zZ.

Let 0(0,1) and define vo=Ov+(1-O)ck on OZ. The functions Vo are bounded
and uniformly continuous. Moreover, since the map (v, P)--> H(X, z, v, P) is concave,
4’ satisfies (4.25) and v is a supersolution in f, we have that

H(X, z, Vo, VVo)>= OH(X, z, v, Vv)+(1-O)H(X, z,
(4.26)

_-> M(1- 0)>0, V(X,z)xZ

holds in the viscosity sense. Therefore vo is a supersolution of H(X, z, vo, Vvo)
M(1- O) in . We now need the following lemma.

LEMMA 4.1. Let w, v" x Z-> be uniformly continuous and nondecreasing with
respect to x. If w is a subsolution ofH(X, z, w, V w)= 0 on and v is a supersolution of
H(X, z, v, V v) c in for some c > O, v is boundedfrom below and w is bounded, then
v>=won f.

Proof Since the proof is similar to the one of Theorem 3.2, we only show the main
steps. We assume that

(4.27) max sup [w(X, z)-v(X, z)] > 0.
zZ X(

This implies that for sufficiently small 0 > 0

(4.28) max sup [w(x, z)-v(x, z)-olxl=]>o.
zZ X
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We can find points Zo Z and X 12 such that

(4.29) w(, Zo)- v(N, Zo)- 0IN[2= max sup [w(X, z)- v(X, z)- olxl ],
zZ

Next, we consider the function q’O x O R with

(X, Y)= w(X, Zo)- v( Y, Zo)-
Y-X
-4(1,1)

2

for e > 0 and we look at its maximum denoted by (Xo, Yo). Working as in Theorem
3.2 we can show that Yo f. Moreover, from Remark 3.1 we have that

(4.30) lim lim OlXol=- o.
o+o +o

We now consider the functions

ch( Y) w(Xo) -4(1,1)
2

6(x) V(o)+ -4(1,1)
2

+olxl

Since w-4 has a maximum at Xo and v-b has a minimum at Yo, from Lemma 3.1
we have

H(Xo, Zo, w(Xo, Zo), P + 20Xo) -< 0

and

where

( Yo, Zo, v( Yo, Zo), P) _-> c,

2 (Yo- Xo 4(1,1)).
Combining the above inequalities yields

(4.31) H(Xo, zo, w(Xo, zo),P+2OXo)-H(Yo, Zo, V(Yo, zo),P)<=-c.

Let Xo (Xo, Yo), Yo (o,)7o) and P (p, q). Using the form of H, (4.31)
becomes

(4.32)

min [(1 + A)(p + 20Xo)- (q + 20yo), -( 1 -/x)(p + 20Xo)+(q + 20yo),

w- rxo(p + 20Xo)- ZoYo(q + 20yo)- F(p + 20Xo)- w(Xo, Zo)]

-min [(1 + A)p -q, -(1 -z)p + q, fly- rop -Zooq

Z(p,)- ..v( Yo, Zo)] --< -c.

We now look at the following cases.
Case (i). H(Xo, Zo, w(Xo, Zo),

Then (4.32) yields
P + 20Xo) (1 + A)(p + 20Xo) -(q + 20yo).

(1 + A)20Xo 20yo <- -c.

Using (4.30), we get a contradiction.
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Case (ii). H(Xo, Zo, x(Xo, Zo), P +20Xo)=--(1--1)(pe+2OXo)+(q +20y0).
In this case, (4.32) yields

20[-(1-1.,)xo+ Yo] <- -c,

which contradicts (4.30).
Case iii).

H(Xo, Zo, w(Xo, Zo), P + 20Xo) flw- rxo(p + 20Xo)- ZoYo(q + 20yo)

F(p + 20Xo) w(Xo, Zo).

Then (4.32) yields

fl w(Xo, Zo) v( Yo, Zo) + c <= r(xo o)P + zo(Yo .90)q + F(p + 20xo)

F(p)+ w(Xo, Zo)- v( Yo, Zo).

Working similarly as in the proof of Theorem 3.2, we get

 [w(Xo, zo)- v( Yo, zo)]+ c=< 01Xol + 2K{[w (de) + w(ke)]’/2+ w (ke) +

Again working as in the proof of Theorem 3.2, sending first e -> 0, then 0 --> 0, and using

(4.30), we contradict (4.27).
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