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Abstract

The indifference valuation problem in incomplete binomial models is
analyzed. The model is general in that the stochastic factor which gen-
erates the marlet incompleteness may affect the transition propabilities
and/or the values of the traded asset as well as the claim’s payoff. Two
pricing algorithms are constructed which use, respectively, the minimal
martingale and minimal entropy measures. The interplay among the dif-
ferent kinds of market incompleteness, the pricong measures and the price
functionals is studied in detail. The dependence of the prices in the choice
of the trading horizon is, also, discussed. Finally, the family of ”almost
complete” models is studied. It is shown that the two measures and the
price functionals coincide, and that the effects of the horizon choice dissi-
pate.

1 Introduction

This paper is a contribution to indifference valuation in incomplete binomial
models under exponential preferences. Market incompleteness stems from the
presence of a stochastic factor which may affect the transition probabilities of
the traded asset or/and its values. It may also affect the payoff of the claim
in consideration. The model is, thus, more general than the binomial models
considered so far in exponential indifference valuation (see, among others, [1],
[8] and [15]).

The aim is to construct valuation algorithms and provide a detailed study
of their properties and structure. We construct two such algorithms. They are
both iterative and resemble the ones introduced in [15] and [8]. However, the
existing pricing schemes are applicable only when the stochastic factor affects
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exclusively the claim’s payoff. When the factor affects the dynamics and values
of the traded asset, the situation is much more complex as internal market
incompleteness emerges which, thus, needs to be priced together with the one
coming from the claim’s payoff. The algorithms herein exhibit how the pricing
of both kinds of incompleteness is carried out and the interplay among the
incompleteness, the pricing measures and the pricing functionals.

In both algorithms, the indifference price is calculated via iterative pric-
ing schemes, applied backwards in time, starting at the claim’s maturity. The
schemes have local and dynamic properties. Dynamically, the pricing function-
als are similar in that, at each time interval, the price is computed via the
single-step pricing operators, applied to the end of the period payoff. The lat-
ter turns out to be the indifference price at the next time step, yielding prices
consistent across times.

Locally, valuation is executed in two steps, in analogy to the single-period
counterpart (26). In the first sub-step, the end of the period payoff is altered
via a non-linear functional and the conditioning on the information generated
by an appropriately chosen filtration. The new intermediate payoff is in turn,
priced by expectation. There are, however, important differences both between
the pricing measures and the form of the non-linear price functionals. The
first algorithm uses the minimal martingale measure. This measure has the
intuitively pleasing property of preserving the conditional distribution of the
stochastic factor, given the stock price, in terms of its historical counterpart.
However, the form of the associated pricing functional has no apparent natural
form. The situation is reversed the second algorithm which uses the minimal
entropy measure. We show that the density of this measure has no intuitively
pleasing structure in contrast to the relevant functional which does.

The forms of the (non-linear) price functionals motivate us to investigate
two important questions. Firstly, we study whether these functionals provide
a natural extension to the classical static certainty equivalent pricing rule. We
show that both price functionals fail to provide such connection. Secondly,
we study how the indifference prices are affected by the choice of the trading
horizon, the point at which the underlying exponential utility is pre-specified.
We show that prices are different for different horizon choices and provide this
difference in closed form.

Finally, we investigate how the above results simplify when the model sim-
plifies to the one that has been studied so far, i.e. when the stochastic factor
affects solely the claim’s payoff. We call such a model reduced. We show that,
as expected, there is a unique pricing measure as the nested model is now com-
plete. We also show that the price functionals become identical. A direct and
important consequence of these simplifications is that the indifference prices
become independent on the choice of the trading horizon (normalization point).

The paper is organized as follows. In section 2, we introduce the incomplete
(non-reduced) model and provide auxiliary results on the two pricing measures
and the exponential value function process. In section 3, we construct the two
pricing algorithms and discuss their properties. We also investigate the connec-
tion of the price functionals with the static certainty equivalent. In section 4 we
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investigate the dependence of the indifference prices on the normalization point
and, also, provide numerical results. We conclude with section 5 in which we
analyze the almost complete (reduced) binomial models.

2 The model and preliminary results

In a trading horizon, [0, T ] , two securities are available for trading, a riskless
bond and a risky stock. The time T is arbitrary but fixed. The bond offers
zero interest rate. The values of the stock, denoted by St, t = 0, 1, ..., T , satisfy
St > 0 and are given by

ξt+1 =
St+1

St
, ξt+1 = ξdt+1, ξ

u
t+1 with 0 < ξdt+1 < 1 < ξut+1. (1)

Incompleteness is generated by a non-traded factor, denoted by Yt, t = 0, 1, ..., T,
whose levels satisfy Yt 6= 0 and are given by

ηt+1 =
Yt+1

Yt
, ηt+1 = ηdt+1, η

u
t+1 with 0 < ηdt+1 < ηut+1. (2)

We, then, view {(St, Yt) : t = 0, 1, ...} as a two-dimensional stochastic process
defined on the probability space (Ω,F , (Ft) ,P). The filtration Ft is generated
by the random variables Si and Yi, or, equivalently, by ξi and ηi, for i = 0, 1, ..., t.
We, also, consider the filtration FSt generated only by Si, for i = 0, 1, ..., t. The
real (historical) probability measure on Ω and F is denoted by P.

We assume that the values ξdt+1, ξ
u
t+1 of the Ft+1−measurable random vari-

able ξt+1 satisfy
ξdt+1 ∈ Ft and ξut+1 ∈ Ft . (3)

An investor starts at t = 0, 1, ..., T with initial endowment Xt = x ∈ R
and trades between the stock and the bond, following self-financing strategies.
The number of shares held in his portfolio over the time period [i − 1, i), i =
t + 1, t + 2, ..., T, is denoted by αi. It is throughout assumed that αi ∈ Fi−1.
The individual’s aggregate wealth is, then, given, by

Xs = x+
s∑

i=t+1

αi 4 Si, (4)

where 4Si = Si − Si−1 and s = t+ 1, ..., T.
The performance of the implemented investment strategies is measured via

an expected exponential utility criterion applied to the terminal wealth that
these portfolios generate. The maximal expected utility (value function) is,
then, given by the solution of the stochastic optimization problem

Vt (x) = sup
αt+1,...,αT

EP
(
−e−γXT |Ft

)
, (5)

t = 0, 1, ..., T with γ > 0 and XT as in (4), Xt = x. This process has been
extensively analyzed for general market settings (see, for example, [2], [5] and
[13]).
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The goal is to carry out a detailed study of the indifference prices, under the
dynamic preference criterion (5). We stress that the binomial model we consider
is quite more general than all such models that have been, so far, analyzed in
the context of indifference valuation1; see, among others, [3], [8], [16] and [15].
Indeed, in these works, the nested model is complete, with the non-traded factor
affecting the claim’s payoff but not the transition probability or the values of
the traded asset. In such ”almost complete” models, considerable simplifications
take place due to the lack of internal market incompleteness. We revisit these
cases in Section 5.

In the extended framework herein, additional pricing features emerge. The
analysis and interpretation of these new elements will employ the minimal mar-
tingale and the minimal entropy measures (see, for example, [4] and [5], respec-
tively). For the reader’s convenience, we present some auxiliary results on the
densities of these measures (see Propositions 3 and 4) and a parity relation (see
Proposition 6). These results were derived for the specific binomial model at
hand in the companion paper [17], where we refer the reader for their proofs.

To this end, we let QT be the set of martingale measures restricted on FT .
With a slight abuse of notation, we denote by Q its generic element.

We consider, for t = 0, 1, ..., T, the quantities

Hmm
T (Q (· |Ft ) | P (· |Ft ) ) = EP

(
− ln

Q (· |Ft )
P (· |Ft )

|Ft
)

and

Hme
T (Q (· |Ft ) | P (· |Ft ) ) = EQ

(
ln

Q (· |Ft )
P (· |Ft )

|Ft
)
,

where Q ∈ QT and Q (· |Ft ) and P (· |Ft ) denote the restrictions of Q and P on
Ft.

The minimal martingale measure, Qmm, and the minimal entropy measure,
Qme, are defined as the minimizers of Hmm

T and Hme
T , respectively, i.e.,

Hmm
T (Qmm (· |Ft ) | P (· |Ft ) ) = min

Q∈QT
Hmm
T (Q (· |Ft ) | P (· |Ft ) )

and

Hme
T (Qme (· |Ft ) | P (· |Ft ) ) = min

Q∈QT
Hme
T (Q (· |Ft ) | P (· |Ft ) ) .

Most of the analysis below will involve the latter entropy. To simplify the
presentation we will be using the condensed notation

Hmet,T = Hme
T (Qme (· |Ft ) | P (· |Ft ) ) . (6)

We will be referring to the process Hmet,T as the minimal aggregate entropy.

1While preparing the final version of this manuscript, the recent paper [7] was brought to
the attention of the authors. Therein, the utility is of power type and the model more general
than the one considered herein.
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We introduce, for t = 0, 1, ..., T, the sets

At = {ω : ξt (ω) = ξut } and Bt = {ω : ηt (ω) = ηut } . (7)

Note that for all Q,Q′ ∈ QT ,

Q (At |Ft−1 ) = Q′ (At |Ft−1 ) . (8)

Definition 1 Let ξt, t = 0, 1, .., T, be as in (1) and consider the risk neutral
probabilities

qt =
1− ξdt
ξut − ξdt

.

The local entropy process ht, t = 1, ..., T, is defined by

ht = qt ln
qt

P (At |Ft−1 )
+ (1− qt) ln

1− qt
1− P (At |Ft−1 )

, (9)

where At as in (7), P is the historical probability measure and Ft is the filtration
generated by the random variables Si and Yi, for i = 0, 1, ..., t.

Lemma 2 The local entropy process ht is Ft-predictable, i.e., for t = 1, ..., T,
ht ∈ Ft−1. Moreover, for all Q ∈ QT ,

ht = Q (At |Ft−1 ) ln
Q (At |Ft−1 )
P (At |Ft−1 )

+ (1−Q (At |Ft−1 )) ln
1−Q (At |Ft−1 )
1− P (At |Ft−1 )

.

The result below highlights an important property of the minimal martingale
measure. Specifically, under this measure, the conditional distribution of the
non-traded factor, given the stock price, is preserved in relation to its historical
counterpart.

Proposition 3 The minimal martingale measure Qmm has, for t = 1, ..., T, the
property

Qmm
(
Yt| Ft−1 ∨ FSt

)
= P

(
Yt| Ft−1 ∨ FSt

)
, (10)

or, equivalently,

Qmm (AtBt| Ft−1)
P (AtBt| Ft−1)

=
Qmm (AtBct | Ft−1)

P (AtBct | Ft−1)
=

Qmm (At| Ft−1)
P (At| Ft−1)

and

Qmm (ActBt| Ft−1)
P (ActBt| Ft−1)

=
Qmm (ActB

c
t | Ft−1)

P (ActBct | Ft−1)
=

Qmm (Act | Ft−1)
P (Act | Ft−1)

,

with the sets At and Bt given in (7).

5



Next, we present an analogous explicit representation of the minimal entropy
measure. The construction – which is to the best of our knowledge new –
is based on an iterative procedure which yields the conditional distribution
Qme

(
Yt| Ft−1 ∨ FSt

)
in terms of its historical analogue P

(
Yt| Ft−1 ∨ FSt

)
and

the (conditional) on Ft−1 values of the minimal aggregate entropy Hmet,T . The
latter term is constructed through an independent iterative procedure which
involves the minimal martingale measure, obtained already in (10). To ease the
presentation, the construction of Hmet,T is given, separately, in Proposition 5.

To this end, we introduce the auxiliary quantities

J (s,s+1)
Q (Z) = EQ

(
lnEQ

(
eZ
∣∣Fs ∨ FSs+1

)
|Fs
)

(11)

and
J (s,t)

Q (Z) = J (s,s+1)
Q

(
J (s+1,s+2)

Q

(
...J (t−1,t)

Q (Z)
))

, (12)

for s = 0, 1, ..., T − 1, t = s + 1, ..., T, Z a random variable in (Ω,F ,P) and
Q ∈ QT . We recall that Fs and FSs are the filtrations generated, respectively,
by (Si, Yi) and Si for i = 1, ..., s.

Proposition 4 The minimal entropy measure, Qme, satisfies, for t = 1, ..., T,

Qme (AtBt| Ft−1)
P (AtBt| Ft−1)

=
Qme (At| Ft−1) e−H

me,uu
t,T

P (AtBt| Ft−1) e−H
me,uu
t,T + P (AtBct | Ft−1) e−H

me,ud
t,T

,

(13)
Qme (AtBct | Ft−1)

P (AtBct | Ft−1)
=

Qme (At| Ft−1) e−H
me,ud
t,T

P (AtBt| Ft−1) e−H
me,uu
t,T + P (AtBct | Ft−1) e−H

me,ud
t,T

,

Qme (ActBt| Ft−1)
P (ActBt| Ft−1)

=
Qme (Act | Ft−1) e−H

me,du
t,T

P (ActBt| Ft−1) e−H
me,du
t,T + P (ActBct | Ft−1) e−H

me,dd
t,T

and

Qme (ActB
c
t | Ft−1)

P (ActBct | Ft−1)
=

Qme (Act | Ft−1) e−H
me,dd
t,T

P (ActBt| Ft−1) e−H
me,du
t,T + P (ActBct | Ft−1) e−H

me,dd
t,T

where At, Bt are as in (7) and Hme,uut,T ,Hme,udt,T ,Hme,dut,T ,Hme,ddt,T are the values
of the Ft−measurable random variable Hmet,T , (cf. (6)), conditional on Ft−1.

The above equalities can be expressed slightly differently in order to provide
the direct analogues of (10). For example, (13) yields

Qme
T (AtBt| Ft−1)
Qme
T (At| Ft−1)

=

P (AtBt| Ft−1)
P (At| Ft−1)

e−H
me,uu
t,T

P (AtBt| Ft−1)
P (At| Ft−1)

e−H
me,uu
t,T +

P (AtBct | Ft−1)
P (At| Ft−1)

e−H
me,ud
t,T

.

Notice that if Hme,uut,T = Hme,udt,T equality (13) reduces to (10). This observation
will play a key role in the analysis of the reduced binomial model.
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Proposition 5 Let Qmm be the minimal martingale measure and ht, t = 0, 1, .., T,
be as in (9). Let, also, J (t,t+1)

Qmm ,J (t,T )
Qmm be as in (11) and (12) for Q = Qmm.

The minimal aggregate entropy Hmet,T is given by the iterative scheme

HmeT,T = 0 and HmeT−1,T = hT

and
Hmet,T = ht+1 − J (t,t+1)

Qmm
(
−Hmet+1,T

)
, t = 0, 1, ..., T − 2. (14)

Moreover,

Hmet,T = −J (t,T )
Qmm

(
−

T∑
i=t+1

hi

)
. (15)

Next, we present a parity result between the nonlinear functionals J (t,t+1)
Qmm

and J (t,t+1)
Qme which will, in turn, play a key role in the upcoming construction

of the pricing algorithms2.

Proposition 6 Let Hmet,T be the aggregate entropy and J (t,t+1)
Qme ,J (t,t+1)

Qmm as in
(11) for Q = Qme,Qmm and t = 0, 1, .., T − 1. Then, for Z in (Ω,F ,P),

J (t,t+1)
Qme (Z) = J (t,t+1)

Qmm
(
Z −Hmet+1,T

)
− J (t,t+1)

Qmm
(
−Hmet+1,T

)
. (16)

Proposition 7 The minimal aggregate entropy Hmet,T is given by the iterative
scheme

HmeT,T = 0 and HmeT−1,T = hT ,

and
Hmet,T = ht+1 + J (t,t+1)

Qme
(
Hmet+1,T

)
, t = 0, 1, ..., T − 2, (17)

with ht, t = 0, 1, ..., T, defined in (9) and J (t,t+1)
Q as in (11) for Q = Qme.

Moreover,

Hmet,T = J (t,T )
Qme

(
T∑

i=t+1

hi

)
. (18)

Corollary 8 The minimal martingale and the minimal entropy measures sat-
isfy

Qmm
(
YT | FT−1 ∨ FST

)
= Qme

(
YT | FT−1 ∨ FST

)
= P

(
YT | FT−1 ∨ FST

)
. (19)

It is worth commenting on some distinct features of the minimal martingale
and the minimal entropy measures. Firstly, we note that the density of the
former (see (10)) has the intuitively pleasing property of preserving the condi-
tional distribution of the non-traded factor, given the stock price, in terms of
its historical counterpart. In essence, this property states that the unhedgeable

2For similar results in a diffusion model with stochastic volatility see [18].
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risks, given the hedgeable ones, are viewed in the same manner under P and
Qmm.

The minimal entropy measure, however, albeit its predominant role in ex-
ponential utility maximization, appears to be lacking an intuitively pleasing
structure, as (13) shows. Secondly, we observe its dependence on the horizon
choice, T, as reflected by the T−dependent values Hmet,T in (13). In Section 4,
we will see how the indifference prices inherit, in turn, this dependence. Note,
however, that the minimal martingale measure does not depend on the specific
horizon as (10) shows.

We finish with representation results for the value function process Vt (x) ,
defined in (5). The first formula is well known (see, for example, [2] and [13])
while formulae (21) and (22) are, to the best of our knowledge, new and follow
from (15) and (18).

Proposition 9 The value function satisfies, for x ∈ R and t = 0, 1, ..., T,

Vt (x) = −e−γx−H
me
t,T (20)

= − exp

(
−γx− J (t,T )

Qme

(
T∑

i=t+1

hi

))
(21)

= − exp

(
−γx+ J (t,T )

Qmm

(
−

T∑
i=t+1

hi

))
, (22)

with ht, t = 0, 1, ..., T, given in (9) and J (t,T )
Q as in (12), for Q = Qmm,Qme.

3 Indifference valuation algorithms

In this section, we review the notion of indifference price and provide two it-
erative algorithms for its construction. The claim to be priced is written, at
time t0, on both the traded stock and the non-traded factor. For simplicity,
we assume that t0 = 0. The claim matures at t = 1, ..., T, yielding payoff Ct,
represented as an Ft-measurable random variable. We are interested in com-
puting its indifference price in reference to the exponential criterion (5). For
the moment, we price a single claim and present the results on the multi-claim
case afterwards. For convenience, we eliminate the ”exponential” terminology.
We recall the familiar definition of indifference price (see, for example, [2] and
[13]).

Definition 10 Consider a claim, written at time t0 = 0 and yielding at t payoff
Ct ∈ Ft, t = 0, 1, ..., T . Let Vt (x) be the value function process (5). The claim’s
indifference price is defined as the amount νs(Ct), s = 0, 1, ..., t, for which

Vs(x− νs(Ct)) = sup
αs+1,...,αt

EP (Vt (Xt − Ct) |Fs ) , (23)

for all initial wealth levels Xs = x ∈ R.
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We remark that the alignment of the expiry of the claim with the time at
which the value function process is calculated in the right hand side of the pricing
condition (23) is chosen for mere convenience. Indeed, the above definition can
be directly extended to times beyond the claim’s maturity in that (23) can be
replaced by

Vs (Xs − νs (Ct)) = sup
αs+1,...,αt′

EP (Vt′ (Xt′ − Ct)| Fs) , (24)

for t′ = t+1, ..., T−1, T. This follows easily from (23), the dynamic programming
principle and the fact that Ct ∈ Ft′ . Observe, however, that this cannot be done
for times t′ exceeding T .

Next, we review the price representation obtained for the single-period case
in [8] (see, also, [9]). Therein, the claim’s indifference price is represented as a
non-linear expectation of its payoff, providing the incomplete market analogue
of the linear arbitrage-free pricing rule. We refer the reader to these papers
for a detailed discussion on the nature and properties of the pricing formula.
For indifference prices in single-period models for utilities different than the
exponential, see [3].

Proposition 11 (Single-period model) Let Q be the martingale measure un-
der which the conditional distribution of the non-traded factor, given the traded
asset, is preserved with respect to the historical measure P, i.e.,

Q(YT |ST ) = P(YT |ST ). (25)

Let CT = C(ST , YT ) be the claim to be priced under exponential preferences with
risk aversion coefficient γ. Then, its indifference price, ν0 (CT ) , is given by

ν0(CT ) = EQ(CT ) = EQ

(
1
γ

lnEQ
(
eγCT |ST

))
. (26)

As the above result shows, the underlying indifference pricing blocks are the
non-linear expectation EQ(·) and the pricing measure Q. For the multi-period
case, we need to build their appropriate multi-period analogues. We stress
that due to the inherent nonlinearities of the problem, together with the fact
that the model at hand is non-reduced (i.e., the nested model is not complete),
it is not at all clear how these analogues should be constructed. Notice, for
example, that property (25) is satisfied by both the minimal martingale and
minimal entropy measures, Qmm and Qme, but only at expiration (see (19)). For
times before T − 1, the two measures differ and property (25) is held by Qmm,
and not Qme, which is the natural martingale measure in exponential utility
maximization. This important difference motivates us to look for algorithmic
price representations under each of these two measures.

Definition 12 Let T > 0 and Z be a random variable in (Ω,F , P). For s =
0, 1, ..., T − 1, t = s + 1, ..., T and Q ∈ QT , define the single- and multi-step
price functionals

E(s,s+1)
Q (Z) =

1
γ
EQ
(
lnEQ

(
eγZ

∣∣Fs ∨ FSs+1

)
|Fs
)

(27)
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and
E(s,t)

Q (Z) = E(s,s+1)
Q

(
...E(t−1,t)

Q (Z)
)
. (28)

We caution the reader that, for t > s+ 1,

E(s,t)
Q (Z) 6= 1

γ
EQ
(
lnEQ

(
eγZ

∣∣Fs ∨ FSt ) |Fs ) .
Definition 13 Let Z be a random variable in (Ω,F , P). For s = 0, 1, ..., T − 1
and t = s + 1, ..., T , define the nonlinear single- and multi-step functionals
P(s,s+1)

Qmm and P(t,s)
Qmm by

P(s,s+1)
Qmm (Z) = E(s,s+1)

Qmm

(
Z − 1

γ
Hmes+1,T

)
− E(s,s+1)

Qmm

(
− 1
γ
Hmes+1,T

)
(29)

and
P(s,t)

Qmm (Z) = P(s,s+1)
Qmm

(
...P(t−1,t)

Qmm (Z)
)
, (30)

with E(s,s+1)
Q given in (27) with Q = Qmm.

The following lemma provides the explicit form of the multi-step functional
P(s,t)

Qmm .

Lemma 14 Let Z be a random variable in (Ω,F ,P). Then, for s < t− 1,

P(s,t)
Qmm (Z)

= E(s,t)
Qmm

(
Z − 1

γ
Hmet,T −

1
γ

t∑
i=s+2

hi

)
− E(s,t)

Qmm

(
− 1
γ
Hmet,T −

1
γ

t∑
i=s+2

hi

)
. (31)

Proof We establish (31) only for s = t − 2 since the rest of the proof follows
along similar arguments. We need to show that

P(t−2,t)
Qmm (Z) = E(t−2,t)

Qmm

(
Z − 1

γ
Hmet,T −

1
γ
ht

)
−E(t−2,t)

Qmm

(
− 1
γ
Hmet,T −

1
γ
ht

)
. (32)

Using (29) and (30), we write

P(t−2,t)
Qmm (Z) = P(t−2,t−1)

Qmm

(
P(t−1,t)

Qmm (Z)
)

= E(t−2,t−1)
Qmm

(
E(t−1,t)

Qmm

(
Z − 1

γ
Hmet,T

)
− E(t−1,t)

Qmm

(
− 1
γ
Hmet,T

)
− 1
γ
Hmet−1,T

)
(33)

−E(t−2,t−1)
Qmm

(
− 1
γ
Hmet−1,T

)
.
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On the other hand, (14) yields

− 1
γ
Hmet−1,T = − 1

γ
ht + E(t−1,t)

Qmm

(
− 1
γ
Hmet,T

)
and the second term in (33) becomes

−E(t−2,t−1)
Qmm

(
− 1
γ
Hmet−1,T

)
= −E(t−2,t−1)

Qmm

(
− 1
γ
ht + E(t−1,t)

Qmm

(
− 1
γ
Hmet,T

))

= −E(t−2,t−1)
Qmm

(
E(t−1,t)

Qmm

(
− 1
γ
ht −

1
γ
Hmet,T

))
,

where we used the measurability properties of ht. Similarly, the first term in
(33) becomes

E(t−2,t−1)
Qmm

(
E(t−1,t)

Qmm

(
Z − 1

γ
Hmet,T

)
− E(t−1,t)

Qmm

(
− 1
γ
Hmet,T

)
− 1
γ
Hmet−1,T

)

= E(t−2,t−1)
Qmm

(
E(t−1,t)

Qmm

(
Z − 1

γ
Hmet,T

)
−E(t−1,t)

Qmm

(
− 1
γ
Hmet,T

)
− 1
γ
ht + E(t−1,t)

Qmm

(
− 1
γ
Hmet,T

))
= E(t−2,t−1)

Qmm

(
E(t−1,t)

Qmm

(
Z − 1

γ
Hmet,T

)
− 1
γ
ht

)
= E(t−2,t−1)

Qmm

(
E(t−1,t)

Qmm

(
Z − 1

γ
Hmet,T −

1
γ
ht

))
.

Combining the above, (32) follows.

We are now ready to provide the pricing algorithms for the indifference
price. The first algorithm uses the minimal martingale measure and the pricing
functionals P(s,s+1)

Qmm and P(s,t)
Qmm while the second one uses the minimal entropy

measure and the pricing functionals E(s,s+1)
Qme and E(s,t)

Qme . To ease the presentation,
we first state the main theorems and, then, provide their proofs and discussion.

Theorem 15 Consider a claim written at t0 = 0 and expiring at t yielding
payoff Ct ∈ Ft. For t = 1, ..., T and s = 0, 1, ..., t − 1, the following statements
are true:

i) The indifference price νs(Ct), defined in (23), is given by the algorithm

νt (Ct) = Ct, (34)

νs (Ct) = P(s,s+1)
Qmm (νs+1 (Ct)) , (35)

where P(s,s+1)
Qmm is the single-step pricing functional defined in (29).

11



ii) The indifference price νs(Ct) ∈ Fs is given by

νs(Ct) = P(s,t)
Qmm (Ct) (36)

= E(s,t)
Qmm

(
Ct −

1
γ
Hmet,T −

1
γ

t∑
i=s+2

hi

)
− E(s,t)

Qmm

(
− 1
γ
Hmet,T −

1
γ

t∑
i=s+2

hi

)
, (37)

with the multi-step price functionals P(s,t)
Qmm and E(s,t)

Qmm defined, respectively, in
(30) and (28) for Q = Qmm.

iii) The pricing algorithm is consistent across time in that, for 0 ≤ s ≤ s′ ≤
t, the semigroup property

νs (Ct) = P(s,s′)
Qmm (P(s′,t)

Qmm (Ct)) = P(s,s′)
Qmm (νs′ (Ct)) = νs(P(s′,t)

Qmm (Ct)) (38)

holds.

Theorem 16 Consider a claim written at t0 = 0 and expiring at t yielding
payoff Ct ∈ Ft. For t = 1, ..., T and s = 0, 1, ..., t − 1, the following statements
are true:

i) The indifference price νs(Ct), defined in (23), is given by the algorithm

νt (Ct) = Ct,

νs (Ct) = E(s,s+1)
Qme (νs+1 (Ct)) , (39)

where E(s,s+1)
Qme is the single-step price functional defined in (27) for Q = Qme.

ii) The indifference price process is given by

νs(Ct) = E(s,t)
Qme (Ct) , (40)

with the multi-step price functional E(s,t)
Qme defined in (28) for Q = Qme.

iii) The pricing algorithm is consistent across time in that, for 0 ≤ s ≤ s′ ≤
t, the semigroup property

νs (Ct) = E(s,s′)
Qme (E(s′,t)

Qme (Ct)) = E(s,s′)
Qme (νs′ (Ct)) = νs(E(s′,t)

Qme (Ct)) (41)

holds.

Before we provide the proof for Theorem 15 we state the following lemma.

Lemma 17 Let s = 0, 1, ..., T −1, E(s,s+1)
Qmm be defined in (27) for Q = Qmm and

Z be a random variable in (Ω,F ,P) . Then,

sup
αs+1

EP

(
−e−γ(Xs+1−Z)|Fs

)
= −e−γ

(
Xs−E(s,s+1)

Qmm (Z)
)
−hs+1 , (42)

with hs as in (9).

12



Proof With As+1 as in (7) we have

sup
αs+1

EP

(
−e−γ(Xs+1−Z)|Fs

)
= −e−γXs

(
P(As+1|Fs)e−γαs+1Ss(ξ

u
s+1−1)EP

(
eγZ |Fs ∨As+1

)
+(1− P(As+1|Fs))e−γαs+1Ss(ξ

d
s+1−1)EP

(
eγZ |Fs ∨Acs+1

))
.

Differentiating with respect to αs+1 yields that the optimum occurs at

αs+1 =
1

γSs
(
ξus+1 − ξds+1

) ln

(
EP
(
eγZ |Fs ∨As+1

)
P(As+1|Fs)

(
ξus+1 − 1

)
EP
(
eγZ |Fs ∨Acs+1

)
(1− P(As+1|Fs))

(
1− ξds+1

)) .
Using the form of the density of the minimal martingale measure (see (10)) we
obtain

sup
αs+1

EP

(
−e−γ(Xs+1−Z)|Fs

)
= − exp

(
−γXs + Qmm(As+1|Fs) lnEP

(
eγZ |Fs ∨As+1

)
+ (1−Qmm(As+1|Fs)) lnEP

(
eγZ |Fs ∨Acs+1

))
×

×
(

P(As+1|Fs)
Qmm(As+1|Fs)

)Qmm(As+1|Fs)( 1− P(As+1|Fs)
1−Qmm(As+1|Fs)

)1−Qmm(As+1|Fs)

.

Using once again the form of the density of the minimal martingale measure
(10) and the definition of E(s,s+1)

Qmm (cf. (27)), (42) follows.

We are now ready to prove Theorem 15.
Proof i) Equality (34) is immediate. We prove (35) for s = t − 1. From (20)
we have

sup
αt

EP (Vt (Xt − Ct)| Ft−1)

= sup
αt

EP

(
−e−γ(Xt−(Ct− 1

γH
me
t,T ))

∣∣∣Ft−1

)
.

Using Lemma 17 for s = t− 1 and Z = Ct − 1
γH

me
t,T , we get

sup
αt

EP (Vt (Xt − Ct)| Ft−1) = −e−γ
(
Xt−1−E(t−1,t)

Qmm (Ct− 1
γH

me
t,T )

)
−ht .

Combining the above with (23) and formula (20) for Vt−1, we deduce

νt−1 (Ct) = E(t−1,t)
Qmm

(
Ct −

1
γ
Hmet,T

)
+

1
γ
Hmet−1,T −

1
γ
ht

= E(t−1,t)
Qmm

(
Ct −

1
γ
Hmet,T

)
− E(t−1,t)

Qmm

(
− 1
γ
Hmet,T

)
, (43)

13



where we used (14) for Hmet−1,T .
For s = t− 2, we have

sup
αt−1,αt

EP (Vt (Xt − Ct)| Ft−2)

= sup
αt−1,αt

EP

(
−e−γ(Xt−2+αt−1(St−1−St−2)+αt(St−St−1)−(Ct− 1

γH
me
t,T ))

∣∣∣Ft−2

)
= sup
αt−1

EP

(
e−γ(Xt−2+αt−1(St−1−St−2))

× sup
αt

EP

(
−e−γ(αt(St−St−1)−(Ct− 1

γH
me
t,T ))

∣∣∣Ft−1

)∣∣∣∣Ft−2

)
.

Using Lemma 17 for s = t−1 and Z = Ct− 1
γH

me
t,T , and (14) and (43) we deduce

sup
αt−1,αt

EP (Vt (Xt − Ct)| Ft−2)

= sup
αt−1

EP

(
e
−γ
(
Xt−2+αt−1(St−1−St−2)−E(t−1,t)

Qmm (Ct− 1
γH

me
t,T )

)
−ht
∣∣∣∣Ft−2

)
= sup
αt−1

EP

(
e
−γ
(
Xt−2+αt−1(St−1−St−2)−

(
νt−1(Ct)+E(t−1,t)

Qmm (− 1
γH

me
t,T )− 1

γ ht
))∣∣∣∣Ft−2

)
= sup
αt−1

EP

(
e−γ(Xt−2+αt−1(St−1−St−2)−(νt−1(Ct)− 1

γH
me
t−1,T ))

∣∣∣Ft−2

)
.

Using Lemma 17 once again, this time for s = t−2 and Z = νt−1(Ct)− 1
γH

me
t−1,T ,

we obtain
sup

αt−1,αt

EP (Vt (Xt − Ct)| Ft−2)

= −e−γ
(
Xt−2−E(t−2,t−1)

Qmm (νt−1(Ct)− 1
γH

me
t−1,T )

)
−ht−1 . (44)

On the other hand, (20) yields,

Vt−2 (Xt−2 − νt−2(Ct)) = −e−γ(Xt−2−νt−2(Ct))−Hmet−2,T .

Comparing the above to (44), using the definition of the indifference price (23)
and formula (14), we deduce

νt−2(Ct) = E(t−2,t−1)
Qmm

(
νt−1(Ct)−

1
γ
Hmet−1,T

)
− 1
γ
ht−1 +

1
γ
Hmet−2,T

= E(t−2,t−1)
Qmm

(
νt−1(Ct)−

1
γ
Hmet−1,T

)
− E(t−2,t−1)

Qmm

(
− 1
γ
Hmet−1,T

)
, (45)

and we conclude. For s = 0, ..., t− 3, (35) follows along similar arguments.
ii) In view of property (31), assertions (36) and (37) are equivalent. We only

show (37). For s = t − 1, (37) follows trivially. To show (37) for s = t − 2,
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we work as follows. We first observe that (14) together with the measurability
properties of the local entropy process ht yield

E(t−2,t−1)
Qmm

(
− 1
γ
Hmet−1,T

)
= E(t−2,t−1)

Qmm

(
E(t−1,t)

Qmm

(
− 1
γ
Hmet,T

)
− 1
γ
ht

)

= E(t−2,t)
Qmm

(
− 1
γ
Hmet,T −

1
γ
ht

)
.

On the other hand, using (35) for νt−1(Ct) and (14), we deduce

E(t−2,t−1)
Qmm

(
νt−1(Ct)−

1
γ
Hmet−1,T

)

= E(t−2,t−1)
Qmm

(
E(t−1,t)

Qmm

(
Ct −

1
γ
Hmet,T

)
− E(t−1,t)

Qmm

(
− 1
γ
Hmet,T

)
− 1
γ
Hmet−1,T

)
= E(t−2,t−1)

Qmm

(
E(t−1,t)

Qmm

(
Ct −

1
γ
Hmet,T

)
− E(t−1,t)

Qmm

(
− 1
γ
Hmet,T

)
+E(t−1,t)

Qmm

(
− 1
γ
Hmet,T

)
− 1
γ
ht

)
= E(t−2,t−1)

Qmm

(
E(t−1,t)

Qmm

(
Ct −

1
γ
Hmet,T

)
− 1
γ
ht

)
= E(t−2,t−1)

Qmm

(
E(t−1,t)

Qmm

(
Ct −

1
γ
Hmet,T −

1
γ
ht

))
= E(t−2,t)

Qmm

(
Ct −

1
γ
Hmet,T −

1
γ
ht

)
.

Combining the above with (45) yields

νt−2(Ct) = E(t−2,t)
Qmm

(
Ct −

1
γ
Hmet,T −

1
γ
ht

)
− E(t−2,t)

Qmm

(
− 1
γ
Hmet,T −

1
γ
ht

)
,

and we deduce (37). For s = 0, ..., t− 3, we work similarly.
The semigroup property (38) follows easily.

We continue with the proof of Theorem 16.
Proof We only need to establish that

E(s,s+1)
Qme (νs+1 (Ct))

= E(s,s+1)
Qmm

(
νs+1 (Ct)−

Hmes+1,T

γ

)
− E(s,s+1)

Qmm

(
−
Hmes+1,T

γ

)
,

since all assertions of the theorem would follow by straightforward arguments.
To this end, let Z = γνs+1 (Ct)−Hmes+1,T . Then (16) yields

J (s,s+1)
Qmm

(
γνs+1 (Ct)−Hmes+1,T

)
= J (s,s+1)

Qme (γνs+1 (Ct)) + J (s,s+1)
Qmm

(
−Hmes+1,T

)
15



and, in turn,
1
γ
J (s,s+1)

Qmm
(
γνs+1 (Ct)−Hmes+1,T

)
=

1
γ
J (s,s+1)

Qme (γνs+1 (Ct)) +
1
γ
J (s,s+1)

Qmm
(
−Hmes+1,T

)
.

We easily conclude.

Discussion on the pricing algorithms: The indifference price is cal-
culated via the iterative pricing schemes (35) and (39), applied backwards in
time, starting at the claim’s maturity. The schemes have local and dynamic
properties.

Dynamically, the pricing functionals P(s,t)
Qmm and E(s,t)

Qme are similar. Specifi-
cally, at each time interval, say (s, s+ 1), the price νs(Ct) is computed via the
single-step pricing operators, P(s,s+1)

Qmm and E(s,s+1)
Qme , applied to the end of the pe-

riod payoff. The latter turns out to be the indifference price, νs+1(Ct), yielding
prices consistent across time.

Locally, however, the pricing roles of P(s,s+1)
Qmm and E(s,s+1)

Qme are very different
both in structure and the associated measures. We start with the latter price
functional since it has the simpler of the two forms. Valuation is executed in
two steps, in analogy to the single-period counterpart (26). In the first sub-step,
the end of the period payoff, νs+1(Ct), is altered via a non-linear functional and
the conditioning on the information generated by Fs ∨ FSs+1. The new payoff,

ν̃s+1(Ct) =
1
γ

lnEQme
(
eγνs+1(Ct)

∣∣Fs ∨ FSs+1

)
(46)

emerges which is, in turn, priced by expectation. The indifference price is, then,
given by

νs(Ct) = EQme(ν̃s+1(Ct) |Fs ). (47)

While structure-wise the price functional E(s,s+1)
Qme has a simple and intuitive

form, the employed measure Qme does not, as can be seen from (13).
The situation is reversed in the first algorithm. Specifically, the pricing

functional P(s,s+1)
Qmm has no transparent form while the used measure, Qmm, has

the intuitively pleasing property (10). Indeed, P(s,s+1)
Qmm incorporates the minimal

aggregate entropy 1
γH

me
s+1,T in a ”palindromic” manner. Namely, at each time

step, the end of the period payoff νs+1 (Ct) is reduced by 1
γH

me
s+1,T and priced,

yielding the indifference price

Z1
s+1 = E(s,s+1)

Qmm

(
νs+1 (Ct)−

1
γ
Hmes+1,T

)
.

In turn, the payoff

Z2
s+1 = −E(s,s+1)

Qmm

(
− 1
γ
Hmes+1,T

)
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is added. Both quantities Z1
s+1 and Z2

s+1 are calculated via the two-step pro-
cedure similar to the one described in (46) and (47). Notice that due to the
non-linear character of the indifference price, the entropic liability − 1

γH
me
s+1,T

could not be factored out. That is,

νs(Ct) = P(s,s+1)
Qmm (νs+1 (Ct))

= E(s,s+1)
Qmm

(
νs+1 (Ct)−

1
γ
Hmes+1,T

)
− E(s,s+1)

Qmm

(
− 1
γ
Hmes+1,T

)
6= E(s,s+1)

Qmm (νs+1 (Ct)) .

The following results follow easily from the above pricing algorithms.

Corollary 18 Let the payoff Ct be of the form

Ct = Yt + Zt

with Yt ∈ Ft and Zt being such that there exist Zs ∈ FSs and αi ∈ FSi−1,
i = s+ 1, ..., t, satisfying Zt = Zs + Σti=s+1αi∆Si, a.e. Then,

νs (Ct) = νs (Yt + Zt) = νs (Yt) + Zs

= P(s,t)
Qmm (Yt) + EQmm

(
Zt| FSs

)
= E(s,t)

Qme (Yt) + EQme
(
Zt| FSs

)
.

Next, we provide the pricing algorithms for the multi-claim case. For con-
venience, we assume that in the interval [0, n+ 1] with n + 1 ≤ T, we price a
collection of n+ 2 claims, C0, C1, ..., Cj , ...Cn+1, with each generic claim matur-
ing at time j, j = 0, 1, ..., n + 1 and yielding payoff Cj ∈ Fj . Using repeatedly
Corollary 19 we obtain the following.

Theorem 19 Consider a collection of n+ 2 claims, written at t0 = 0, yielding
payoffs Cj ∈ Fj , with j = 0, 1, ..., n+ 1. The following statements hold:

i) The indifference price νs(Σn+1
j=sCj), is given, for s = 0, 1, ..., n+ 1, by the

iterative algorithm
νn+1 (Cn+1) = Cn+1,

νs(Cs + Σn+1
j=s+1Cj) = Cs + P(s,s+1)

Qmm (Cs+1 + νs+1(Σn+1
j=s+2Cj))

= Cs + E(s,s+1)
Qme (Cs+1 + νs+1(Σn+1

j=s+2Cj)),

with P(s,s+1)
Qmm and E(s,s+1)

Qme as in (29) and (27).
ii) The indifference price process νs(Cs + Σn+1

j=s+1Cj) ∈ Fs and satisfies, for
s = 0, 1, ..., n+ 1,

νs(Cs + Σn+1
j=s+1Cj)

= Cs+P(s,s+1)
Qmm

(
Cs+1 + P(s+1,s+2)

Qmm

(
Cs+2 + ...P(n−1,n)

Qmm

(
Cn + P(n,n+1)

Qmm (Cn+1)
)))

= Cs+E(s,s+1)
Qme

(
Cs+1 + E(s+1,s+2)

Qme

(
Cs+2 + ...E(n−1,n)

Qme

(
Cn + E(n,n+1)

Qme (Cn+1)
)))

.
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3.1 Conditional certainty equivalent and the indifference
price

The form of the auxiliary single-step payoff ν̃s+1(Ct), s = 0, 1, ..., t, introduced
in (46), motivates us to ask whether there is a natural connection between it and
the static certainty equivalent pricing rule. The latter is given, for a random
variable Z, by

C (Z) = −u−1EP (u (−Z)) , (48)

with u being an increasing and concave utility function. We explore this question
next.

We first introduce the auxiliary process V −1
s (x), s = 0, 1, ..., T , denoting the

spatial inverse of the value function (5), and given by

V −1
s (x) = − ln (−x)

γ
−
Hmes,T
γ

, x ∈ R−. (49)

In the binomial model at hand, a natural extension of (48) would, then, be the
conditional certainty equivalent, introduced below.

Definition 20 Let Z be a random variable in (Ω,F ,P) and Vs (x) and V −1
s (x) ,

s = 0, 1, ..., T, be, respectively, the value function process and its inverse (cf. (5)
and (49)). For Q ∈ QT , define the conditional certainty equivalent C(s,s+1)

Q (Z)
by

C(s,s+1)
Q (Z) = −V −1

s+1

(
EQ
(
Vs+1 (−Z)| Fs ∨ FSs+1

))
. (50)

The following Lemma follows from direct arguments.

Lemma 21 Let the conditional certainty equivalent be defined in (48), and
Qmm and Qme be the minimal martingale and minimal entropy measures. Then,

C(s,s+1)
Qmm (0) 6= 0 and C(s,s+1)

Qmm (Z) 6= C(s,s+1)
Qme (Z) ,

and

C(s,s+1)
Qme

(
Z +

1
γ
Hmes+1,T

)
6= C(s,s+1)

Qme (Z) + C(s,s+1)
Qme

(
1
γ
Hmes+1,T

)
with Z ∈ (Ω,F ,P) .

We note that there are particular cases when the above become equalities.
These cases are discussed in Proposition 28 and Theorem 29.

In the next proposition we represent the single-step indifference price func-
tionals P(s,s+1)

Qmm and E(s,s+1)
Qme using the above conditional certainty equivalents.
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Proposition 22 Let Z be a random variable in (Ω,F ,P) , C(s,s+1)
Qmm and C(s,s+1)

Qme

be as in (50) for Q = Qmm,Qme and P(s,s+1)
Qmm and E(s,s+1)

Qme be as in (29) and
(27). Then, for s = 0, 1, ..., T ,

P(s,s+1)
Qmm (Z) = EQmm

(
C(s,s+1)

Qmm (Z)
∣∣∣Fs)− EQmm

(
C(s,s+1)

Qmm (0)
∣∣∣Fs) . (51)

Similarly,

E(s,s+1)
Qme (Z) = EQme

(
C(s,s+1)

Qme

(
Z +

1
γ
Hmes+1,T

)∣∣∣∣Fs) (52)

−EQme

(
C(s,s+1)

Qme

(
1
γ
Hmes+1,T

)∣∣∣∣Fs) .
Proof To prove (51), we use Definition 20 to obtain

EQmm
(
C(s,s+1)

Qmm (Z)
∣∣∣Fs) = EQmm

(
1
γ

lnEQmm
(
eγZ−H

me
s+1,T

∣∣∣Fs ∨ FSs+1

)∣∣∣∣Fs)

+EQmm

(
1
γ
Hmes+1,T

∣∣∣∣Fs) (53)

= E(s,s+1)
Qmm

(
Z − 1

γ
Hmes+1,T

)
+ EQmm

(
1
γ
Hmes+1,T

∣∣∣∣Fs) .
For Z = 0, we have

EQmm
(
C(s,s+1)

Qmm (0)
∣∣∣Fs) = E(s,s+1)

Qmm

(
− 1
γH

me
s+1,T

)
+ EQmm

(
1
γH

me
s+1,T

∣∣∣Fs) .
(54)

Subtracting (54) from (53) and using (29) yields (51).
To prove (52), we work similarly. To this end, we have

EQme

(
C(s,s+1)

Qme

(
Z +

1
γ
Hmes+1,T

)∣∣∣∣Fs)

= EQme

(
1
γ

lnEQmm
(
eγ(Z+ 1

γH
me
s+1,T )−Hmes+1,T

∣∣∣Fs ∨ FSs+1

)∣∣∣∣Fs)
+EQme

(
1
γ
Hmes+1,T

∣∣∣∣Fs)
= EQme

(
1
γ

lnEQmm
(
eγZ
∣∣Fs ∨ FSs+1

)∣∣∣∣Fs)+ EQme

(
1
γ
Hmes+1,T | Fs

)
= E(s,s+1)

Qme (Z) + EQme

(
1
γ
Hmes+1,T | Fs

)
,

and for Z = 0,

EQme

(
C(s,s+1)

Qme

(
1
γ
Hmes+1,T

)∣∣∣∣Fs) = EQme

(
1
γ
Hmes+1,T | Fs

)
.
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Subtracting the above we conclude.

As the analysis above shows, there is no direct connection between the
pricing functionals P(s,s+1)

Qmm and E(s,s+1)
Qme and the conditional certainty equivalents

C(s,s+1)
Qmm and C(s,s+1)

Qme in that

νs (Ct) 6= EQmm
(
C(s,s+1)

Qmm (νs+1 (Ct))
∣∣∣Fs) (55)

and
νs (Ct) 6= EQme

(
C(s,s+1)

Qme (νs+1 (Ct))
∣∣∣Fs) . (56)

This is a direct consequence of the form of the dynamic risk preference
process Vs (x) (see (22) and (21)), as well as the measurability properties of the
minimal aggregate entropy Hmes,T (see, for example, (15) or (18)).

We stress, however, that such a connection is present in two cases. Specifi-
cally, it holds when the binomial model is of reduced form. This case is analyzed
in detail in Section 5. It is, also, present in an alternative kind of indifference
prices built in reference to a new risk preference framework in which the value
function process, Vs (x) , is replaced by its ”forward” analogue (we refer the
reader to [11] for further details).

4 Risk preference normalization points and the
related indifference prices

So far, we have derived indifference prices associated with an exponential utility
function set at time T. An important implicit assumption in the entire con-
struction is that the claims we consider mature before this exogenously chosen
horizon. We will refer to the instant T as the risk preference normalization
point.

Two questions then arise. Firstly, how the indifference prices depend on
the choice of the risk preference normalization point and, secondly, can this
dependence be relaxed. Herein, we only address the first question and refer the
reader to [11] for the second one.

In order to emphasize the dependence on the horizon choice, we introduce the
notation Vt,T (x) and νs (Ct;T ) for the value function and the indifference price,
respectively. We will be occasionally using the terminology of the indifference
price normalized at T.

Theorem 23 Let T̂ and T be two normalization points with T̂ > T, and let
Hmes,T and Hme

s,T̂
be the associated minimal aggregate entropy processes. Consider

a claim written at t0 = 0 and maturing at t = 0, 1, ..., T, yielding payoff Ct ∈ Ft.
Let νs

(
Ct; T̂

)
and νs (Ct;T ) be the indifference prices normalized at T̂ and

T, respectively. Then, for 0 ≤ s ≤ t ≤ T,

νs

(
Ct; T̂

)
= νs (Ct − Zt;T ) + Zs (57)
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where, for u = s, ..., t,

Zu =
1
γ

(
Hme
u,T̂
−Hmeu,T

)
. (58)

Proof Consider the normalization point T̂ . Then, (20) yields

sup
αs+1,...,αt

EP

(
Vt,T̂ (Xt − Ct)

∣∣∣Fs) =

= sup
αs+1,...,αt

EP

(
− exp

(
−γ (Xt − Ct)−Hmet,T̂

)∣∣∣Fs)
= sup
αs+1,...,αt

EP

(
− exp

(
−γ (Xt − Ct)−

(
Hme
t,T̂
−Hmet,T

)
−Hmet,T

)∣∣∣Fs)
= sup
αs+1,...,αt

EP

(
− exp

(
−γ
(
Xt −

(
Ct −

1
γ

(
Hme
t,T̂
−Hmet,T

)))
−Hmet,T

)∣∣∣∣Fs)
= sup
αs+1,...,αt

EP
(
− exp

(
−γ (Xt − (Ct − Zt))−Hmet,T

)∣∣Fs)
= sup
αs+1,...,αt

EP (Vt,T (Xt − (Ct − Zt))| Fs) ,

where we used (58). From (23), we have

sup
αs+1,...,αt

EP

(
Vt,T̂ (Xt − Ct)

∣∣∣Fs) = − exp
(
−γ
(
x− νs

(
Ct; T̂

))
−Hme

s,T̂

)
and, similarly,

sup
αs+1,...,αt

EP (Vt,T (Xt − (Ct − Zt))| Fs) = − exp
(
−γ (x− νs (Ct − Zt;T ))−Hmes,T

)
.

Combining the above we easily conclude.

Corollary 24 Consider the claim Zt ∈ Ft written at t0 = 0 and yielding at t
payoff

Zt =
1
γ

(
Hme
t,T̂
−Hmet,T

)
,

for T̂ > T. Then, for 0 ≤ t ≤ T, and s ≤ t

Zs = νs (−Zt;T ) = −E(s,t)
QmeT

(−Zt) . (59)

On the other hand,
Zs = νs

(
Zt; T̂

)
= E(s,t)

Qme
T̂

(Zt) . (60)
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4.1 Numerical results

We study numerically the dependence of the indifference price on the risk pref-
erence normalization point as well as on the risk aversion. We consider a (non-
reduced) incomplete model in which the stochastic factor affects both the claim’s
payoff and the transition probabilities of the stock price process.

Specifically, we assume that the values ξut , ξ
d
t , η

u
t and ηdt , t = 0, 1, ..., T (see

(1) and (2)) are given by

ξut = 1 + µdt+ σ
√
dt and ξdt = 1 + µdt− σ

√
dt,

and
ηut = 1 + bdt+ a

√
dt and ηut = 1 + bdt+ a

√
dt,

with the constants σ, µ, a and b satisfying −σ < µ
√
dt < σ and −a < b

√
dt <

a. The time increment dt is given by dt = 1
N T where T and N represent,

respectively, the backward normalization point and the number of periods in
[0, T ]. For t = 0, 1, ..., T , we choose

P(Yt = Y ut | Ft−1) = 0.5,

P(St = Sut | Ft−1) =
{

0.75, Yt−1 ≥ Y0,
0.5, otherwise

and Cor (∆St,∆Yt| Ft−1) = 0.5. We consider a call option written on the
stochastic factor. The model parameters are chosen as σ = 0.2, a = 0.5,
b = µ = 0 and S0 = Y0 = K = 10.

Figures 1 and 2 show, respectively, the dependence of the option’s price on
the risk preference normalization time, T, and the risk aversion coefficient, γ.

In Figure 1, γ is fixed at 0.2. The number of time steps, N, varies from 60
to 155 in 5 unit increments, and T varies from 0.083 to 0.215. The contract’s
expiration is fixed at 0.083 years. In Figure 2, N = 115, T=0.4792, the contracts
expiration is set at 0.25 years and γ varies from 0.001 to 0.901, with 0.045
increments.

Finally, Figure 3 incorporates changes in both T and γ. Therein, N and T
are varying as in Figure 1.

As discussed earlier, the indifference price changes with the risk preference
normalization point. For the chosen example, the price decreases as the normal-
ization point moves further away from the contract’s expiration. This depen-
dence dissipates considerably when the normalization point is set at more than
twice the contract’s expiration time. It is worth noticing that Figure 1 suggests
that the price has a finite limit as T → ∞. Two interesting questions – that
would require an additional theoretical investigation – arise, namely, whether
the limit coincides with a price obtained from any known pricing methodology
and whether such a limit exists for other, more general, contingent claims.

Figure 2 shows the dependence of the indifference price on the risk aversion
for a fixed backward normalization point T . The latter is taken to be different
that the claim’s expiration. One easily sees the well known result that the price
is monotone with respect to γ.
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Figure 1: Dependence of the indifference price on the risk preference normal-
ization point

23



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.018

0.02

0.022

0.024

0.026

0.028

0.03

0.032

0.034

Indifference price and risk aversion

Risk aversion

I
n
d
i
f
f
e
r
e
n
c
e
 
p
r
i
c
e

 

 

Indifference price

Figure 2: Dependence of the indifference price on the risk aversion

24



0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

Indifference price versus risk preference 
normalization point and risk aversion

Risk preference normalization point

I
n
d
i
f
f
e
r
e
n
c
e
 
p
r
i
c
e

 

 

gamma = 0.001
gamma = 0.5
gamma = 1.0

Figure 3: Dependence of the indifference price on the risk preference normal-
ization point and the risk aversion

25



Figure 3 displays results for various levels of risk aversion, namely, when
γ = 0.001, 0.5, and 1.0. The graph highlights the interplay between the risk
preference normalization point and the risk aversion. As it is known, when
the risk aversion approaches zero, the indifference price becomes linear. Based
on the latter observation, one may wrongly expect that the dependence on T
vanishes for small values of γ. This is not, however, what the graph shows.
For example, when γ = 0.001, significant dependence on T is still present on
the price. In our opinion, this dependence is attributed to the fact that while
the pricing functional (27) is independent of the horizon choice, the associated
pricing measure, the minimal entropy one, is not as (13) shows. As discussed
earlier, this dependence is reversed if one uses the pricing algorithm in Theorem
15, in that now the pricing functional (29) depends on the normalization point
while the pricing measure, the minimal martingale one, is not as (10) shows.
In both cases, the corresponding dependences prevail even if the risk aversion
coefficient becomes very small.

5 Reduced incomplete binomial models

We focus on an important special case of the incomplete binomial model in-
troduced in Section 2. Specifically, we assume that neither the values nor the
transition probabilities of the stock price process St are affected by the non-
traded factor process Yt, i.e. for t = 0, 1, ..., T − 1,

ξut+1 ∈ FSt and ξdt+1 ∈ FSt , (61)

and
P
(
ξt+1 = ξut+1 |Ft

)
= P

(
ξt+1 = ξut+1

∣∣FSt ) . (62)

We will call such an incomplete binomial model reduced. Notice that under
(61) and (62) the nested model becomes complete and market incompleteness is
generated only through the presence of the non-traded risk factor in the claim’s
payoff. To our knowledge, this is the only case analyzed so far in exponential
indifference pricing in binomial models (see, among others, [1], [8], [16] and
[15])).

As it is expected, the minimal martingale and minimal entropy measures
must coincide since there is now a unique (nested) martingale measure. We
denote this measure by Q ( ·| Ft) , t = 0, 1, ..., T. The interesting fact is that the
minimal aggregate entropy looses its non-linear character and reduces to a mere
conditional expectation of the aggregate local entropy.

Lemma 25 Under assumptions (61) and (62), the local entropy process is
FSt -predictable, i.e., ht ∈ FSt−1, t = 1, ..., T.
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Proposition 26 In the reduced binomial model, the minimal martingale and
minimal entropy measures coincide, i.e. for t = 0, 1, ..., T,

Q ( ·| Ft) = Qmm ( ·| Ft) = Qme ( ·| Ft) . (63)

Moreover, the minimal aggregate entropy Hmet,T becomes

Hmet,T = EQ

(
T∑

i=t+1

hi

∣∣∣∣∣FSt
)
, (64)

with hi, i = t+ 1, ..., T, as in (9).

The proof of the above results can be found in [17]. We only comment that
the key step is to combine the reduced measurability of the local entropy process
with Proposition 5 to establish that the conditional entropic terms appearing
in (13) satisfy, for t = 0, 1, ..., T ,

Hme,uut,T = Hme,udt,T and Hme,dut,T = Hme,ddt,T .

Combining (64) with Proposition 9, we deduce the following result.

Proposition 27 Under assumptions (61) and (62), the value function process
Vt (x) is FSt −adapted and given by

Vt (x) = − exp

(
−γx− EQ

(
T∑

i=t+1

hi

∣∣∣∣∣FSt
))

,

with Q as in (63) and h as in (9).

The next result shows that in the reduced binomial model, the pricing func-
tionals P(s,s+1)

Q and E(s,s+1)
Q coincide. Moreover, they are equal to the condi-

tional certainty equivalent C(s,s+1)
Q .

Proposition 28 Let Q be as in (63) and Z be a random variable in (Ω,F ,P).
For s = 0, 1, ..., T − 1, the following statements are true.

i) The single-step pricing functionals P(s,s+1)
Qmm and E(s,s+1)

Qme (Z) (cf. (29) and
(27)) coincide

P(s,s+1)
Q (Z) = E(s,s+1)

Q (Z) .

ii) Moreover, the conditional certainty equivalence defined in (50) satisfies

EQ

(
C(s,s+1)

Q (Z)
∣∣∣Fs) = P(s,s+1)

Q (Z) = E(s,s+1)
Q (Z) .
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Proof i) From (29) we have

P(s,s+1)
Qmm (Z) = E(s,s+1)

Qmm

(
Z − 1

γ
Hmes+1,T

)
− E(s,s+1)

Qmm

(
− 1
γ
Hmes+1,T

)
.

Property (64) implies Hmes+1,T ∈ FSs+1, for s = 0, 1, ..., T − 1, and, thus,

E(s,s+1)
Qmm

(
Z − 1

γ
Hmes+1,T

)
= E(s,s+1)

Qmm (Z)− EQmm

(
1
γ
Hmes+1,T | Fs

)
.

Similarly,

E(s,s+1)
Qmm

(
− 1
γ
Hmes+1,T

)
= −EQmm

(
1
γ
Hmes+1,T | Fs

)
.

Combining the above with (63) we easily conclude.
ii) We only show that

EQ

(
C(s,s+1)

Q (Z)
∣∣∣Fs) = E(s,s+1)

Q (Z) ,

since the rest of the statements follow easily. To this end, using (63), and (20)
and (49) in (20), we deduce

EQ

(
C(s,s+1)

Q (Z)
∣∣∣Fs) = EQ

(
1
γ

lnEQ

(
eγZ−H

me
s+1,T

∣∣∣Fs ∨ FSs+1

)∣∣∣∣Fs)
+EQ

(
1
γ
Hmes+1,T | Fs

)
.

Using that in the reduced model Hmes+1,T ∈ FSs+1, we obtain

EQ

(
1
γ

lnEQ

(
eγZ−H

me
s+1,T

∣∣∣Fs ∨ FSs+1

)∣∣∣∣Fs)
= E(s,s+1)

Q (Z)− EQ

(
1
γ
Hmes+1,T | Fs

)
,

and the assertion follows.

We are now ready to state the main theorems of this section. The first
theorem, a direct consequence of the above result, states that in the reduced
model the two pricing algorithms (presented on Theorems 15 and 16) coincide.
It also states that the single-step indifference price functional yields a natural
stochastic extension of the classical certainty equivalent rule.

The second theorem shows that in the reduced model the indifference price
is not affected by the risk preference normalization point. The intuition be-
hind this property is the following. In the general model, there are two sources
of market incompleteness, one coming from the payoff and the other from the
model itself. The latter affects the form of the value function which is also
affected by the choice of the normalization point. Once the internal incomplete-
ness is removed, the measurability of key quantities (e.g. the minimal aggregate
entropy) reduces and scaling simplifications take place.

28



Theorem 29 In the reduced binomial model, the indifference price νs(Ct) sat-
isfies, for s = 0, 1, ..., t,

νt (Ct) = Ct,

νs (Ct) = P(s,s+1)
Q (νs+1 (Ct)) = E(s,s+1)

Q (νs+1 (Ct))

= EQ

(
C(s,s+1)

Q (νs+1 (Ct))
∣∣∣Fs) .

Theorem 30 In the reduced binomial model, the indifference prices are invari-
ant with respect to the choice of the normalization point. Specifically, consider
a claim written at t0 = 0 and maturing at t yielding payoff Ct ∈ Ft. Let T , T̂ be
two normalization points with T̂ > T and νs (Ct;T ), νs

(
Ct; T̂

)
, 0 ≤ s ≤ t ≤ T,

be the associated indifference prices. Then,

νs (Ct;T ) = νs

(
Ct; T̂

)
. (65)

Proof Using (64) we have Hmes,T ′ ∈ FSs , for T ′ = T , T̂ and s ≤ t ≤ T . Therefore,

the claim Zt = Hme
t,T̂
− Hmet,T ∈ FSt and, in turn, (59) implies, for s = 0, 1, ..., t,

Zs = EQ(Zt| Fs). The parity equality (57), then, yields

νt−1

(
Ct; T̂

)
= νt−1 (Ct − Zt;T ) + Zt−1

= νt−1 (Ct;T )− EQ (Zt| Ft−1) + Zt−1 = νt−1 (Ct;T ) ,

with Q as in (63). Similarly, for s = t− 2, we deduce, using (57),

νt−2

(
Ct; T̂

)
= νt−2

(
νt−1 (Ct;T ) ; T̂

)
= νt−2 (νt−1 (Ct;T )− Zt−1;T ) + Zt−2

= νt−2 (νt−1 (Ct;T ) ;T )− EQ (Zt−1| Ft−2) + Zt−2

= νt−2 (νt−1 (Ct;T ) ;T ) = νt−2 (Ct;T ) .

Proceeding iteratively and using similar to the above arguments, we obtain (65)
for s = 0, 1, ..., t− 2.
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