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Abstract

This article provides an overview of risk-neutral valuation methodol-
ogy and presents historical milestones in the development of quantitative
�nance. It also discusses current challenges and new perspectives in model
choice, pricing and hedging.

1 Historical background

In 1973, Black, Scholes and Merton ([5], [13]) developed a method for the
valuation of a European option based on the idea of perfect replication of its
payo¤. Their approach demonstrates how to act in an uncertain environment so
that relevant risks are controlled. Around the same time, trading of options on
common stocks started in the Chicago Board Options Exchange. Theory met
practice and an exciting and fruitful journey started on the crossroads of eco-
nomics, �nance and mathematics. Its impact was phenomenal in both academia
and industry. New areas of research were created, and numerous educational
and training activities were established. The derivatives market grew at an un-
precedented rate and in�uenced the development of other markets. Complex
mathematical modelling and technical sophistication, predominant elements in
theory and applications in engineering and natural sciences, now entered the
theory and practice of �nance. This was not the �rst time that stochastic mod-
elling touched �nance. At the beginning of the 20th century, in his pioneering
doctoral work, Bachelier ([2]) proposed a stochastic model, based on normality
assumptions on their returns, for stock prices. In many aspects, however, his
work was ahead of its time and had no impact for years to come.
What was the Black, Scholes, and Merton option valuation approach? A

European call option is a contract that gives its owner the right to buy the
underlying stock at a given price, K and a given maturity, T . Their model,
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powerful and simple, assumed a liquid market environment consisting of a non-
defaultable bond and a stock. The bond yields constant interest rate r; while
the stock price, St; is modelled as a log-normal di¤usion process having constant
mean rate of return, �; and volatility parameter, �: Applying Ito�s formula �
a fundamental result of modern stochastic calculus �they were able to build a
dynamic self-�nancing portfolio, (�t; �t) ; 0 � t � T , that replicates the option
payo¤, that is, for which �T + �T = (ST �K)+. For all t, the option price,
�t; is, then, given by the current portfolio value, �t = �t + �t. Stochastic and
di¤erential arguments yield the price process representation �t = C (St; t), with
the function C satisfying the partial di¤erential equation

Ct +
1

2
�2S2CSS + rSCS = rC (1)

and the terminal condition C (S; T ) = (S �K)+. The components of the repli-
cating portfolio turn out to be �t = StCS (St; t) and �t = C (St; t)� �t, repre-
senting the amounts invested, respectively, in the stock and bond.
The construction of the price and hedging policies, as well as the speci�cation

of various sensitivity indices (greeks), thus, amount to solving linear partial
di¤erential equations, a relatively easy task given the existing technical body in
mathematical analysis.
The industry rapidly adopted the Black and Scholes model as a standard for

the valuation of simple (vanilla) options. Soon after, more complex products
were created and traded, like options on �xed-income securities, currencies, in-
dices and commodities. Gradually, the options market experienced great growth
and its liquidity reached very high levels (for a concise exposition see, for exam-
ple, Musiela and Rutkowski, ([16])).
In parallel, substantial advances in research took place. In 1979, Harrison

and Kreps ([9]) laid the foundations for the development of the risk-neutral pric-
ing theory. They created a direct link between derivative valuation and martin-
gale theory. For a �nite number of traded securities and under general assump-
tions on their price processes and related payo¤s, they established that the price
of a replicable contingent claim corresponds to the expected value, calculated
under the risk-neutral probability of the (discounted) claim�s payo¤. These re-
sults were further developed and presented by Harrison and Pliska ([10]). In the
years that followed, the theory was extended and a model-independent approach
for pricing and risk management emerged. In a generic derivatives model, the
(discounted) prices of primary assets are represented by a vector-valued semi-
martingale Ss =

�
S1s ; :::; S

m
s

�
; de�ned in a probability space (
;F ; (Ft) ;P)

where P is the historical measure. The (discounted) payo¤, CT ; is taken to be
an FT�measurable random variable.
The derivative price, discounted under the same numeraire as S and CT , is

given by the conditional expectation

�t (CT ) = EQ (CT jFt ) . (2)

The pricing measure Q is equivalent to P and, under it, the (discounted) price
processes become martingales, that is, EQ (Ss jFt ) = St; t � s � T . The
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derivative prices, themselves martingales under Q, are linear with respect to
their payo¤s, time and numeraire consistent and independent of their holder�s
risk preferences.
Fundamental questions in risk-neutral valuation are related to existence and

uniqueness of the derivative price. Uniqueness turns out to be equivalent to the
replicability of all claims in the market. Such a market is classi�ed as complete.
Stochastic integration theory was used to establish that market completeness is
equivalent to uniqueness of the risk-neutral martingale measure Q. In this case,
the price is given by (2) and, thus, exists and is unique. If, however, the market
is not complete there is multiplicity of equivalent martingale measures. In this
case, perfect replication is abandoned and absence of arbitrage becomes the key
requirement for price speci�cation and model choice. In an arbitrage-free model,
a judicious choice of the pricing measure is made and the price is still represented
as in (2). In many aspects, market completeness and absence of arbitrage are
complementary concepts. Their relationship has been extensively studied with
the use of martingale theory and functional analysis. Important results in this
direction are formulated in the First and Second Fundamental Theorems of Asset
Pricing (see, among others, Bjork, ([3]); Delbaen and Schachermayer, ([7])).
The risk-neutral valuation theory, built on a surprising �t between stochastic

calculus and quantitative needs, revolutionized the derivatives industry. But its
impact did not stop there. Because the theory provides a universal approach
to price and manage risks, the option pricing methodology has been applied
in an array of applications. Indeed, corporate and non-corporate agreements
have been analysed from an options perspective. Option techniques have been,
also, applied to the valuation of pension funds, government loan guarantees and
insurance plans. In a di¤erent direction, applications of the theory resulted in
a substantial growth of the �elds of real options and decision analysis. Com-
plex issues related, for example, to operational e¢ ciency, �nancial �exibility,
contracting, and initiation and execution of research and development projects
were revisited and analysed using derivative valuation arguments (see the review
article of Merton, ([14])).
Since the 1970s, theoretical developments, technological advances, modelling

innovations and creation of new derivatives products have been proceeding at a
remarkable rate. During this period, theory and practice have been shaping each
other in a unique challenging and intense interaction. The rest of the article is,
mainly, dedicated to this dimension.

2 Theory and practice in derivatives markets

The Black and Scholes model included various assumptions that are not valid
in practice. Interest rates and volatilities are not constant, trading is not con-
tinuous, defaults occur and information is not complete. How did academic re-
search and industry reality react to and handle these issues? Albeit very distinct
priorities, needs and goals, shortcomings of the theory not only did not limit
its applicability but prompted a remarkable progress between the theoretical
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and the applied worlds. Models were developed and innovative computational
techniques were invented, and used in practice, for new complex products (ex-
otics). Progress did not occur simultaneously. While theory developed mostly
in bursts, practice continued the use of basic models which often involved self-
contradictory assumptions. However, despite internal modelling inconsistencies,
industry applications o¤ered valuable intuition and feedback to the abstract the-
oretical developments.
The �rst revisited assumption was that the (short) interest rate is constant.

Models of stochastic interest rates started appearing, and a major breakthrough
occurred in 1992 with the work of Heath, Jarrow and Morton ([11]). Moving
away from modelling directly the short rate, their novel approach was focused
on the dynamics of the entire (instantaneous and continuously compounded)
forward curve f (t; T ) ; de�ned by

f (t; T ) = � @

@T
lnB (t; T )

where B (t; T ) represents the price, at time t; of a zero-coupon discount bond
with maturity T . To facilitate the analysis of the forward curve, Musiela ([15])
introduced an alternative parametrization, namely r (t; x) = f (t; t+ x), which
exhibited the importance of in�nite dimensional di¤usions and stochastic partial
di¤erential equations in �nance. This helped to �nd answers to a number of
practical questions related to the yield curve dynamics. Indeed, the issue of
consistency between the yield curve construction and its evolution was resolved.
Additionally, the support of the yield curve distribution has been studied and
the mean reversion, or, more mathematically, stationarity of the entire yield
curve dynamics has been addressed.
Clearly, the in�nite dimensional analysis was useful in a study of the dynam-

ics of the forward rates for all maturities. There was, however, still a problem
that needed to be looked at, namely, that the forward rates f (t; T ) are not
traded in the market, and the Libor and swap rates are together with options
on them. Moreover, information contained in these option prices should be
taken into account in the speci�cation of the yield curve dynamics. Because the
market trades caps and swaptions in terms of their Black and Scholes volatilities,
it would be advantageous to develop a term structure model that is consistent
with such practice, a task seen by many academics at that time, as impossible
for its apparent internal inconsistency.
In a series of papers by Miltersen, Sandmann, Sondermann, Brace, Gatarek,

Musiela, Rutkowski and Jamshidian (see Part II of [16], for a detailed exposi-
tion of these works), a new modelling framework for term structure dynamics
was put in place. The so-called Libor, also known as BGM (Brace-Gatarek-
Musiela, ([6])), and swap market models resolved the outstanding issue of the
link between the traded instruments and the mathematical description of their
dynamics. In essence, they provided a model-independent framework for the
analysis of the interest rates dynamics when coupled with the advances �taking
place in parallel �in the modelling of volatility smile dynamics. The latter issue
is discussed next.
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The Black and Scholes model assumes constant volatility and hence, within
this model, a call option with arbitrary strike is priced with the same volatility.
However, call options of di¤erent strikes are priced di¤erently by the market
which �allocates�into the Black and Scholes formula a strike-dependent volatil-
ity generating the so-called volatility smile. This is clearly inconsistent with the
assumption of the model. It turns out, however, that a complete collection of call
prices, for all strikes and maturities, uniquely determines the one-dimensional
distributions of the underlying forward price process, under a probability mea-
sure which should be interpreted as a forward measure to the option maturity.
In a series of papers, Dupire ([8]) shows how to construct martingale di¤usions
with a given set of one-dimensional distributions, demonstrating, once more,
that the market practice is theoretically sound and internally consistent when
analysed from the perspective of the appropriate model. The Black and Scholes
model is used only to convert the quoted volatility into a price and it is no
longer used for the pricing of vanilla options. Moreover, there are many ways of
constructing martingales with a given set of one-dimensional marginals, and the
question is not so much how to construct one but, rather, which one to choose
and under which criteria. The important message here is that, again, one can
now look at the problem in a completely model-independent way, provided all
objects �namely, the underlying assets, the associated probability measures and
the relevant market information �are correctly interpreted.
Obviously, the theory and practice, at least in the equity, foreign exchange

and interest rates derivatives markets, have moved to a di¤erent level and
reached a certain degree of maturity. Of course, important challenges remain
but experience since the 1970s de�nes clearly a path to follow.

3 Current challenges and perspectives

3.1 Credit risk

A fundamental assumption of the Black and Scholes model is that the underly-
ing securities do not default. However, default is a realistic element of �nancial
contracts and very relevant to any �rm�s performance. Credit-linked instru-
ments have, by now, become a central feature in derivatives markets. These
are �nancial products that pay their holders amounts contingent on the occur-
rence of a default event ranging from bankruptcy of a �rm to failure to honour
a �nancial agreement. Examples include, among others, credit default swaps
(CDS), credit default obligations (CDO) and tranches of indices. Their market
has grown more than eightfold in recent years and, undoubtedly, credit risk is,
today, one of the most active and challenging areas in quantitative �nance.
There are various issues that make the problems in credit risk di¢ cult, from

both the modelling and the implementation point of view. The �rst challenge
is how to model the time of default. In academic research, there are two well-
established approaches, the structural and the reduced. In the structural mod-
els, it is postulated that uncertainty related to default is exclusively generated
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by the �rm�s value. Modelling default, then, amounts to building a good model
for the company�s assets and determining when the latter will fall below ex-
isting liabilities. However, such default times are, typically, predictable which
is not only unrealistic, but, also, di¢ cult to implement due to limited public
information about the �rm�s prospects. In the other extreme, the reduced-form
models, the default time is associated with a point process with an exogenously
given stochastic jump intensity. The intensity essentially measures the instan-
taneous likelihood of default. Reduced models are more tractable for pricing
and calibration but the default times are completely sudden (totally inaccessi-
ble), a non-realistic feature. Recently, e¤orts have been made to bridge the two
approaches by incorporating the limited information the investors might have
about the �rm�s value. This information-based approach is gradually emerging
but a number of modelling and technical serious issues remain to be tackled.
See, among others, Bielecki and Rutkowski ([4]) and Schönbucher ([17]).
Even though the above models are theoretically sound, their practical im-

plementation is so di¢ cult that makes them, e¤ectively, inapplicable. The main
problem stems from the high dimensionality and inability to develop compu-
tational methods that track �name by name� the valuation outputs. For this
reason, the focus in the industry has shifted to an alternative direction centred
on modelling the joint distribution of default times. An important development
in this direction is the use of a copula function, a concept introduced in Statis-
tics by Sklar ([18]). The aim is to de�ne the joint distribution of a family of
random variables when their individual marginal distributions are known. Such
marginal distributions may be, frequently, recovered from the market, as is the
case with CDS that yield implicit information on the underlying name�s default
time. Today, the most widely used copula is the one-factor Gaussian one, pro-
posed by Li ([12]). Its popularity lies in the ability to obtain the sensitivity,
and thus information on hedging, of the derivative price in a name by name
correspondence.

3.2 Model speci�cation

As has been mentioned earlier, the theory has long departed from perfect repli-
cation, and practice never relied on it. Absence of arbitrage is the underlying
pricing criterion in the derivatives market. However, a plethora of pricing is-
sues and model speci�cation arises every day. Derivatives markets have been
growing very rapidly, and high liquidity in vanilla options on a large number of
underlyings including, among others, single stocks and equity indices, interest
rates, foreign exchange, and commodities has been achieved. The users bene�t
from competitive prices, quoted at very tight spreads, for the protection they
need. This, in itself, brings another challenge to the providers of such services
and products, namely, the models that are currently under development need to
re�ect this liquidity before they can be used for the pricing of less liquid prod-
ucts. This process is known in the industry as model calibration. To a large
extent, one can assume that the market gives the prices for simple derivatives
like calls and puts and, hence, pricing considerations dissolve. However, more
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exotic options need to be priced and this must be done in a way consistent with
the basic products (vanilla).
To provide some intuition, consider the case of the so-called �rst generation

exotic, namely, a down and out call option. This is a barrier option that reduces
to a simple call option when the likelihood of crossing the barrier is very small.
Consequently, a model to price such an option must return the market price
of a call in such a scenario. Call prices will be liquid for all strikes up until a
certain maturity, say, 18 months or two years for currency options. However,
there may be a need to price products with embedded currency options of very
long maturity, like up to 50 years in dollar-yen exchange rate. In this case, a
suitable model needs to be developed that accommodates short- and long-term
issues. On one hand, the model must �t the short-dated foreign exchange (FX)
calls and puts. On the other, it has to be consistent with the interest rates
volatilities and must capture correctly the dependence structure between the
dollar and yen interest rates curves, their volatilities and the spot FX.
A standard approach for solving such problems consists of writing a continuous-

time model and trying to �t it to the liquid prices. This task is often very di¢ cult
to complete. Indeed, as more market information must be put into a model, the
more complicated the model gets, the more di¢ cult and time consuming the
calibration procedure becomes, and the more time it takes to produce accurate
prices and stable sensitivity reports. To a large extent, model calibration is
identical to the speci�cation of one-dimensional distributions of the underlying
process. Model speci�cation, on the other hand, can be identi�ed with the spec-
i�cation of an in�nite dimensional copula function de�ning the joint distribution
of the entire path, given the marginal distributions that can be deduced from
the call prices. At this point, it is important to recall that, often, option pay-
o¤s depend solely on a �nite dimensional distribution of the underlying process.
Consequently, the need to specify the continuous-time dynamics remains valid
only if one wants to link the concept of price with perfect replication of the
payo¤, a requirement that is, in any case, not met in practice.
Seen from this perspective, a new modelling path emerges, namely, one can

take the marginals as given by the call prices and choose a copula function in
such a way that the joint distribution is consistent with an arbitrage-free model.
For example, if one wants to price a forward start option, the distributions of
the underlying asset at two di¤erent dates are given. Then, only the joint dis-
tribution needs to be speci�ed but in such a way that the martingale property
is preserved. Clearly, there is an in�nite number of ways to build such a martin-
gale, and the choice should be based on additional information �for example,
not on the smile as seen today but on the assumptions one might want to make
about the smile dynamics.

3.3 Risk measures

As was previously discussed, absence of arbitrage is the fundamental ingredient
in derivative pricing. Absence of perfect replication remains, however, a major
issue and dictates the creation of �nancial reserves. To this e¤ect, regulatory
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policies have been in place for few years now.
These requirements prompted the axiomatic analysis of the so-called risk

measures, which are nonlinear indices yielding the capital requirement of �nan-
cial positions. The theory of coherent risk measures was proposed by Artzner
et al. ([1]). A popular risk measure is the �value at risk�, which, despite its
widespread use, neither promotes diversi�cation nor measures large losses ac-
curately. Since the mid-1990s a substantial research e¤ort has been invested in
further developing the theory. Relaxing a scaling assumption in the coherent
case has led to the development of convex risk measures. The next step has been
the axiomatic construction of dynamic risk measures that are time consistent,
an indispensable property of any pricing system.
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