
Investment and valuation under backward and

forward dynamic exponential utilities in a

stochastic factor model

Marek Musiela∗ and Thaleia Zariphopoulou†

BNP Paribas, London and The University of Texas at Austin

First version: January 2004
This version: June 2006

Abstract

We introduce a new class of dynamic utilities that are generated for-

ward in time. We discuss the associated value functions, optimal invest-

ments and indifference prices and we compare them with their traditional

counterparts, implied by backward dynamic utilties.

1 Introduction

This paper is a contribution to integrated portfolio management in incomplete
markets. Incompleteness stems from a correlated stochastic factor affecting the
dynamics of the traded risky security (stock). The investor trades between a
riskless bond and the stock, and may incorporate in his portfolio derivatives and
liabilities. The optimal investment problem is embedded into a partial equilib-
rium one that can be solved by the so called utility-based pricing approach. The
optimal portfolios can be, in turn, constructed as the sum of the policy of the
plain investment problem and the indifference hedging strategy of the associated
claim.
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In a variety of applications, the investment horizon and the maturities of the
claims do not coincide. This misalignment might cause price discrepancies, if
the current optimal expected utility is not correctly specified. The focus herein
is in exploring which classes of utilities preclude such pathological situations.

In the traditional framework of expected utility from terminal wealth, the
correct dynamic utility is easily identified, namely, it is given by the implied
value function. Such a utility is, then, called self-generating in that it is indis-
tinguishable from the value function it produces. This is an intuitively clear
consequence of the Dynamic Programming Principle. There are, however, two
important underlying ingredients. Firstly, the risk preferences are a priori spec-
ified at a future time, say T, and, secondly, the utility, denoted by UB

t (x; T ),
is generated at previous times (0 ≤ t ≤ T ). Herein, T denotes the end of the
investment horizon and x represents the wealth argument. Due to the backward
in time generation, T is called the backward normalization point and UB

t (x; T )
the backward dynamic utility.

Albeit their popularity, the traditional backward dynamic utilities consid-
erably constraint the set of claims that can be priced to the ones that expire
before the normalization point T . Moreover, even in the absence of payoffs and
liabilities, utilities of terminal wealth do not seem to capture very accurately
changes in the risk attitude as the market environment evolves. In many as-
pects, in the familiar utility framework utilities ”move” backwards in time while
market shocks are revealed forward in time.

Motivated by such considerations, the authors recently introduced the no-
tion of forward dynamic utilities (see Musiela and Zariphopoulou (2005a) and
(2005b)) in a simple multi-period incomplete binomial model. These utilities,
like their backward counterparts, are created via an expected criterion but, in
contrast, they evolve forward in time. Specifically, they are determined today,
say at s, and they are generated for future times, via a self-generating criterion.
In other words, the forward dynamic utility, UF

t (x; s) , is normalized at present
time and not at the end of the generic investment horizon.

In this paper, we extend the notion of forward dynamic utilities in a diffusion
model with a correlated stochastic factor. For simplicity, we assume that the
utility data, at both backward and forward normalization points, are taken to
be of exponential type with constant risk aversion. This assumption can be
relaxed without losing the fundamental properties of the dynamic utilities. We,
also, concentrate our analysis to European-type liabilities so that closed form
variational results can be obtained.

The two classes of dynamic utilities, as well as the emerging prices and invest-
ment strategies, have similarities but, also, striking differences. As mentioned
above, both utilities are self-generating and, therefore, price discrepancies are
precluded in the associated backward and forward indifference pricing systems.
A consequence of self-generation is that an investor endowed with backward and
forward utilities receives the same dynamic utility across different investment
horizons. It is worth noting that while the backward dynamic utility is unique,
the forward one might not be.

The associated indifference prices have very distinct characteristics. Back-

2



ward indifference prices depend on the backward normalization point, (and,
thus, implicitly on the trading horizon) even if the claim matures before T .
However, forward indifference prices are not affected by the choice of the for-
ward normalization point. For the class of European claims examined herein,
backward prices are represented as nonlinear expectations associated with the
minimal relative entropy measure. On the other hand, forward prices are also
represented as nonlinear expectation but with respect to the minimal martin-
gale measure. The two prices do not coincide unless the market is complete.
This is a direct consequence of the fact that the internal market incompleteness
- coming form the stochastic factor - is processed by the backward and forward
dynamic utilities in a very distinct manner.

The portfolio strategies related to the backward and forward utilities have
also very different characteristics. The optimal backward investments consist
of the myopic portfolio, the backward indifference deltas and the excess risky
demand. The latter policy reflects, in contrast to the myopic portfolio, the incre-
mental changes in the optimal behavior due to the movement of the stochastic
factor. The forward optimal investments have the same structure as their back-
ward counterparts but do not include the excess risky demand.

The paper is organized as follows. In Section 2, we introduce the investment
model and its dynamic utilities. In Section 3, we provide some auxiliary techni-
cal results related to the minimal martingale and minimal entropy measures. In
Sections 4 and 5, respectively, we construct the backward and forward dynamic
utilities, the associated prices and the optimal investments. We conclude in Sec-
tion 6, where we provide a comparative study for integrated portfolio problems
under the two classes of dynamic risk preferences.

2 The model and its dynamic utilities

Two securities are available for trading, a riskless bond and a risky stock whose
price solves

dSs = µ (Ys)Ssds + σ (Ys)SsdW 1
s (1)

for s ≥ 0 and S0 = S > 0. The bond offers zero interest rate. The case of
(deterministic) non-zero interest rate may be handled by straightforward scaling
arguments and is not discussed.

The process Y, to be referred to as the stochastic factor, is assumed to satisfy

dYs = b (Ys) ds + a (Ys) dWs (2)

for s ≥ 0 and Y0 = y ∈ R.
The processes W 1 and W are standard Brownian motions defined on a prob-

ability space (Ω,F , (Fs) , P) with Fs being the augmented σ-algebra. We assume
that the correlation coefficient ρ ∈ (−1, 1) and, thus, we may write

dWs = ρdW 1
s +

√

1 − ρ2dW 1,⊥
s (3)

3



with W 1,⊥ being a standard Brownian motion on (Ω,F , (Fs) , P) orthogonal to
W 1. For simplicity, we assume that the dynamics in (1) and (2) are autonomous.
We denote the stock’s Sharpe ratio process by

λs = λ (Ys) =
µ (Ys)

σ (Ys)
. (4)

The following assumption will be standing throughout.
Assumption 1 : The market coefficients µ, σ, a and b are assumed to be

C2 (R) functions that satisfy, |f (y)| ≤ C (1 + |y|) for f = µ, σ, a and b, and
are such that (1) and (2) have a unique strong solution satisfying Ss > 0 a.e.
for s ≥ 0. There also exists ε > 0 such that σ (y) > ε, for y ∈ R.

Next, we consider an arbitrary trading horizon [0, T ], and an investor who
starts, at time t0 ∈ [0, T ] , with initial wealth x ∈ R and trades between the
two securities. His/her current wealth Xs, t0 ≤ s ≤ T , satisfies the budget
constraint Xs = π0

s+πs where π0
s and πs are self-financing strategies representing

the amounts invested in the bond and the stock accounts. Direct calculations,
in the absence of intermediate consumption, yield the evolution of the wealth
process

dXs = µ (Ys) πsds + σ (Ys)πsdWs (5)

with Xt0 = x ∈ R. The set A of admissible strategies is defined as A =
{

π : π is Fs − measurable, self-financing and EP

(

∫ T

0
σ2 (Ys)π2

sds
)

< ∞
}

. Fur-

ther constraints might be binding due to the specific application and/or the form
of the involved utility payoffs. In order, however, to keep the exposition simple
and to concentrate on the new notions and insights, we choose to abstract from
such constraints. We denote by D the generic spatial solvency domain for (x, y) .

We start with an informal motivational discussion for the upcoming notions
of backward and forward dynamic utilities. In the traditional economic model
of expected utility from terminal wealth, a utility datum is assigned at a given
time, representing the end of the investment horizon. We denote the utility
datum by u (x) and the time at which it is assigned by T . At t0 ≥ 0, the
investor starts trading between the available securities till T . At intermediate
times t ∈ [t0, T ], the associated value function v : D × [0, T ] → R is defined as
the maximal expected (conditional on Ft) utility that the agent achieves from
investment. For the model at hand, v takes the form

v (x, y, t) = sup
A

EP (u (XT )|Xt = x, Yt = y) , t ∈ [t0, T ] (6)

with the wealth and stochastic factor processes X , Y solving (5) and (2).
The scope is to specify v and to construct the optimal control policies. The

duality approach can be applied to general market models and provides char-
acterization results for the value function, but limited results for the optimal
portfolios. The latter can be constructed via variational methods for certain
classes of diffusion models. To date, while there is a rich body of work for
the value function, very little is understood about how investors adjust their
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portfolios in terms of their risk preferences, trading horizon and the market
environment.

i) Integrated models of portfolio choice

In a more realistic setting, the investor might be interested in incorporating
in his portfolio derivative securities, liabilities, proceeds from additional assets,
labor income etc. Given that such situations arise frequently in practice, it is
important to develop an approach that accommodates integrated investment
problems and yields quantitative and qualitative results for the optimal portfo-
lios. This is the aim of the study below.

To simplify the presentation, we assume, for the moment, that the investor
faces a liability at T , represented by a random variable CT ∈ FT . We recall
that FT is generated by both the traded stock and the stochastic factor and
that the investor uses only self-financing strategies.

In a complete market set-up (e.g. when the processes S and Y are perfectly
correlated) the optimal strategy for this generalized portfolio choice model is
as follows: at initiation t0, the investor splits the initial wealth, say x, into the
amounts EQ (CT | Ft0) and x̃ = x − EQ (CT | Ft0), with EQ (CT | Ft0) being the
arbitrage-free price of CT . The residual amount x̃ is used for investment as
if there was no liability. The dynamic optimal strategy is, then, the sum of
the optimal portfolio, corresponding to initial endowment x̃ and the hedging
strategy, denoted by δs (CT ) , of a European-type contingent claim written on
the traded stock, maturing at T and yielding CT . Using ∗ to denote optimal
policies, we may write

πx,∗
s = πx̃,∗

s + δs (CT ) with x̃ = x − EQ (CT | Ft0) (7)

This can be established either by variational methods or duality. This remark-
able additive structure, arising in the highly nonlinear utility setting, is a direct
consequence of the ability to replicate the liability. Note that for a fixed choice
of wealth units, the second portfolio component is not affected by the risk pref-
erences.

When the market is incomplete, similar argumentation can be developed by
formulating the problem as a partial equilibrium one and, in turn, using results
from the utility-based valuation approach. The liability may be, then, viewed as
a derivative security and the optimal portfolio choice problem is embedded to an
indifference valuation one. Using payoff decomposition results (see, for exam-
ple, Musiela and Zariphopoulou (2001 and 2004a), Stoikov and Zariphopoulou
(2004) and Monoyios (2006)), we associate to the liability an indifference hedg-
ing strategy, say ∆s (CT ) , that is the incomplete market counterpart of its
arbitrage-free replicating portfolio. Denoting the relevant indifference price by
νt (CT ), we obtain an analogous to (7) decomposition of the optimal investment
strategy in the stock account, namely,

πx,∗
s = πx̃,∗

s + ∆s (CT ) with x̃ = x − νt0 (CT ) (8)
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Because the indifference valuation approach incorporates the investor’s risk
preferences, the choice of utility will influence - in contrast to the complete
market case - both components of the emerging optimal investment strategy.
Note, however, that due to the dynamic nature of the problem, utility effects
evolve both with time and market information. In order to correctly quantify
these effects, it is imperative to be able to specify the dynamic value of our
investment strategies across horizons, maturities and units. As the analysis
below indicates, the cornerstone of this endeavor is the specification of a dynamic
utility structure that yields consistent valuation results and investment behavior
across optimally chosen self-financing strategies.

Before we introduce the dynamic utilities, we first recall the auxiliary concept
of indifference value. To preserve simplicity, we consider the aforeintroduced
single liability CT . To calculate its indifference price, νt (CT ), for t ∈ [0, T ] , we
look at the investor’s modified utility,

vCT (x, y, t) = sup
A

EP (u (XT − CT )|Xt = x, Yt = y) (9)

and, subsequently, impose the equilibrium condition

v (x − νt (CT ) , y, t) = vCT (x, y, t) . (10)

The optimal policy is given by (8) and can be retrieved in closed form for
special cases. For example, when the utility is exponential, u (x) = −e−γx with
γ > 0, the stock’s Sharpe ratio is constant and CT = G (YT ) , for some bounded
function G, variational arguments yield the optimal investment representation

πx,∗
s = πx̃,∗

s + ρ
a (Ys)

σ (Ys)

(

∂g (y, t)

∂y

∣

∣

∣

∣

y=Ys,t=s

)

with x̃ = x − g (y, t0) , and g : R × [0, T ] → R solving a quasilinear pde, of
quadratic gradient nonlinearities., with terminal condition g (y, T ) = G (y) .

ii) Liabilities and payoffs of shorter maturities

Consider a liability to be paid before the fixed horizon T , say at T0 < T .
There are two ways to proceed. The first alternative is to work with portfolio
choice in the initial investment horizon, [t0, T ]. In this case, the utility (9)
becomes

vCT0 (x, y, t) = sup
A

EP (u (XT − CT0
)|Xt = x, Yt = y) , (11)

where we took into consideration that the riskless interest rate is zero. The
indifference value is, then, calculated by the pricing condition (10), for t ∈
[t0, T0]. However, such arguments might not be easily implemented, if at all, as
it is the case of liabilities and payoffs of random maturity and/or various exotic
characteristics.
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The second alternative is to derive the indifference value by considering the
investment opportunities, with and without the liability, up to the claim’s matu-
rity T0. For this, we first need to correctly specify the value functions, denoted,
respectively, by v̄ and v̄CT0 , that correspond to optimality of investments in the
shorter investment horizon, [t0, T0]. Working along the lines their long-horizon
counterparts, v and vCT , were defined, let us, hypothetically, assume that we are
given a utility datum for the point T0. We denote this datum by ū (x, y, T0). We
will, henceforth, use the ’−’ notation for all quantities, i.e. utilities, investments
and indifference values, associated with the shorter horizon. For t ∈ [t0, T0],

v̄ (x, y, t) = sup
A

EP ( ū (XT0
, YT0

, T0)|Xt = x, Yt = y)

and

v̄CT0 (x, y, t) = sup
A

EP ( ū (XT0
− CT0

, YT0
, T0)|Xt = x, Yt = y) .

The associated indifference value, ν̄t (CT0
) , will be, then, given by

v̄ (x − ν̄t (CT0
) , y, t) = v̄CT0 (x, y, t) .

Clearly, in order to have a well specified valuation system, we must have, for all
CT0

∈ FT0
and t ∈ [t0, T0] ,

νt (CT0
) = ν̄t (CT0

) ,

which strongly suggests that the utility datum ū (x, y, T0) cannot be exogenously
assigned in an arbitrary manner.

Such issues, related to the correct specification and alignment of intermedi-
ate utilities, and their value functions, with the claims’ possibly different and/or
random maturities, were first discussed in Davis and Zariphopoulou (1995) in
the context of utility-based valuation of American claims in markets with trans-
action costs. Recall that when early exercise is allowed, the first alternative
computational step, (cf. (11)), cannot be implemented because T0 is not a pri-
ori known. For the same class of early exercise claims, but when incompleteness
comes exclusively from a non-traded asset (which does not affect the dynamics
of the stock), and the claim is written on both the traded and nontraded as-
sets, further analysis on the specification of preferences across exercise times,
was provided in Kallsen and Kuehn (2004), Oberman and Zariphopoulou (2003)
and Musiela and Zariphopoulou (2004b). In the latter papers, the related in-
termediate utilities, and valuation condition took, respectively, the forms

ū (x, S, t) = v (x, S, t) and v̄ (x, S, t) = ū (x, S, t) ,

v̄Cτ (x, S, z, t) = sup
A×T

EP (v (Xτ − C (Sτ , Zτ ) , Sτ , τ)|Xt = x, St = S, Zt = z) ,

where T is the set of stopping times in [t0, T ] . The processes S and Z represent
the traded and nontraded assets and X the wealth process. The early exercise
indifference price of Cτ is, then, given by

v̄ (x, S, t) = v̄Cτ (x + ν̄t (C (Sτ , Zτ )) , S, z, t) .
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While the above calculations might look pedantic when a single exogenous
cash flow (liability or payoff) is incorporated, the arguments get much more in-
volved when a family of claims is considered and arbitrary, or stochastic, matu-
rities are allowed. Naturally, the related difficulties disappear when the market
is complete. However, when perfect replication is not viable and a utility-based
approach is implemented for valuation, discrepancies leading to arbitrage might
arise if we fail to properly incorporate in our model dynamic risk preferences
that process and price the market incompleteness in a consistent manner. This
issue was exposed by the authors in Musiela and Zariphopoulou (2005a) and
(2005b), who initiated the construction of indifference pricing systems based
on the so-called backward and forward dynamic exponential utilities. In these
papers, indifference valuation of arbitrary claims and specification of integrated
optimal policies were studied in an incomplete binomial case. Even though this
model set-up was rather simple, it offered a starting point in exploring the ef-
fects of the evolution of risk preferences to prices and investments. What follows
is, to a great extent, a generalization of the theory developed therein.

iii) Utility measurement across investment times

Let us now see how a dynamic utility can be introduced and incorporated
in the stochastic factor model we are interested in. We recall that the standing
assumptions are: i) the trading horizon [0, T ] is preassigned, ii) a utility datum
is given for T and iii) T dominates the maturities of all claims and liabilities in
consideration.

We next assume that instead of having the single static measurement of util-
ity, u, at expiration, the investor is endowed with a dynamic utility, ut (x, y; T ) ,

t ∈ [0, T ]. Being vague, for the moment, we view this utility as a functional, at
each intermediate time t, of her current wealth and the level of the stochastic
factor. Obviously, we must have

uT (x, y; T ) = u (x) ,

in which case, we say that ut (x, y; T ) is normalized at T . As a consequence, we
will refer to T as the normalization point. For reasons that will be apparent in
the sequel, we choose to carry T in our notation.

If a maximal expected criterion is involved, the associated value function,
denoted with a slight abuse of notation by vt, will naturally take the form

vt

(

x, y, T̄
)

= sup
A

EP (uT (XT̄ , YT̄ ; T )|Xt = x, Yt = y) ,

in an arbitrary sub-horizon
[

t, T̄
]

∈ [t0, T ] and with X , Y solving (5) and (2).
Let us now see how the generic liability CT0

∈ FT0
would be valued under

such a utility structure. For t ∈ [t0, T0], the relevant maximal expected dynamic
utility will be

v
CT0

t (x, y, T0) = sup
A

EP (uT0
(XT0

− CT0
, YT0

; T )|Xt = x, Yt = y) .
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Respectively, the indifference value, νt (CT0
; T ), must satisfy, for t ∈ [t0, T0],

vt (x − νt (CT0
; T ) , y, T0) = v

CT0

t (x, y, T0) .

Observe that because ut is normalized at T , the associated value functions will
depend on the normalization point. The latter will also affect the indifference
price νt (CT0

; T ), even though the claim matures at an earlier time.
So far, the above formulation seems convenient, and flexible enough, for the

valuation of claims with arbitrary maturities, as long as these maturities are
shorter than the time at which risk preferences are normalized. However, as the
next two examples show, it is wrong to assume that a dynamic utility can be
introduced in an ad hoc way.

In both examples, it is assumed that the terminal utility datum is of expo-
nential type, and independent of the level of the stochastic factor,

uT (x, y; T ) = −e−γx (12)

with (x, y) ∈ D and γ being a given positive constant. It is also assumed
that there is a single claim to be priced. Its payoff is taken to be of the form
CT0

= G (YT0
) , for some bounded function G : R → R+. Albeit the fact that in

the model considered herein, such a payoff is, to a certain extent, artificial, we,
nevertheless, choose to work with it because explicit formulae can be obtained
and the exposition is, thus, considerably facilitated.

Example 1: Consider a dynamic utility of the form

ut (x, y; T ) =







−e−γx T̄ < t ≤ T

−e−γ̄x 0 < t ≤ T̄ ,

with T̄ > T0, γ as in (12) and γ̄ 6= γ.
Let us now see how CT0

will be valued under the above choice of dynamic
utility. If the investor chooses to trade in the original horizon [t0, T ] , the asso-
ciated intermediate utilities are

v
0,CT0

t (x, y, T ) = sup
A

EP (uT (XT − CT0
, YT )|Xt = x, Yt = y)

= sup
A

EP

(

−e−γ(XT −CT0)
∣

∣

∣
Xt = x, Yt = y

)

.

Obviously, the discontinuity, with regards to the risk aversion coefficient of ut

will not alter the above value functions. Following the results of Sircar and
Zariphopoulou (2005) yields

νt (CT0
) =

1

γ (1 − ρ2)
ln EQme

(

eγ(1−ρ2)G(YT0)
∣

∣

∣
Yt = y

)

, (13)

with Qme being the minimal relative entropy martingale measure (see next
section for the relevant technical arguments).
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If, however, the investor chooses to trade solely in the shorter horizon
[

t0, T̄
]

,

analogous argumentation yields

v̄
0,CT0

t

(

x, y, T̄
)

= sup
A

EP

(

−e−γ̄(XT̄ −G(YT0))
∣

∣

∣
Xt = x, Yt = y

)

,

where we used the ” − ” notation to denote the shorter horizon choice. The
associated indifference price is

ν̄t (CT0
) =

1

γ̄ (1 − ρ2)
ln EQme

(

eγ̄(1−ρ2)G(YT0)
∣

∣

∣
Yt = y

)

,

and we easily deduce that, in general,

νt (CT0
) 6= ν̄t (CT0

) ,

an obviously wrong result.
Note that even if we naively allow γ = γ̄ price discrepancies will still emerge.

Example 2: Consider the dynamic utility

ut (x, y; T ) = −e−γx−F (y,t;T )

with γ as in (12) and

F (y, t; T ) = EP

(

∫ T

t

1

2
λ2 (Ys) ds

∣

∣

∣

∣

∣

Yt = y

)

,

where P is the historical measure. If the agent chooses to invest in the longer
horizon, [t0, T ], the indifference value remains the same as in (13). However, if
he chooses to invest exclusively till the liability is met, we have, for t ∈ [t0, T0],

v̄
0,CT0

t (x, y, T0) = sup
A

EP (uT0
(XT0

− G (YT0
) ; T )|Xt = x, Yt = y)

= sup
A

EP

(

−e−γ(XT0
−G(YT0))−F(YT0

,T0;T)
∣

∣

∣
Xt = x, Yt = y

)

.

Setting

ZT0
=

1

γ
F (YT0

, T0; T )

we deduce that, in the absence of the liability, the current utility is

v̄0
t (x, y, T0) = sup

A
EP

(

−e−γ(XT0
+ZT0)

∣

∣

∣
Xt = x, Yt = y

)

.

Note that, by definition, ZT0
∈ FT0

. Therefore, we may interpret v̄0
t as a buyer’s

value function for the claim ZT0
, in a traditional (non-dynamic) exponential

utility setting of constant risk aversion γ and investment horizon [0, T0]. Then,
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v̄0
t (x, y, T0) = −e−γ(x+µ̄t(ZT0))−H̃(y,t;T0)

with H̃ (y, t, T0) being the aggregate entropy function (see equation (24) in next
Section) and

µ̄t (ZT0
) = −

1

γ (1 − ρ2)
lnEQme

(

e−γ(1−ρ2)ZT0

∣

∣

∣
Yt = y

)

.

Proceeding similarly, we deduce,

v̄
CT0

t (x, y, T0) = sup
A

EP

(

−e−γ(XT0
+(ZT0

−G(YT0)))
∣

∣

∣
Xt = x, Yt = y

)

= −e−γ(x+µ̄t(ZT0
−G(YT0)))−H̃(y,t;T0)

with

µ̄t (ZT0
− G (YT0

)) = −
1

γ (1 − ρ2)
lnEQme

(

e−γ(1−ρ2)(ZT0
−G(YT0))

∣

∣

∣
Yt = y

)

.

Applying the definition of the indifference value, we deduce that, with regards
to the shorter horizon,

ν̄t (G (YT0
)) = µ̄t (ZT0

) − µ̄t (ZT0
− G (YT0

))

=
1

γ (1 − ρ2)
ln

EQme

(

e−γ(1−ρ2)(ZT0
−G(YT0))

∣

∣

∣
Yt = y

)

EQme

(

e−γ(1−ρ2)(ZT0)
∣

∣

∣
Yt = y

)

which, in general, does not coincide with νt (G (YT0
)) given in (13).

iv) Backward and forward dynamic exponential utilities

The above examples expose that an ad hoc choice of dynamic utility might
lead to price discrepancies. This, in view of the structural form of the optimal
policy for the integrated model (cf. (8)) would, in turn, yield wrongly specified
investment policies. It is thus important to investigate which classes of dynamic
utilities preclude such pathological situations.

For the simple examples above, the correct choice of the dynamic utility is
essentially obvious, namely,

ut (x, y; T ) =







u (x) for t = T

v (x, y, t) for t ∈ [t0, T ] ,

with v as in (6).
This simple observation indicates the following: first, observe that if ut is

the candidate dynamic utility, then, in all trading sub-horizons, say
[

t, t̃
]

, the
associated dynamic value function vt will be

vt (x, y; T ) = sup
A

EP (ut̃ (Xt̃, Yt̃; T )|Xt = x, Yt = y) .

11



Discrepancies in prices will be, then, precluded if at all intermediate times the
dynamic utility coincides with the dynamic value function it generates,

ut (x, y; T ) = vt (x, y; T ) .

We then say that the dynamic utility is self-generating.
Building on this concept, we are led to two classes of dynamic utilities, the

backward and forward ones. Their definitions are given below. Because the
applications herein are concentrated on exponential preferences, we work with
such utility data. Throughout, we take the risk aversion coefficient to be a
positive constant γ.

While the backward dynamic utility is essentially the traditional value func-
tion, the concept of forward utility is, to the best of our knowledge, new. As
mentioned earlier, it was recently introduced by the authors in an incomplete
binomial setting (see Musiela and Zariphopoulou (2005a) and (2005b)) and it
is herein extended to the diffusion case.

We continue with the definition of the backward dynamic utility. This utility
takes the name backward because it is first specified at the normalization point
T and is then generated at previous times.

Definition 1 Let T > 0. An Ft-measurable stochastic process UB
t (x; T ) is

called a backward dynamic utility (BDU), normalized at T , if for all t, T̄ it
satisfies the stochastic optimality criterion

UB
t (x; T ) =







−e−γx, t = T

supA EP

(

UB
T̄

(XT̄ ; T )
∣

∣Ft

)

, 0 ≤ t ≤ T̄ ≤ T ,
(14)

with X given by (5) and Xt = x ∈ R.

The above equation provides the constitutive law for the backward dynamic
utility. Note that even though this dynamic utility coincides with the familiar
value function, its notion was created from a very different point of view and
scope. Under mild regularity assumptions on the coefficients of the state pro-
cesses, it is easy to deduce that the above problem has a solution that is unique.
There is ample literature on the value function and, thus, on the backward dy-
namic utility (see, for example, Kramkov and Schachermayer (1999), Rouge
and El Karoui (2000), Delbaen et al. (2002) and Kabanov and Stricker (2002)).

The fact that UB
t is self-generating, is immediate. Indeed, in an arbitrary

sub-horizon
[

t, T̄
]

, the associated value function V B
t , given by

V B
t

(

x, T̄ ; T
)

= sup
A

EP

(

UB
T̄

(XT̄ ; T )
∣

∣Ft

)

,

coincides with its associated dynamic utility,

UB
t (x; T ) = V B

t

(

x, T̄ ; T
)

by Definition 1.

12



A consequence of self-generation is that the investor receives the same dy-
namic utility across different investment horizons. This is seen by the fact that,
for T̄ ≤ T̄

′

, self-generation yields

V B
t

(

x, T̄ ; T
)

= UB
t (x; T )

and
V B

t

(

x, T̄
′

; T
)

= UB
t (x; T )

and the horizon invariance,

V B
t

(

x, T̄ ; T
)

= V B
t

(

x, T̄
′

; T
)

follows.
In most of the existing utility models, the dynamic utility - or, equivalently,

its associated value function - is generated backwards in time. The form of
the utility might be more complex, as it is the case of recursive utilities where
dynamic risk preferences are generated by an aggregator. Nevertheless, the
features of utility prespecification at a future fixed point in time and generation
at previous times are still prevailing.

One might argue that an ad hoc specification of utility at a future time is, to a
certain extent, non intuitive, given that our risk attitude might change with the
way the market environment enfolds from one time period to the next. Note that
changes in the investment opportunities and losses/gains are revealed forward
in time while the traditional value function appears to process this information
backwards in time. Such issues have been considered in prospect theory where,
however, utility normalization at a given future point is still present.

From the valuation perspective, working with utilities normalized in the
future severely constraints the class of claims that can be priced. Indeed, their
maturities must be always dominated by the time at which the backward utility
is normalized. This precludes opportunities related to claims arriving at a later
time and maturing beyond the normalization point.

In order to be able to accommodate claims of arbitrary maturities, one might
propose to work in an infinite horizon framework and to employ either dis-
counted at optimal growth utility functionals or utilities allowing for intermedi-
ate consumption. The perpetual nature of these problems, however, might not
be appropriate for a variety of applications in which the agent faces defaults,
constraints due to reporting periods and other ”real-time” issues.

Motivated by these considerations, the authors recently introduced the con-
cept of forward dynamic utilities. Their main characteristic is that they are
determined at present time and, as their name indicates, are generated, via
their constitutive equation, forward in time.

Definition 2 Let s ≥ 0. An Ft-measurable stochastic process UF
t (x; s) is called

a forward dynamic exponential utility (FDU), normalized at s, if, for all t, T,

13



with s ≤ t ≤ T , it satisfies the stochastic optimization criterion

UF
t (x; s) =







−e−γx, t = s

supA EP

(

UF
T (XT ; s)

∣

∣Ft

)

, t ≥ s.

(15)

Observe that by construction, there is no constraint on the length of the
trading horizon.

Like its backward dynamic counterpart, the forward dynamic utility is self-
generating and makes the investor indifferent across distinct investment hori-
zons. Indeed, self-generation, i.e.,

UF
t (x; s) = V F

t (x, T ; s)

with
V F

t (x, T ; s) = sup
A

EP

(

UF
T (XT ; s)

∣

∣Ft

)

is an immediate consequence the above definition. For the horizon invariance,
it is enough to observe that in different sub-horizons, say [t, T ] and

[

t, T̄
]

,

V F
t (x, T ; s) = sup

A
EP

(

UF
T (XT ; s)

∣

∣Ft

)

,

and
V F

t

(

x, T̄ ; s
)

= sup
A

EP

(

UF
T̄

(XT̄ ; s)
∣

∣Ft

)

,

and, therefore,
V F

t (x, T ; s) = V F
t

(

x, T̄ ; s
)

.

We stress that, in contrast to their backward dynamic counterparts, forward
dynamic utilities might not be unique. In general, the problem of existence
and uniqueness is an open one. This issue is discussed in Section 5. Determin-
ing a natural class of forward utilities in which uniqueness is established is a
challenging and, in our view, interesting question.

3 Auxiliary technical results

In the upcoming sections, two equivalent martingale measures will be used,
namely, the minimal martingale and the minimal entropy ones. They are de-
noted, respectively, by Qmm and Qme and are defined as the minimizers of the
entropic functionals

H0 (Qmm|P) = min
Q∈Qe

EP

(

− ln
dQ

dP

)

and

H (Qme|P) = min
Q∈Qe

EP

(

dQ

dP
ln

dQ

dP

)

,

14



where Qe stands for the set of equivalent martingale measures. There is ample
literature on these measures and on their role in valuation and optimal portfo-
lio choice in the traditional framework of exponential utility; see, respectively,
Foellmer and Schweizer (1991), Schweizer (1995) and (1999), Bellini and Frittelli
(2002) and Frittelli (2000), Rouge and El Karoui (2000), Arai (2001), Delbaen
et al. (2002), Kabanov and Stricker (2002)).

For arbitrary T > 0, the restrictions of Qmm and Qme on the σ-algebra
FT = σ

{(

W 1
u , Wu

)

: 0 ≤ u ≤ T
}

, can be explicitly constructed as it is discussed
next. We remark that, with a slight abuse of notation, the restrictions of the
two measures are denoted as their original counterparts.

The density of the minimal martingale measure is given by

dQmm

dP
= exp

(

−

∫ T

0

λsdW 1
s −

∫ T

0

1

2
λ2

sds

)

(16)

with λ being the Sharpe ratio process (4).
Calculating the density of the minimal relative entropy measure is more in-

volved and we refer the reader to Rheinlander (2003) (see, also, Grandits and
Rheinlander (2002)) for a concise treatment. For the diffusion case considered
herein, the density can be found through variational arguments and is repre-
sented by

dQme

dP
= exp

(

−

∫ T

0

λsdW 1
s −

∫ T

0

λ̂sdW 1,⊥
s −

∫ T

0

1

2

(

λ2
s + λ̂2

s

)

ds

)

(17)

with W 1,⊥ as in (3). The process λ̂ is given by

λ̂s = λ̂ (Ys, s; T ) (18)

with Y solving (2) and λ̂ : R× [0, T ] → R+ defined as

λ̂ (y, t; T ) = −
1

√

1 − ρ2
a (y)

fy (y, t; T )

f (y, t; T )
, (19)

where f : R×[0, T ] → R+ is the unique C1,2 (R× [0, T ]) solution of the terminal
value problem







ft + 1
2a2 (y) fyy + (b (y) − ρλ (y) a (y)) fy = 1

2

(

1 − ρ2
)

λ2 (y) f

f(y, T ) = 1.

(20)

The proof can be found in Benth and Karslen (2005) (see, also, Stoikov and
Zariphopoulou (2004) and Monoyios (2006)).

The dependence of f and λ̂ on the end of the horizon, T , is highlighted due
to the role that it will play in the upcoming dynamic utilities.
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It easily follows that the aggregate, relative to the historical measure, en-
tropies of Qmm and Qme are, respectively,

H (Qmm|P) = EP

(

dQmm

dP
ln

dQmm

dP

)

= EQmm

(

∫ T

0

1

2
λ2

sds

)

and

H (Qme|P) = EP

(

dQme

dP
ln

dQme

dP

)

= EQme

(

∫ T

0

1

2

(

λ2
s + λ̂2

s

)

ds

)

.

When the market becomes complete, the two measures, Qmm and Qme, coincide
with the unique risk neutral measure. In general, they differ and their respec-
tive relative entropies are related in a nonlinear manner. This was explored in
Stoikov and Zariphopoulou (2005, Corollary 3.1), where it was shown that

H (Qme|P) = EQmm

(

∫ T

0

1

2
λ2

sds |F0

)

. (21)

The conditional nonlinear expectation EQ of a generic random variable Z ∈ FT

and measure Q on (Ω,FT ) is defined, for t ∈ [0, T ] and γ ∈ R+, by

EQ (Z| Ft; γ) = −
1

γ (1 − ρ2)
lnEQ

(

e−γ(1−ρ2)Z |Ft

)

, γ ∈ R+. (22)

The aggregate entropy H (Qme|P) is then the nonlinear expectation of the ran-

dom variable ZT =
∫ T

0
1
2λ2

sds, for Q = Qme and γ = 1.
Next we introduce two quantities that will facilitate our analysis. Namely,

for 0 ≤ t ≤ T̃ ≤ T , we define the aggregate relative entropy process

H
(

t, T̃
)

= EQme

(

∫ T̃

t

1

2

(

λ2 (Ys) + λ̂ (Ys, s; T )
2
)

ds

∣

∣

∣

∣

∣

Ft

)

(23)

and the function H̃ : R×
[

0, T̃
]

→ R+,

H̃
(

y, t; T̃
)

= EQme

(

∫
T̃

t

1

2

(

λ2 (Ys) + λ̂ (Ys, s; T )
2
)

ds

∣

∣

∣

∣

∣

Yt = y

)

, (24)

for λ, λ̂ defined in (4) and (18). We, also, introduce the linear operators

LY =
1

2
a2 (y)

∂2

∂y2
+ b (y)

∂

∂y
, (25)

LY,mm =
1

2
a2 (y)

∂2

∂y2
+ (b (y) − ρλ (y) a (y))

∂

∂y
(26)
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and

LY,me =
1

2
a2 (y)

∂2

∂y2
+ (b (y) − ρλ (y) a (y))

∂

∂y
(27)

+a2 (y)
fy (y, t; T )

f (y, t; T )

∂

∂y

with f solving (20).
The following results follow directly from the definition of H̃, and (19) and

(20).

Lemma 3 For T̃ ≤ T , the function H̃ : R×[0, T̃ ] → R+, solves the quasilinear
equation

H̃t + LY,mmH̃ −
1

2
(1 − ρ2)a (y)

2
H̃2

y +
λ2(y)

2
= 0,

or, equivalently, the linear equation

H̃t + LY,meH̃ +
λ2(y) + λ̂ (Ys, s; T )

2

2
= 0

with H̃
(

y, T̃ ; T
)

= 0, and LY,mm, LY,me as in (26) and (27).

4 Investment and valuation under backward dy-

namic exponential utilities

In this section, we provide an analytic representation of the backward dynamic
exponential utility (cf. Definition 1) and construct the agent’s optimal invest-
ment in an integrated portfolio choice problem. We recall that the investment
horizon is fixed, the utility is normalized at its end and that no liabilities, or
cash flows, are allowed beyond the normalization point. For convenience, we
occasionally rewrite some of the quantities introduced in earlier sections.

Proposition 4 Let Qme be the minimal relative entropy martingale measure
and H (t, T ) the aggregate relative entropy process (cf. (23)),

H
(

t, T̃
)

= EQme

(

∫ T̃

t

1

2

(

λ2 (Ys) + λ̂ (Ys, s; T )
2
)

ds

∣

∣

∣

∣

∣

Ft

)

with λ and λ̂ as in (4) and (18). Then, for x ∈ R, t ∈ [0, T ] , the process
UB

t ∈ Ft, given by
UB

t (x; T ) = −e−γx−H(t,T ) (28)

is the backward dynamic exponential utility.

The proof is, essentially, a direct consequence of the Dynamic Programming
Principle and the results of Rouge and El Karoui (2000). For the specific tech-
nical arguments, related to the stochastic factor model we examine herein, we
refer the reader to Stoikov and Zariphopoulou (2004). We easily deduce the
following result.
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Corollary 5 The backward dynamic utility is given by

UB
t (x; T ) = u (x, Yt, t; T )

with u : R×R+ × [0, T ] → R− defined as

u (x, y, t; T ) = −e−γx−H̃(y,t;T )

with

H̃
(

y, t; T̃
)

= EQme

(

∫
T̃

t

1

2

(

λ2 (Ys) + λ̂ (Ys, s; T )
2
)

ds

∣

∣

∣

∣

∣

Yt = y

)

.

i) Backward indifference values

Next, we revisit the classical definition of indifference values but in the frame-
work of backward dynamic utility. This framework allows for a concise valuation
of claims and liabilities of arbitrary maturities, provided that these maturities
occur before the normalization point. Due to self-generation, the notion of dy-
namic value function becomes redundant. Herein we concentrate on the indif-
ference treatment of a liability, or, equivalently, on the optimal portfolio choice
of the writer of a claim, yielding payoff equal to the liability at hand.

Definition 6 Let T be the backward normalization point and consider a claim
CT̄ ∈ FT̄ , written at t0 ≥ 0 and maturing at T̄ ≤ T. For t ∈

[

t0, T̄
]

, the
backward indifference value process (BIV) νB

t (CT̄ ; T ) is defined as the amount
that satisfies the pricing condition

UB
t

(

x − νB
t (CT̄ ; T ) ; T

)

= sup
A

EP

(

UB
T̄

(XT̄ − CT̄ ; T )
∣

∣Ft

)

, (29)

for all x ∈ R, Xt = x.

We note that the backward indifference value coincides with the classical one,
but it is constructed from a quite different point of view and scope. The focus
herein is not on rederiving previously known quantities but, rather, in exploring
how the backward indifference values are affected by the normalization point
and the changes in the market environment, as well, as how they differ from
their forward dynamic counterparts.

We address these questions for the class of bounded European claims and
liabilities, for which we can deduce closed form variational expressions.

Proposition 7 Let T be the backward normalization point and consider a Eu-
ropean claim written at t0 ≥ 0 and maturing at T̄ ≤ T, yielding payoff CT̄ =
C (ST̄ , YT̄ ). For t ∈

[

t0, T̄
]

, its backward indifference value process νB
t (CT̄ ; T )

is given by
νB

t (CT̄ ; T ) = pB (St, Yt, t)
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where S and Y solve (1) and (2), and pF : R+ ×R× [0, T̄ ] → R satisfies







pB
t + L(S,Y ),mepB + 1

2γ
(

1 − ρ2
)

a2 (y)
(

pB
y

)2
= 0

pB
(

S, y, T̄
)

= C (S, y) .

(30)

Herein,

L(S,Y ),me =
1

2
σ2 (y)S2 ∂2

∂S2
+ ρσ (y)Sa (y)

∂2

∂S∂y
+

1

2
a2 (y)

∂2

∂y2
(31)

+

(

b (y) − ρλ (y) a (y) + a2 (y)
fy (y, t; T )

f (y, t; T )

)

∂

∂y
,

and f solves (cf. (20))







ft + 1
2a2 (y) fyy + (b (y) − ρλ (y) a (y)) fy = 1

2

(

1 − ρ2
)

λ2 (y) f

f(y, T ) = 1.

Proof. For convenience, we recall the entropic quantities

H
(

t, t
′

)

= EQme

(

∫ t
′

t

1

2

(

λ2 (Ys) + λ̂ (Ys, s; T )
2
)

ds

∣

∣

∣

∣

∣

Ft

)

and

H̃
(

y, t; t
′

)

= EQme

(

∫ t
′

t

1

2

(

λ (Yu)
2

+ λ̂ (Yu, u; T )
2
)

du

∣

∣

∣

∣

∣

Yt = y

)

for 0 ≤ t ≤ t
′

≤ T̄ ≤ T . We first calculate the right hand side of (29), which, in
view of Proposition 6, becomes

sup
A

EP

(

−e−γ(XT̄ −CT̄ )−H(T̄ ;T)
∣

∣

∣
Ft

)

= sup
A

EP

(

−e−γ(XT̄ −GT̄ )
∣

∣

∣
Ft

)

with

GT̄ = C (ST̄ , YT̄ ) −
1

γ
H
(

T̄ ; T
)

.

One may, then, view this problem as a traditional indifference valuation one in
which the trading horizon is

[

t, T̄
]

and the utility is the exponential function
at T̄ . For the stochastic factor model we consider herein, we obtain (see Sircar
and Zariphopoulou (2005) and Grasselli and Hurd (2004))

sup
A

EP

(

−e−γ(XT̄ −GT̄ )
∣

∣

∣
Ft

)

= −e−γ(x−h(St,Yt,t))−H(t;T̄)
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with h : R+ ×R× [0, T̄ ] → R solving







ht + L(S,Y ),meh + 1
2γ
(

1 − ρ2
)

a2 (y)h2
y = 0

h
(

S, y, T̄
)

= C (S, y) − 1
γ
H̃
(

y, T̄ ; T
)

.

Next, introduce the function pB : R+ ×R× [0, T̄ ] → R

pB (S, y, t) = h (S, y, t) +
1

γ

(

H̃ (y, t; T )− H̃
(

y, t; T̄
)

)

.

Using the equation satisfied by h, we deduce that pB solves (30). On the other
hand, Corollary 5 and the above equalities yield

sup
A

EP

(

−e−γ(XT̄ −GT̄ )
∣

∣

∣
Xt = x, St = S, Yt = y

)

= −e−γ(x−pB(S,y,t))−(H̃(y,t;T̄)+H̃(y,T̄ ;T)) = −e−γ(x−pB(S,y,t))−H̃(y,t;T )

and the assertion follows from Definition 6 and Proposition 5.

ii) Optimal portfolios under backward dynamic utility

Next, we construct the optimal portfolio strategies in the integrated portfolio
problem. We start with the agent’s optimal behavior in the absence of the
liability/payoff. We concentrate our attention to optimal behavior in a shorter
horizon. For simplicity, its end is taken to coincide with T̄ , the point at which
the liability is met.

Proposition 8 Let T be the backward normalization point and [t, T̄ ] ∈ [t, T ]
be the trading horizon of an investor endowed with the backward exponential
dynamic utility UB. The processes, πB,∗

s and πB,0,∗
s , representing the optimal

investments in the risky and riskless asset, are given, for s ∈ [t, T̄ ], by

πB,∗
s = πB,∗

(

XB,∗
s , Ys, s

)

=
µ (Ys)

γσ2 (Ys)
− ρ

a (Ys)

σ (Ys)
H̃y (Ys, s; T ) (32)

and
πB,0,∗

s = πB,0,∗ (X∗
s , Ys, s) = XB,∗

s − πB,∗
s .

Herein, XB,∗
s solves (5) with πB,∗

s being used, and H̃ : R× [0, T ] → R+ satisfies

H̃t + LY,meH̃ +
λ2(y) + λ̂ (y, t; T )

2

2
= 0

with terminal condition

H̃
(

y, T̄ ; T
)

= EQme

(

∫ T

T̄

1

2

(

λ (Ys)
2 + λ̂ (Ys, s; T )2

)

ds

∣

∣

∣

∣

∣

YT̄ = y

)

. (33)
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Given the diffusion nature of the model, the form of the utility data and the
regularity assumptions on the market coefficients, optimality follows from clas-
sical verification results (see, among others, Duffie and Zariphopoulou (1993),
Zariphopoulou (2002), Pham (2002), Touzi (2002)).

Due to the stochasticity of the investment opportunity set, the optimal in-
vestment strategy in the stock account consists of two components, namely,
the myopic portfolio and the so-called excess risky demand, given, respectively,

by µ(Ys)
γσ2(Ys) and −ρ

a(Ys)
σ(Ys)H̃y (Ys, s; T ). The myopic component is what the in-

vestor would follow if the coefficients of the risky security remained constant
across trading periods. The excess risky demand is the required investment that
emerges from the local in time changes in the Sharpe ratio (see, among others,
Kim and Omberg (1996), Liu (1999), Campbell and Viceira (1999), Chacko and
Viceira (1999), Wachter (2002) and Campell et al. (2004)).

Note that even though the trading horizon [t, T̄ ] is shorter than the origi-
nal one, [t, T ], the optimal policies depend on the longer horizon because the
dynamic risk preferences are normalized at T and not at T̄ .

Remark: The reader familiar with the representation of indifference prices,
might try to interpret the excess risky demand as the indifference hedging strat-
egy of an appropriately chosen claim. Such questions were studied in Stoikov
and Zariphopoulou (2004) where the relevant claim was identified and priced.

We continue with the optimal strategies in the presence of a European-type
liability CT̄ , which, we recall, is taken to be bounded.

Proposition 9 Let T be the backward normalization point and consider an in-
vestor endowed with the backward dynamic exponential utility UB and facing
a liability CT̄ = C (ST̄ , YT̄ ). The processes, πB,∗

s and πB,0,∗
s , representing the

optimal investments in the risky and riskless asset, are given, for s ∈ [t, T̄ ], by

πB,∗
s = πB,∗

(

XB,∗
s , Ss, Ys, s

)

=
µ (Ys)

γσ2 (Ys)
− ρ

a (Ys)

σ (Ys)
H̃y (Ys, s; T ) (34)

+Ssp
B
S (Ss, Ys, s) + ρ

a (Ys)

σ (Ys)
pB

y (Ss, Ys, s)

and
πB,0,∗

s = πB,0,∗ (X∗
s , Ss, Ys, s) = XB,∗

s − πB,∗
s .

Herein, XB,∗
s solves (5) with πB,∗

s being used, H̃ as in Proposition 8 and pB

solves (30).

Proof. In the presence of the liability, we observe

sup
A

EP

(

UB
T̄

(XT̄ − CT̄ ; T )
∣

∣Ft

)

= uC (x, St, Yt, t) ,

where uC : R × R+ × R ×
[

0, T̄
]

→ R− solves the Hamilton-Jacobi-Bellman
equation

uC
t + max

π

(

1

2
σ2 (y)π2uC

xx + π
(

σ2 (y)SuC
xS + ρa(y)σ (y)uC

xy + µ (y)uC
x

)

)
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+L(S,Y )uC = 0,

with
uC
(

x, S, y, T̄
)

= −e−γ(x−C(S,y))−H̃(y,T̄ ;T),

and

L(S,Y ) =
1

2
σ2 (y)S2 ∂2

∂S2
+ ρσ (y)Sa (y)

∂2

∂S∂y
+

1

2
a2 (y)

∂2

∂y2
(35)

+µ (y)
∂

∂S
+ b (y)

∂

∂y
.

Verification results yield that the optimal policy πB,∗
s is given in the feedback

form
πB,∗

s = πB,∗
(

XB,∗
s , Ss, Ys, s

)

with

πB,∗ (x, S, y, t) = −
σ2 (y)SuC

xS + ρa(y)σ (y)uC
xy + µ (y)uC

x

σ2 (y)uC
xx

.

On the other hand, from Proposition 8,

uC (x, S, y, t) = −e−γ(x−pB(S,y,t))−H̃(y,t:T ).

Combining the above and the feedback form of πB,∗ (x, S, y, t) , we conclude.

5 Investment and valuation under forward dy-

namic exponential utilities

We now revert our attention to portfolio choice and pricing under the newly
introduced class of forward dynamic utilities. We start with the analytic con-
struction of such a utility. As mentioned in Section 1, general existence and
uniqueness results for forward dynamic utilities are lacking. As a matter of
fact, an alternative solution to (15) is Example 3.

Proposition 10 Let s ≥ 0 be the forward normalization point. Define, for
t ≥ s, the process

h (s, t) =

∫ t

s

1

2
λ (Yu)

2
du (36)

with λ being the Sharpe ratio (4). Then, the process UF
t (x; s), given, for x ∈ R

and t ≥ s, by
UF

t (x; s) = −e−γx+h(s,t) (37)

is a forward dynamic exponential utility, normalized at s.

Proof. The fact that UF
t (x; s) is Ft-measurable and normalized at s is

immediate. It remains to show (15), namely, that for arbitrary T ≥ t,

−e−γx+h(s,t) = sup
A

EP

(

−e−γXT +h(s,T )
∣

∣

∣
Ft

)

.
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Using (36), the above reduces to

−e−γx = sup
A

EP

(

−e−γXT +h(t,T )
∣

∣

∣
Ft

)

. (38)

Next, we introduce the function u : R×R×[0, T ] → R−,

u (x, y, t) = sup
A

EP

(

−e−γXT +
R

T

t

1

2
λ2(Ys)ds

∣

∣

∣
Xt = x, Yt = y

)

.

Classical arguments imply that u solves the Hamilton-Jacobi-Bellman equation

ut + LY u +
λ2 (y)

2
u

+ max
π

(

1

2
σ2 (y)π2uxx + π (ρa(y)σ (y)uxy + µ (y)ux)

)

= 0

with
u (x, y, T ) = −e−γx

and LY as in (15). We deduce (see, for example, Duffie and Zariphopoulou
(1993) and Pham (2002)) that the above equation has a unique solution in
the class of functions that are concave and increasing in x, and are uniformly
bounded in y. We then see that the function ǔ (x, y, t) = −e−γx is such a
solution and, by uniqueness, it coincides with u. The rest of the proof follows
easily.

We next present an alternative forward dynamic utility.
Example 3: Consider, for x ∈ R and t ≥ s, the process

UF
t (x; s) = −e−γx−Z(s,t)

with

Z (s, t) =

∫ t

s

1

2
λ2

sds +

∫ t

s

λsdW 1
s . (39)

Observe that, for Xt = x, the forward stochastic criterion (cf. (15)),

−e−γx−Z(s,t) = sup
A

EP

(

−e−γXT−Z(s,T )
∣

∣

∣
Ft

)

will hold if we establish

−e−γx = sup
A

EP

(

−e−γXT−Z(t,T )
∣

∣

∣
Ft

)

or, equivalently,

−e−γx = sup
A

EP

(

−e−γXT−Z(t,T )
∣

∣

∣
Xt = x, Yt = y, Zt = 0

)
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with Z as in (39). Defining v : R×R×R× [0, T ] → R− by

v (x, y, z, t) = sup
A

EP

(

−e−γXT−Z(t,T )
∣

∣

∣
Xt = x, Yt = y, Zt = z

)

,

we see that it solves the Hamilton-Jacobi-Bellman equation

vt + max
π

(

1

2
σ2 (y)π2uxx + π (λ (y)σ (y)uxz + ρa(y)σ (y)uxy + µ (y)ux)

)

+
1

2
λ2 (y) vzz + ρλ (y) a (y) vzy +

1

2
a2 (y) vyy + b (y) vy +

1

2
λ2 (y) vz

with
v (x, y, z, T ) = −e−γx−z.

Substituting above the function v̂ (x, y, z, t) = −e−γx−z, and after some calcu-
lations, yields

−
(λ (y)σ (y) v̂xz + µ (y) v̂x)2

2σ2 (y) v̂xx

+
1

2
λ2 (y) (v̂zz + v̂z) = 0.

We easily conclude that v̂ ≡ v and the assertion follows.

i) Forward indifference values

We next introduce the concept of forward indifference value. Like its back-
ward counterpart, it is defined as the amount that generates the same level of
dynamic utility with and without incorporating the liability. Note, also, that in
the Definition below, it is only the forward dynamic utility that enters, eliminat-
ing the need to incorporate in the definition the forward dynamic value function.
This allows for a concise treatment of payoffs and liabilities of arbitrary matu-
rities. Finally, we remark, that the nomenclature ’forward’ does not refer to
the terminology used in derivative valuation pertinent to wealth expressed in
forward units. Rather, it refers to the forward in time manner that the dynamic
utility evolves.

While the concept of forward indifference value appears to be a straight-
forward extension of the backward one, it is important to observe that the
maturities of the claims in consideration need not be bounded by any prespeci-
fied horizon. This is one of the striking differences between the classes of claims
that can be priced by the two distinct dynamic utilities we consider herein.
Finally, we remark, that the nomenclature ’forward’ does not refer to the ter-
minology used in derivative valuation pertinent to wealth expressed in forward
units. Rather, it refers to the forward in time manner that the dynamic utility
evolves.

Definition 11 Let s ≥ 0 be the forward normalization point and consider a
claim CT̄ ∈ FT̄ , written at t0 ≥ s and maturing at T. For t ∈ [t0, T ], the
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forward indifference value process (FIP) νF
t (CT̄ ; s) is defined as the amount

that satisfies the pricing condition

UF
t

(

x − νF
t (CT ; s) ; s

)

= sup
A

EP

(

UF
T (XT − CT ; s)

∣

∣Ft

)

(40)

for all x ∈ R, Xt = x.

We continue with the valuation of a bounded European-type liability and
we examine how its forward indifference value is affected by the choice of the
normalization point. We show that even though both forward dynamic utilities,
entering in (40) above, depend on the normalization point, the emerging forward
price does not. This is another important difference between the backward and
the forward indifference values.

Proposition 12 Let s ≥ 0 be the forward normalization point and consider
a European claim written at t0 ≥ s and maturing at T yielding payoff CT =
C (ST , YT ). For t ∈ [t0, T ], its forward indifference value νF

t (CT ; s) is given by

νF
t (CT ; s) = pF (St, Yt, t)

where S and Y solve (1) and (2), and pF : R+ ×R× [0, T ] → R satisfies







pF
t + L(S,Y ),mmpF + 1

2γ
(

1 − ρ2
)

a2 (y)
(

pF
y

)2
= 0

pF (S, y, T ) = C (S, y) ,

(41)

with

L(S,Y ),mm =
1

2
σ2 (y)S2 ∂2

∂S2
+ ρσ (y)Sa (y)

∂2

∂S∂y
+

1

2
a2 (y)

∂2

∂y2

+ (b (y) − ρλ (y) a (y))
∂

∂y
.

Proof. We first note that

sup
A

EP

(

UF
T (XT − CT ; s)

∣

∣Ft

)

= sup
A

EP

(

−e−γ(XT −CT )+
R

T

s

1

2
λ2(Yu)du

∣

∣

∣
Ft

)

= e
R

t

s

1

2
λ2(Yu)du sup

A
EP

(

−e−γ(XT −CT )+
R

T

t

1

2
λ2(Yu)du

∣

∣

∣
Ft

)

where we used Proposition 10 and the measurability of the process h (cf. (36)).
Define uC : R×R+ ×R× [0, T ]→ R−,

uC (x, S, y, t) = sup
A

EP

(

−e−γ(XT −CT )+
R

T

t

1

2
λ2(Yu)du

∣

∣

∣
Xt = x, St = S, Yt = y

)
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and observe that it solves the Hamilton-Jacobi-Bellman equation

uC
t + max

π

(

1

2
σ2 (y)π2uC

yy + π
(

σ2 (y)SuC
xS + ρa(y)σ (y)uC

xy + µ (y)uC
x

)

)

+L(S,Y )uC +
λ2 (y)

2
uC = 0

with
uC (x, S, y, T ) = −e−γ(x−C(S,y))

and L(S,Y ) as in (35). Using the transformation

uC (x, S, y, t) = −e−γ(x−pF (S,y,t))

we deduce, after tedious but straightforward calculations, that the coefficient
pF (S, y, t) solves (41). We, then, easily, see that

sup
A

EP

(

UF
T (XT − CT ; s)

∣

∣Ft

)

= −e
R

t

s

1

2
λ2(Yu)duuC (x, St, Yt, t) ,

and, using Proposition 11 and Definition 12 we conclude.

ii) Optimal portfolios under forward dynamic utilities

We continue with the optimal investment policies under the forward dynamic
risk preferences.

Proposition 13 Let s ≥ 0 be the forward normalization point and [t, T ] the
trading horizon, with s ≤ t. The processes, πF,∗ and πF,0,∗, representing the
optimal investments in the risky and riskless asset, are given, respectively, for
u ∈ [t, T ], by

πF,∗
u = πF,∗

(

XF,∗
u , Yu, u

)

=
µ (Yu)

γσ2 (Yu)
(42)

and
πF,0,∗

u = πF,0,∗ (X∗
u, Yu, u) = XF,∗

u − πF,∗
u ,

with XF,∗
u solving (5) with πF,∗

u being used.

Two important facts emerge. Firstly, both optimal investment policies πF,∗

and πF,0,∗ are independent of the spot normalization point. Secondly, the in-
vestment in the risky asset consists entirely of the myopic component. Indeed,
the excess hedging demand, which emerges due to the presence of the stochastic
factor, has vanished. The investor has processed the stochasticity of the mar-
ket environment into her preferences, that are dynamically updated, following,
forward in time, the market movements.
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Proposition 14 Let s ≥ 0 be the forward normalization point and consider an
investor endowed with the forward exponential dynamic utility UF and facing
a liability CT = C (ST , YT ). The processes, πF,∗

s and πF,0,∗
s , representing the

optimal investments in the risky and riskless asset in the integrated portfolio
choice problem, are given, for u ∈ [t, T ], by

πF,∗
u = πF,∗

(

XF,∗
u , Su, Yu, u

)

=
µ (Yu)

γσ2 (Yu)

+SupF
S (Su, Yu, u) + ρ

a (Yu)

σ (Yu)
pF

y (Su, Yu, u) (43)

and
πF,0,∗

u = πF,0,∗ (X∗
u, Su, Yu, u) = XF,∗

u − πF,∗
u .

Herein, XF,∗
s solves (5) with πF,∗

s being used, and pF satisfies (41).

6 Concluding remarks: Forward versus back-

ward utilities and their associated indifference

prices

In the previous two Sections, we analyzed the investment and pricing problems
of investors endowed with backward (BDU) and forward (FDU) dynamic expo-
nential utilities. These utilities have similarities but, also, striking differences.
These features are, in turn, inherited to the associated optimal policies, indif-
ference prices and risk monitoring strategies. Below, we provide a discussion on
these issues.

We first observe that the backward and forward utilities are produced via
a conditional expected criterion. They are both self-generating, in that they
coincide with their implied value functions. Moreover, in the absence of ex-
ogenous cash flows, investors endowed with such utilities are indifferent to the
investment horizons.

Backward and forward dynamic utilities are constructed in entirely different
ways. Backward utilities are first specified at a given future time, T , and,
they are, subsequently, generated at previous to T times. Forward utilities are
defined at present, s, and are, in turn, generated forward in time. The times
T and s, at which the backward and forward utility data are determined, are
the backward and forward normalization points. We recall, from equations (28)
and (37), that the BDU and FDU processes, UB

t and UF
t , are Ft− adapted

and given, respectively, by

UB
t (x; T ) = −e−γx−H(t,T )

and
UF

t (x; s) = −e−γx−h(s,t),
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with

H (t, T ) = EQme

(

∫ T

t

1

2

(

λ2
u + λ̂2

u

)

du

∣

∣

∣

∣

∣

Ft

)

and

h(s, t) =

∫ t

s

1

2
λ2

udu.

Herein, λ and λ̂ are given in (4) and (18), and Qme is the minimal relative
entropy measure.

Both BDU and FDU have an exponential, affine in wealth, structure. How-
ever, the backward utility compiles changes in the market environment in an
aggregate manner, while the forward utility does so in a much finer way. This
is seen by the nature of the processes H (t, T ) and h (s, t) . It is worth observing
that

H (t, T ) 6= EQme (h (t, T )| Ft)

and that UF
t is not affected by λ̂ (cf. (18) and (19)) that represent the ’orthog-

onal’ component of the market price of risk.
Backward and forward utilities generate different optimal investment strate-

gies (see, respectively, Propositions 9 and 14). Under backward dynamic prefer-
ences, the investor invests in the risky asset an amount equal to the sum of the
myopic portfolio and the excess risky demand. The former investment strategy
depends on the risk aversion coefficient γ, but not on the backward normal-
ization point T . The excess risky demand, however, is not affected by γ but
depends on the choice of the normalization point, even if investment takes place
in a shorter horizons.

Under forward preferences, the investor invests in the risk asset solely the
myopic portfolio. The myopic strategy does not depend on the forward normal-
ization point or the investment horizon.

As a consequence of the above differences, the emerging backward (BIV)
and forward (FIV) indifference values, νB

t (CT̄ ; T ) and νF
t (CT̄ ; s) , 0 ≤ s ≤ t ≤

T̄ ≤ T, have very distinct characteristics. Concentrating on the class of bounded
European claims, we see that νB

t (CT̄ ; T ) and νF
t (CT̄ ; s) are constructed via so-

lutions of similar quasilinear pdes. While the nonlinearities. in the pricing pdes
are of the same type, the associated linear operators, L(S,y),me and L(S,y),mm

differ (see, respectively, (30) and (41)). The former, appearing in the BIV
equation, corresponds to the minimal relative entropy measure while the latter,
appearing in the FIV equation, to the minimal martingale measure. Denoting
the solutions of these pdes as nonlinear expectations, we may formally represent
- with a slight abuse of notation - the two indifference values as

νB
t (CT̄ ; T ) = EQme (CT̄ ; T )

and
νF

t (CT̄ ; s) = EQmm (CT̄ ; s) .
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The FIV is independent on the forward normalization point. The BIV de-
pends, however, on the backward normalization point, even if the claim matures
in a shorter horizon.

As the investor becomes risk neutral, γ → 0, we obtain

lim
γ→0

νB
t (CT̄ ; T ) = EQme (CT̄ |Ft )

and
lim
γ→0

νF
t (CT̄ ; s) = EQmm (CT̄ |Ft ) .

However, as the investor becomes infinitely risk averse, γ → ∞, both BIV and
FIV converge to the same limit given by the super replication value,

lim
γ→∞

νB
t (CT̄ ; T ) = lim

γ→∞
νF

t (CT̄ ; s) = ‖CT̄ ‖L∞{ .|Ft}
.

In the presence of the liability and under backward dynamic utility, the in-
vestment in the risky asset consists of the myopic portfolio, the excess risky
demand and the backward indifference risk monitoring strategies (see Proposi-
tion 10). With the exception of the myopic portfolio, all other three portfolio
components depend on the normalization point T . When, however, the investor
uses forward dynamic utility, his optimal integrated policy does not include the
excess risky demand. The entire policy is independent of the forward normal-
ization point s, and depends exclusively on the maturity of the claim and the
changes in the market environment.

When the market becomes complete, the backward and forward pricing mea-
sures, Qme and Qmm, coincide with the unique risk neutral measure, Q∗, and
(BIV) and (FIV) reduce to the arbitrage free price.

In general, the backward and forward indifference values do not coincide.
The underlying reason is that they are defined via the backward and forward
dynamic utilities that process the internal model incompleteness, generated by
the stochastic factor Y , in a very different manner. Characterizing the market
environments as well as the claims for which the two prices coincide is an open
question.
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