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Abstract

Using forward optimality criteria, we analyze a portfolio choice
problem when the local risk tolerance is time-dependent and asymp-
totically linear in wealth. This class corresponds to a dynamic ex-
tension of the traditional (static) risk tolerances associated with the
power, logarithmic and exponential utilities. We provide explicit so-
lutions for the optimal investment strategies and wealth processes in
an incomplete non-Markovian market with asset prices modelled as
Ito processes. The methodology allows for measuring the investment
performance in terms of a benchmark and alternative market views.

Key words: Forward performance process, portfolio management, invest-
ment performance, local risk tolerance, fast-diffusion equation, benchmark,
market views, incomplete markets.

1 Introduction

This paper is a contribution to optimal portfolio management using the
forward performance approach. This approach, developed by the first author
and M. Musiela (see, Musiela and Zariphopoulou [2003, 2007b]), is based on
the martingale properties of the so-called forward performance process which
combines the investor’s preferences with market related inputs. In many
aspects, it is similar to the traditional maximal expected utility methodology
where the martingality of the solution (value function) is a consequence of
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the dynamic programming principle. It differs, however, in that the forward
performance process is defined endogenously to the market environment and
for all times. A direct consequence of these properties is that the forward
solution follows the market movements “path-by-path” and, moreover, can
be constructed without references to a specific trading horizon.

Constructing the forward performance process and the associated with
it optimal portfolio strategies poses many difficulties due to the fact that the
implicit stochastic optimization problem is posed “forward” in time. A class
of such processes was recently constructed in Musiela and Zariphopoulou
[2006b, 2007b] using the compilation of differential and stochastic input.
The inputs are given, respectively, by the solution of a fully nonlinear pde
and a triple of stochastic processes representing a benchmark, alternative
market views and (random) time-rescaling. The optimal policies are given as
a linear combination of the investor’s optimal wealth and the time-rescaled
risk tolerance processes. An important result is that these two processes
solve an autonomous system of stochastic differential equations.

Pivotal role in the above analysis plays the local risk tolerance function.
It is constructed from the investor’s initial risk preferences and the solution
of an equation of fast-diffusion type. It is, then, used to solve the afore-
mentioned system and, in turn, to explicitly specify the optimal investment
processes in a feedback form. We note that such optimal policies come as a
surprise given the non-Markovian nature of the market model.

Motivated by the emerging modeling importance of the local risk toler-
ance, we concentrate herein on a specific class of such functions. The family
we consider corresponds to a dynamic generalization of the popular utili-
ties used in academic works of portfolio management, namely, the power,
logarithmic and exponential ones. However, in contrast to the power and
logarithmic cases, the risk tolerances we consider are globally defined (i.e.
for positive and negative wealth levels).

The paper is organized as follows. In section 2, we introduce the model
and review the definition of forward performance process and the main re-
sults of Musiela and Zariphopoulou [2007b]. In section 3, we focus on a
two-parameter family of risk tolerance functions and construct the related
forward performance process. In section 4, we provide an explicit construc-
tion of the associated optimal allocations and wealth processes. We conclude
in section 5 where we concentrate on special limiting choices of the two risk
tolerance parameters.

2 The model and its investment performance mea-

surement

The market environment consists of one riskless and k risky securities. The
risky securities are stocks and their prices are modelled as positive and
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continuous Ito processes. Namely, for i = 1, ..., k, the price Si of the ith

risky asset solves

dSi
t = Si

t



µi
tdt +

d
∑

j=1

σ
ji
t dW

j
t



 (2.1)

with Si
0 > 0. The process W =

(

W 1, ...,W d
)

is a standard d−dimensional
Brownian motion, defined on a filtered probability space (Ω,F , P). For
simplicity, it is assumed that the underlying filtration, Ft, coincides with
the one generated by the Brownian motion, that is Ft = σ (Ws : 0 ≤ s ≤ t).

The coefficients µi and σi, i = 1, ..., k, follow Ft-adapted processes with
values in R and Rd, respectively. For brevity, we use σt to denote the

volatility matrix, i.e. the d × k random matrix
(

σ
ji
t

)

, whose ith column

represents the volatility σi
t of the ith risky asset. We may, then, alternatively

write (2.1) as
dSi

t = Si
t

(

µi
tdt + σi

t · dWt

)

.

The riskless asset, the savings account, has the price process B satisfying

dBt = rtBtdt

with B0 = 1, and for a nonnegative, Ft-adapted interest rate process rt.
The market coefficients, µ, σ and r are taken to be bounded.

It is postulated that there exists an Ft-adapted process λ, known as the
market price of risk, taking values in Rd and such that the equality

µi
t − rt =

d
∑

j=1

σ
ji
t λ

j
t = σi

t · λt

is satisfied for t ≥ 0, for all i = 1, ..., k. Using vector and matrix notation,
the above becomes

µt − rt1 =σT
t λt (2.2)

where σT stands for the transpose matrix of σ, and 1 denotes the d-dimensional
vector with every component equal to one. It is assumed that, for all t ≥ 0,
EP

∫ t

0 |σsσ
+
s λs|2ds < ∞, where σ+ denotes the Moore-Penrose pseudoinverse

of the volatility matrix (see Penrose [1955]). Recall that the matrix σ+ exists
and is unique even if the market fails to be complete.

Starting at t = 0 with an initial endowment x ∈ R, the investor invests
at all future times t > 0 in the riskless and risky assets. The present value
of the amounts invested are denoted, respectively, by π0

t and πi
t, i = 1, ..., k.

The present value of her aggregate investment is, then, given by Xt =
∑k

i=0 πi
t. We will refer to X as the discounted wealth. The investment

strategies
(

π0
t , π

1
t , ..., π

k
t

)

will play the role of control processes and are taken
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to satisfy the standard assumption of being self-financing, i.e. for s ≥ 0,

Xs = x +

k
∑

i=1

∫ s

0
πi

u

(

µi
u − ru

)

du +

k
∑

i=1

∫ s

0
πi

uσi
u · dWu. (2.3)

Writing the above in differential form, yields the evolution of the discounted
wealth,

dXt =

k
∑

i=1

πi
tσ

i
t · (λtdt + dWt) = σtπt · (λtdt + dWt) , (2.4)

where the (column) vector, πt =
(

πi
t; i = 1, ..., k

)

.
The set of admissible strategies, A, consists of all self-financing Ft−adapted

processes πt such that EP

∫ s

0 |σtπt|2dt < ∞, for s > 0. It is also assumed,
in order to preclude arbitrage opportunities, that, for each s > 0, the as-
sociated wealth process, Xt, 0 ≤ t ≤ s, is a Q|Fs-supermartingale for some
equivalent martingale measure Q|Fs ∼ P|Fs .

We continue with the definition of the forward performance process. We
refer the reader to Musiela and Zariphopoulou [2007a,b] (see, also, Musiela
and Zariphopoulou [2003]) for a detailed analysis on the motivation and
modeling considerations that led to the development of the forward perfor-
mance concept.

Definition 2.1. An Ft-adapted process Ut (x) is a forward performance if:
i) for each t ≥ 0 and as a function of x ∈ R, Ut (x) is concave and

increasing,
ii) for each t ≥ 0 and each self-financing strategy, π ∈ A,

EP [Ut (Xπ
t )]+ < ∞,

iii) for each self-financing strategy, π ∈ A,

EP [Us (Xπ
s ) |Ft ] ≤ Ut (Xπ

t ) , s ≥ t,

iv) there exists a self-financing strategy, π∗ ∈ A, for which

EP[Us(X
π∗
s ) |Ft ] = Ut(X

π∗
t ), s ≥ t,

and
v) it satisfies the initial datum U0 (x) = u0 (x), x ∈ R where u0 : R → R

is a concave and increasing function of wealth.

Related to our work is the recent paper Choulli et al. [2007] in which the
authors considered random horizon choices, aiming at alleviating the depen-
dence of the value function on a fixed (and deterministic) horizon. Their
model is more general than ours, in terms of the assumptions on the price
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processes. However, the focus is on horizon effects and not on additional fea-
tures affecting the form of the forward solution like, for example, numeraire
choice, tracking a benchmark and alternative market views. Horizon is-
sues were also considered in Henderson and Hobson [2007a,b] who proposed
the so-called horizon-unbiased utilities in the context of lognormal diffusion
models and constructed a deterministic class of solutions. While preparing
this work, the authors came across the preprint Berrier et al. [2007] where
a special case of forward processes is considered in a model similar to ours
(see Corollary 2.1 below).

We mention that forward formulations of optimal control problems have
been proposed and analyzed in the past. For deterministic models, we refer
the reader, among others, to Seinfeld and Lapidus [1968] and Chapter 1 in
Larson [1968] (see, also, Vrr [1977]). In stochastic settings, forward opti-
mality has been studied, primarily under Markovian assumptions, in Kurtz
[1984] via the associated controlled martingale problems and the construc-
tion of the Nisio semigroup (see, Nisio [1981]).

Next, we review the results of Musiela and Zariphopoulou [2007b]. They
consist of three parts, namely, the representation of a family of forward per-
formance processes, the specification of the associated optimal investment
strategies and wealth processes and the construction of an autonomous sys-
tem of stochastic differential equations that the optimal wealth and risk
tolerance processes solve.

Theorem 2.1. Let the processes Y and Z solve

dYt = Ytδt · (λtdt + dWt) (2.5)

and
dZt = Ztφt · dWt (2.6)

with Y0 = Z0 = 1, δ and φ being Ft-adapted and bounded with δ such that
σσ+δ = δ and EP

∫ t

0 |σsσ
+
s φs|2ds < ∞. Define the process

At =

∫ t

0
|σsσ

+
s (λs + φs) − δs|2ds, t ≥ 0 (2.7)

where λ as in (2.2).
Let u : R×(0,∞) → R be a concave and increasing function of the spatial

argument with u : C3,1 (R× (0,∞)) satisfying the differential constraint

utuxx =
1

2
u2

x (2.8)

and the initial datum
u (x, 0) = u0 (x) (2.9)
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with u0 : R → R be in C3 (R). Then, the process Ut (x) defined by

Ut (x) = u

(

x

Yt
, At

)

Zt, t ≥ 0 (2.10)

is a forward performance.

The process Y , which normalizes the wealth argument, may be thought
as a benchmark (or numeraire) with regards to which the investment perfor-
mance is measured. The process Z refers to changes in the historical prob-
ability measure and accommodates alternative views on anticipated market
movements. We will refer to Y and Z as the benchmark and market view
processes respectively.

Corollary 2.1. In the special case δt = φt = 0, t ≥ 0, the forward perfor-
mance process deduces to

Ut (x) = u

(

x,

∫ t

0
|σsσ

+
s λs|2ds

)

. (2.11)

If, in addition, the market parameters are constant, the forward solution is
given by the deterministic function

Ut (x) = u
(

x, |σσ+λ|2t
)

. (2.12)

Forward solutions of form (2.11) (resp. (2.12)) are the ones considered
in Berrier et al. [2007] (resp. Henderson and Hobson [2007a,b]).

We continue with the optimal investment strategies and the wealth they
generate. It is worth mentioning that despite the dimensionality and in-
completeness of the model, as well as the allowed path-dependence of the
coefficients, the optimal control policies are given in an explicit feedback
form. To our knowledge this is one of the very few such examples.

For convenience and generality, we work in the benchmarked configura-
tion, namely, we consider the processes

π̃∗
t ≡ 1

Yt
π∗

t and X̃∗
t ≡ X∗

t

Yt
(2.13)

denoting, respectively, the benchmarked optimal portfolio and benchmarked
optimal wealth.

A quantity that will play an important role in the analysis herein is the
local risk tolerance r : R× [0,∞) → R+, defined as

r (x, t) = − ux (x, t)

uxx (x, t)
(2.14)
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with u as in (2.10). For its initial value, we will be using the notation

r0 (x) = r (x, 0) = − u′ (x)

u′′ (x)
. (2.15)

The following assumption will be standing throughout.
Assumption 1: There exist constants K1 and K2 such that, for all t ≥ 0

and x, x̄ ∈ R,

r2 (x, t) ≤ K1

(

1 + x2
)

and |r (x, t) − r (x̄, t) | ≤ K2|x − x̄|. (2.16)

Next, we introduce the risk tolerance process (at benchmarked optimal
wealth)

R̃∗
t = r

(

X̃∗
t , At

)

(2.17)

with r as in (2.24) and A being the time-rescaling process defined in (2.7).

Theorem 2.2. The optimal benchmarked portfolio π̃∗
t , t > 0, is given by

π̃∗
t = Π∗

t

(

X̃∗
t

)

with
Π∗

t (x) = xσ+δt + r (x,At)σ+
t (λt + φt − δt) (2.18)

where A as in (2.7) and X̃∗
t , t > 0, solving

dX̃∗
t =

(

σtπ̃
∗
t − X̃∗

t δt

)

· ((λt − δt) dt + dWt) , (2.19)

with π̃∗ being used.
Equivalently,

π̃∗
t = mtX̃

∗
t + ntR̃

∗
t (2.20)

with R̃∗
t as in (2.17) and the portfolio weights given by

mt = σ+
t δt and nt = σ+

t (λt + φt − δt) . (2.21)

An important consequence of the above theorem is that, under any choice
of risk preferences, the optimal investment strategy is represented as a linear
combination of two funds, namely,

π̃
∗,X
t = mtX̃

∗
t and π̃

∗,R
t = ntR̃

∗
t . (2.22)

The portfolio π̃
∗,X
t depends functionally only on current wealth and not the

risk tolerance. The situation, however, is reversed for the second investment
strategy, π̃

∗,R
t . Observe that the portfolio weights mt, nt, t > 0 are affected

exclusively by the market. They may take the value zero in which case the
relevant optimal allocation vanishes. Such cases are discussed at the end of
this section.

Next, we present the autonomous system of stochastic differential equa-
tions that the processes X̃∗

t and R̃∗
t , t > 0 solve. Solving this system and

using the linear representation result of (2.20) enable us to explicitly con-
struct the optimal allocation vector π̃∗

t .
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Proposition 2.1. Let r be the local risk tolerance function, introduced in
(2.14), and A the time-rescaling process given in (2.7). Then, for t > 0, the
processes X̃∗

t and R̃∗
t , t > 0, representing the (benchmarked) optimal wealth

and risk tolerance, solve the system











dX̃∗
t = R̃∗

t σtnt · ((λt − δt) dt + dWt)

dR̃∗
t = rx

(

X̃∗
t , At

)

dX̃∗
t

(2.23)

with X̃∗
0 = x, R̃∗

0 = r0 (x) and nt, t > 0 as in (2.21).

From (2.23) we see that the solution
(

X̃∗, R̃∗
)

is fully specified once

the model is chosen and the local risk tolerance function is known. Recall
that r is constructed from the function u (cf. (2.14)), obtained from the
nonlinear equation (2.8) and the initial datum (2.9). The form of the above
system, however, motivates us to question whether one should first model
the differential input u and, then, specify r (cf. (2.14)) or go the opposite
direction. Herein, we follow the second approach, namely, we first choose
a family of risk tolerances and, in turn, recover the associated differential
input. A fundamental result used for this construction is that r satisfies
an autonomous differential equation. This rather interesting property was
shown in Musiela and Zariphopoulou [2006b].

Proposition 2.2. If u satisfies (2.8), the associated local risk tolerance
function r, defined in (2.14), satisfies

rt +
1

2
r2rxx = 0. (2.24)

It is easy to see how the differential input, u, is recovered once the local
risk tolerance is known. Indeed, choosing the initial condition r0 (x) =
r (x, 0) and using (2.15) yields (modulo two constants) the initial datum
(2.9). In turn, equation (2.24), together with the initial condition r0, will
give the values r (x, t), for t > 0. The function u (x, t), t > 0, can be,
then, retrieved from (2.14) by successive integration, provided certain (time-
dependent) quantities are correctly specified. Related arguments are found
in the proof of Proposition 3.2.

The reader with expertise in nonlinear partial differential equations will
find the form of (2.24) familiar. In fact, it is a nonlinear heat equation,
frequently called equation of fast-diffusion type. There is a vast literature on
this equation and we refer the reader, among others, to the book of Vasquez
[2006]. Observe, however, that classical results might not be applicable
since the equation is “ill-posed”, a fact that adds various difficulties to the
construction of well-defined and stable solutions.
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We finish this section mentioning that there is alternative way to con-
struct u from r which could, perhaps, provide more intuition for the evo-
lution of the differential input. Namely, observe that (2.8) and (2.14) yield
the transport equation

ut +
1

2
r (x, t)ux = 0. (2.25)

Such first-order equations can be solved by the method of characteristics.
In (2.25) these curves have slope equal to one half the local risk tolerance.
The input u is, then, readily constructed through the initial condition u0,
computed from (2.15), and its propagation along the characteristic curves.

3 Asymptotically linear local risk tolerance func-

tions

We now focus on a specific class of risk tolerance functions. To provide some
motivation for our choice, let us recall that the utilities most frequently ap-
pearing in academic papers of portfolio management are the power, logarith-
mic and exponential1. In the generic problem of maximizing the expected
utility of terminal wealth, these utilities are assigned at the end of the trad-
ing horizon, say [0, T ], and given, respectively, by

up (x;T ) =
1

γ
xγ , x ≥ 0, γ < 1, γ 6= 0, (3.1)

ul (x;T ) = log x, x > 0, (3.2)

and
ue (x;T ) = −e−κx, x ∈ R, κ > 0. (3.3)

The associated risk tolerances (with a slight abuse of notation, we denote
them by r but keep the argument T to emphasize their dependence on the
horizon choice) are, naturally, time independent and given by

rp (x;T ) =
1

1 − γ
x, x ≥ 0 and rl (x;T ) = x, x > 0, (3.4)

and

re (x;T ) =
1

κ
, x ∈ R. (3.5)

Notice that in the traditional setting 2 risk preferences are chosen exclu-
sively at the single time instant, T . In the forward framework, however, they
are set at initial time, t = 0, and then specified for all future times t > 0.

1The quadratic utility deserves special attention due to its saturation properties and
will be studied separately.

2We remind the reader that there is no intermediate consumption and, thus, no risk
preferences are allocated to incoming consumption streams.
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For the family of forward performance processes we consider herein, the
specification of the future values of r comes from the differential constraint
(2.24).

Next, we introduce a rich family of solutions which, from one hand, are
appropriate for the new framework and, on the other, resemble a dynamic
extension of their traditional counterparts (3.4) and (3.5).

Proposition 3.1. Let α, β > 0 and r0 : R → R+ be given by

r0 (x) =
√

αx2 + β.

Then, the function r : R× [0,∞) → R+,

r (x, t;α, β) =
√

αx2 + βe−αt, (3.6)

solves (2.24).

It is easy to verify that for fixed t = T , rp (x;T ), rl (x;T ) and re (x;T )
are limiting cases of (3.6) in their respective spatial domains. Indeed,

rp (x;T ) = lim
β→0

r (x, T ;α, β) , x ≥ 0, and γ =

√
α − 1√

α
, α 6= 1, (3.7)

rl (x;T ) = lim
β→0

r (x, T ;α, β) , x > 0 and α = 1, (3.8)

and
re (x;T ) = lim

α→0
r (x, T ;α, β) and β2 = κ−1. (3.9)

It is immediate that the family r (x, t;α, β) satisfies Assumption 1. More-
over, it is globally defined and remains strictly positive at all positive times,

r (x, t;α, β) > 0, x ∈ R and t > 0.

It has a global minimum at the origin, (0, 0), at which it degenerates,
r (0, 0;α, β) = 0. The top panel of Figure 1 provides its graph for α = 4 and
β = 0.1.

The family (3.6) will be called asymptotically linear due to its limiting
behavior

lim
x→±∞

r (x, t;α, β)

|x| =
√

α, t ≥ 0. (3.10)

Remark: The above class can be readily generalized to the three-parameter
family

r (x, t;x0, α, β) =

√

α (x − x0)
2 + βe−αt, t > 0.

Since the arguments developed in the sequel can be easily extended, for the
above case, we choose x0 = 0.
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The rest of the paper is dedicated to the construction of the forward
performance process, the optimal investment allocations and the optimal
wealth when the local risk tolerance is given by (3.6). The first step is
to identify the differential input that is associated with (3.6), i.e. for an
increasing and concave function u (x, t;α, β) satisfying

− ux (x, t;α, β)

uxx (x, t;α, β)
=
√

αx2 + βe−αt, x ∈ R and t ≥ 0.

It is easy to verify that the construction is invariant under affine transfor-
mations, namely, if u (x, t;α, β) satisfies the above then, for M,N constants,

ū (x, t;α, β) = Mu (x, t;α, β) + N (3.11)

satisfies it as well. To preserve the desired monotonicity of u we need to
choose M > 0.

As it will be clear from the proof of the next Proposition, the form of u

depends on the range of the parameter α. Specifically, one needs to look at
the cases α = 1 and α 6= 1, separately.

Proposition 3.2. Let r be given by (3.6) with α, β > 0. The following
statements hold.

i) If α 6= 1, the associated differential input is given, for x ∈ R and
t ≥ 0, by

u (x, t;α, β)

= M
(
√

α)
1+ 1√

α

α − 1
e

1−
√

α

2
t

(

β√
α
e−αt + (1 +

√
α) x

(√
αx +

√

αx2 + βe−αt
))

(√
αx +

√

αx2 + βe−αt
)1+ 1√

α

+ N.

(3.12)
ii) If, α = 1, then, for x ∈ R and t ≥ 0,

u (x, t; 1, β)

=
M

2

(

log
(

x +
√

x2 + βe−t
)

− et

β
x
(

x −
√

x2 + βe−t
)

− t

2

)

+ N.

(3.13)

Proof. Rewriting (2.14) as (log ux (x, t;α, β))x = −r (x, t;α, β)−1 and inte-
grating yields

ux (x, t;α, β) = m (t)

(

x +

√

x2 +
β

α
e−αt

)− 1√
α

(3.14)

for some function m : [0,∞) → R+. In turn,

uxx (x, t;α, β) = −m (t)

(

x +
√

x2 + β
α
e−αt

)− 1√
α

√

αx2 + βe−αt
.
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From equation (2.8) we, then, deduce that

ut (x, t;α, β) = −1

2
m (t)

(

x +

√

x2 +
β

α
e−αt

)− 1√
α
√

αx2 + βe−αt.

Integrating yields, for α = 1,

u (x, t; 1, β) = − 1

2β
m (t)

(

etx2 − etx
√

x2 + βe−t − β log
(

x +
√

x2 + βe−t
))

+n (t)

while, for α 6= 1,

u (x, t;α, β) =m (t)

√
α

α − 1

(

x +

√

x2 +
β

α
e−αt

)−
“

1+ 1√
α

”

×

×
(

β

α
e−αt +

(

1 +
√

α
)

x

(

x +

√

x2 +
β

α
e−αt

))

+ n(t).

We analyze only the latter case. Differentiating the above gives

ut (x, t) = n′(t) +

(

x +

√

x2 +
β

α
e−αt

)

−
„

1+ 1√
α

«

×

×
(

βe−αt

(

m′ (t)√
α (α − 1)

− m (t)

2 (
√

α + 1)

)

+ m′ (t)

√
α√

α − 1
x

(

x +

√

x2 +
β

α
e−αt

))

.

Reconciling the above two expressions for ut (x, t) yields

m′ (t) = −
√

α − 1

2
m (t) and n′ (t) = 0.

Thus, m (t) = Me−
√

α−1

2 and n (t) = N , and (3.12) follows.

The initial value u0, derived from (3.12) and (3.13) for t = 0, will be
needed for special cases presented in the sequel. For convenience we write
it below, namely, for x ∈ R, α > 0 (α 6= 1),

u0 (x;α, β) = M
(
√

α)
1+ 1√

α

α − 1

(

β√
α

+ (1 +
√

α)x
(√

αx +
√

αx2 + β
))

(√
αx +

√

αx2 + β
)1+ 1√

α

+ N

(3.15)
while for α = 1,

u0 (x, 1, β) =
M

2

(

log
(

x +
√

x2 + β
)

− x

β

(

x −
√

x2 + β
)

)

+ N. (3.16)

Once the differential input is specified, the construction of the forward
performance process is an immediate application of Theorem 2.1.
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Proposition 3.3. Let the local risk tolerance and (Y,Z,A) be as in (3.6)
and (2.5), (2.6) and (2.7). Then, for x ∈ R and t ≥ 0, the process

Ut (x;α, β) = u

(

x

Yt
, At;α, β

)

Zt, (3.17)

with u (x, t;α, β) given in Proposition 3.2, is a forward performance.

Remark: It is important to notice that in the classical case, the power
and logarithmic utilities ul and up (cf. (3.1) and (3.2)) are not everywhere
defined. This restraints the applicability of such preferences especially when
we introduce derivatives and liabilities. Observe, however, that their time-
dependent forward counterparts, (3.12) and (3.13), are spatially globally
defined. For this reason, the above process Ut (x;α, β) is also globally de-
fined. The situation changes, however, when the time dependence disap-
pears which occurs when β → 0 and/or α → 0. These cases deserve special
attention and are discussed separately (see Section 5).

In the second panel of Figure 1, we provide the graph of the function
u (x, t;α, β) (cf. (3.12)), for α = 4 and β = 0.1. We, also, provide the cross-
sections u (x, t0;α, β) and u (x0, t;α, β). The first panel of Figure 2 shows,
for fixed time t0, the monotonicity and concavity of u (x, t0;α, β) while the
second panel shows the monotonicity of u (x0, t;α, β) in terms of time.

4 At the optimum

We provide explicit solutions for the optimal investment policies, the asso-
ciated wealth and the optimal investment performance. The key ingredients
used in the construction of these processes are the autonomous system that
the optimal wealth and risk tolerance processes satisfy (cf. (2.23)) together
with the specific form of the local risk tolerance function (cf. (3.6)). We
remind the reader that the results are stated in the benchmarked configu-
ration.

Theorem 4.1. The processes X̃∗
t and R̃∗

t , t > 0, representing the optimal
(benchmarked) wealth and risk tolerance solve the system of linear stochastic
differential equations







dX̃∗
t = R̃∗

t σtnt · ((λt − δt) dt + dWt)

dR̃∗
t = αX̃∗

t σtnt · ((λt − δt) dt + dWt)

(4.1)

with X̃∗
0 = x and R̃∗

0 = r (x, 0) =
√

αx2 + β.

In turn,

X̃∗
t = e−

α
2

R t
0
|σsns|2ds

(

x cosh
(√

αkt

)

+

√

x2 +
β

α
sinh

(√
αkt

)

)

(4.2)
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and

R̃∗
t = e−

α
2

R t
0
|σsns|2ds

(√
αx sinh

(√
αkt

)

+
√

αx2 + β cosh
(√

αkt

)

)

, (4.3)

where nt, t > 0, as in (2.21) and

kt =

∫ t

0
σsσ

+
s (λs + φs − δs) · ((λs − δs) ds + dWs) . (4.4)

The vector of optimal asset allocations is given by

π̃∗
t = mtX̃

∗
t + ntR̃

∗
t (4.5)

with X̃∗
t , R̃∗

t as above and mt as in (2.21).

Proof. The coefficients in (4.1) follow from Theorem 2.2 (see (2.18) and
(2.19)) and (3.6). The admissibility conditions for the optimal policy follow
from the boundedness assumption on the market coefficients. Indeed, one
can easily see that the integrability condition EP

∫ s

0 |π∗
t |2dt < ∞ holds for

0 ≤ t ≤ s and that the wealth process X∗
t , 0 ≤ t ≤ s, is a Q|Fs-martingale

where
dQ

dP

∣

∣

∣

Fs

= exp{−
∫ s

0
λt · dWt −

1

2

∫ s

0
|λt|2ds}.

The arguments in the benchmarked configuration follow easily as well.
Adding and subtracting the equations in (4.1) yields

d
(√

αX̃∗
t + R̃∗

t

)

=
√

α
(√

αX̃∗
t + R̃∗

t

)

σtnt · ((λt − δt) dt + dWt)

and

d
(√

αX̃∗
t − R̃∗

t

)

= −
√

α
(√

αX̃∗
t − R̃∗

t

)

σtnt · ((λt − δt) dt + dWt)

and we easily conclude.

For completeness, we provide the optimal allocations π∗ and wealth X∗

in the original (non-benchmarked) formulation. Recall (see (2.13) and (2.5))
that, for t > 0,

X∗
t = YtX̃

∗
t and π∗

t = mtX
∗
t + ntYtr

(

X∗
t

Yt
, At

)

.
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Proposition 4.1. Let x ∈ R be the investor’s initial endowment. Then,
the optimal allocation vector and associated optimal wealth are given, re-
spectively, by

π∗
t = eζtmt

(

x cosh
(√

αkt

)

+

√

x2 +
β

α
sinh

(√
αkt

)

)

+ eζtnt

(√
αx cosh

(√
αkt

)

+
√

αx2 + β sinh
(√

αkt

)

)

, t > 0,

(4.6)

and

X∗
t = eζt

(

x cosh
(√

αkt

)

+

√

x2 +
β

α
sinh

(√
αkt

)

)

, t ≥ 0 (4.7)

where

ζt =

∫ t

0

(

δs · λs −
1

2
|δs|2 −

α

2
|σsns|2

)

ds +

∫ t

0
δs · dWs (4.8)

and mt, nt and kt as in (2.21) and (4.4).

Next we look at the extreme cases mt = nt = 0, t > 0 leading, respec-
tively, to π̃

∗,X
t = 0 and π̃

∗,R
t = 0. It is easy to check that they reduce to

δt = 0 and λt + φt − δt = 0, t ≥ 0.

i) Absence of benchmark: δt = 0. Then (2.5) yields Yt = Y0 = 1, t ≥ 0.

Then, the first portfolio component vanishes, π
∗,X
t = 0, while the second

simplifies to

π
∗,R
t = e−

α
2

R t
0
|σsσ+

s (λs+φs)|2dsσ+
t (λt + φt)×

×
(√

αx cosh
(√

αk′
t

)

+
√

αx2 + β sinh
(√

αk′
t

)

)

with

k′
t =

∫ t

0
σsσ

+
s (λs + φs) · (λsds + dWs) . (4.9)

The optimal wealth is given by

X∗
t = e−

α
2

R t

0
|σsσ+

s (λs+φs)|2ds

(

x cosh
(√

αk′
t

)

+

√

x2 +
β

α
sinh

(√
αk′

t

)

)

.

The (sub)case λt + φt = 0 deserves special attention since π
∗,R
t also

vanishes. Moreover, At = 0, t ≥ 0, which leads to the performance process

Ut (x, t;α, β) = u0 (x;α, β) Zt (4.10)
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with u0 as in (3.15) or (3.16). Moreover,

π̃
∗,X
t = π

∗,X
t = 0 and π̃

∗,R
t = π

∗,R
t = 0, t ≥ 0

and, in turn,
X̃∗

t = X∗
t = x, t ≥ 0.

At the optimum,

U∗
t (x;α, β) = Ut (x;α, β) = u0 (x;α, β) Zt.

The above results show that for the above choice of coefficients (λt+φt =
0 and δt = 0, t ≥ 0), it is optimal for the investor to invest zero wealth into
each risky asset, a result that comes as a surprise given the non-zero returns.
Notice that such a solution seems to capture quite accurately the strategy
of a derivatives’ trader for whom the underlying objective is to hedge as
opposed to the asset manager whose objective is to invest. Naturally, under
this strategy, the forward performance process is not affected by the time
evolution of u. This a direct consequence of the fact that the time-rescaling
process A degenerates.

ii) Tracking the benchmark: λt + φt − δt = 0, t ≥ 0.

In this case, the portfolio π̃∗,R vanishes and, thus, any dependence on
the risk tolerance dissipates. The investor invests the fraction mt of his
(benchmarked) wealth to the risky assets and puts the rest in the riskless
bond. We have At = 0, t ≥ 0 and, thus, the performance process is given
by (4.10). Moreover,

π̃
∗,X
t = mtX̃

∗
t and π̃

∗,R
t = 0, t > 0.

The absolute wealth tracks the benchmark while the (benchmarked) risk
tolerance process remains unchanged,

X∗
t = xYt and R̃∗

t = R̃∗
0 =

√

αx2 + β.

At the optimum,

U∗
t (x;α, β) = u0

(

X∗
t

Yt
;α, β

)

Zt = u0 (x;α, β) Zt.

Remark: The above result shows that the investor allocates in the risk-
less asset the amount π̃

∗,0
t = ptX

∗
t with pt = 1−mt ·1. Notice that depending

on the level of the weight process pt, t ≥ 0, which is determined only by the
market parameters, the investor allocates arbitrarily small or large propor-
tions of the wealth in the riskless asset. In the extreme case, pt = 0, t ≥ 0,
the investor allocates zero wealth in the riskless asset while in the other such
case, namely when pt = 1, t ≥ 0, the optimal allocation consists of putting
all wealth in the riskless asset.
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5 Special cases: CARA and CRRA forward per-

formance processes

We now look at the behavior of the solutions when the parameters α and
β vanish. Recalling equalities (3.7), (3.8) and (3.9), we anticipate that the
limiting risk tolerance and differential input must resemble their classical
power, logarithmic and exponential analogues. While passing to the limit
in (3.6), and (3.12) and (3.13) is not difficult from the technical point of
view, the emerging limits have some noteworthy properties. To simplify the
notation, we skip throughout the parameter notation and use, instead, the
superscripts e, p and l in a self-evident way.

i) The case α = 0.

Passing to the limit in (3.6) and (3.12 ) yields, for t ≥ 0,

lim
α→0

r (x, t;α, β) =
√

β, x ∈ R (5.1)

and
ue (x, t) = lim

α→0
u (x, t;α, β) = −e

− x√
β
+ t

2 , x ∈ R, (5.2)

where we chose, for simplicity, M = (
√

α)
1√
α (
√

β)
1−

√
α√

α and N = 0 3;
Figure 3 demonstrates this convergence.

One, easily, sees that the limiting local risk tolerance (5.1) leads to an
exponential forward performance process. This class of solutions was exten-
sively analyzed in Musiela and Zariphopoulou [2006b, 2007a] and we refer
the reader therein for detailed arguments.

Proposition 5.1. For α = 0, β > 0, t ≥ 0, x ∈ R, and (Y,Z,A) as in
(2.5), (2.6), and (2.7), the process

U e
t (x) = − exp

(

− 1√
β

x

Yt
+

At

2

)

Zt

is a forward performance. Moreover, the optimal (benchmarked) investment
strategy and the associated wealth are given by the processes

π̃
∗,e
t =

(

x +
√

βkt

)

mt +
√

βnt and X̃
∗,e
t = x +

√

βkt (5.3)

3For the second limit, we use in (3.12) that for β > 0, x ∈ R,

lim
α→0

„
r

α

β
+

r

α

β
x2 + 1

«−
√

α+1
√

α

= e
− x

√

β .
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with nt, kt as in (2.21) and (4.4).
At the optimum,

U e
t (X∗

t ) = − exp

(

− x√
β
− kt +

1

2

∫ t

0
|σsns|2ds

)

Zt.

Remark: It is interesting to observe that due to the presence of the
benchmark the optimal investment policy depends on the current wealth.
This is in contrast to the known results which yield wealth independent
policies, a fact that is frequently used against the use of exponential prefer-
ences in models of investment and (indifference) valuation.

Next, we write the solutions when both the benchmark and the market
view process are absent.

Corollary 5.1. Let δt = φt = 0, t ≥ 0. Then,

U e
t (x) = − exp

(

− 1√
β

x +
1

2

∫ t

0
|σsσ

+
s λs|2ds

)

. (5.4)

Moreover,

X
∗,e
t = x +

√

β

∫ t

0
σsσ

+
s λs · (λsds + dWs) and π

∗,e
t =

√

βσ+
t λt.

ii) The case β = 0.

Passing to the limit in (3.6) yields, for t ≥ 0,

lim
β→0

r (x, t;α, β) =
√

α|x|, x ∈ R. (5.5)

In turn, for α > 1 (α < 1), (3.12) gives

up (x, t) = lim
β→0

u (x, t;α, β) =







1

γ
xγe

− 1

2

γ
1−γ

t for x ≥ 0 (x > 0)

−∞ for x < 0 (x ≤ 0)

(5.6)

with

γ =

√
α − 1√

α
, α > 0, (5.7)

and where we chose the constants M = 2
1√
α and N = 0.

For α = 1, (3.13) yields

ul (x, t) = lim
β→0

u (x, t; 1, β) =







log x − 1

2
t for x > 0

−∞ for x ≤ 0
(5.8)
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for the choice M = 2 and N = −
(

1
2 + log 2

)

.
The limiting behavior of the differential inputs u (x, t;α, β) and u (x, t; 1, β)

when β → 0 is shown in Figures 4 and 5.

We see that while the local risk tolerance in (5.5) is well defined for
all x ∈ R, the associated differential inputs up and ul explode for non
positive wealth levels. This impedes us from having globally defined forward
performance processes. A well-defined problem may be formulated if we a
priori constrain the set of admissible policies to strategies which generate
nonnegative wealth. A modification of the proofs of Theorems 2.1 and 2.2
yields the following results.

Proposition 5.2. Let the local risk tolerance be given by

r (x, t;α, 0) =
√

αx,

for x ≥ 0 when α > 1 and x > 0 when α < 1 (α 6= 0). Let, also, (Y,Z,A)
be as in (2.5), (2.6) and (2.7). Then, for α > 1 (α < 1), the process

U
p
t (x) =

1

γ

(

x

Yt

)γ

e
− 1

2

γ
1−γ

AtZt, x ≥ 0 (x > 0) , (5.9)

is a forward performance. Moreover, the optimal investment strategy and
associated wealth processes are given by

π̃
∗,p
t = x

(

mt +
√

αnt

)

exp(−α

2

∫ t

0
|σsns|2ds +

√
αkt)

and

X̃
∗,p
t = x exp(−α

2

∫ t

0
|σsns|2ds +

√
αkt),

with nt, kt as in (2.21) and (4.4).
At the optimum,

U
p
t

(

X
∗,p
t

)

=
1

γ
xγ exp

(

−α − 1

2

∫ t

0
|σsns|2ds + (

√
α − 1)kt

)

Zt, for x ≥ 0 (x > 0) .

Similar results can be obtained for the logarithmic case.

Proposition 5.3. Let the local risk tolerance be given by

r (x, t; 1, 0) = x, x > 0.

Then, the process

U l
t (x) =

(

log
x

Yt
− At

2

)

Zt, x > 0
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is a forward performance. Moreover, the optimal investment strategy and
associated wealth processes are given by

π̃
∗,l
t = x(mt + nt) exp(−1

2

∫ t

0
|σsns|2ds + kt)

and

X̃
∗,l
t = x exp

(

−1

2

∫ t

0
|σsns|2ds + kt

)

.

At the optimum,

U l
t

(

X
∗,l
t

)

=

(

log x −
∫ t

0
|σsns|2ds + kt

)

Zt

with nt, kt as in (2.21) and (4.4).

In analogy to Corollary 5.1, we look at the case of no benchmark and no
alternative market views.

Corollary 5.2. Let δt = φt = 0, t ≥ 0 and β = 0. Then, for α > 1 (α < 1),

U
p
t (x) =

1

γ
xγ exp

(

− γ

2 (1 − γ)

∫ t

0
|σsσ

+
s λs|2ds

)

, x ≥ 0 (x > 0) . (5.10)

Moreover,

π
∗,p
t =

√
αxσ+

t λt exp

(

−α

2

∫ t

0
|σsσ

+
s λs|2ds +

√
α

∫ t

0
σsσ

+
s λs · (λsds + dWs)

)

and

X
∗,p
t = x exp

(

−α

2

∫ t

0
|σsσ

+
s λs|2ds +

√
α

∫ t

0
σsσ

+
s λs · (λsds + dWs)

)

.

Corollary 5.3. Let δt = φt = 0, t ≥ 0 and β = 0. Then, for α = 1,

U l
t (x) =

(

log x − 1

2

∫ t

0
|σsσ

+λs|2ds

)

, x > 0. (5.11)

Moreover,

π
∗,l
t = xσ+

t λt exp

(

−1

2

∫ t

0
|σsσ

+
s λs|2ds +

∫ t

0
σsσ

+
s λs · (λsds + dWs)

)

and

X
∗,l
t = x exp

(

−1

2

∫ t

0
|σsσ

+
s λs|2ds +

∫ t

0
σsσ

+
s λs · (λsds + dWs)

)

.

When the market coefficients are constants, the forward processes U e
t (x),

U
p
t (x) and U l

t(x) in (5.4), (5.10) and (5.11) reduce to deterministic functions.
These special cases can be found in Henderson and Hobson [2007a,b].
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Figure 1: The risk tolerance and differential input surfaces. For parameters
α = 4 and β = 0.1, this figure presents the local risk tolerance surface r(x, t; α, β) =
p

αx2 + βe−αt (first panel) and the differential input surface u(x, t; α, β) given in (3.12),
for M = 1 and N = 0 (second panel).
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Figure 2: Cross sections of the differential input. For parameters α = 4 and
β = 0.1, this figure presents the cross sections of the differential input surface u(x, t; α, β)
given in (3.12), for M = 1 and N = 0. The first panel corresponds to u(x, t0; α, β), with
t0 = 1. The second panel corresponds to u(x0, t; α, β), with x0 = 1.
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Figure 3: Convergence to the exponential case. We choose β = 0.1. For times
t = 0, 1, 2, the three panels demonstrate the convergence, as α → 0, of the differential

input u(x, t; α, β), given in (3.12), for M = (
√

α)
1

√

α (
√

β)
1−

√

α
√

α and N = 0. The curve of
solid line corresponds to the exponential differential input ue(x, t) = limα→0 u(x, t; α, β) =

−e
− x

√

β
+ 1

2
t
. The curves of dotted lines correspond to u(x, t; α, β) for α = 1×10−1, 6×10−2,

3 × 10−2, 1 × 10−2, 1 × 10−3 and 1 × 10−4, respectively.
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Figure 4: Convergence to the power case. We choose α = 4. For times t = 0, 1, 2, the
three panels demonstrate the convergence, as β → 0, of the differential input u(x, t; α, β),

given in (3.12), for M = 2
1

√

α and N = 0. The curve of solid line corresponds to the power

differential input up(x, t) = limβ→0 u(x, t; α, β) = 1

γ
xγe

− 1
2

γ
1−γ

t
. The curves of dotted lines

correspond to u(x, t; α, β) for β = 1 × 10−1, 6 × 10−2, 3 × 10−2, 1 × 10−2, 1 × 10−3 and
1 × 10−4, respectively.
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Figure 5: Convergence to the logarithmic case. For times t = 0, 1, 2, the three
panels demonstrate the convergence, as β → 0, of the differential input u(x, t; α, β), given
in (3.13), for M = 2 and N = −

`

1

2
+ log 2

´

. The curve of solid line corresponds to the

logarithmic differential input ul(x, t) = limβ→0 u(x, t; 1, β) = log(x) − 1

2
t. The curves of

dotted lines correspond to u(x, t; α, β) for β = 1 × 10−1, 6 × 10−2, 3 × 10−2, 1 × 10−2,
1 × 10−3 and 1 × 10−4, respectively.
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