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Abstract

A new dynamic criterion of measuring performance of self-�nancing
investment strategies is introduced. To this aim, a family of stochastic
processes de�ned on [0;+1) and indexed by a wealth argument is used.
Optimality is associated with their martingale property along the optimal
wealth trajectory. The optimal portfolios are constructed via stochastic
feedback controls that are functionally related to di¤erential constraints
of fast di¤usion type. A multi-asset Ito type incomplete market model is
used.

1 Introduction

This paper proposes new ways of measuring the performance of investment
strategies under uncertainty. Traditionally, how well the investor does is as-
sessed through expected utility criteria, typically formulated via a determinis-
tic, concave and increasing function of terminal wealth. A key element of this
approach is the a priori choice of both the horizon and the associated risk pref-
erences. The optimal solution (value function) has been widely studied under
rather general modeling assumptions. Its fundamental properties, consequences
of the dynamic programming principle, are the supermartingality for arbitrary
investment strategy and martingality at an optimum. The value function, then,
serves as the intermediate (indirect) utility in the relevant market environment
(see, for example, [18] and [11]).
Herein, an alternative approach is proposed which o¤ers �exibility with re-

gards to the aforementioned a priori choices while preserving the natural op-
timality properties of the value function process (martingality at an optimum
and supermartingality away from it). In contrast to the existing framework, the
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utility is speci�ed for today and not for a (possibly remote) future time. The
performance measurement criterion is de�ned in terms of a family of stochastic
processes de�ned on [0;1) and indexed by a wealth argument. We call it a
forward performance process.
Several di¢ culties are encountered due to the fact that the associated sto-

chastic optimization problems are posed "inversely in time" and, thus, existing
techniques in portfolio choice might not be directly applicable. Herein, we de-
velop a technique that can be used for a large class of models and produces
a rich family of explicit solutions. The approach is based on the compilation
of appropriately constructed di¤erential and stochastic inputs. The di¤erential
input is determined by the investor�s dynamic preference pro�le and satis�es
a fully nonlinear di¤erential constraint. The stochastic input consists of three
processes that capture the changes in the market environment. An important
ingredient of the method is the introduction of the process that rescales the
di¤erential input�s time argument.
The initial utility is taken to be a concave and increasing function of wealth.

The model is incomplete, non Markovian and may include many securities.
The approach is general enough so that it allows for measuring investment
performance with regards to a benchmark as well as when the investor might
have di¤erent views about upcoming market behavior.
The risk tolerance process plays a fundamental role in the analysis. It is

de�ned as the local risk tolerance function with its space and time arguments
evaluated, respectively, at (benchmarked) wealth and the process that rescales
time. The former function satis�es a fast di¤usion type di¤erential constraint
while its reciprocal, the investor�s local risk aversion, solves a porous medium
equation.
The proposed method provides closed form solutions to the optimal allo-

cation problems. Despite the non Markovian nature of the model, optimal
allocations turn out to be stochastic feedback functionals of current wealth lev-
els. Rescaling of time in the di¤erential input is a key element for this local
dependence. The optimal policies have a very appealing form. Speci�cally, they
consist of two portfolios that are, respectively, proportional to (benchmarked)
wealth and the (benchmarked) risk tolerance processes. The proportionality
coe¢ cients are processes depending only on the market parameters. This two
fund separation result holds for arbitrary initial data and provides a rather uni-
versal, and at the same time, intuitive structure of the optimal strategies. It
is worth mentioning that in traditional expected utility models the form of the
optimal portfolios might not be very transparent since they are implicitly de-
duced through martingale representation results in the dual domain. Finally,
the form of the optimal portfolios, together with the di¤erential properties of
the local risk tolerance, enable us to construct a system of stochastic di¤erential
equations that is satis�ed by the optimal wealth and the associated risk toler-
ance process. This autonomous system also comes as a surprise given the non
Markovian character of the model.
The paper is organized as follows. In section 2, we introduce the model and

the notion of forward performance process. In section 3, we present a special
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class of forward solutions, namely those that are decreasing with time. An
extended family of forward processes is presented in section 4. In section 5 we
focus on the risk tolerance function and its di¤erential properties. We conclude
with section 6 in which we present and analyze the optimal investment strategies.

2 The model

The market environment consists of one riskless and k risky securities. The risky
securities are stocks and their prices are modelled as Ito processes. Namely, for
i = 1; :::; k; the price Si of the ith risky asset solves

dSit = S
i
t

0@�itdt+ dX
j=1

�jit dW
j
t

1A (1)

with Si0 > 0: The process W =
�
W 1; :::;W d

�
is a standard d�dimensional

Brownian motion, de�ned on a �ltered probability space (
;F ;P) : For sim-
plicity, it is assumed that the underlying �ltration, Ft, coincides with the one
generated by the Brownian motion, that is Ft = � (Ws : 0 � s � t) :
The coe¢ cients �i and �i; i = 1; :::; k, follow Ft�adapted processes with

values in R and Rd, respectively. For brevity, we write � = �t to denote

the volatility matrix, i.e., the d � k random matrix
�
�jit

�
; whose ith column

represents the volatility �it of the i
th risky asset. We may, then, alternatively

write (1) as
dSit = S

i
t

�
�itdt+ �

i
t � dWt

�
:

The riskless asset, the savings account, has the price process B satisfying

dBt = rtBtdt

with B0 = 1; and for a nonnegative, Ft�adapted interest rate process rt:
Also, we denote by �t the k � 1 vector with the coordinates �it and by 1 the
k�dimensional vector with every component equal to one. The processes �t; �t
and rt satisfy the appropriate integrability conditions.
We assume that the volatility vectors are such that

�t � rt1 2Lin
�
�Tt
�
;

i.e., the linear space generated by the columns of �Tt . This implies that

�Tt
�
�Tt
�+
(�t � rt1) = �t � rt1

and therefore the vector

�t =
�
�Tt
�+
(�t � rt1) (2)

is a solution to the equation

�Tt x = �t � rt1:
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The matrix
�
�Tt
�+
is the Moore-Penrose pseudo-inverse1 of the matrix �Tt :

Occasionally, we will be referring to �t as the market price of risk. It easily
follows that

�t�
+
t �t = �t (3)

and hence �t 2 Lin (�t). We assume throughout that the process �t is bounded
by a deterministic constant c > 0; i.e., for all t � 0;

j�tj � c: (4)

Starting at t = 0 with an initial endowment x 2 R, the investor invests at
any time t > 0 in the risky and riskless assets. The present value of the amounts
invested are denoted by �0t and �

i
t , i = 1; :::; k, respectively.

The present value of her investment is, then, given by X�
t =

Pk
i=0 �

i
t: We

will refer to X� as the discounted wealth. The investment strategies will play
the role of control processes and are taken to satisfy the standard assumption
of being self-�nancing. Using (1) we, then, deduce that the discounted wealth
satis�es

dX�
t =

kX
i=1

�it�
i
t � (�tdt+ dWt) = �t�t � (�tdt+ dWt) ; (5)

where the (column) vector, �t =
�
�it; i = 1; :::; k

�
:

The set of admissible strategies, A, consists of all self-�nancing Ft�adapted
processes �t such that EP

R s
0
j�t�tj2 dt < 1, for s � 0. The initial datum

is taken to be a concave and increasing function of wealth, u0 : R ! R with
u0 2 C4 (R).

De�nition 1 An Ft�adapted process Ut (x) is a forward performance if for
t � 0 and x 2 R:
i) the mapping x! Ut (x) is concave and increasing,
ii) for each self-�nancing strategy, �; EP (Ut (X�

t ))
+
<1; and

EP (Us (X
�
s ) jFt ) � Ut (X�

t ) ; s � t; (6)

iii) there exists a self-�nancing strategy, ��; for which

EP

�
Us

�
X��

s

�
jFt
�
= Ut

�
X��

t

�
; s � t (7)

and
iv) at t = 0; U0 (x) = u0 (x) :

1The Moore-Penrose pseudo-inverse matrix, denoted by A+, of a d � k matrix A is the
unique k� d matrix satisfying AA+A = A; A+AA+ = A+,

�
AA+

�T
= AA+ and

�
A+A

�T
=

A+A: This concept was developed, independently, by Moore in 1920 and Penrose in 1955 (see
[26]; also [17],). One of the properties of A+; used in (3), is that

�
AT

�+
=
�
A+

�T
:

4



The concept of forward performance process was introduced by the authors
in [21] (see, also, [22]). The model therein is incomplete binomial and the initial
data is taken to be exponential. The exponential case was subsequently and
extensively analyzed for the multi-asset model considered herein in [24] (the
reader interested in the associated forward indi¤erence prices may see [20], [23]
and [32]). Related to our work is the recent paper [5] in which the authors
consider random horizon choices, aiming at alleviating the dependence of the
value function on a �xed (and deterministic) horizon. Their model is more
general than ours, in terms of the assumptions on the price dynamics, but the
focus in [5] is primarily on horizon e¤ects. Horizon issues were also considered
in [8] for the special case of lognormal dynamics.
It is worth observing the following di¤erences and similarities between the

forward performance process and the traditional value function. Namely, the
process Ut (x) is de�ned for all t � 0, while the value function, which we denote
by Vt (x;T ) ; is de�ned only on [0; T ]. In the classical set up VT (x;T ) 2 F0;
due to the deterministic choice of the terminal utility. If the terminal utility
is taken to be state-dependent, VT (x;T ) 2 FT ; (see, for example, [12], [28] as
well as [3], [6] and [10]), the traditional and new formulations are, essentially,
identical in [0; T ] :
We conclude by mentioning that there is a vast literature on the speci�cation,

construction and properties of the traditional value function that is based on
duality methods and is applicable for very general models. However, these
techniques might not be of direct use in our case. We, also, note that forward
formulations of optimal control problems have been proposed and analyzed in
the past. For deterministic models we refer the reader, among others, to [16], [27]
and [30]. In stochastic settings, forward optimality has been studied, primarily
under Markovian assumptions, in [15] via the associated martingale problems
and construction of the Nisio semigroup (see, also [19]).

3 Decreasing performance processes

In this section we focus on forward performance processes for which the mapping
t! Ut (x) is decreasing2 . Their structure will subsequently help us to construct
a much richer class of examples with various desirable features, among others,
�exibility across units and measure changes.
Time-decreasing forward performance processes are represented via a de-

terministic function, say u (x; t) ; of wealth and time with the time argument
replaced by an increasing process. This process, say A; depends on the market
coe¢ cients and not on the investor�s preferences. In contrast, the function u
is not a¤ected by market changes. Rather it depends on the initial datum u0
and, for t > 0; satis�es a (market independent) di¤erential constraint. In the
class of concave functions we consider, this constraint yields solutions that are

2While preparing this manuscript, the authors became aware of a related paper in which
this class of solutions is analyzed via duality methods (see [1]).
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decreasing in time which, together with the fact that A is increasing, implies
the time monotonicity of the forward performance processes.
Monotone forward processes were �rst produced by the authors in [21] (see,

also, [20] ) for the special choice of exponential initial data. While the model
is di¤erent than the one considered herein, we present the relevant results for
completeness and motivation.
Example: We trade a single stock whose levels are denoted by St > 0;

t = 0; 1; ::: and de�ne the variables �t+1 as �t+1 =
St+1
St
; �t+1 = �dt+1or �

u
t+1

with 0 < �dt+1 < 1 < �
u
t+1: We also trade a riskless bond paying zero interest

rate.
A non-traded risk factor might be present whose values are denoted by Yt;

(Yt 6= 0) ; t = 0; 1; :::: We then view f(St; Yt) : t = 0; 1; :::g as a two-dimensional
stochastic process de�ned on the probability space (
;F ; (Ft) ;P) with P being
the historical measure. The �ltration Ft is generated by the random variables
Si and Yi for i = 0; 1; :::; t.
We denote by Xt, t = 0; 1; :::; the investor�s wealth process associated with

a multi-period self-�nancing portfolio. We take �t, t = 1; :::; to be the number
of shares of the traded asset held in this portfolio over the interval [t � 1; t).
Then, we have, for s = t + 1; t + 2; :::, the binomial analogue of (5), namely,
Xs = Xt +

Ps
i=t+1 �i (Si � Si�1) with Xt = x 2 R: The initial datum is given

by u0 (x) = �e�x; x 2 R:

Proposition 2 Consider, for i = 1; ::; the sets Bi = f! : �i (!) = �ui g and the
corresponding risk neutral probabilities qi =

1��di
�ui ��di

: Let

u (x; t) = �e�x+t (8)

and introduce the process

At =
tX
i=1

hi (9)

with A0 = 0; where

hi = qi log
qi

P (Bij Fi�1)
+ (1� qi) log

1� qi
1� P (Bij Fi�1)

:

Then
Ut (x) = u (x;At) t = 0; 1; :::: (10)

is a forward performance process.

We stress that while the form of (10) is to some extent expected due to
the speci�c choice of initial data, rescaling the time argument is by no means
routine.
Next, we use the insights gained by the binomial model and seek a represen-

tation similar to (10) for the forward solutions in the Ito-type model considered
herein assuming, at the same time, more general initial data.

6



Proposition 3 Let the process � be as in (2) and de�ne

At =

Z t

0

j�sj2 ds; t � 0: (11)

Let, also, u 2 C4;1 (R� [0;+1)) be a concave function of wealth satisfying
utuxx =

1
2u

2
x and u (x; 0) = u0 (x) : Then, the time-decreasing process

Ut (x) = u (x;At) (12)

is a forward performance.

Sketch of the proof: As mentioned earlier, time-decreasing solutions help
us build a larger family of performance processes, presented in Theorem 4.
Therefore, we only present the main steps of the proof, considering for simplicity
the case of a single stock (see (1)) and a riskless bond paying zero interest rate.
The wealth process X satis�es dXt = �t�t (�tdt+ dWt) (cf. (5)) with X0 = x
and � standing for a generic admissible portfolio strategy. The initial datum is
a concave function u0 2 C4 (R) :
We look for a forward solution of the form Ut (x) = u (x;At) for some concave

and increasing (in the spatial argument) function u (x; t) ; u 2 C4;1 (R� [0;+1))
with u (x; 0) = u0 (x). For reasons that will be apparent in the sequel, we choose
At =

R t
0
�2sds. For an arbitrary control �; we, then, have

dUt (Xt) = ux (Xt; At)�t�tdWt

+

�
ut (Xt; At)�

2
t + ux (Xt; At)�t�t�t +

1

2
uxx (Xt; At)�

2
t�

2
t

�
dt

= ux (Xt; At)�t�tdWt

+�2t

�
ut (Xt; At) + ux (Xt; At)�t +

1

2
uxx (Xt; At)�

2
t

�
dt

with � = ����1. We readily see that, due to the concavity assumption on u;
the process Ut (X�

t ) would be a supermartingale if the above drift remains non
positive. Because of its quadratic form, the appropriate drift sign is guaranteed
if ut (x; t)uxx (x; t) � 1

2u
2
x (x; t) ; (x; t) 2 R� (0;+1) : Let us now take that the

latter inequality holds as equality and consider the control policy

��t = ���1t �t
ux (X

�
t ; At)

uxx (X�
t ; At)

; (13)

with X� being the wealth associated to ��. We assume the appropriate regu-
larity conditions that guarantee existence and uniqueness of the solution to the
wealth equation if �� is used. Then, the drift term vanishes yielding

dUt (X
�
t ) = ux (X

�
t ; At)�t�

�
t dWt;

and using De�nition 1 we deduce that u (x;At) satis�es the properties (6) and
(7). The fact that u (x;At) is monotone in x follows from the related assumption
on u: To establish its time monotonicity, we use the choice of At and that ut < 0:
The latter assertion follows from the di¤erential constraint and the concavity
property of u:
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4 An extended class of performance processes

Extending the methodology introduced in the previous section, we construct
forward performance processes for the multi-dimensional model (cf. (1)). We
recall that performance is measured in terms of (discounted) wealth and that the
investor�s initial preference is represented by a concave and increasing function
of his wealth, u0 : R ! R with u0 2 C4 (R) :
The construction consists of the compilation of two inputs which we call,

respectively, the di¤erential and the stochastic input. The di¤erential one is
given by a (deterministic) concave and increasing function, u (x; t) ; of space
and time. It is taken to satisfy u (x; 0) = u0 (x) and, for t > 0; a fully nonlinear
di¤erential constraint (cf. (18)). Herein, it is assumed that both u0 and u are
de�ned, and take values in R. In concrete applications, the domain and range
of u will depend on those of u0 as well as the investor�s feasibility (state and
control) constraints. The analysis for �nite domains and, more generally, for
when state and control constraints are binding is substantially more di¢ cult
and will be carried out it in future work. The di¤erential input is not a¤ected
by market changes but depends exclusively on the investor�s initial preferences.
In contrast, the stochastic input solely refers to the market. It consists of three
Ft�adapted process, denoted by Y; Z and A. The processes Y and Z are taken
to solve

dYt = Yt�t � (�tdt+ dWt) (14)

and

dZt = Zt�t � dWt; (15)

with Y0 = Z0 = 1 and the coe¢ cients � and � being Ft�adapted and bounded
(by a deterministic constant).
In the de�nition (20) below, Y normalizes the wealth argument while Z

appears as a multiplicative factor. One might think of Y as a benchmark (or a
numeraire) in relation to which one might wish to measure the performance of
our investment strategies. The process Z, on the other hand, can be thought as
a device o¤ering �exibility to our solutions in terms of the asset returns. This
might be needed if the investor has di¤erent views about the future market
movements or faces trading constraints. In such cases, the returns need to
be modi�ed which essentially points to a change of measure, away from the
historical one. This is naturally done through an exponential martingale. For
reasons we just discussed, we will refer to Z; as the market view process. We
assume throughout that �t and �t belong to Lin (�t) which implies that

�t�
+
t �t = �t and �t�

+
t �t = �t: (16)

The third component, A; of the stochastic input is a positive and non-
decreasing process with zero initial value. It rescales the time argument in
the di¤erential input. As the analysis will show, the time rescaling plays a
pivotal role in the construction of performance processes as well as in the char-
acterization of the optimal allocation and wealth processes.
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While the processes Y and Z are exogenously given, the process A has to be
appropriately speci�ed; see, for example, (9) and (11). In what follows we take

At =

Z t

0

j�s + �s � �sj
2
ds: (17)

Theorem 4 Let A; Y and Z be de�ned as in (17), (14) and (15), with � and
� satisfying (16). Let u : R� [0;1)! R be a concave and increasing function
of the spatial argument with u 2 C4;1 (R� [0;1)) ; and satisfying the di¤erential
constraint

utuxx =
1

2
u2x (18)

and the initial datum
u (x; 0) = u0 (x) : (19)

Then, the process Ut (x) de�ned by

Ut (x) = u

�
x

Yt
; At

�
Zt (20)

is a forward performance.

Corollary 5 If � � � � 0; At =
R t
0
j�sj2 ds and, thus, Ut (x) = u (x;At) as in

(12).

In section 6 we explore the structure of optimal allocations. As the results
therein show, it is the function r de�ned in (38), and not u, that emerges as
the key underlying di¤erential quantity (recall also (13)). This motivates us to
question whether one should start with the di¤erential input u and then de�ne
r; or model r directly. Results related to this direction are presented in the next
section.
Computationally, if r is known then u can be constructed by successive

integration, provided certain time-dependent quantities are correctly speci�ed.
But going beyond purely technical issues, it is worth noticing that (18) takes
the form of a transport equation, namely,

ut +
1

2
r (x; t)ux = 0: (21)

While this formulation might appear tautological, it expresses the invariance of
the di¤erential input along the characteristic curves whose slope is equal to (half
of) the risk tolerance (38). To gain some intuition, consider an in�nitesimal time
interval (0; ") : Then (21) can be approximately written as

u

�
x+

1

2
r0 (x) "; "

�
= u (x; 0) = u0 (x) ;

expressing that the points (x; 0) and
�
x+ 1

2r0 (x) "; "
�
are allocated the same

(deterministic) di¤erential performance level. In other words, in order to main-
tain the performance level across di¤erent times, e.g. at t = 0 and t = "; one
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needs to move to higher wealth levels, namely, from x to x+ 1
2r0 (x) ": One might

interpret the in�nitesimal amount 12r0 (x) " as the compensation required by the
investor in order to satisfy his impatience in the time interval (0; ") (for the no-
tion of impatience, we refer the reader, among others to the seminal papers [7],
[13] and [14]). Globally, the method of characteristics yields u (x̂ (t) ; t) = u0 (x)
where x̂ (t) satis�es

dx̂ (t)

dt
=
1

2
r (x̂ (t) ; t) ;

with x̂ (0) = x:

5 The local risk tolerance function

In this section we take a closer look at the local risk tolerance r : R� [0;1)!
R+, de�ned as

r (x; t) = � ux (x; t)
uxx (x; t)

:

Note that it is the function r, and not u; that appears in the optimal portfolios
(13) and (40). Further analysis shows that r has the following interesting, if not
remarkable, di¤erential property3 .

Proposition 6 Let u 2 C4;1 (R� [0;1)) satisfy (18) and (19). Then, the as-
sociated local risk tolerance r (x; t), de�ned above, satis�es

rt +
1

2
r2rxx = 0 and r (x; 0) = �u

0

0 (x)

u
00
0 (x)

: (22)

Proof. Di¤erentiating (18) yields

utx = ux �
1

2
ux

�
uxuxxx
u2xx

�
and, in turn,

utxx = uxx �
1

2
uxx

�
uxuxxx
u2xx

�
� 1
2
ux

�
uxuxxx
u2xx

�
x

:

Moreover,

rx = �1 +
uxuxxx
u2xx

and rxx =

�
uxuxxx
u2xx

�
x

:

Consequently

rt +
1

2
r2rxx = �

utx
uxx

+
uxutxx
u2xx

+
1

2

�
ux
uxx

�2�
uxuxxx
u2xx

�
x

= 0

and the statement follows.
3A similar di¤erential formula has appeared in [2], [4] and [9].
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In addition to the local risk tolerance, a quantity of interest is its reciprocal,
denoted by  (x; t) ; and referred to as the local risk aversion. Using its de�nition
and (22) we deduce the following.

Proposition 7 The local risk aversion  (x; t) : R� [0;1)! R+; de�ned as

 (x; t) =
1

r (x; t)
; (23)

satis�es

t =
1

2

�
1



�
xx

and  (x; 0) = � u
00

0 (x)

u
0
0 (x)

. (24)

Readers with expertise in nonlinear partial di¤erential equations may �nd
the form of (22) and (24) familiar. Indeed, the constraint (22) satis�ed by r
is similar to a fast di¤usion equation (FDE) while the one satis�ed by  (cf.
(24)) is of porous medium type (PME); see, for example, [29]. We remark that,
seen as partial di¤erential equations, (22) and (24) are "ill-posed" and, thus,
global solutions for arbitrary initial conditions might not exist. In addition, the
exponent of the PME (24) is beyond the range for which global regularity has
been established. Herein, however, we refrain from studying these equations
since we only use (22) as a su¢ cient condition for our candidate solution4

Remark: One might wonder if local risk tolerance functions satisfying (22)
actually exist. The answer is a¢ rmative. As a matter of fact, an interesting
and very rich class of such solutions is given by the two parameter family

r (x; t;�; �) =

q
�2x2 + �2e��2t; (x; t) 2 R� [0;1) (25)

with �; � positive constants. Notice that for � = 0; r (x; t; 0; �) = � which yields
exponential5 di¤erential input, u (x; t) = �e�

x
�+

t
2 for (x; t) 2 R� [0;1).

Respectively, if � = 0 and � = 1; r (x; t;�; 0) = jxj ; implying the logarithmic
input u (x; t) = log x� t

2 for (x; t) 2 R
+�[0;1) ; while when � = 0 and � 6= 1; 0,

(25) corresponds to u (x; t) = x

 e
� 1
2


1� t for  = ��1

� ; for (x; t) 2 R+�[0;1).
For the general case �; � > 0; an extensive study of globally de�ned risk

tolerance functions can be found in [31].

6 Optimal investment strategies

We focus on the structure and properties of the optimal portfolios associated
with the forward performance processes U; constructed in the previous section
(cf. 20). We recall that �� =

�
�1;�; :::; �k;�

�
represents the vector of the op-

timal discounted allocations in the k risky assets, X� the associated optimal

4For preliminary results on analytic properties of the solutions to (22) for a certain class
of initial data, see [25].

5We refer the reader to [24] for a detailed exposition and results on this case. See, also
[32].
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discounted wealth (cf. (5)) and �0;� = X� � 1 � �� the optimal discounted
allocation in the riskless asset.
We will represent the results in the benchmarked form. For this, we intro-

duce the optimal benchmarked portfolio and the associated optimal benchmarked
wealth,

~��t �
1

Yt
��t and ~X�

t �
X�
t

Yt
: (26)

The dynamics of the latter is given by (37), rewritten below for convenience,

d ~X�
t =

�
�t~�

�
t � ~X�

t �t

�
� ((�t � �t) dt+ dWt) : (27)

We, also, introduce the risk tolerance process (at benchmarked wealth)

~R�t = r
�
~X�
t ; At

�
(28)

with r de�ned in (22), and ~X� in (26) and A in (17).
The following result yields the vector of the optimal asset allocations and the

associated performance process. It follows directly from the proof of Theorem
4 and, speci�cally, equality (40).

Theorem 8 The optimal benchmarked portfolio process ~��t ; t > 0; is given in
the feedback form

~��t = �
�
t

�
~X�
t

�
;

where
��t (x) = x�

+�t + r (x;At)�
+
t (�t + �t � �t) ; (29)

while ~X� solves (27) with ~�� being used and A as in (17). Therefore,

~��t = �
+
t �t ~X

�
t + �

+
t (�t + �t � �t) ~R�t ; (30)

with ~R�t as in (28). The associated optimal performance, U
�
t = Ut

�
~X�
t

�
satis-

�es

dU�t =
�
Ztux

�
~X�
t ; At

�
~R�t (�t + �t � �t) + U�t �t

�
� dWt; (31)

with U�0 = u0 (x).

The above results yield a remarkably simple but very intuitive representa-
tion of the optimal asset allocation. We �rst observe that, despite the lack of
Markovian assumptions, the optimal portfolios turn out to be local functionals
of the benchmarked wealth. Moreover, the vector of optimal allocations can be
expressed as the sum of two portfolios, given by

~��;Xt = �+t �t ~X
�
t and ~��;Rt = �+t (�t + �t � �t) ~R�t : (32)

This structural decomposition of the optimal portfolios holds independently of
the assumptions on the di¤erential input. The �rst component, ~��;X ; depends

12



functionally only on the benchmarked wealth and not on the risk tolerance while
the situation is reversed for the second term, ~��;R:

Further analysis yields that the processes
�
~X�; ~R�

�
solve an autonomous

system of stochastic di¤erential equations. The key ingredient for proving this
result is the di¤erential constraint (22) satis�ed by the local risk tolerance.

Proposition 9 Let r satisfy (22) and let A be as in (17). Then, the processes�
~X�; ~R�

�
solve, for t > 0; the system

d ~X�
t =

~R�t (�t + �t � �t) � ((�t � �t) dt+ dWt) (33)

and
d ~R�t = rx

�
~X�
t ; At

�
d ~X�

t ;

with ~X�
0 = x, ~R

�
0 = r0 (x).

Proof. Using (27) we deduce that

d ~X�
t =

~R�t (�t + �t � �t) � ((�t � �t) dt+ dWt) :

Moreover,

d ~R�t = dr
�
~X�
t ; At

�
= rx

�
~X�
t ; At

�
d ~X�

t

+rt

�
~X�
t ; At

�
dAt +

1

2
rxx

�
~X�
t ; At

�
d
D
~X�
E
t

= rx

�
~X�
t ; At

�
d ~X�

t +

�
rt

�
~X�
t ; At

�
+
1

2
rxx

�
~X�
t ; At

��
~R�t

�2�
dAt

= rx

�
~X�
t ; At

�
d ~X�

t +

�
rt

�
~X�
t ; At

�
+
1

2
r2
�
~X�
t ; At

�
rxx

�
~X�
t ; At

��
dAt;

because dA = d
D
~X�
E
. Using (22) eliminates the last term above and we con-

clude.
We conclude this section looking at the special cases leading to ~��;X = 0

and ~��;R = 0, respectively. It turns out that they correspond to � = 0 and
�+ �� � = 0:
Case 1: � � 0: Then, (cf. (14)) Yt = Y0 = 1; t � 0. The optimal portfolio

components are given, for t > 0; by

��;Xt = 0 and ��;Rt = �+t (�t + �t) r (X
�
t ; At) ; (34)

with At =
R t
0
j�s + �sj

2
ds: For arbitrary di¤erential input nothing else can be

said about the behavior of the optimal portfolio.
The (sub)case �+ � � 0; however, deserves special attention. Observe that

��;Rt = 0; t > 0; under any form of di¤erential input. In other words, for
arbitrary preferences, it is optimal for the investor to invest zero wealth into
each risky asset. This result comes as a surprise given the non zero returns of

13



the risky assets. Notice that such a solution seems to capture quite accurately
the strategy of a derivatives trader for whom the underlying objective is to
hedge as opposed to the asset manager whose objective is to invest. Naturally,
under this static strategy, the forward performance process remains unchanged.
Observe that the process A satis�es At = 0; t � 0; which results in dependence
of the processes Ut (x) and U�t only on the initial data u0 (x) and not on u (x; t) ;
t > 0:
Case 2: �+ �� � � 0: In this case, the portfolio component ~��;R vanishes

and, thus, any dependence on the risk tolerance dissipates. The investor invests
the amounts �+t �t of his (benchmarked) wealth to the risky assets and puts the
rest in the riskless bond. In other words,

~��;Xt = �+t �t ~X
�
t and ~��;Rt = 0; t > 0

and thus the investor allocates in the riskless asset the amount

��;0t = ptX
�
t with pt = 1� �+t �t � 1 (35)

and 1 = (1; :::; 1) : Equation (33) yields d ~X�
t = 0 and thus at the optimum, the

(absolute) wealth X� follows the benchmark; see (36),

X�
t = xYt and ~R�t = ~R�0 = r0 (x) : (36)

Equality (35) shows that depending on the level of the weight process p;
the investor allocates arbitrarily small or large proportions of his wealth in the
riskless asset. There are two extreme cases. If p=0 the investor allocates zero
wealth in the riskless asset. However, when p=1; the optimal allocation consists
of putting all wealth in the riskless asset.

7 Appendix

Proof of Theorem 4: To prove integrability of Ut (X�
t )
+
; we �rst observe that

the concavity of u together with (18) yields ut < 0; and thus u (x; t) � u (x; 0) :
We also have u (x; 0)+ � ax++ b for some positive constants a and b:We easily
get

EP

�
U (X�

t )
+
�
= EP

 
u

�
X�
t

Yt
; At

�+
Zt

!
� EP

  
a

�
X�
t

Yt

�+
+ b

!
Zt

!

= aEP

�
(X�

t )
+ Zt
Yt

�
+ b �

�
EP (X

�
t )
2
� 1
2

 
EP

�
Zt
Yt

�2! 1
2

+ b:

Moreover, for any admissible policy �

EP (X
�
t )
2 � 2EP

 
x2 +

�Z t

0

�s�s � (�sdt+ dWs)

�2!
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� 2x2 + 4EP
�Z t

0

�s�s � �sdt
�2
+ 4EP

�Z t

0

�s�s � dWs

�2
� 2x2 + 4

�
EP

Z t

0

j�s�sj2 ds
��

EP

Z t

0

j�sj2 ds
�
+ 4EP

Z t

0

j�s�sj2 ds <1

and

EP

�
Zt
Yt

�2
<1;

where we used that the process � and ' are bounded by a (deterministic) con-
stant.
We continue with the derivation of the semimartingale representation for the

process Ut (Xt) ; where Xt satis�es (5) for a �xed �; to ease the notation we
henceforth skip the ��superscript notation: We are going to show that Ut (Xt)
is a supermartingale and that there exists a �� such that Ut (X�

t ) is a local
martingale, where X� is the associated discounted wealth. To this end, applying
Ito�s formula, and using the regularity assumptions of u; yields

dUt (Xt) = d

�
u

�
Xt
Yt
; At

�
Zt

�

=

�
du

�
Xt
Yt
; At

��
Zt + u

�
Xt
Yt
; At

�
dZt + d

�
u

�
X

Y
;A

�
; Z

�
t

:

Moreover,

du

�
Xt
Yt
; At

�
= ux

�
Xt
Yt
; At

�
d

�
Xt
Yt

�
+ut

�
Xt
Yt
; At

�
dAt+

1

2
uxx

�
Xt
Yt
; At

�
d

�
X

Y

�
t

and

d

�
Xt
Yt

�
=

�
1

Yt
�t�t �

Xt
Yt
�t

�
� ((�t � �t) dt+ dWt) : (37)

Consequently,

d

�
u

�
X

Y
;A

�
; Z

�
t

= ux

�
Xt
Yt
; At

�
d

�
X

Y
;Z

�
t

= ux

�
Xt
Yt
; At

��
1

Yt
�t�t �

Xt
Yt
�t

�
� Zt�tdt;

u

�
Xt
Yt
; At

�
dZt = u

�
Xt
Yt
; At

�
Zt�t � dWt = Ut (Xt)�t � dWt

and�
du

�
Xt
Yt
; At

��
Zt = ux

�
Xt
Yt
; At

�
Zt

�
1

Yt
�t�t �

Xt
Yt
�t

�
� ((�t � �t) dt+ dWt)

+ut

�
Xt
Yt
; At

�
Zt j�t + �t � �tj

2
dt
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+
1

2
uxx

�
Xt
Yt
; At

�
Zt

���� 1Yt�t�t � XtYt �t
����2 dt:

Combining the above we deduce

dUt (Xt) =

�
ux

�
Xt
Yt
; At

��
Zt
Yt
�t�t �

XtZt
Yt

�t

�
+ Ut (Xt)�t

�
� dWt

+ux

�
Xt
Yt
; At

�
Zt

�
1

Yt
�t�t �

Xt
Yt
�t

�
� (�t + �t � �t) dt

+ut

�
Xt
Yt
; At

�
Zt j�t + �t � �tj

2
dt+

1

2
uxx

�
Xt
Yt
; At

�
Zt

���� 1Yt�t�t � XtYt �t
����2 dt:

To simplify the following expressions we introduce the notation

r (x; t) = � ux (x; t)
uxx (x; t)

: (38)

Using (16) and (17) yields

dUt (Xt) =

�
ux

�
Xt
Yt
; At

��
Zt
Yt
�t�t �

XtZt
Yt

�t

�
+ Ut (Xt)�t

�
� dWt

+
1

2
uxx

�
Xt
Yt
; At

�
Zt

���� 1Yt�t�t �
�
Xt
Yt
�t + r

�
Xt
Yt
; At

�
(�t + �t � �t)

�����2 dt
+

�
ut

�
Xt
Yt
; At

�
� 1
2
uxx

�
Xt
Yt
; At

�
r2
�
Xt
Yt
; At

��
j�t + �t � �tj

2
dt

=

�
ux

�
Xt
Yt
; At

��
Zt
Yt
�t�t �

XtZt
Yt

�t

�
+ Ut (Xt)�t

�
� dWt

+
1

2
uxx

�
Xt
Yt
; At

�
Zt

���� 1Yt�t�t �
�
Xt
Yt
�t + r

�
Xt
Yt
; At

�
(�t + �t � �t)

�����2 dt
+

0@ut�Xt
Yt
; At

�
� 1
2

u2x

�
Xt

Yt
; At

�
uxx

�
Xt

Yt
; At

�
1A j�t + �t � �tj2 dt:

Because u satis�es (18), the last term above vanishes. Thus, for any control
policy �;

dUt (X
�
t ) =

�
ux

�
X�
t

Yt
; At

��
Zt
Yt
�t�t �

X�
t Zt
Yt

�t

�
+ Ut (X

�
t )�t

�
� dWt (39)

+
1

2
uxx

�
X�
t

Yt
; At

�
Zt

���� 1Yt�t�t �
�
X�
t

Yt
�t + r

�
X�
t

Yt
; At

�
(�t + �t � �t)

�����2 dt
where X�

t is the associated wealth process. On the other hand, u is concave
and Zt > 0; t � 0: Therefore, the process Ut (X�

t ) is a supermartingale.
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Next, we choose the control �� such that the above drift is eliminated, i.e.

1

Yt
�t�

�
t =

X�
t

Yt
�t + r

�
X�
t

Yt
; At

�
(�t + �t � �t) : (40)

Observe that the process X�
t must satisfy

dX�
t = �t�

�
t � (�tdt+ dWt)

= X�
t dMt + r

�
X�
t

Yt
; At

�
YtdNt; (41)

where
dMt = �t � (�tdt+ dWt) ;

while
dNt = (�t + �t � �t) � (�tdt+ dWt) :

Throughout we make the standard growth and continuity assumption concern-
ing the function r to guarantee existence and uniqueness of solution to the above
equation. Consequently, the optimal policy �� is uniquely determined by (40).
To prove admissibility of ��, note that there exist positive constants C1 and C2
such that

j�t��t j
2 � C1 (X�

t )
2
+ C2Y

2
t ;

for all t � 0: Consequently, for all s > 0

EP

Z s

0

j�t��t j
2
dt � C1EP

Z s

0

(X�
t )
2
dt+ C2EP

Z s

0

Y 2t dt:

Obviously, the second term on the right hand side above is �nite. To prove that
the �rst one is �nite as well we use standard arguments applied to the equation
(41). Therefore, the process Ut (X�

t ) is well de�ned and a local martingale which
concludes the proof.
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