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Abstract

We study the impact of risk-aversion on the valuation of credit derivatives. Using
the technology of utility-indifference pricing in intensity-based models of default risk,
we analyze resulting yield spreads in both simple single-name credit derivatives, and
complex multi-name securities, particularly CDOs. We introduce the diversity coeffi-
cient that characterizes the effects of defaultable investment opportunities. The impact
of risk-averse valuation on CDO tranche spreads is also expressed in terms of implied
correlations.
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1 Introduction

Defaultable instruments, or credit-linked derivatives, are financial securities that pay their
holders amounts that are contingent on the occurrence (or not) of a default event such as
the bankruptcy of a firm or non-repayment of a loan. The market in credit-linked derivative
products has grown astonishingly, from $631.5 billion global volume in the first half of 2001,
to above $12 trillion through the first half of 20051. The growth from mid-2004 through
mid-2005 alone was 128%. They now account for approximately 10% of the total OTC
derivatives market.

Despite the popularity and ever-increasing complexity of credit risk structured products,
the quantitative technology for their valuation (and hedging) has lagged behind. This is
largely due to the high-dimensionality of the basket derivatives, which are typically written
on hundreds of underlying names; consequently, the computational efficiency of any valuation
procedure severely limits model choice.

A major limitation of many approaches is the inability to capture and explain high pre-
miums observed in credit derivatives markets for unlikely events, for example the spreads
quoted for senior tranches of CDOs written on investment grade firms. The approach ex-
plored here is to explain such phenomena as a consequence of tranche holders’ risk aversion,
and to quantify this through the mechanism of utility-indifference valuation.

Valuation Mechanisms

In complete financial market environments, such as in the classical Black-Scholes model,
the payoffs of derivative securities can be replicated by trading strategies in the underlying
securities, and their prices are naturally deduced from the value of these associated portfo-
lios. However, once non-traded risks such as unpredictable defaults are considered, perfect
replication and, therefore, risk elimination breaks down, and alternative ways are needed for
the quantification of risk and assignation of price.

One approach is to use market derivatives data, when available, to identify which of the
many feasible arbitrage free pricing measures is consistent with market prices. In a different
direction, valuation of claims involving nontradable risks can be based on optimality of
decisions once this claim is incorporated in the investor’s portfolio. Naturally, the risk
attitude of the individual needs to be taken into account, and this is typically modeled by
a concave and increasing utility function U . In a static framework, prices are determined

1Source: ISDA data reported at http://www.credit-deriv.com/globalmarket.htm
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through the certainty equivalent, otherwise known as the principle of equivalent utility [5, 15].
The utility-based value of the claim, written on the risk Y and yielding payoff C (Y ), is

ν (C) = U−1 (IEP {U (C(Y ))}) .

Note that the arbitrage free price and the certainty equivalent are very different. The first
is linear and uses the risk neutral measure. The certainty equivalent price is nonlinear and
uses the historical assessment of risks.

Prompted by the ever-increasing number of applications (event risk sensitive claims, in-
surance plans, mortgages, weather derivatives, etc.), considerable effort has been invested
in analyzing the utility-based valuation mechanism. Due to the prevalence of instruments
dependent on non-market risks (like default), there is a great need for building new dynamic
pricing rules. These rules should identify and price unhedgeable risks and, at the same
time, build optimal risk monitoring policies. In this direction, a dynamic utility-based val-
uation theory has been developed producing so-called indifference prices. The mechanism
is to find the price at which the writer (buyer) of the claim is indifferent in terms of max-
imum expected utility between holding or not holding the derivative. Specification of the
indifference price requires understanding how investors act optimally with or without the
derivative. These issues are naturally addressed through stochastic optimization problems
of utility maximization. We refer to [22, 23] and [7] as classical references in this area. The
indifference approach was initiated for European claims by Hodges and Neuberger [18] and
further extended by Davis et al. [9].

Credit Derivatives

As well as single-name securities such as credit default swaps (CDSs), in which there is a
relatively liquid market, basket, or multi-name products have generated considerable OTC
activity. Typical of these are collateralized debt obligations (CDOs) whose payoffs depend on
the default events of a basket portfolio of up to 300 firms over a number of years. As long
as there are no defaults, investors in CDO tranches enjoy high yields, but as defaults start
occurring they affect first the high-yield equity tranche, then the mezzanine tranches and
perhaps on to the senior and super-senior tranches. See Davis and Lo [8] or Elizalde [13] for
a concise introduction. Even more exotic contracts are CDO2s, which depend on baskets of
CDO tranches, though the market in these has thinned considerably since 2005.

The focus of modeling in the credit derivatives industry has been on correlation between
default times. Partly this is due to the adoption of the one-factor Gaussian copula model
as industry standard and the practice (up till recently) of analyzing tranche prices through
implied correlation. This revealed that traded prices of senior tranches could only be re-
alised through these models with an implausibly high correlation parameter, the so-called
correlation smile. After the simultaneous downgrades of Ford and General Motors in May
2005, the standard copula model sometimes could not even fit the data.

Rather than focusing on models with “enough correlation” to reproduce market observa-
tions via standard no-arbitrage pricing, the goal of this article is to understand the effects of
risk aversion on valuation of basket credit derivatives. In particular, how does risk aversion
value portfolios that are sensitive to the potential default of a number of firms, and so to cor-
relation between these events? Does the nonlinearity of the indifference pricing mechanism
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enhance the impact of correlation? It seems natural that some of the prices or spreads seen
in credit markets are due more to “crash-o-phobia” in a relatively illiquid market, with the
effect enhanced nonlinearly in baskets. When super-senior tranches offer non-trivial spreads
(albeit a few basis points) for protection against the default risk of 15− 30% of investment
grade US firms over the next five years, they are ascribing a seemingly large probability to
“the end of the world as we know it”. We seek to capture this directly as an effect of risk
aversion leading to effective or perceived correlation, opposed to a mechanism of high direct
correlation.

Taking the opposite angle, the method of indifference pricing should be attractive to
participants in this still quite illiquid OTC market. It is a direct way for them to quantify
the default risks they face in a portfolio of complex instruments, when calibration data is
scarce. Unlike well-developed equity and fixed income derivatives markets where the case for
traditional arbitrage-free valuation is more compelling, the potential for utility valuation to
account for high-dimensionality in a way that is consistent with investors’ fears of a cascade
of defaults is a case for its application here.

For recent applications of indifference pricing to credit risk, see also Collin-Dufresne and
Hugonnier [6], Bielecki et al. [3, 4], and Shouda [30].

We begin with single-name credit derivatives in Section 2. The general multi-name
problem is discussed in Section 3, where the diversity coefficient that characterizes the effects
of defaultable investment opportunities is introduced. We analyze a symmetric model applied
to CDO tranche valuation in Section 4, and conclude in Section 5.

2 Indifference Valuation: Single Name

We start with single name defaultable bonds to illustrate the approach. Default occurs as
in intensity-based models introduced by, among others, Artzner and Delbaen [1] , Madan
and Unal [27], Lando [24] and Jarrow and Turnbull [20]. However our valuation mechanism
incorporates information from the firm’s stock price S. Unlike in a traditional structural
approach, default occurs at a non-predictable stopping time τ with stochastic intensity
process λ ≥ 0, which is correlated with the firm’s stock price. These are sometimes called
hybrid models (see, for example, [26]). The process S could alternatively be taken as the
price of another firm or index used to hedge the default risk. Of course the choice of the
investment opportunity set affects the ensuing indifference price.

The stock price S is taken to be a geometric Brownian motion, and the intensity process
is λ(Yt), where λ(·) is a non-negative, locally Lipschitz, smooth and bounded function, and
Y is a correlated diffusion:

dSt = µSt dt + σSt dW
(1)
t ,

dYt = b(Yt) dt + a(Yt)
(
ρ dW

(1)
t +

√
1− ρ2 dW

(2)
t

)
.

The coefficients a and b are taken to be Lipschitz functions with sublinear growth. The pro-
cesses W 1 and W 2 are independent standard Brownian motions defined on a probability space
(Ω,F , IP ), and we denote by Ft the augmented σ-algebra generated by ((W 1

u ,W 2
u ); 0 ≤ u ≤ t).

The parameter ρ ∈ (−1, 1) measures the instantaneous correlation between shocks to the

4



stock price S and shocks to the intensity-driving process Y . In applications, it is natural to
expect that λ(·) and ρ are specified in a way such that the intensity tends to rise when the
stock price falls.

There also exists a standard exponential random variable ξ, independent of the Brownian
motions. The default time τ of the firm is defined by

τ = inf

{
t :

∫ t

0

λ(Ys) ds = ξ

}
,

the first time the cumulated intensity reaches the random draw ξ.

Maximal Expected Utility Problem

Let T < ∞ denote our finite fixed horizon, chosen later to coincide with the expiration date
of the derivatives contracts of interest. The investor’s control process is πt, the dollar amount
held in the stock at time t, until τ ∧ T . In t < τ ∧ T , his wealth process X follows

dXt = πt
dSt

St

+ r(Xt − πt) dt

= (rXt + πt(µ− r)) dt + σπt dW
(1)
t .

The control process π is called admissible if it is Ft-measurable and satisfies the integrability
constraint E{∫ T

0
π2

s ds} < ∞. The set of admissible policies is denoted by A.
If the default event occurs before T , the investor can no longer trade the firm’s stock.

He has to liquidate holdings in the stock and deposit in the bank account, so the effect is to
reduce his investment opportunities. For simplicity, we assume he receives full pre-default
market value on his stock holdings on liquidation, though one might extend to consider some
loss, or jump downwards in the stock price at the default time. Therefore, given that τ < T ,
for τ ≤ t ≤ T , we have

Xt = Xτe
r(t−τ),

as the bank account is the only remaining investment.
We shall work with exponential utility of discounted (to time zero) wealth. We are first

interested in the optimal investment problem up to time T of the investor who does not hold
any derivative security. At time zero, the maximum expected utility payoff then takes the
form

sup
π∈A

IE
{
−e−γ(e−rT XT )1{τ>T} + (−e−γ(e−rτ Xτ ))1{τ≤T}

}
.

We switch to the discounted variable Xt 7→ e−rtXt and excess growth rate µ 7→ µ− r, and,
with a slight abuse, we use the same notation.

We consider the stochastic control problem initiated at time t ≤ T , and define the default
time τt by

τt = inf

{
s ≥ t :

∫ s

t

λ(Yu) du = ξ

}
,

the first time the cumulated intensity reaches an independent standard exponential random
variable ξ.
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In the absence of the defaultable claim, the investor’s value function is given by

M(t, x, y) = sup
π∈A

IE
{−e−γXT 1{τt>T} + (−e−γXτt )1{τt≤T} | Xt = x, Yt = y

}
. (1)

Proposition 1 The value function M : [0, T ]×IR×IR → IR− is the unique viscosity solution
in the class of functions that are concave and increasing in x, and uniformly bounded in y
of the HJB equation

Mt + LyM + max
π

(
1

2
σ2π2Mxx + π(ρσa(y)Mxy + µMx)

)
+ λ(y)(−e−γx −M) = 0, (2)

with M(T, x, y) = −e−γx and

Ly =
1

2
a(y)2 ∂2

∂y2
+ b(y)

∂

∂y
.

Proof: The proof follows by extension of the arguments used in Theorem 4.1 of Duffie and
Zariphopoulou [12] and is omitted. ¤

Bond Holder’s Problem and Indifference Price

We now consider the same problem from the point of view of an investor who owns a
(defaultable) bond of the firm, which pays $1 on date T if the firm has survived till then.
Defining c = e−rT , we have the bond-holder’s value function

H(t, x, y) = sup
π∈A

IE
{−e−γ(XT +c)1{τt>T} + (−e−γXτt )1{τt≤T} | Xt = x, Yt = y

}
. (3)

As in Proposition 1 for the plain investor’s value function M , we have the following HJB
characterization.

Proposition 2 The value function H : [0, T ]×IR×IR → IR− is the unique viscosity solution
in the class of functions that are concave and increasing in x, and uniformly bounded in y
of the HJB equation

Ht + LyH + max
π

(
1

2
σ2π2Hxx + π(ρσa(y)Hxy + µHx)

)
+ λ(y)(−e−γx −H) = 0, (4)

with H(T, x, y) = −e−γ(x+c).

The indifference value of the defaultable bond, from the point of view of the bond holder,
is the reduction in his initial wealth level such that his maximum expected utility H is the
same as the plain investor’s value function M .

Definition 1 The buyer’s indifference price p0(T ) (at time zero) of a defaultable bond with
expiration date T is defined by

M(0, x, y) = H(0, x− p0, y). (5)

Remark 1 (i) As is well-known, the indifference price under exponential utility does not
depend on the investor’s initial wealth x, which is an attractive feature of using this
utility function.

(ii) The indifference price at times 0 < t < T can be defined similarly, with minor modifi-
cations to the previous calculations, in particular with quantities discounted to time t
dollars.

6



2.1 Variational Results

In this section, we present some simple bounds for the value functions and the indifference
price introduced above.

Proposition 3 The value functions M and H satisfy, respectively

−e−γx ≤ M(t, x, y) ≤ −e−γx− µ2

2σ2 (T−t), (6)

−e−γx + (e−γx − e−γ(x+c))IP{τt > T | Yt = y} ≤ H(t, x, y) ≤ −e−γ(x+c)− µ2

2σ2 (T−t). (7)

Proof: We start with establishing (6). We first observe that the function M̃(t, x, y) = −e−γx

is a (viscosity) subsolution of the HJB equation (2). Moreover, M̃(T, x, y) = M(T, x, y). The
lower bound then follows from the comparison principle for viscosity solutions for the class
of functions described in Proposition 1.

Similarly, testing the function

M̃(t, x, y) = −e−γx− µ2

2σ2 (T−t)

yields

M̃t + LyM̃ + max
π

(
1

2
σ2π2M̃xx + π(ρσa(y)M̃xy + µM̃x)

)

+λ(y)

(
−e−γx + e−γx− µ2

2σ2 (T−t)

)
= λ(y)e−γx

(
e−

µ2

2σ2 (T−t) − 1

)
≤ 0.

Therefore, M̃ is a supersolution, with M̃(T, x, y) = M(T, x, y), and the upper bound follows.
Next, we establish (7). To obtain the lower bound, we follow the sub-optimal policy of

investing exclusively in the default-free bank account (that is, taking π ≡ 0). Then

H(t, x, y) ≥ IE
{−e−γ(x+c)1{τt>T} + (−e−γx)1{τt≤T} | Xt = x, Yt = y

}

= −e−γ(x+c)IP{τt > T | Yt = y}+ (−e−γx)IP{τt ≤ T | Yt = y}
= −e−γx + (e−γx − e−γ(x+c))IP{τt > T | Yt = y},

and the lower bound follows. The upper bound is established by testing the function

H̃(t, x, y) = −e−γ(x+c)− µ2

2σ2 (T−t)

in the HJB equation (4) for H, and showing that H̃ is a (viscosity) supersolution. ¤

Remark 2 The bounds given above reflect that, in the presence of default, the value func-
tions are bounded between the solutions of two extreme cases. For example, the lower bounds
correspond to a degenerate market (only the bank account available for trading in [0, T ]),
while the upper bounds correspond to the standard Merton case with no default risk.
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2.2 Reduction to Reaction-Diffusion Equations

The HJB equation (2) can be simplified by the familiar distortion scaling

M(t, x, y) = −e−γxu(t, y)1/(1−ρ2), (8)

with u : [0, T ]× IR → IR+ solving the reaction-diffusion equation

ut + L̃yu− (1− ρ2)

(
µ2

2σ2
+ λ(y)

)
u + (1− ρ2)λ(y)u−θ = 0, (9)

u(T, y) = 1,

where

θ =
ρ2

1− ρ2
, and L̃y = Ly − ρµ

σ
a(y)

∂

∂y
.

Similar equations arise in other utility problems in incomplete markets, for example, in
portfolio choice with recursive utility [32], valuation of mortgage-backed securities [33] and
life-insurance problems [2]. One might work first with (9) and then provide the verification
results for the HJB equation (2), since the solutions of (2) and (9) are related through (8).
It is worth noting, however, that the reaction-diffusion equation (9) does not belong to the
class of such equations with Lipschitz reaction term. Therefore, more detailed analysis is
needed for establishing existence, uniqueness and regularity results. In the context of a
portfolio choice problem with stochastic differential utilities, the analysis can be found in
[32]. The equation at hand is slightly more complicated than the one analyzed there, in
that the reaction term has the multiplicative intensity factor. Because λ(·) is taken to be
bounded and Lipschitz, an adaptation of the arguments in [32] can be used to show that
the reaction-diffusion problem (9) has a unique bounded and smooth solution. Furthermore,
using (8) and the bounds obtained for M in Proposition 3, we have

e−(1−ρ2) µ2

2σ2 (T−t) ≤ u(t, y) ≤ 1.

For the bond holder’s value function, the transformation

H(t, x, y) = −e−γ(x+c)w(t, y)1/(1−ρ2)

reduces to

wt + L̃yw − (1− ρ2)

(
µ2

2σ2
+ λ(y)

)
w + (1− ρ2)eγcλ(y)w−θ = 0, (10)

w(T, y) = 1,

which is a similar reaction-diffusion equation as (9). The only difference is the coefficient
eγc > 1 in front of the reaction term. Existence of a unique smooth and bounded solution
follows similarly.

The following lemma gives a relationship between u and w.

Lemma 1 Let u and w be solutions of the reaction-diffusion problems (9) and (10). Then

u(t, y) ≤ w(t, y) for (t, y) ∈ [0, T ]× IR.
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Proof: We have u(T, y) = w(T, y) = 1. Moreover, because eγc > 1 and λ > 0,

(1− ρ2)eγcλ(y)w−θ > (1− ρ2)λ(y)w−θ,

which yields

wt + L̃yw − (1− ρ2)

(
µ2

2σ2
+ λ(y)

)
w + (1− ρ2)λ(y)w−θ < 0.

Therefore, w is a supersolution of (9), and the result follows. ¤

From this, we easily obtain the following sensible bounds on the indifference value of the
defaultable bond, and the yield spread.

Proposition 4 The indifference bond price p0 in (5) is given by

p0(T ) = e−rT − 1

γ(1− ρ2)
log

(
w(0, y)

u(0, y)

)
, (11)

and satisfies p0(T ) ≤ e−rT . The yield spread defined by

Y0(T ) = − 1

T
log(p0(T ))− r

is non-negative for all T > 0.

Remark 3 We denote the seller’s indifference price by p̃0(T ). In order to construct it, we
replace c by −c in the definition (3) of the value function H and in the ensuing transforma-
tions. If w̃ is the solution of

w̃t + L̃yw̃ − (1− ρ2)

(
µ2

2σ2
+ λ(y)

)
w̃ + (1− ρ2)e−γcλ(y)w̃−θ = 0, (12)

with w̃(T, y) = 1, then

p̃0(T ) = e−rT − 1

γ(1− ρ2)
log

( u

w̃

)
.

Using comparison results, we obtain u > w̃ as e−γc < 1. Therefore p̃0(T ) ≤ e−rT and the
seller’s yield spread is non-negative for all T > 0.

We note that an alterative approach to direct analysis of the primal problem is to study
the dual problem of relative entropy minimization (see, for example, [10, 21]). This approach
is taken in [3], and reviewed for the present class of models in [31].

2.3 Constant Intensity Case

We study explicitly the case of constant intensity, when the default time τ is independent
of the level of the firm’s stock price S and is simply an exponential random variable with
parameter λ. This simplified structure will employed in the multi-name models that we
analyze for CDO valuation in Section 3.
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Proposition 5 When λ is constant, the indifference price p0(T ) (at time zero) of the de-
faultable bond expiring on date T is given by

p0(T ) = e−rT − 1

γ
log

(
e−αT + λ

α
eγc

(
1− e−αT

)

e−αT + λ
α

(1− e−αT )

)
, (13)

where

α =
µ2

2σ2
+ λ. (14)

Proof: We construct the explicit solutions of the HJB equations solved by the two value
functions M and H. When λ is constant, the y variable disappears from the calculations,
and the HJB equation (2) for the Merton value function reduces to

Mt − µ2

2σ2

M2
x

Mxx

+ λ(−e−γx −M) = 0

M(T, x) = −e−γx.

Substituting M(t, x) = −e−γxm(t), we obtain m′ − αm + λ = 0, with m(T ) = 1, and α as
above. The unique solution is

m(t) = e−α(T−t) +
λ

α

(
1− e−α(T−t)

)
.

Similarly, the defaultable bond holder’s value function H(t, x) satisfies the same equation
as M with terminal condition H(T, x) = −e−γ(x+c). Substituting H(t, x) = −e−γ(x+c)h(t),
we obtain h′ − αh + λeγc = 0, with h(T ) = 1. The unique solution is

h(t) = e−α(T−t) +
λeγc

α

(
1− e−α(T−t)

)
.

Finally, the indifference price of the defaultable bond at time zero is

p0(T ) = e−rT − 1

γ
log

(
h(0)

m(0)

)
,

which leads to formula (13). ¤

Remark 4 The seller’s indifference price is given by

p̃0(T ) = e−rT +
1

γ
log

(
e−αT + λ

α
e−γc

(
1− e−αT

)

e−αT + λ
α

(1− e−αT )

)
.

A plot of the yield spreads Y0(T ) = − 1
T

log(p0(T )/e−rT ) for the buyer, and similarly

Ỹ0(T ) for the seller, for various risk aversion coefficients, is shown in Figure 1. Observe that
both spread curves are, in general, sloping, so the spreads are not flat even though we started
with a constant intensity model. While the seller’s curve is upward sloping, the buyer’s may
become downward sloping when the risk aversion is large enough.
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Figure 1: Single name buyer’s and seller’s indifference yield spreads. The parameters are λ = 0.1,
along with µ = 0.09, r = 0.03 and σ = 0.15. The curves correspond to different risk aversion param-
eters γ and the arrows show the direction of increasing γ over the values (0.01, 0.1, 0.25, 0.5, 0.75, 1).

The short term limit of the yield spread is nonzero, as we would expect in the presence
of non-predictable defaults. For the buyer’s yield spread, we have

lim
T↓0

Y0(T ) =
(eγ − 1)

γ
λ,

which is larger than λ since γ > 0. This is amplified as γ becomes larger. In other words,
the buyer values the claim as though the intensity were larger than the historically estimated
value λ. The seller, on the other hand, values short-term claims as though the intensity were
lower, since

lim
T↓0

Ỹ0(T ) =
(1− e−γ)

γ
λ ≤ λ.

The long time limit for both buyer’s and seller’s spread is simply α,

lim
T→∞

Y0(T ) = lim
T→∞

Ỹ0(T ) =
µ2

2σ2
+ λ,

which is always larger than λ. Both long-term yield spreads converge to the intensity plus a
term proportional to the square of the Sharpe ratio of the firm’s stock.

3 Multi-Name Credit Derivatives

We now tackle the problem of indifference valuation of multi-name credit derivatives. The
main instrument we have in mind is a collateralized debt obligation (CDO), for which the
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dimension of the underlying basket may be on the order of one hundred to three hundred
names. (A simple two-name claim is analyzed in [31]). As with other approaches to these
problems, particularly copula models, it becomes necessary to make huge simplifications,
typically involving some sort of symmetry assumption, in order to be able to handle the high-
dimensional computational challenge. We will assume throughout this section that intensities
are constant (and consequently that the default times of the firms are independent), and
specialize later to the completely homogeneous case in Section 4. However, the tranche
spreads produced by utility valuation (Section 4.1.3) demonstrate the impact of risk-aversion
even when a priori default time correlation is not modeled.

We suppose that there are N firms, whose stock prices processes (S(i)) follow geometric
Brownian motions:

dS
(i)
t

S
(i)
t

= (r + µi) dt + σi dW
(i)
t , (15)

where (W (i)) are (in general correlated) Brownian motions on a probability space (Ω,F , IP ),
the µi are excess growth rates and σi > 0 are the volatilities. We will assume constant
correlations

IE{dW
(i)
t dW

(j)
t } = ρij dt, i 6= j,

for ρij ∈ (−1, 1).
The ith firm has default time τi which is assumed exponential with parameter λi > 0,

and the τi are mutually independent, and independent of the Brownian motions. Each firm’s
stock is available for trading by the investor until it defaults, when the holding in that stock
has to be liquidated and re-invested in the remaining stocks (if any) and the bank account.

3.1 Merton Cascade Problem and Diversity Coefficient

We begin with the Merton problem without the credit derivative. The investor invests $π
(i)
t

in the ith stock at times t < τi ∧ T , so his discounted wealth process X evolves according to

dXt =





∑
i π

(i)
t 1{τi>t}µi dt +

∑
i π

(i)
t 1{τi>t}σi dW

(i)
t , t < τ̄ ∧ T

0 τ̄ ∧ T ≤ t ≤ T

, (16)

where τ̄ = maxi{τi}.
In the case of heterogeneous dynamics and default intensities, it is necessary to keep

track of which firms have defaulted and which are still alive. When there are 1 ≤ n ≤ N
firms left, the index sets

Ik
n = {i1(n, k), i2(n, k), · · · , in(n, k)}, k = 1, 2, · · · ,

(
n

k

)

describe all possible combinations of firms that have not yet defaulted.
When there are no firms left, we have the Merton value function

M (0)(t, x) = −e−γx. (17)
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For n ≥ 1, we define the Merton value functions for the investor starting at time t ≤ T with
initial wealth x, when the firms in Ik

n are healthy and the others have defaulted. We have

M (Ik
n)(t, x) = sup

{π(i)|i∈Ik
n}

IE
{−e−γXT | Xt = x

}
, (18)

where it is understood that π(i) ≡ 0 for i 6∈ Ik
n in the dynamics of X.

Definition 2 Let Σ(Ik
n) be the n× n covariance matrix with entries

(Σ(Ik
n))jm = σijσimρijim , where ij = ij(n, k), im = im(n, k),

and let µ(Ik
n) be the n × 1 vector of excess growth rates corresponding to the firms in the

index set Ik
n. The diversity coefficient D of the subset of firms Ik

n is defined by

D(Ik
n) = µ(Ik

n)T Σ(Ik
n)−1µ(Ik

n), (19)

which is a positive scalar under the assumptions on our model coefficients.

Remark 5 Suppose an investor starts with the n stocks in Ik
n available for trading. As is

well-known, under exponential utility, the optimal investment in the Merton problem, in the
absence of defaults, is to hold the fixed amounts given by the vector

π? =
1

γ
Σ(Ik

n)−1µ(Ik
n),

in each stock. Since default comes as a surprise independently of the stock price processes
in the constant intensity framework of this section, the optimal strategy under default risk
is also to hold these same amounts (the Merton ratios) in each stock until it defaults. The
quantity D(Ik

n) = γµ(Ik
n)T π? is therefore proportional to the expected change in value of the

optimal portfolio in the standard default-free Merton case. It is natural then to think of
D(Ik

n) as a measure of the potential return from the investment opportunity set offered by
the diversity of the stocks in Ik

n. In the case of only one stock, it is the square of the Sharpe
ratio of that stock.

The Merton value functions M (Ik
n)(t, x) solve the following system of HJB PDEs

M
(Ik

n)
t − 1

2
D(Ik

n)
(M

(Ik
n)

x )2

M
(Ik

n)
xx

+
∑

j∈Ik
n

λj

(
M (Ik

n\{j}) −M (Ik
n)

)
= 0, (20)

M (Ik
n)(T, x) = −e−γx,

where M (Ik
n\{j}) is the Merton value function when firm j has dropped out. Here the value

function M (Ik
n) is coupled through its PDE to the n value functions corresponding to the

subsets of size n− 1 when one of the firms in Ik
n has defaulted. The initial value function for

n = 0 is given by (17). The market information is contained in the coefficient D(Ik
n).

We construct the solution of (20) in the standard way, by first making the transformation

M (Ik
n)(t, x) = −e−γxv(Ik

n)(t). (21)

13



Substituting into (20), we require the v(Ik
n) to satisfy the system of ODEs

d

dt
v(Ik

n) − α(Ik
n)v(Ik

n) +
∑

j∈Ik
n

λjv
(Ik

n\{j}) = 0,

v(Ik
n)(T ) = 1, (22)

where

α(Ik
n) =

1

2
D(Ik

n) +
∑

j∈Ik
n

λj, (23)

the multi-dimensional analog of α in (14), and the n = 0 starting function is v(0)(t) ≡ 1.

Proposition 6 The system of equations (22) have unique smooth non-negative solutions on
[0, T ] and so the Merton value functions defined by (18) are given by (21).

Proof: The ODE system for the v’s is linear and its solution can be constructed recursively
using the formula for the solution of (22):

v(Ik
n)(t) = e−α(Ik

n)(T−t) +
∑

j∈Ik
n

(
λj

∫ T

t

e−α(Ik
n)(s−t)v(Ik

n\{j})(s) ds

)
.

Clearly, starting with v(0)(t) ≡ 1, the successive v(Ik
n) remain non-negative, smooth and

bounded. It follows that (21) gives a smooth solution of (20) and can be identified with the
unique viscosity solution of that system, and so with the value function of the stochastic
control problem (18). ¤

3.2 Multi-Name Claims

As an example of a basket claim, we consider a contract that pays at expiration time T
an amount depending on which firms have survived, that is, it has a has a European-style
payoff function h(Ik

n), and does not depend on the timing of defaults. We tackle the more
realistic case of CDO tranches in Section 4.

When there are no firms left, we have the claim holder’s value function

H(0)(t, x) = −e−γx+ch(∅), (24)

where ∅ denotes the empty set, and c = e−rT . For n ≥ 1, we define the value functions for
the investor starting at time t ≤ T with initial wealth x, when the firms in Ik

n are healthy
and the others have defaulted. We have

H(Ik
n)(t, x) = sup

{π(i)|i∈Ik
n}

{
−e−γXT +ch(Ik

n) | Xt = x
}

, (25)

where it is understood that π(i) ≡ 0 for i 6∈ Ik
n in the dynamics (16) of X.
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Proposition 7 The claim holder’s value functions are given by

H(Ik
n)(t, x) = −e−γxw(Ik

n)(t),

where the w(Ik
n) are the unique non-negative smooth solution of the system of linear ODEs:

d

dt
w(Ik

n) − α(Ik
n)w(Ik

n) +
∑

j∈Ik
n

λjw
(Ik

n\{j}) = 0,

w(Ik
n)(T ) = e−γch(Ik

n). (26)

Proof: The arguments are identical as with the Merton cascade problem, with the minor
alteration in the terminal conditions. In particular, H(Ik

n) satisfy the same system of PDEs
as (20), but with the terminal condition

H(Ik
n)(T, x) = −e−γx+ch(Ik

n).

¤

The buyer’s indifference price p0 of the credit derivative at time zero, when all N firms
are alive is defined by

H(I(N))(0, x− p0) = H(I(N))(0, x),

and therefore

p0 =
1

γ
log

(
v(I(N))(0)

w(I(N))(0)

)
.

4 Indifference Valuation of CDOs: Symmetric Model

We next consider the indifference valuation of CDOs. The underlying is a portfolio of N
defaultable bonds with total face value Q. The holder of a CDO tranche insures losses due
to defaults between certain bounds (the attachment points characterizing the tranche). For
some other approaches based on arbitrage pricing using intensity-based or copula models,
we refer, for instance to [8, 11, 16, 17, 19]. A multi-dimensional structural model for loss
distributions is studied in [14].

We are interested in the valuation of a CDO tranche with attachment points KL and
KU . These are percentages of the total portfolio value (notional) insured by the holder. For
example KL = 0%, KU = 3% corresponds to the equity tranche, and KL = 3%, KU = 7% is
typically the first mezzanine tranche. Recall Q denotes the total notional.

The tranche holder receives a yield R% (assumed paid continuously in our framework)
on his part of the notional, which is initially (KU −KL)Q, but decreases as the losses arrive,
until his tranche is blown. At each loss between the limits of his tranche’s responsibility, he
pays “notional minus recovery”.

We want to find the yield R such that he is indifferent between holding the tranche or
not.

15



4.1 Symmetric Model, Constant Intensities, Equal Notionals

Recall from Section 3 that the stock prices processes of the N firms are correlated geometric
Brownian motions, described by (15). The ith firm has default time τi which is assumed
exponential with parameter λi, and the τi are independent. All the “effective correlation”
will be generated by the utility indifference valuation mechanism.

For computational tractability, we need to assume a large degree of symmetry (or ex-
changeability) between the firms. One way is to assume µi ≡ µ and σij = δij σ and that the
Brownian motions have correlation structure

IE{dW (i)dW (j)} = ρ dt i 6= j, (27)

and also that λi ≡ λ. This is similar to what is assumed in the “industry standard” one-factor
Gaussian copula, reviewed in Section 4.2.

We shall assume the second condition, but instead of the first, we suppose that the
diversity coefficient D in Definition 2, depends only on the dimension (i.e. the number of
stocks left).

Assumption 1 (i) When there are n ≤ N stocks, labelled by the index set Ik
n, the diversity

coefficient D(Ik
n), defined in equation (19) is a function only of n:

D(Ik
n) = D(n).

(ii) The intensities are identical across firms: λi ≡ λ.

(iii) The firms in the CDO have equal notionals.

As D is like the square of the (multi-dimensional) Sharpe ratio, it is natural to assume
that it increases with n. The main inputs into the model, aside from the risk-aversion
coefficient γ, are an “average” intensity λ and a diversity function D(n).

Remark 6 In the case of symmetric stock price dynamics described previously (µi ≡ µ,
σij = δij σ and correlation structure (27)), we have

D(n) =
µ2n

σ2(1 + (n− 1)ρ)
, (28)

which is illustrated in Figure 2 for various ρ. For small ρ, the diversity coefficient grows
rapidly with the number of firms. As the correlation increases, D(n) levels off sooner, and
in the extreme ρ = 1, the curve is flat.

The third assumption on the CDO structure is common in standardized contracts such as
the CDX and iTraxx. For example, in the CDX CDOs, each of the 125 firms is protected up
to losses of $80, 000, for a total notional of Q = $10 million.

Under these conditions, we only need to keep track of the number of firms alive at each
time, not which particular ones.
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Figure 2: Diversity coefficient in (28) for various correlations ρ. The other parameters are µ = 0.06
and σ = 0.15.

4.1.1 Merton Problem

Let M (n)(t, x) denote the value function when there are n ∈ {0, 1, · · · , N} firms alive.
Clearly,

M (0)(t, x) = −e−γx.

In general, for 1 ≤ n ≤ N , M (n)(t, x) solves

M
(n)
t − 1

2
D(n)

(M
(n)
x )2

M
(n)
xx

+ nλ
(
M (n−1) −M (n)

)
= 0, (29)

M (n)(T, x) = −e−γx,

the analog of (20) under the symmetry assumptions.
In the next proposition, we construct an explicit solution for M (n).

Proposition 8 The Merton value functions are given by

M (n)(t, x) = −e−γxvn(t), (30)

where

vn(t) = c
(n)
0 +

n∑
j=1

c
(n)
j e−αj(T−t) (31)

and

αn :=
1

2
D(n) + nλ. (32)
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The coefficients c
(n)
j are found from the recursion relations

c
(n)
0 =

nλ

αn

c
(n−1)
0 , n = 2, · · · , N (33)

c
(n)
j =

nλ

(αn − αj)
c
(n−1)
j , j = 1, · · · , n− 1 (34)

c(n)
n = 1−

n−1∑
j=0

c
(n)
j ,

with initial data

c
(1)
0 =

λ

α1

.

Proof: Inserting the form (30) into (29) leads to the system of ODEs

v′n − αnvn + nλvn−1 = 0

vn(T ) = 1.

Inserting the expression (31) leads to the recurrence relations (33). ¤

Remark 7 (i) Note that the vn are independent of the risk-aversion coefficient γ.

(ii) The recursion relations can of course be solved explicitly, for example,

c
(n)
0 =

λnn!

(α1α2 · · ·αn)
,

but it is computationally more stable to generate them recursively.

4.1.2 Tranche Holder’s Problem

We assume a fractional recovery q, meaning each default results in a loss to the portfolio
of (1− q)(Q/N). The tranche holder (or protection seller) pays out this amount if the loss
is within his tranche (up to the limit of the tranche). Our state variables are t, x and n,
the number of firms currently healthy. It is convenient, and more standard, to define the
portfolio loss when there are n firms remaining, namely

`n = (1− q)
(N − n)

N
. (35)

Given the lower and upper tranche attachment points KL and KU , we define

F (`) = (KU − `)+ − (KL − `)+. (36)

Then F (`n)×Q is the remaining notional the tranche holder insures when there are n firms
still alive, and the capital on which he receives the tranche premium. The structure of the
function F , being the difference of two put option payoffs, shows the tranche holder as having
a “put spread” on the portfolio loss process with “strikes” KL and KU .
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Let H(n)(t, x) denote the tranche holders value function when n firms are left. We assume
he receives a cash flow at the rate Rert at time t on his remaining notional, where R is the
tranche premium to be found. The ert factor is convenient to cancel the time variable out
of the ODEs that follow.

Then, his discounted wealth process X (depending on n) follows

dXt =





(∑
i π

(i)
t 1{τi>t}µi + RQF (`n)

)
dt +

∑
i π

(i)
t 1{τi>t}σi dW

(i)
t , t < τ̄ ∧ T

0 τ̄ ∧ T ≤ t ≤ T

.

(37)
To describe the protection payments made by the tranche holder when losses hit his

tranche, we define
fn = F (`n)− F (`n−1).

Then Qfn is the payment made by the tranche holder if the number of firms remaining drops
from n to n− 1 (that is, the loss increases from `n to `n−1).

The HJB equation for H(n)(t, x) is

H
(n)
t − 1

2
D(n)

(H
(n)
x )2

H
(n)
xx

+ RQF (`n)H(n)
x + nλ

(
H(n−1)(t, x−Qfn)−H(n)

)
= 0, (38)

H(n)(T, x) = −e−γx.

In the next proposition, we construct an explicit solution for H(n).

Proposition 9 The tranche holder’s value functions are given by

H(n)(t, x) = −e−γxwn(t), (39)

where

wn(t) = d
(n)
0 +

n∑
j=1

d
(n)
j e−βj(T−t) (40)

and

βn =
1

2
D(n) + nλ + γRQFn. (41)

The coefficients d
(n)
j are found from the recursion relations

d
(n)
0 =

qn

βn

d
(n−1)
0 (42)

d
(n)
j =

qn

(βn − βj)
d

(n−1)
j , j = 1, · · · , n− 1

d(n)
n = 1−

n−1∑
j=0

d
(n)
j ,

with initial data
d

(1)
0 =

q1

β1

,

and where qn = nλeγQfn.
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Proof: Inserting the form (39) into (38) leads to the system of ODEs

w′
n − βnwn + qnwn−1 = 0

wn(T ) = 1.

Inserting the expression (40) leads to the recurrence relations (42). ¤

4.1.3 Indifference Tranche Spread

Having solved for v and w in Propositions 8 and 9, the indifference tranche spread at time
zero, when all N firms in the CDO are alive, is found by solving for R such that

wN(0) = vN(0).

Note that while the vn are independent of the risk-aversion coefficient γ, the wn from the
tranche holder’s problem depend on γ through the combination γQ. The indifference tranche
spread is a mapping

R = R(N ; λ,D(·); γQ; KL, KU , T ).

In Figure 3, we illustrate, in the case N = 25, the types of spreads obtained for various
tranches as the risk-aversion coefficient varies. We use throughout the diversity coefficient
D given in (28), and fix the attachment points as those corresponding to CDX CDOs:

Tranche KL KU

Equity 0% 3%
Mezzanine 1 3% 7%
Mezzanine 2 7% 10%

Senior 10% 15%
Super-Senior 15% 30%

Usually the premium for the equity tranche is quoted as an upfront fee that is paid in
addition to 500 basis points, but for simplicity, we just treat the first tranche like the others.
The same qualitative features as in Figure 3 can be seen in Figure 4 for the case of N = 100
firms, particularly the retarded sensitivity of the senior tranches to increases in risk-aversion.

4.2 Implied Correlations

In recent years, market tranche premia have been analyzed in terms of an implied correlation
parameter %, which is backed out from the one-factor Gaussian copula model. This model
has come close to being regarded as an industry standard, mainly for its intuitive simplicity
and computational tractability in high dimensions, although its limitations, especially since
the simultaneous downgrading of Ford and General Motors in May 2005, are well-known.
One might hope that implied correlation could play the role that implied volatility plays
in studies of market equity option prices, but the base Gaussian copula model used for
tranche pricing is far less stable in terms of its inputs than the Black-Scholes formula for
option pricing. For example, the tranche premium is not guaranteed to be monotonic in the
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Figure 3: CDO indifference tranche spreads (in basis points) as functions of the risk-aversion
coefficient γ. Number of firms N = 25, and λ = 0.015. The diversity coefficient D is given by (28)
with µ = 0.07, σ = 0.15 and ρ = 0.3. The recovery is q = 40%, the interest rate r = 3% and T = 5
years. The notional is normalized to 1 unit per firm, so Q = N .

correlation parameter for some tranches, and the outputs are quite sensitive to the input
intensity parameter. See, for example, [28, Chapter 3] for a survey.

Nonetheless, a partial consensus has emerged regarding an observed structural pattern,
namely the implied correlation smile: the implied correlation is different for each tranche,
but is often higher for the equity and senior tranches, and lower for the mezzanine tranches,
resulting in a U-shaped smile curve when plotted against the attachment points. Some
examples are given in [19] and [28].

The copula model is specified under a market-determined risk-neutral probability measure
IP ?, and the arbitrage-free value of any claim is given by its expected discounted cash flow
under this measure. The single-name risk-neutral default probabilities p(t) are assumed
homogeneous and given by

p(t) = IP ?{τi ≤ t} = 1− e−λ?t,

where λ? > 0 is the risk-neutral intensity, assumed given from an underlying index, or
through averaging the intensities of the CDO names, found from their individual CDS
spreads.

Let Lt be the number of defaulted firms at time t. In the one-factor Gaussian copula
model, the loss distribution is given by

IP ?{Lt = k} =
1√
2π

∫ ∞

−∞

(
N

k

)
β(t, y)k(1− β(t, y))N−ke−y2/2 dy, k = 0, 1, 2 · · · , N
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Figure 4: CDO indifference tranche spreads (in basis points) as functions of the risk-aversion
coefficient γ. Number of firms N = 100, all other parameters as in Figure 3.

where

β(t, y) = N
(N−1(p(t))−√% y√

1− %

)
. (43)

Here, N is the standard normal cumulative distribution function, and % ∈ (0, 1) is called the
correlation coefficient. See [29, Chapter 10], for example, for a derivation. We denote by Xt

the fraction of the total portfolio value lost by time t:

Xt =
(1− q)

N
Lt,

where q is the fractional recovery parameter. For our purposes, we shall use the Vasicek
large portfolio approximation for N →∞, namely

IP ?{X ≤ x} ≈ N
(

1√
%

[√
1− %N−1(x)−N−1(p(t))

])
,

which is computationally efficient and reasonably accurate for moderate values of N .
The premium payments are made at regular payment dates tk = k∆t, with J payment

dates in total. For CDX CDOs, the payments are quarterly, twenty in all over five years.
The fair value of the premium leg, comprising payments to the protection seller (the tranche
holder) on his remaining notional, is given by

Vpr = R∆tQ

J∑

k=1

e−rtkIE?{F (Xtk)},
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where the put spread payoff F was defined in (36).
We will make the standard assumption that the insurance payouts in the floating leg are

also made at the same payment dates, covering all the losses since the previous payment
date. In practice, they are made close to when the loss actually occurs. See, for example,
[25, Chapter 8] for details. The fair value of the floating leg is given by

Vfl = Q

J∑

k=1

e−rtkIE?
{(

F (Xtk)− F (Xtk−1
)
)}

,

and the fair tranche premium R is such that these two are equal. Hence

R =

∑J
k=1 e−rtkIE?

{
(F (Xtk)− F (Xtk−1

))
}

∆t
∑J

k=1 e−rtkIE?{F (Xtk)}
. (44)

The implied correlation is simply the value of the the parameter % in (43) that equates R is
(44) to a market tranche value. As mentioned previously, such a % ∈ (0, 1) may not exist, or
may not be unique.

Figure 5 gives an example of how indifference valuation may lead to an implied correlation
“smile” pattern. Our purpose is not to propose this mechanism for calibration of market
data, but rather to demonstrate that it can produce non-trivial tranche spreads for the senior
tranches starting with a simple model with independent default times. Since indifference
valuation arises from comparison between expected utilities under the historical measure,
and the copula model requires specification of a risk-neutral intensity λ?, the latter parameter
has to be chosen before implied correlations can be computed. Typically, one would expect
λ? > λ, reflecting a positive market price for default risk. In Figure 5, we have chosen
λ? arbitrarily for the illustration. Investigation of different choices, as well as sensitivity
analyses with respect to other parameters are beyond the scope of the current article.

5 Conclusion

The preceding analysis demonstrates that utility valuation produces non-trivial CDO tranche
spreads and implied correlations within even the simplest of intensity-based models of de-
fault. It also incorporates equity market information (growth rates, volatilities of the non-
defaulted firms) as well as investor risk aversion to provide a relative value mechanism for
multi-name credit derivatives.

Many issues remain for investigation: the effects of the various input parameters; the
choice and estimation of different diversity coefficients that contain the impact of defaults
on the diminishing investment opportunity set; the effect of time-varying or stochastic risk-
aversion and stochastic (and thereby correlated) intensities; efficient computation and anal-
ysis of the fully heterogeneous case; and large portfolio (N → ∞) asymptotics of the in-
difference values. A related problem is optimal static-dynamic hedging of CDO tranches,
combining dynamic trading strategies in the underlying firms’ stocks, and static positions in
CDSs.
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