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Abstract

The class of time-decreasing forward performance processes is analyzed
in a portfolio choice model of Ito-type asset dynamics. The associated
optimal wealth and portfolio processes are explicitly constructed and their
probabilistic properties discussed. These formulae are, in turn, used in
analyzing how the investor�s preferences can be calibrated to the market,
given his desired investment targets.

1 Introduction

This paper is a contribution to portfolio management from the perspective of
investor preferences and, hence, in its spirit is related to the classical expected
utility maximization problem introduced by Merton ([8]). Therein, one �rst
chooses an investment horizon and assigns a utility function at the end of it
and, in turn, seeks an investment strategy which delivers the maximal expected
(indirect) utility of terminal wealth. Recently, the authors proposed an alterna-
tive approach to optimal portfolio choice which is based on the so-called forward
performance criterion (see, among others, [10] and [9]). In this approach, the
investor does not choose her risk preferences at a single point in time, as it is
the case in the Merton model, but has the �exibility to revise them dynamically.
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Herein, we focus on a speci�c case of a forward performance criterion, orig-
inally introduced in [12]. This criterion is a composition of deterministic and
stochastic inputs. The deterministic input corresponds to the investor�s pref-
erences, and alternatively, to her tolerance towards risk. It is investor speci�c,
represented by a function u (x; t) ; which is increasing and concave in x; and de-
creasing in t: The stochastic input, however, is universal for all investors and is
given by At =

R t
0
j�sj2 ds, t � 0; with �t being the Sharpe ratio of the available

for trading securities. The performance criterion is, then, given by the process
Ut (x) = u (x;At) ; t � 0: Because of its form and the properties of the involved
inputs, the performance process is monotone in wealth and time.
Our contribution is threefold. Firstly, we provide a general characterization

of the di¤erential input function, u (x; t) : A space-time harmonic function plays
a pivotal role in achieving this. This function is fully characterized by a positive
measure which, in turn, becomes the underlying element in the speci�cation of
all quantities of interest. An important ingredient is the support of this measure,
as it directly a¤ects the domain of the di¤erential input. We provide a detailed
study of this interplay.
The second contribution is the explicit construction of the optimal invest-

ment strategy and the associated optimal wealth. The speci�cation of these
processes is rather general as it does not rely on any Markovian assumptions
on asset dynamics or on any speci�c structure of the investor�s input. To our
knowledge, this is one of the very rare cases in which such explicit formulae can
be derived in a model as general as the one considered herein.
The third contribution is the initiation of a study on how we can learn

about the investor�s risk preferences from his investment goals. For example,
the investor may want to specify the average level of wealth he could generate in
future times, in the particular market he chooses. This information is, then, used
to deduce his preferences which are consistent with this investment target. Such
inference problems are, in general, very hard to solve due to lacking closed form
formulae, a di¢ culty that is surpassed herein due to the availability of explicit
solutions. It is important to notice that the assessment of market movements
is implicitly embedded in the investor�s desired investment goals. In many
aspects, this approach can be compared with the calibration of derivative pricing
models. Indeed, therein, one also needs to make a statement about the market
under the historical measure. Then, assuming no arbitrage, derivatives are
valued under the risk neutral measure, with the valuation requiring calibration
of the model to the observable market prices of the relevant assets. There
is, however, an important di¤erence between the derivative pricing and the
portfolio selection problem. In the latter, we cannot rely on the market to give
information about the investor�s individual preferences. However, we show how
to acquire information about them by asking the investor to specify the desirable
properties of the wealth process she wishes to generate.
The criterion studied in this paper does not allow for arbitrary stochastic

evolution of preferences as the performance process is monotonically decreasing
and, hence, its quadratic variation is equal to zero. To incorporate more �exibil-
ity, one needs to work with selection criteria in their full generality. Preliminary
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results in this direction can be found in [11].
The paper is organized as follows. The model and the general portfolio

selection criteria are de�ned in the next section. In section 3, we present the
monotone performance criterion and provide explicit solutions for the associated
optimal wealth and portfolio processes. In section 4, we provide a detailed
construction of the di¤erential input via the associated space-time harmonic
function. In section 5, we analyze the case of deterministic market price of
risk and discuss the distributional properties of the optimal wealth. We �nish
with discussing how the investor speci�c input can be inferred from targeted
properties of her future expected wealth.

2 The model and portfolio selection criteria

The market environment consists of one riskless and k risky securities. The
prices of risky securities are modelled as Ito processes. Namely, the price Si of
the ith risky asset follows

dSit = S
i
t

0@�itdt+ dX
j=1

�jit dW
j
t

1A ;
with Si0 > 0 for i = 1; :::; k: The process Wt =

�
W 1
t ; :::;W

d
t

�
; t � 0; is a stan-

dard d�dimensional Brownian motion, de�ned on a �ltered probability space
(
;F ;P). The coe¢ cients �it and �it =

�
�1it ; :::; �

di
t

�
; i = 1; :::; k, t � 0; are

Ft�adapted processes with values in R and Rd, respectively. For brevity, we
write �t to denote the volatility matrix, i.e., the d � k random matrix

�
�jit

�
;

whose ith column represents the volatility �it of the i
th risky asset. We may,

then, alternatively write the above equation as

dSit = S
i
t

�
�itdt+ �

i
t � dWt

�
: (1)

The riskless asset, the savings account, has the price process B satisfying

dBt = rtBtdt;

with B0 = 1; and for a nonnegative, Ft�adapted interest rate process rt: Also,
we denote by �t the k�dimensional vector with coordinates �it and by 1 the
k�dimensional vector with every component equal to one. The processes, �t; �t
and rt satisfy the appropriate integrability conditions.
We assume that the volatility vectors are such that

�t � rt1 2 Lin
�
�Tt
�
; (2)

where Lin
�
�Tt
�
denotes the linear space generated by the columns of �Tt . This

implies that �Tt
�
�Tt
�+
(�t � rt1) = �t � rt1 and, therefore, the vector

�t =
�
�Tt
�+
(�t � rt1) (3)
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is a solution to the equation �Tt x = �t � rt1: The matrix
�
�Tt
�+
is the Moore-

Penrose pseudo-inverse1 of the matrix �Tt .
Occasionally, we will be referring to �t as the market price of risk. It easily

follows that
�t�

+
t �t = �t (4)

and, hence, �t 2 Lin (�t). We assume throughout that the process �t is bounded
by a deterministic constant c > 0; i.e., for all t � 0;

j�tj � c: (5)

Starting at t = 0 with an initial endowment x 2 R, the investor invests at
any time t > 0 in the riskless and risky assets. The present value of the amounts
invested are denoted by �0t and �

i
t , i = 1; :::; k, respectively.

The present value of her investment is, then, given by X�
t =

Pk
i=0 �

i
t; t > 0:

We will refer toX�
t as the discounted wealth. The investment strategies will play

the role of control processes and are taken to satisfy the standard assumption
of being self-�nancing. Using (1) we, then, deduce that the discounted wealth
satis�es

dX�
t =

kX
i=1

�it�
i
t � (�tdt+ dWt) = �t�t � (�tdt+ dWt) ; (6)

where the (column) vector, �t =
�
�it; i = 1; :::; k

�
: The set of admissible strate-

gies, A, is de�ned as

A =
�
� : self-�nancing with �t 2 Ft and E

�Z t

0

j�s�sj2 ds
�
<1; t > 0

�
:

(7)
The problem we propose to address is that of a choice of an investment

strategy from the set A. To this aim, we introduce below a process which
measures the performance of any admissible portfolio and gives us a selection
criterion. Speci�cally, a strategy is deemed optimal if it generates a wealth
process whose average performance is maintained over time. In other words,
the average performance of this strategy at any future date, conditional on
today�s information, preserves the performance of this strategy up until today.
Any strategy that fails to maintain the average performance over time is, then,
sub-optimal.
We present the de�nition of the forward performance next. It �rst appeared

in [10] and is given herein for completeness. We note that this de�nition is
slightly di¤erent than the original one, introduced by the authors in [12], in
that the initial condition is not explicitly included. As the analysis in section 4
will show, not all strictly increasing and concave solutions can serve as initial
conditions, even for the special classes of monotone processes we examine herein.
Characterizing the set of appropriate initial conditions is a challenging question
and is currently being investigated by the authors.

1See [13] and [7].
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De�nition 1 An Ft�adapted process Ut (x) is a forward performance if for
t � 0 and x 2 R:
i) the mapping x! Ut (x) is strictly concave and increasing,
ii) for each � 2 A; E (Ut (X�

t ))
+
<1; and

E (Us (X
�
s ) jFt ) � Ut (X�

t ) ; s � t; (8)

iii) there exists �� 2 A; for which

E
�
Us

�
X��

s

�
jFt
�
= Ut

�
X��

t

�
; s � t: (9)

The intuition behind the above de�nition comes from the analogous mar-
tingale and supermartingale properties that the traditional maximal expected
utility (value function) has (see, among others, [8], [5] and [14]). Indeed, we
recall that the latter is de�ned in a �nite trading horizon, say [0; T ] ; by

v (x; t;T ) = sup
AT

E (V (X�
T )j Ft; X�

t = x) ; (10)

with (x; t) 2 R� [0; T ] ; where AT is the set of admissible policies de�ned
similarly to A herein and V is the investor�s utility, given by an increasing,
concave and smooth function. Under rather general model assumptions, the
value function sati�es the Dynamic Programming Principle (DDP), namely, for
0 � t � s � T;

v (x; t;T ) = sup
AT

E (v (X�
s ; s;T )j Ft; X�

t = x) : (11)

One, then, sees that if the above supremum is achieved and certain integrabil-
ity conditions hold, the processes v (X�

s ; s;T ) and v (X
�
s ; s;T ) are, respectively

supermartingale and martingale on [0; T ].
We stress that the analogous equivalence in the forward formulation of the

problem has not yet been established. Speci�cally, one could de�ne the forward
performance process via the (forward) stochastic optimization problem

Ut (x) = sup
A
E (Us (X

�
s )j Ft; X�

t = x) ;

for all 0 � t � s and for an appropriately de�ned initial condition. Character-
izing its solutions poses a number of challenging questions, some of them being
currently investigated by the authors2 . From a di¤erent perspective, one could
seek an axiomatic construction of a forward performance process. Results in
this direction, as well as on the dual formulation of the problem, can be found
in [19] for the exponential case (see, also, [1] for a constrained case). We refer
the reader to [10] for further discussion on the forward performance and its
similarities and di¤erences with the classical value function.

2While preparing this revised version, the authors came across the revised version of [1]
where similar questions are studied for the nonnegative wealth case.
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The de�nition of the forward performance process requires the integrability
of (Ut (X�

t ))
+
: This allows us to de�ne the conditional expectations E (Us (X�

s ) jFt )
for s � t and, in turn, obtain a more practical intuition for our criteria. This
leads, however, to additional integrability assumptions which further constrain
the class of forward solutions the investor may employ. On the other hand,
from the applications perspective, this may help in the calibration process of
the investor�s initial risk preferences.
Alternatively, and simpler from the mathematical view point, we could re-

place conditions ii) and iii) above with corresponding local statements, as pro-
posed next. To this end, we �rst relax the set of admissible strategies to

Al=
�
� : self-�nancing with �t 2 Ft and P

�Z t

0

j�s�sj2 ds <1
�
= 1; t > 0

�
:

(12)

De�nition 2 An Ft�adapted process Ut (x) is a local forward performance if
for t � 0 and x 2 R:
i) the mapping x! Ut (x) is strictly concave and increasing,
ii) for each � 2 Al; the process Ut (X�

t ) is a local supermartingale, and
iii) there exists �� 2 Al such that the process Ut

�
X��

t

�
is a local martingale.

Herein, we do not analyze the relaxed formulation of the problem but only
present an example of a local forward performance (see Example 13).
Other modi�cations of the de�nition of the forward performance process are

possible, all based on the same principle, namely, to choose an investment strat-
egy that keeps the expected investment performance constant across time. For
example, one can relax or modify the assumption on monotonicity and (strict)
concavity. This is desirable, in particular, for the development of time consis-
tent behavioral portfolio selection models. A natural modi�cation would be to
assume the existence of a reference point for the investor�s wealth that de�nes
gains and losses (see, for example, [4]). The mapping x ! Ut (x) should be,
then, concave for gains and convex for losses. The supermartingality condition
in the above de�nitions would have to be replaced by a statement about the
sign of the drift in the semimartingale decomposition of Ut (X�

t ) : Speci�cally,
the drift would be negative when the wealth is above the reference point and
positive when below. However, such modi�cations and extensions are beyond
the scope of this paper and are mentioned here only to expose the �exibility of
our de�nition.
We conclude mentioning that the classical Markowitz portfolio selection

problem (see, among others [3] and [6]) could be also incorporated into our
framework. Indeed, one would need to choose the mean level of wealth and �nd
the portfolio that deviates from it the least, in the variance sense. Note that
not all mean functions would be admissible, as it is already demonstrated in
this paper (however, with respect to criteria not covering the case of variance).
The variance-based criteria deserve a separate treatment which will be carried
out in a future study.
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3 Monotone performance processes and their op-
timal wealth and portfolio processes

We focus on the class of time-decreasing performance processes introduced by
the authors in [10] (see, also [12] and [9]) and provide a full characterization of
the associated optimal wealth and portfolio processes.
It was shown in [10] (see Theorems 4 and 8) that the performance process,

Ut (x) ; is constructed by compiling market related input with a deterministic
function of space and time. Speci�cally, for t � 0; we have

Ut (x) = u (x;At) ; (13)

where u (x; t) is increasing and strictly concave in x; and satis�es

ut =
1

2

u2x
uxx

; (14)

with At as in (20) below. It was also shown that the optimal wealth and the
associated investment process, denoted respectively by X�

t and �
�
t ; t � 0; are

constructed via an autonomous system of stochastic di¤erential equations whose
coe¢ cients depend functionally on the spatial derivatives of u: Speci�cally, let
R : R� [0;+1)! R+ be de�ned as

R (x; t) = � ux (x; t)
uxx (x; t)

; (15)

with u satisfying (14), and de�ne (with slight abuse of notation) the process

R�t = R (X
�
t ; At) ; (16)

with At; t � 0; as in (20). Consider the system8<: dX�
t = R (X

�
t ; At)�t (�tdt+ dWt)

dR�t = Rx (X
�
t ; At) dX

�
t ;

(17)

and its solution (X�
t ; R

�
t ) ; t � 0: Then, the process ��t de�ned by

��t = R
�
t�

+
t �t (18)

is optimal and generates the optimal wealth process X�
t :

The main contribution of this section is the explicit construction of the opti-
mal processes. We establish that, in analogy to the forward performance process,
X�
t and �

�
t are, also, given as a compilation of market input and deterministic

functions of space and time. Namely, we show that

X�
t = h

�
h(�1) (x; 0) +At +Mt; At

�
and ��t = hx

�
h(�1) (X�

t ; At) ; At

�
�+t �t;

7



where h (x; t) is strictly increasing in x and solves the (backward) heat equation

ht +
1

2
hxx = 0; (19)

for (x; t) 2 R� [0;+1) : The function h(�1) stands for the spatial inverse of h:
The market input processes At and Mt; t � 0; are de�ned as

At =

Z t

0

j�sj2 ds and Mt =

Z t

0

�s � dWs; (20)

with �t as in (3).
The above formulae demonstrate that all quantities of interest can be fully

speci�ed as long as the market price of risk is chosen and the functions u and h
are known. A considerable part of this paper is, thus, dedicated to the study of
these functions and, especially, their representation and connection with each
other. For the reader�s convenience, we choose to present the detailed results
separately. We do this because di¤erent cases for the domain and range of the
functions u and h require appropriately modi�ed and computationally tedious
arguments which, if presented at this point, would obscure the clarity of the
presentation. It is shown in section 4 (see Propositions 10, 14, 15 and 19)
that there exists a one-to-one correspondence (modulo normalization constants)
between increasing and strictly concave solutions to (14) with strictly increasing
solutions to (19). It is, also, shown that the latter can be represented in terms
of the bilateral Laplace transform of a positive �nite Borel measure, denoted
throughout by �. This measure then emerges as the de�ning element in the
entire analysis of the problem at hand. Its presence originates from the classical
results of Widder (see Chapter XIV in [17] and Theorem 9) on the construction
of positive solutions to the heat equation (19). In the investment model we
consider, the solution h of (19) represents the optimal wealth which, however,
might take arbitrary values. As a result, a more detailed study is required
depending on the range of h.
In order to present the general ideas and provide some insights for the up-

coming main theorem, we present the following representative case. We stress
that the results below are not complete but are presented in this form in order
to build intuition. The complete arguments are presented in Propositions 9 and
10.
To this end, we introduce the set of measures B+ (R) de�ned by

B+ (R)=
�
� 2 B (R) : 8B 2 B; � (B) � 0 and

Z
R
eyx� (dy) <1; x 2 R

�
:

(21)

Proposition 3 i) Let � 2 B+ (R). Then, the function h de�ned, for (x; t) 2
R� [0;+1) ; by

h (x; t) =

Z
R

eyx�
1
2y

2t � 1
y

� (dy) + C;
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is a strictly increasing solution to (19).
ii) Assume that h above is of full range, for each t � 0 and let h(�1) :

R� [0;+1)! R be its spatial inverse. Then, the function u de�ned for (x; t) 2
R� [0;+1) and given by

u (x; t) = �1
2

Z t

0

e�h
(�1)(x;s)+ s

2hx

�
h(�1) (x; s) ; s

�
ds+

Z x

0

e�h
(�1)(z;0)dz;

is an increasing and strictly concave solution of (14).

We proceed with the main theorem in which we provide closed form expres-
sions for the optimal wealth, the associated optimal investment strategy and the
space-time monotone forward performance process. We state the result without
making speci�c reference to the range of h, as well as the domain and range
of u; as the di¤erent cases are analyzed in detail later. We, also, do not make
any reference to the regularity of these functions since the required smoothness
follows trivially from their representation.
We stress, however, that we introduce the integrability condition (22). This

condition is stronger than the one needed for the representations of h (cf. (21)),
and in turn of u; but su¢ cient in order to guarantee the admissibility of the
candidate optimal policy (24). It may be relaxed if, for example, one chooses to
work instead with local forward performance processes, introduced in De�nition
2. For additional comments on condition (22) see the discussion after Example
13.

Theorem 4 i) Let h be a strictly increasing solution to (19), for (x; t) 2
R� [0;+1) ; and assume that the associated measure � satis�esZ

R
eyx+

1
2y

2t� (dy) <1: (22)

Let also At and Mt; t � 0; be as in (20) and de�ne the processes X�
t and �

�
t by

X�
t = h

�
h(�1) (x; 0) +At +Mt; At

�
(23)

and
��t = hx

�
h(�1) (X�

t ; At) ; At

�
�+t �t; (24)

t � 0; x 2 R with h as above and h(�1) standing for its spatial inverse. Then,
the portfolio ��t is admissible and generates X

�
t ; i.e.,

X�
t = x+

Z t

0

�s�
�
s � (�sds+ dWs) : (25)

ii) Let u be the associated with h increasing and strictly concave solution to
(14). Then, the process u (X�

t ; At) ; t � 0; satis�es

du (X�
t ; At) = ux (X

�
t ; At)�t�

�
t � dWt; (26)
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with X�
t and �

�
t as in (23) and (24).

iii) Let Ut (x), t � 0; x 2 R be given by

Ut (x) = u (x;At) : (27)

Then, Ut (x) is a forward performance process and the processes X�
t and �

�
t are

optimal.

Proof. We provide the proof only when h is of in�nite range since the cases of
semi-in�nite range can be worked out by analogous arguments.
As it was mentioned earlier, the representation of h is established in section

4. When h is of in�nite range, it is given in Proposition 9, (cf. (39)), rewritten
below for convenience, namely,

h (x; t) =

Z
R

eyx�
1
2y

2t � 1
y

� (dy) ;

for (x; t) 2 R� [0;+1) (for simplicity we take C = 0 in (39)):
For x 2 R, At and Mt as in (20), we, then, de�ne the process

Nt = h
(�1) (x; 0) +At +Mt;

where h(�1) is the spatial inverse of h: Applying Ito�s formula to X�
t ; given in

(23), and using (19) yields

dX�
t = hx (Nt; At) dNt: (28)

On the other hand, (23) and (24) imply

��t = hx (Nt; At)�
+
t �t;

t � 0; and (25) follows from the above and (4).
To establish that ��t 2 A; it su¢ ces to show that the integrability condition

in (7) is satis�ed. Using that

hx (x; t) =

Z
R
eyx�

1
2y

2t� (dy)

(cf. (81)) and (23) we have�
hx

�
h(�1) (X�

t ; At) ; At

��2
=

Z
R

Z
R
e(y1+y2)(h

(�1)(x;0)+At+Mt)� 1
2 (y

2
1+y

2
2)At� (dy1) � (dy2) :

From (4), Fubini�s theorem and (20), we deduce

E

�Z t

0

j�s��sj
2
ds

�
= E

�Z t

0

���hx �h(�1) (X�
s ; As) ; As

�
�s�

+
s �s

���2 ds�
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= E

�Z t

0

�
hx

�
h(�1) (X�

s ; As) ; As

��2
dAs

�
=

Z
R

Z
R
E

�Z t

0

e(y1+y2)(h
(�1)(x;0)+As+Ms)� 1

2 (y
2
1+y

2
2)AsdAs

�
� (dy1) � (dy2)

=

Z
R

Z
R
E

 Z At

0

e(y1+y2)(h
(�1)(x;0)+s+�s)� 1

2 (y
2
1+y

2
2)sds

!
� (dy1) � (dy2) ;

where �t =MA
(�1)
t

and A(�1)t stands for the inverse of At; t � 0: Using that �t;
t � 0; is N (0; t) we obtain

E

�Z t

0

j�s��sj
2
ds

�

�
Z
R

Z
R
E

 Z c2t

0

e(y1+y2)(h
(�1)(x;0)+s+�s)� 1

2 (y
2
1+y

2
2)sds

!
� (dy1) � (dy2)

=

Z c2t

0

Z
R

Z
R
e(y1+y2)(h

(�1)(x;0)+s)+y1y2s� (dy1) � (dy2) ds

�
Z c2t

0

�Z
R
ey(h

(�1)(x;0)+s)+ 1
2y

2s� (dy)

�2
ds;

and using (22) we conclude.
ii) The facts that u satis�es (14) and has the claimed monotonicity and

strict concavity properties are established separately, in Proposition 10, where
a detailed construction of this function is presented.
To show (26), we apply Ito�s formula to u (X�

t ; At) ; t � 0: To this end, using
(28) yields

du (X�
t ; At) = ux (X

�
t ; At) dX

�
t + ut (X

�
t ; At) dAt +

1

2
uxx (X

�
t ; At) d hX�it

= ux (X
�
t ; At)hx

�
h(�1) (X�

t ; At) ; At

�
�t � dWt

+ux (X
�
t ; At)hx

�
h(�1) (X�

t ; At) ; At

�
dAt

+ut (X
�
t ; At) dAt +

1

2
uxx (X

�
t ; At) d hX�it :

From (91) in the proof of Proposition 10, we deduce that

� ux (X
�
t ; At)

uxx (X�
t ; At)

= hx

�
h(�1) (X�

t ; At) ; At

�
; (29)

which combined with the above yields

du (X�
t ; At) = ux (X

�
t ; At)hx

�
h(�1) (X�

t ; At) ; At

�
�t � dWt

11



� (ux (X
�
t ; At))

2

uxx (X�
t ; At)

dAt + ut (X
�
t ; At) dAt +

1

2
uxx (X

�
t ; At) d hX�it :

On the other hand, (28) gives

uxx (X
�
t ; At) d hX�it = uxx (X

�
t ; At)

�
hx

�
h(�1) (X�

t ; At) ; At

��2
dAt

=
(ux (X

�
t ; At))

2

uxx (X�
t ; At)

dAt:

Therefore,

du (X�
t ; At) = ux (X

�
t ; At)hx

�
h(�1) (X�

t ; At) ; At

�
�t � dWt

+

 
ut (X

�
t ; At)�

1

2

(ux (X
�
t ; At))

2

uxx (X�
t ; At)

!
dAt;

and (26) follows since u satis�es (14).
iii) We need to establish that Ut (x) satis�es all conditions in De�nition 1.

The facts that u (x;At) is Ft�adapted and that the mapping x ! u (x;At) is
increasing and strictly concave follow trivially from the properties of u and At.
To establish the integrability condition E (Ut (X�

t ))
+
< 1; we work as fol-

lows. We �rst observe that the strict concavity of u together with (14) yields
ut < 0 and, hence, u (x; t) � u (x; 0) � ax+ + b; for some positive constants a
and b: Also, (6) implies

(X�
t )
+ � x+ + 1

2

Z t

0

j�s�sj2 ds+
1

2

Z t

0

j�sj2 ds+
����Z t

0

�s�s � dWs

���� :
The integrability of E (Ut (X�

t ))
+ then follows using (5) and that �t 2 A:

To show (8), we observe that for �t 2 A and X�
t as in (6), Ito�s formula

yields

du (X�
t ; At) =

�
ux (X

�
t ; At)�t�t � �t + ut (X�

t ; At) j�tj
2
+
1

2
uxx (X

�
t ; At) j�t�tj

2

�
dt

+ux (X
�
t ; At)�t�t � dWt

=

 
ux (X

�
t ; At)�t�t � �t +

1

2

(ux (X
�
t ; At))

2

uxx (X�
t ; At)

j�tj2 +
1

2
uxx (X

�
t ; At) j�t�tj

2

!
dt

+ux (X
�
t ; At)�t�t � dWt

=
1

2
uxx (X

�
t ; At)

�����t�t + ux (X
�
t ; At)

uxx (X�
t ; At)

�t

����2 dt+ ux (X�
t ; At)�t�t � dWt;

where we used that u solves (14). Using the concavity of u we conclude.
To show (9) we use the form of the above drift, (29) and (24).

12



We remind the reader that the forward performance process in [10] is more
general than the one in (13), namely, it is given by

Ut (x) = u

�
x

Yt
; ~At

�
Zt; (30)

where the processes (Yt; Zt) represent, respectively, a benchmark (or numeraire)
and alternative market views. They solve

dYt = Yt�t � (�tdt+ dWt) and dZt = Zt�t � dWt;

with Y0 = Z0 = 1 and �t; �t being Ft�adapted processes, satisfying �t�+t �t = �t
and �t�

+
t �t = �t; t � 0: The process ~At has a similar form to (20),

~At =

Z t

0

j�s + �s � �sj
2
ds:

Herein, we assume throughout �t = �t = 0; t � 0; as we focus on monotone in
time forward performance processes. It is immediate, as (30) shows, that the
more general form of the forward process can be readily constructed once the
function u is speci�ed and the market input processes At; Yt and Zt (which are
independent of u) are chosen.

3.1 Dependence on the initial wealth

The explicit formulae (23) and (24) enable us to analyze the mappings x !
X�
t (!) and x ! ��t (!) ; for �xed t and !: We study this dependence next.

To ease the presentation, we only discuss the case Range (h) = (�1;+1) :
We also use the notation X�;x

t (!) and ��;xt ; and introduce the function, r :
R� [0;+1)! (0;+1) ; de�ned as

r (x; t) = hx

�
h(�1) (x; t) ; t

�
: (31)

A detailed discussion on its role, representation and di¤erential properties
is provided in section 4.5. Using (31), the optimal portfolio (cf. (24)) can be,
then, written, for t � 0; as

��;xt = r
�
X�;x
t ; At

�
�+t �t: (32)

Proposition 5 Let X�;x
t be given in (23), t � 0; and r as in (31). Then,

@

@x
X�;x
t =

r
�
X�;x
t ; At

�
r (x; 0)

(33)

and
@

@x
��;xt = rx

�
X�;x
t ; At

� r �X�;x
t ; At

�
r (x; 0)

�+t �t: (34)

13



Proof. Di¤erentiating (23) with respect to x yields

@

@x
X�;x
t = hx

�
h(�1) (x; 0) +At +Mt; At

� @

@x
h(�1) (x; 0) ;

and (33) follows from (31). To establish (34) we di¤erentiate (32) and use (33).

The above result implies that the mapping x ! X�;x
t is increasing. This is

to be expected because the larger the initial endowment the larger the future
wealth should be. It, also, shows that the mapping x ! ��;xt is increasing (or
decreasing) depending on the monotonicity of the function r and the sign of
�t: In general, the latter is not monotone and, therefore, nothing speci�c can
be said about the dependence of the optimal allocation in terms of the initial
endowment3 . The monotonicity holds, however, in a special but frequently
considered case, namely, when there is no bankruptcy, or more generally when
the wealth stays always above a certain threshold. This case is considered in
Proposition 23 herein where it is shown that rx � 0 (see (65)). As a result, the
mapping x ! ��;xt is always increasing. Respectively, the other results in the
same proposition show that the mapping x ! ��;xt is always decreasing if the
wealth stays below a threshold.
The optimal wealth formula (23) enables us to calculate higher order deriv-

atives. For example, the second order derivative is given below.

Proposition 6 Let X�;x
t ; t � 0; be given in (23) and r as in (31). Then,

@2

@x2
X�;x
t =

�
rx
�
X�;x
t ; At

�
� rx (x; 0)

�
r (x; 0)

@

@x
X�;x
t :

Proof. Di¤erentiating (33) yields

@2

@x2
X�;x
t =

rx
�
X�;x
t ; At

�
r (x; 0)

@

@x
X�;x
t � rx (x; 0)

r (x; 0)

r
�
X�;x
t ; At

�
r (x; 0)

;

and we easily conclude using (33) once more.

Representation (23) reveals how the market input processes, At and Mt;
t � 0; interact with the deterministic input, h; to generate the optimal wealth
process. The function h is, on the other hand, fully speci�ed by the measure
�. It is, then, natural to ask how the function h and, in turn, the process X�

t ;
t � 0; depend on the total mass � (R) :
The result below shows an interesting scaling property which allows us to

normalize the function h and assume that � is a probability measure. For
simplicity, we only discuss the case Range(h) = (�1;+1) :
Let h0 = � (R) and denote, with a slight abuse of notation, the associated

wealth process by X�
t (x;h0) ; t � 0:

3See, for example, the case r (x; t) =
p
ax2 + be�at analyzed in [18].
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Proposition 7 For h0 = � (R) ; the optimal wealth process (cf. (23)) satis�es,
for t � 0;

1

h0
X�
t (x;h0) = X

�
t

�
x

h0
; 1

�
:

Proof. Let h (x; t) = h(x;t)
h0

. Then,

X�
t (x;h0) = h0h

�
h(�1) (x; 0) +At +Mt; At

�
:

On the other hand, h(�1) (x; 0) = h
(�1) � x

h0
; 0
�
and, hence,

X�
t (x;h0) = h0h

�
h
(�1)

�
x

h0
; 0

�
+At +Mt; At

�
= h0X

�
t

�
x

h0
; 1

�
:

4 Representation of the functions u and h

The functions u and h were instrumental in the construction of the forward per-
formance, and the associated optimal wealth and portfolio processes (Theorem
4). In this section, we focus on the representation of these functions and con-
nection with each other. We recall that they satisfy (14) and (19), respectively,
and that we are interested in solutions of (14) that are increasing and strictly
concave in their spatial argument. We will show that there is a one-to-one
correspondence (modulo normalization constants) between these functions and
strictly increasing solutions to the (backward) heat equation (19).
As it was discussed in the previous section (see representative results in

Proposition 3)) the key idea is to represent h in terms of a �nite positive Borel
measure � and, in turn, construct u from h: This measure, then, emerges as
the de�ning element in the construction of any object of interest. The main
assumption about it is that its bilateral Laplace transform exists4 . Namely, we
will be working throughout this section with measures belonging to B+ (R) ;
given in (21). The connection between � and h originates from the classical
result of Widder (see, [17]) for nonnegative solutions of (19). For completeness
and motivation we present this result below.

Theorem 8 (Widder). Let g (x; t) ; (x; t) 2 R� [0;+1) ; be a positive solution
of (19). Then, there exists � 2 B+ (R) such that g is represented as

g (x; t) =

Z
R
eyx�

1
2y

2t� (dy) : (35)

4We remind the reader that this condition is su¢ cient for the �niteness of h and u but does
not, in general, guarantee admissibility of the associated policies. For the latter, condition
(22) is used.
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This result cannot be applied directly herein because, for the investment
applications we consider, the wealth may not be assumed to remain always
positive or, more generally, stay above (or below) a given threshold. As a
consequence, di¤erent choices for the range of h; which represents the optimal
wealth (cf. (23)), require di¤erent analysis. However, Widder�s theorem will be
applied to the function hx which is positive (due to the assumed monotonicity
of h) and also solves (19).
We start with the general theorem which gives us the representation of

strictly increasing solutions to the heat equation (19). Its proof as well as
all other proofs in this section are presented in an appendix.
We introduce the following sets,

B+0 (R) =
�
� 2 B+ (R) and � (f0g) = 0

	
; (36)

B++ (R) =
�
� 2 B+0 (R) : � ((�1; 0)) = 0

	
(37)

and
B+� (R) =

�
� 2 B+0 (R) : � ((0;+1)) = 0

	
: (38)

It is throughout assumed that the trivial case � (R) = 0 is excluded.
In what follows C represents a generic constant. Special choices for it are

discussed later on.

Proposition 9 i) Let � 2 B+ (R). Then, the function h de�ned, for (x; t) 2
R� [0;+1) ; by

h (x; t) =

Z
R

eyx�
1
2y

2t � 1
y

� (dy) + C; (39)

is a strictly increasing solution to (19).
Moreover, if � (f0g) > 0; or � 2 B+0 (R) ; or � 2 B++ (R) and

R +1
0+

�(dy)
y =

+1; or � 2 B+� (R) and
R 0�
�1

�(dy)
y = �1; then Range (h) = (�1;+1) ; for

t � 0:
On the other hand, if � 2 B++ (R) with

R +1
0+

�(dy)
y < +1 (resp. � 2

B+� (R) with
R 0�
�1

�(dy)
y > �1)); then Range (h) =

�
C �

R +1
0+

�(dy)
y ;+1

�
(resp.

Range (h) =
�
�1; C �

R 0�
�1

�(dy)
y

�
); for t � 0:

ii) Conversely, let h : R � [0;+1) ! R be a strictly increasing solution to
(19). Then, there exists � 2 B+ (R) such that h is given by (39).
Moreover, if Range (h) = (�1;+1) ; t � 0; then it must be either that

� (f0g) > 0, or � 2 B+0 (R) ; or � 2 B++ (R) and
R +1
0+

�(dy)
y = +1; or � 2 B+� (R)

and
R 0�
�1

�(dy)
y = �1:

On the other hand, if Range (h) = (x0;+1) (resp. Range (h) = (�1; x0)),
t � 0 and x0 2 R; then it must be that � 2 B++ (R) with

R +1
0+

�(dy)
y < +1 (resp.

� 2 B+� (R) with
R 0�
�1

�(dy)
y > �1).
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We continue with the representation of increasing and strictly concave so-
lutions to (14). As mentioned earlier, we will show that there is a one to one
correspondence (modulo normalization constants) between this class and the
one of strictly increasing solutions to (19).

4.1 Range (h) = (�1;+1)
We recall that h is given by (39), for (x; t) 2 R� [0;+1). For convenience, we
choose C = 0 and, thus,

h (0; 0) = 0: (40)

We show how to construct from such an h a globally de�ned, increasing and
strictly concave solution u to (14). We, also, show the converse construction.
Note that from the properties of u; we would have ux (x; t) 6= 0 and ju (x; t)j <

+1; t � 0; for (x; t) 2 R� [0;+1). In addition, solutions of (14) are invariant
with respect to a¢ ne transformations. Therefore, if u is a solution, the function

û (x; t) =
1

ux (x0; 0)
u (x; t)� u (x0; 0)

ux (x0; 0)

is also a solution, for each x0 2 R: Without loss of generality, we may choose,
as in (40), x0 = 0 to be a reference point. We, then, assume that

u (0; 0) = 0 and ux (0; 0) = 1: (41)

Note, however, that while the �rst equality is imposed in an ad hoc way, the
second one is in accordance with (40) (see (88) in proof of next proposition).

Proposition 10 i) Let � 2 B+ (R) and h : R� [0;+1)! R be as in (39) with
the measure � being used. Assume that h is of full range, for each t � 0; and
let h(�1) : R� [0;+1)! R be its spatial inverse. Then, the function u de�ned
for (x; t) 2 R� [0;+1) and given by

u (x; t) = �1
2

Z t

0

e�h
(�1)(x;s)+ s

2hx

�
h(�1) (x; s) ; s

�
ds+

Z x

0

e�h
(�1)(z;0)dz; (42)

is an increasing and strictly concave solution of (14) satisfying (41).
Moreover, for t � 0; the Inada conditions,

lim
x!�1

ux (x; t) = +1 and lim
x!+1

ux (x; t) = 0; (43)

are satis�ed.
ii) Conversely, let u be an increasing and strictly concave function satisfying,

for (x; t) 2 R�[0;+1) ; (14) and (41), and the Inada conditions (43), for t � 0.
Then, there exists � 2 B+ (R), such that u admits representation (42) with h
given by (39), for (x; t) 2 R � [0;+1). Moreover, h is of full range, for each
t � 0; and satis�es (40).
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Example 11 Let � = �0; where �0 is a Dirac measure at 0: Then, (39) yields

h (x; t) = x;

and, therefore, (42) implies

u (x; t) = �1
2

Z t

0

e�x+
s
2 ds+

Z x

0

e�zdz = 1� e�x+ t
2 :

This class of forward performance processes is analyzed in detail in [9].

Example 12 Let � (dy) = b
2 (�a + ��a) ; a; b > 0; and ��a are Dirac measures

at �a: We, then, have

h (x; t) =
b

a
e�

1
2a

2t sinh (ax) :

Thus,

h(�1) (x; t) =
1

a
ln

 
a

b
xe

1
2a

2t +

r
a2

b2
x2ea2t + 1

!
and, in turn,

hx

�
h(�1) (x; t) ; t

�
= be�

1
2a

2t cosh

 
ln

 
a

b
e
1
2a

2t +

r
a2

b2
x2ea2t + 1

!!

=
p
a2x2 + b2e�a2t:

If, a = 1, then (42) yields

u (x; t) =
1

2

�
ln
�
x+

p
x2 + b2e�t

�
� et

b2
x
�
x�

p
x2 + b2e�t

�
� t

2

�
� 1
2
ln b;

while, if a 6= 1;
u (x; t)

=
a
p
a

a2 � 1e
1�a
2 t
b2e�at + a (1 + a)

�
ax2 + x

p
a2x2 + b2e�a2t

�
�
ax+

p
a2x2 + b2e�a2t

�1+ 1
�

�
a
p
a

a2 � 1b
1� 1

a :

The involved calculations are cumbersome and, for this, omitted. A complete
description of this class of solutions can be found in [18].
It is worth mentioning that the above functions provide an interesting exten-

sion of the traditional power and logarithmic utilities, mostly frequently used in
portfolio choice. Note, however, that the latter utilities are not globally de�ned
while the above are.
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Example 13 Let � (dy) = 1p
2�
e�

1
2y

2

dy: Then,

h (x; t) = F

�
xp
t+ 1

�
with F (x) =

Z x

0

e
1
2 z

2

dz; x 2 R: (44)

Therefore, h(�1) (x; t) =
p
t+ 1F (�1) (x) and thus,

hx

�
h(�1) (x; t) ; t

�
=

1p
t+ 1

f
�
F (�1) (x)

�
; (45)

with f (x) = F 0 (x). Then, (42) becomes

u (x; t) = �1
2

Z t

0

1p
s+ 1

f
�
F (�1) (x)

�
e�

p
s+1F (�1)(x)+ s

2 ds+

Z x

0

e�F
(�1)(z)dz:

It turns out that

u (x; t) = k1F
�
F (�1) (x)�

p
t+ 1

�
+ k2 (46)

with k1 = e�
1
2 and k2 = e�

1
2

R 0
�1 e

1
2 z

2

dz:

The calculations are rather tedious but one can verify that u satis�es (41)
and solves (42). Indeed,

ut (x; t) = �k1
f
�
F (�1) (x)�

p
t+ 1

�
2
p
t+ 1

, ux (x; t) = k1
f
�
F (�1) (x)�

p
t+ 1

�
f
�
F (�1) (x)

�
and

uxx (x; t) = �k1
p
t+ 1

f
�
F (�1) (x)�

p
t+ 1

��
f
�
F (�1) (x)

��2 ;

and (14) follows. The equalities in (41) also follow from the form of u and the
choice of the constants k1; k2: Note, moreover, that the above yields

ux

�
F

�
xp
t+ 1

�
; t

�
= e�x+

t
2 ;

and (44) follows from (89).
From (24) and (45), we deduce that the optimal policy of the above example

turns out to be
��t =

1p
At + 1

f
�
F (�1) (X�

t )
�
�+t �t; (47)

with At; t � 0; as in (20) and

X�
t = F

�
F (�1) (x) +At +Mtp

At + 1

�
;

with the latter following from (23) and (44).
We can see that the above measure, � (dy) = 1p

2�
e�

1
2y

2

dy; violates condition
(22) (for t > 0) and satis�es only (21). In turn, straightforward calculations
show that ��t ; t � 0; is admissible but only in the local sense, i.e., ��t 2 Al but
��t =2 A. We, then, deduce that the process Ut (x) = u (x;At) with u as in (46)
satis�es De�nition 2, of a local forward performance process.
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4.2 Range (h) = (x0;+1) ; x0 2 R
We recall that in this case, h is given by (39) where � satis�es

� 2 B++ (R) and
Z +1

0+

� (dy)

y
< +1; (48)

with B++ (R) given in (37). For convenience, we set in (39) C =
R +1
0+

1
y� (dy) ;

yielding5 Range (h) = (0;+1) ; as

h (x; t) =

Z +1

0+

eyx�
1
2y

2t

y
� (dy) : (49)

We can easily see, using the above and (14), that h is convex in its spatial
argument and decreasing with regards to time,

hxx (x; t) > 0 and ht (x; t) < 0: (50)

Next, we obtain the analogous to (42) representation of the di¤erential input
u. As (42) shows, h plays the role of the space argument of u. Thus, the
latter is now de�ned on the half-line. Consideration then, needs, to be given to
limx!0 u (x; t) ; t � 0. The results below demonstrate that, depending on where
the measure � is concentrated, this limit can be �nite or in�nite. For the case
of �nite limit we have the following result.

Proposition 14 i) Let � satisfy (48) and, in addition, � ((0; 1]) = 0 andR +1
1+

�(dy)
y�1 < +16 . Let, also, h : R � [0;+1) ! (0;+1) be as in (49) and

h(�1) : (0;+1) � [0;+1) ! R be its spatial inverse. Then, the function u
de�ned, for (x; t) 2 (0;+1)� [0;+1) ; by

u (x; t) = �1
2

Z t

0

e�h
(�1)(x;s)+ s

2hx

�
h(�1) (x; s) ; s

�
ds+

Z x

0

e�h
(�1)(z;0)dz; (51)

is an increasing and strictly concave solution of (14) with

lim
x!0

u (x; t) = 0; for t � 0: (52)

Moreover, for t � 0; the Inada conditions

lim
x!0

ux (x; t) = +1 and lim
x!+1

ux (x; t) = 0 (53)

are satis�ed.
ii) Conversely, let u, de�ned for (x; t) 2 (0;+1)� [0;+1) ; be an increasing

and strictly concave function satisfying (14), (52) and the Inada conditions (53).
Then, there exists � 2 B+ (R) satisfying (48), � ((0; 1]) = 0 and

R +1
1+

�(dy)
y�1 <

+1, such that u admits representation (51) with h given by (49), for (x; t) 2
R� [0;+1) :

5One may alternatively represent h as h (x; t) =
R+1
0 eyx�

1
2
y2t�0 (dy) with �0 (dy) = �(dy)

y
:

Note that �0 2 B+ (R) : Such a representation was used in [1].
6The authors would like to thank an anonymous referee for pointing out that this integra-

bility condition is needed.

20



Working along similar arguments we obtain the result covering the case of
in�nite limit.

Proposition 15 i) Let � satisfy (48) and, in addition, either � ((0; 1]) > 0 or
� ((0; 1]) = 0 and

R +1
1+

�(dy)
y�1 = +1: Let, also, h : R� [0;+1)! (0;+1) be as

in (49) and h(�1) : (0;+1) � [0;+1) ! R be its spatial inverse. Then, the
function u de�ned, for (x; t) 2 (0;+1)� [0;+1) ; by

u (x; t) = �1
2

Z t

0

e�h
(�1)(x;s)+ s

2hx

�
h(�1) (x; s) ; s

�
ds+

Z x

x0

e�h
(�1)(z;0)dz; (54)

for x0 > 0; is an increasing and strictly concave solution of (14) with

lim
x!0

u (x; t) = �1; for t � 0: (55)

Moreover, for each t � 0; the Inada conditions

lim
x!0

ux (x; t) = +1 and lim
x!+1

ux (x; t) = 0 (56)

are satis�ed.
ii) Conversely, let u; de�ned for (x; t) 2 (0;+1)� [0;+1) ; be an increasing

and strictly concave function satisfying (14), (55) and the Inada conditions (56).
Then, there exists � 2 B+ (R) satisfying (48) and � ((0; 1]) > 0 or (48) and
� ((0; 1]) = 0 and

R +1
1+

�(dy)
y�1 = +1, such that u admits representation (54)

with h given, for (x; t) 2 R� [0;+1) ; by (49).

Example 16 Let � = �
 ; 
 > 1: Then, (49) yields

h (x; t) =
1



e
x�

1
2


2t;

for (x; t) 2 R � [0;+1) : We, then, have h(�1) (x; t) = ln (
x)
1

 + 1

2
t; (x; t) 2
(0;+1)� [0;+1) and, thus, hx

�
h(�1) (x; t) ; t

�
= 
x:

Since � ((0; 1]) = 0; u is given by (51) and, therefore,

u (x; t) = �1
2

Z t

0


xe
�
�
ln(
x)

1

 + 1

2
s

�
+ s
2
ds+

Z x

0

(
z)
� 1

 dz

=



�1




 � 1x

�1

 e�


�1
2 t:

Example 17 Let � = �
 ; 
 = 1: Then, (49) yields

h (x; t) = ex�
1
2 t;

for (x; t) 2 R � [0;+1) : We, then, have h(�1) (x; t) = lnx + 1
2 t; (x; t) 2

(0;+1)� [0;+1) and, thus, hx
�
h(�1) (x; t) ; t

�
= x:
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Since � ((0; 1]) 6= 0; u is given by (54). Therefore, for (x; t) 2 (0;+1) �
[0;+1) and x0 > 0;

u (x; t) = �1
2

Z t

0

xe�(ln x+
1
2 s)+

s
2 ds+

Z x

x0

1

z
dz = ln

x

x0
� t

2
:

Example 18 Let � = �
 ; 
 2 (0; 1) : Using Example 16 and that � ((0; 1]) 6= 0;
we easily deduce, using (54), that u is given by

u (x; t) = �1
2

Z t

0


xe
�
�
ln(
x)

1

 + 


2 s

�
+ s
2
ds+

Z x

x0

(
z)
� 1

 dz

= � 


�1



1� 
 x

�1

 e

1�

2 t +




�1



1� 
 x

�1



0 ;

for x0 > 0:

4.3 Range(h) = (�1; x0) ; x0 2 R
We recall that in this case, h is given by (39) where � satis�es

� 2 B+� (R) and
Z 0�

�1

� (dy)

y
> �1; (57)

with B+� (R) given in (38). For convenience, we set in (39) C =
R 0�
�1

�(dy)
y ;

yielding Range(h) = (�1; 0) ; as

h (x; t) =

Z 0�

�1

eyx�
1
2y

2t

y
� (dy) : (58)

In analogy to (50), one can show that h is concave in its spatial argument and
increasing with regards to time,

hxx (x; t) < 0 and ht (x; t) > 0: (59)

The next proposition follows from a modi�cation of the arguments used to
prove Proposition 14.

Proposition 19 i) Let � be as in (57). Let, also, h : R � [0;+1) ! (�1; 0)
be as in (58) and h(�1) : (�1; 0)� [0;+1)! R be its spatial inverse. Then,
the function u de�ned, for (x; t) 2 (�1; 0)� [0;+1) ; by

u (x; t) = �1
2

Z t

0

e�h
(�1)(x;s)+ s

2hx

�
h(�1) (x; s) ; s

�
ds�

Z 0

x

e�h
(�1)(z;0)dz; (60)

is an increasing and strictly concave solution of (14) with

lim
x!0

u (x; t) = 0; for t � 0: (61)
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Moreover, for each t � 0; the Inada conditions

lim
x!�1

ux (x; t) = +1 and lim
x!0

ux (x; t) = 0 (62)

are satis�ed.
ii) Conversely, let u be an increasing and strictly concave function satisfying,

for (x; t) 2 (�1; 0) � [0;+1) ; (14), (61) and the Inada conditions (62), for
t � 0. Then, there exists � as in (57) such that u admits representation (60)
with h given by (58).

Example 20 We take � = �
 ; 
 = � 1
2k+1 ; k > 0: Then, (58) yields, for

(x; t) 2 (�1; 0)� [0;+1) ;

h (x; t) = � 1


e
x�

1
2


2t:

Working as in Example 16, we deduce that, for (x; t) 2 (�1; 0)� [0;+1) ;

u (x; t) =



�1




 � 1x

�1

 e�


�1
2 t = � (2k + 1)

�2k�1

2 (k + 1)
x2(k+1)e

k+1
2k+1 t:

4.4 Range(h) = (x1; x2) ; x1; x2 2 R
The case of �nite range is not considered since it does not yield a meaningful
solution. Indeed, we recall the following result derived by Widder (see [17]).

Proposition 21 Let h be a solution to (19) such that for (x; t) 2 R� [0;1) ;
�M � h (x; t) �M; for some constant M: Then, h (x; t) is constant.

It, then, easily follows that in this case the problem degenerates as there is
no strictly increasing solution to (19) and, in turn to (14).

4.5 The local risk tolerance

In the previous section we introduced the function r in (31). This function
facilitates the representation of the optimal portfolio policy (cf. (32)) and, as
it is shown below, is represented in terms of the spatial derivatives of u. In the
traditional maximal expected utility models, a similar quantity is used, known
as the risk tolerance. We keep an analogous terminology herein.
For the generic spatial domain D appearing below, we have D = R; (0;+1)

or (�1; 0) : To ease the presentation, we omit any reference to the speci�c range
h (and, thus, to the domain of u):
The following result is a direct consequence of (31) and (89) (for an alterna-

tive proof, see [10]).

Proposition 22 Let r : D� [0;1)! (0;+1) be given by (31), i.e.

r (x; t) = hx

�
h(�1) (x; t) ; t

�
; (63)
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and u be the associated with h di¤erential utility input. Then, for (x; t) 2
D� [0;1) ;

r (x; t) = � ux (x; t)
uxx (x; t)

:

Therefore, r (x; t) = R (x; t) with R (x; t) as in (15).

In (34) we saw that the monotonicity of the optimal investment strategy
with regards to the initial endowment depends directly on the sign of the partial
derivative rx (x; t) : As it was mentioned in section 3, when the risk tolerance
is de�ned on R � [0;+1) very little, if anything, can be established for its
monotonicity or limiting behavior. When, however, its domain is semi-in�nite,
we have the following results.

Proposition 23 Let r : D� [0;+1)! (0;+1) with D =(0;+1) or (�1; 0) :
Then, for t � 0;

lim
x!0

r (x; t) = 0: (64)

If D =(0;+1) ; then
rx (x; t) � 0; (65)

while, if D =(�1; 0),
rx (x; t) � 0; (66)

for t � 0:

Proof. We only establish (64) when D =(0;+1) : Recalling that

hx (x; t) =

Z +1

0+
eyx�

1
2y

2t� (dy)

(cf. (49)), (63) yields

r (x; t) =

Z 1

0+
eyh

(�1)(x;t)� 1
2y

2t� (dy) :

Passing to the limit, and using the monotone convergence theorem and (93), we
conclude.
Next, we show (65). Di¤erentiating (63) yields

rx (x; t) =

�
@

@x
h(�1) (x; t)

�
hxx

�
h(�1) (x; t) ; t

�
:

When D =(0;+1) (resp. D =(�1; 0)); then (65) (resp. (66)) follows from
(50) (resp. (59)).
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5 Deterministic market prices of risk

In this section we assume that the process �t; t � 0; (cf. (3)) is deterministic.
This, in turn, yields that At; t � 0; (see (20)) is deterministic.
The goal is twofold. Firstly, we study distributional properties of the op-

timal wealth and compute its cumulative distribution, density and moments.
Secondly, we explore some inverse problems, namely, how could the investor�s
preferences be inferred from information about the targeted mean of his optimal
wealth.

5.1 Distribution of the optimal wealth process

Recalling At and Mt from (20) we have hMit = At; t � 0; and, thus, by Levy�s
theorem the process Mt is a Gaussian martingale. This leads to the following
properties of the distribution of the investor�s optimal wealth process. The
functions N and n below stand, respectively, for the cumulative distribution
and the density functions of a standard normal variable. We recall that h solves
(19), h(�1) stands for its spatial inverse and r is given in (31).

Proposition 24 i) The cumulative distribution and probability density func-
tions of the optimal wealth X�;x

t ; t > 0; are given, respectively, by

P
�
X�;x
t � y

�
= N

�
h(�1) (y;At)� h(�1) (x; 0)�Atp

At

�
(67)

and

fX�;x
t
(y) = n

�
h(�1) (y;At)� h(�1) (x; 0)�Atp

At

�
1

r (y;At)
p
At
;

with At as in (20).
ii) For all p 2 [0; 1] and t > 0; the quantile of order p, i.e. the point yp (t)

for which P
�
X�;x
t � yp (t)

�
= p; is given by

yp (t) = h
�
h(�1) (x; 0) +At +

p
AtN

(�1) (p) ; At

�
:

Proof. The �rst statement follows directly from (23). Indeed,

P
�
X�;x
t � y

�
= P

�
h
�
h(�1) (x; 0) +At +Mt; At

�
� y
�

= P
�
h(�1) (x; 0) +At +Mt � h(�1) (y;At)

�
;

and we easily conclude. The other two statements are also immediate.
Properties of the multivariate distributions may be analyzed along similar

arguments.

Next, we study the expected value of the optimal wealth and portfolio
processes.
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Proposition 25 Let X�;x
t and ��;xt be as in (23) and (24). Then, for t > 0;

E
�
X�;x
t

�
= h

�
h(�1) (x; 0) +At; 0

�
: (68)

Moreover,
@

@x
E
�
X�;x
t

�
=
r
�
E
�
X�;x
t

�
; 0
�

r (x; 0)
(69)

and
E
�
r
�
X�;x
t ; At

��
= r

�
E
�
X�;x
t

�
; 0
�
: (70)

Proof. We establish the above when the function h is as in (39), with the other
cases, exhibited in (49) and (58), following along similar arguments.
From (23) we have

E
�
X�;x
t

�
= E

�
h
�
h(�1) (x; 0) +At +Mt; At

��
= E

 Z
R

ey(h
(�1)(x;0)+At+Mt)� 1

2y
2At � 1

y
� (dy)

!

=

Z
R
E

 
ey(h

(�1)(x;0)+At+Mt)� 1
2y

2At � 1
y

!
� (dy)

=

Z
R

ey(h
(�1)(x;0)+At) � 1

y
� (dy) = h

�
h(�1) (x; 0) +At; 0

�
:

Above we used that the two integrals can be interchanged. For this, it su¢ ces
to have

E

 Z
R

�����ey(h
(�1)(x;0)+At+Mt)� 1

2y
2At � 1

y

����� � (dy)
!
< +1: (71)

Indeed, inequality (79) yieldsZ
R

�����eyx�
1
2y

2t � 1
y

����� � (dy) � � (R)�ex+ t
2 + e�x+

t
2

�
+

Z
R
eyx�

1
2y

2t� (dy) :

Therefore,

E

 Z
R

�����ey(h
(�1)(x;0)+At+Mt)� 1

2y
2At � 1

y

����� � (dy)
!

� � (R)E
�
eh

(�1)(x;0)+At+Mt+
At
2 + e�(h

(�1)(x;0)+At+Mt)+At
2

�
+E

�Z
R
ey(h

(�1)(x;0)+At+Mt)� 1
2y

2At� (dy)

�
:
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On the other hand,

E
�
eh

(�1)(x;0)+At+Mt+
At
2 + e�(h

(�1)(x;0)+At+Mt)+At
2

�
� e

h(�1)(x;0)+ 3
2
c2t

E
�
eMt

�
+ e�h

(�1)(x;0);

where we used (5) and (20). Similarly,

E

�Z
R
ey(h

(�1)(x;0)+At+Mt)� 1
2y

2At� (dy)

�

=

Z
R
E
�
ey(h

(�1)(x;0)+At+Mt)� 1
2y

2At

�
� (dy)

=

Z
R
ey(h

(�1)(x;0)+At)� (dy) <

Z
R
ey(h

(�1)(x;0)+c2t)� (dy) < +1;

and we easily obtain (71). Assertion (69) follows from (68) and (31).
To show (70), we recall (23), (31) and (81) yielding

E
�
r
�
X�;x
t ; At

��
= E

�Z
R
ey(h

(�1)(x;0)+At+Mt)� 1
2y

2At� (dy)

�

=

Z
R
ey(h

(�1)(x;0)+At)� (dy) = hx

�
h(�1) (x; 0) +At; 0

�
;

and we easily conclude.

5.2 Inferring the investor�s preferences

The investment performance criterion (27) combines the investor�s preferences
with the market input. As a consequence, the optimal portfolio and the associ-
ated wealth (see (24) and (23), respectively) contain implicit information about
these preferences. In this section, we discuss how to learn about the individual�s
risk attitude by analyzing distributional characteristics of his optimal wealth.
One can say, using the language of the derivatives industry, that our aim is to
calibrate the investor�s preferences, given the market dynamics and his desirable
distributional outcomes for his wealth process.
This idea is relatively new. To the best of our knowledge, the authors of [15]

were the �rst to propose a model and show how information about an investor�s
marginal utility of wealth can be inferred from her choice of a distribution.
Other, more recent relevant references, are [2] and [16].
We discuss two examples in which we infer the investor�s preferences using

information about the behavior of her average future wealth. For simplicity, we
only concentrate on the no-bankruptcy case, Range(h) = (0;+1) (see section
4.2).
We remind the reader that the market price of risk is taken to be determin-

istic. As a result, At; t � 0; (cf. (20)) is also deterministic.
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Proposition 26 Let the mapping x ! E
�
X�;x
t

�
be linear, for all x > 0 and

t � 0. Then, there exists a positive constant 
 > 0 such that the investor�s
forward performance process is given by

Ut (x) =



�1




 � 1x

�1

 e�

1
2 (
�1)At ; (72)

if 
 6= 1 and by
Ut (x) = lnx�

1

2
At; (73)

if 
 = 1: Moreover,
E
�
X�;x
t

�
= xe
At : (74)

Proof. Di¤erentiating (69) we deduce

@2

@x2
E
�
X�;x
t

�
=
rx
�
E
�
X�;x
t

�
; 0
�

r (x; 0)

@

@x
E
�
X�;x
t

�
� r

�
E
�
X�;x
t

�
; 0
� rx (x; 0)
r2 (x; 0)

=

�
rx
�
E
�
X�;x
t

�
; 0
�
� rx (x; 0)

�
r2 (x; 0)

r
�
E
�
X�;x
t

�
; 0
�
:

By assumption @2

@x2E
�
X�;x
t

�
= 0: Moreover, r

�
E
�
X�;x
t

�
; 0
�
> 0 as it follows

from (70). Therefore, we must have

rx
�
E
�
X�;x
t

�
; 0
�
= rx (x; 0)

and, in turn,

@

@t
rx
�
E
�
X�;x
t

�
; 0
�
= rxx

�
E
�
X�;x
t

�
; 0
� @
@t
E
�
X�;x
t

�
= 0:

However, (68) implies @
@tE

�
X�;x
t

�
6= 0 and, thus, we deduce that

rxx
�
E
�
X�;x
t

�
; 0
�
= 0:

Therefore, the function r (x; 0) must be linear in E
�
X�;x
t

�
and, in turn, in x,

per our assumption. Using (64) we obtain

r (x; 0) = 
x;

for some 
 > 0: From (31) and (49) we, then, deduce that for all x > 0;Z +1

0+
eyh

(�1)(x;0)� (dy) = 
x

and, in turn, Z +1

0+
eyx� (dy) = 


Z +1

0+

eyx

y
� (dy) :
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Therefore, we must have
� (dy) = �


where �
 is a Dirac measure at 
 > 0: This yields

h (x; t) =
1



e
x�

1
2


2t

and assertions (72) and (73) follow from Examples 16,17,18 and 20.
Equality (74) follows from (68) and the form of h:

From the above analysis, we see that calibrating the investor�s preferences
consists of choosing a time horizon and the level of the mean of her optimal
wealth, say t0 and mx (m > 1), respectively. Then, (74) implies that the
corresponding 
 must satisfy xe
At0 = mx, or, equivalently,


 =
lnm

At0
:

Note that under the linearity assumption, the investor can calibrate her ex-
pectations only for a single time horizon. The model interpolates for all other
trading horizons, giving

E (X�x
t ) = xm

At
At0 :

We easily deduce that the distribution of the optimal wealth X�;x
t is lognormal,

for all (x; t) :

The linearity of the mapping x ! E
�
X�;x
t

�
is a very strong assumption.

Indeed, it only allows for calibration of a single parameter, namely, the slope,
and, moreover, for a single time horizon. Therefore, if one intends to calibrate
the investor�s preferences to more re�ned information, then one needs to accept
a more complicated dependence of E

�
X�;x
t

�
on x: We discuss this case next.

To this end, let us �x the level of initial wealth at x = 1 and consider

calibration to E
�
X�;1
t

�
; for t > 0. The investor then chooses an increasing

function m (t) (with m (t) > 1) to represent the latter, i.e. for t > 0;

E
�
X�;1
t

�
= m (t) : (75)

What does this choice reveal about her preferences? Moreover, can she choose an
arbitrary increasing function m (t)? We give answers to these questions below.
In analogy to the previous proposition, we only consider the no bankruptcy

case, which corresponds to h given in (49). Using arguments similar to the
ones used in Proposition 7, we may assume, without loss of generality, thatR +1
0

�(dy)
y = 1: We, then, have h(�1) (1; 0) = 0 which, combined with (68),

yields

E
�
X�;1
t

�
= h (At; 0) =

Z 1

0+

eyAt

y
� (dy) :
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We easily see that the investor may only choose a function m (t) ; t � 0; which
can be represented in the form

m (t) =

Z 1

0+

eyAt

y
� (dy) : (76)

Therefore, the choice of a feasible m (t) reduces to the choice of the appropriate
measure �: Speci�cally, we must have,

m
�
A
(�1)
t

�
=

Z 1

0+

eyt

y
� (dy) = h (t; 0) ; (77)

where A(�1)t stands for the inverse of the function At; t � 0: Note that the right
hand side above is the moment generating function of the probability measure
� (dy) = �(dy)

y :

Assume now that the mean m (t) (cf. (75)) was chosen so that (77) holds
for some measure �: Then, for other values of x > 0; x 6= 1; we have, using (68),

E
�
X�;x
t

�
= m

�
A(�1)

�
h(�1) (x; 0) +A (t)

��
= m

�
A(�1)

�
A
�
m(�1) (x)

�
+A (t)

��
;

where, for notational convenience, At (resp. A
(�1)
t ) is denoted by A(t) (resp.

A(�1)(t)):
In summary, the market related input At; coupled with the investor�s tar-

geted mean m (t) (at initial wealth x = 1); yields the investor�s preferences by
choosing the measure �; appearing in (76). Note that the function At determines
the distribution of the martingale Mt and the measure � de�nes the function
h; which, in turn, determines the functions u and r: Once these quantities are
speci�ed, we are able to construct the optimal portfolio process that generates
the optimal wealth which satis�es (75). The distribution of the optimal wealth
process X�;x

t ; for x > 0; x 6= 1; is, in turn, deduced from the speci�cation of the
targeted mean, m (t) ; the market input At and (67).
We conclude mentioning that one may prefer to calibrate the distribution of

the optimal wealth at a given time, say, X�;1
t0 ; rather than the mean, E

�
X�;1
t

�
;

for t � 0: It is easy to see what distributions are attainable. Indeed, Proposition
24 would give

P
�
X�;1
t0 � y

�
= N

 
h(�1) (y;At0)�At0p

At0

!
with

h (y;At0) =

Z 1

0+

ezy�
1
2 z

2At0

y
� (dz) :

Further analysis of this and other calibration issues is left for future research.
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6 Appendix

Proof of Proposition 9: i) Without loss of generality, we take C = 0: We
�rst establish that h (x; t) is well de�ned: Indeed, for (x; t) 2 R � [0;+1) ; we
have Z

R

�����eyx�
1
2y

2t � 1
y

����� � (dy) =
Z
jyj>1

�����eyx�
1
2y

2t � 1
y

����� � (dy) (78)

+

Z
jyj�1

�����eyx�
1
2y

2t � 1
y

����� � (dy) :
On the other hand, one can show that, for �xed (x; t) and jyj � 1; the inequality�����eyx�

1
2y

2t � 1
y

����� � ejxj+ t
2 � 1 (79)

holds7 . Combining the above, we deduceZ
R

�����eyx�
1
2y

2t � 1
y

����� � (dy) �
Z
jyj>1

eyx� (dy) + � (R) ejxj+
t
2 < +1: (80)

Di¤erentiating under the integral yields

hx (x; t) =

Z
R
eyx�

1
2y

2t� (dy) (81)

and the claimed monotonicity of h follows. Note that hx (x; t) is well de�ned
because 0 � hx (x; t) < hx (x; 0) < +1, as � 2 B+ (R) : Further di¤erentiation
yields

hxx (x; t) =

Z
R
yeyx�

1
2y

2t� (dy) and ht (x; t) = �
1

2

Z
R
yeyx�

1
2y

2t� (dy) :

The fact that h solves (19) would follow provided the above integrals are well
de�ned. For x 6= 0; we have����Z

R
yeyx�

1
2y

2t� (dy)

���� � 1

jxj

Z
R
jyxj eyx� 1

2y
2t� (dy)

� 1

jxj

Z
R

�
ejyxj � 1

�
eyx�

1
2y

2t� (dy)

� 1

jxj

�Z
yx�0

�
ejyxj � 1

�
eyx�

1
2y

2t� (dy) +

Z
yx>0

�
ejyxj � 1

�
eyx�

1
2y

2t� (dy)

�
7 Indeed, we have e

yx� 1
2
y2t�1
y

=
P1
n=1

yn�1(x� 1
2
yt)n

n!
and, therefore,

���� eyx� 1
2
y2t�1
y

���� �P1
n=1

jyjn�1jx� 1
2
ytjn

n!
�
P1
n=1

(jxj+ 1
2
jyjt)n

n!
� ejxj+

t
2 � 1:
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� 1

jxj

�Z
yx�0

(1� eyx) e� 1
2y

2t� (dy) +

Z
yx>0

e2yx�
1
2y

2t� (dy)

�
� 1

jxj

Z
yx�0

� (dy) +
1

jxj

Z
yx>0

e2yx� (dy) ;

and the assertion follows using that � 2 B+ (R). The case x = 0 follows trivially.
Next, we establish that if � has the aforestated properties then, for each

t � 0; h is of full range. Given that h is continuous, we need to show that, for
t � 0;

lim
x!�1

h (x; t) = �1 and lim
x!+1

h (x; t) = +1: (82)

From (39) we have

h (x; t) =

Z 0�

�1

eyx�
1
2y

2t � 1
y

� (dy)+x� (f0g)+
Z +1

0+

eyx�
1
2y

2t � 1
y

� (dy) : (83)

We �rst look at the case � (f0g) > 0: If both � ((�1; 0)) = 0 and � ((0;+1)) =
0; (82) follows directly. If � ((�1; 0)) = 0 and � ((0;+1)) > 0; the monotone
convergence theorem yields

lim
x!�1

 
x� (f0g) +

Z +1

0+

eyx�
1
2y

2t � 1
y

� (dy)

!
= �1:

The case � ((�1; 0)) > 0 and � ((0;+1)) = 0 follows similarly.
Next, we assume � 2 B+0 (R) : Then, (83) yields

h (x; t) =

Z 0�

�1

eyx�
1
2y

2t � 1
y

� (dy) +

Z +1

0+

eyx�
1
2y

2t � 1
y

� (dy) ;

and we easily deduce (82) if � ((�1; 0))� � ((0;+1)) > 0:
If � 2 B+0 (R) and it, also, satis�es � ((�1; 0)) = 0 and

R +1
0+

1
y� (dy) = +1;

then the monotone convergence theorem yields

lim
x!+1

h (x; t) = lim
x!+1

Z +1

0+

eyx�
1
2y

2t � 1
y

� (dy) = +1

and

lim
x!�1

h (x; t) = �
Z +1

0+

1

y
� (dy) = �1:

The case � 2 B+� (R) with
R 0�
�1

1
y� (dy) = �1 follows similarly as well as the

cases � 2 B++ (R) with
R +1
0+

1
y� (dy) < +1; and � 2 B

+
� (R) with

R 0�
�1

1
y� (dy) >

�1:
ii) Let h be a strictly increasing solution to (19). Then, its spatial derivative

satis�es hx (x; t) � 0 and solves (19). Thus, Widder�s theorem implies the
existence of � 2 B+ (R) such that the representation

hx (x; t) =

Z
R
eyx�

1
2y

2t� (dy) (84)
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holds. We, then, have hxx (x; t) =
R
R ye

yx� 1
2y

2t� (dy) (its �niteness follows
easily) which combined with (19) yields

ht (x; t) = �
1

2

Z
R
yeyx�

1
2y

2t� (dy) :

If Range (h) = (�1;+1) ; t � 0; integrating yields

h (x; t) =

Z t

0

ht (x; s) ds+

Z x

x0

hx (z; 0) dz + h (x0;0) ; (85)

for any x0 2 R: Combining the above we obtain

h (x; t) = �1
2

Z t

0

Z
R
yeyx�

1
2y

2s� (dy) ds+

Z x

x0

Z
R
eyz� (dy) dz + h (x0; 0) : (86)

Note that for � 2 B+ (R) ;Z t

0

Z
R

���yeyx� 1
2y

2s
��� � (dy) ds � tZ

R
jyj eyx� (dy) <1;

and, thus, Fubini�s theorem yields

�1
2

Z t

0

Z
R
yeyx�

1
2y

2s� (dy) ds = �1
2

Z
R

Z t

0

yeyx�
1
2y

2sds� (dy)

=

Z
R

eyx�
1
2y

2t � eyx
y

� (dy) :

Moreover, Tonelli�s theorem yieldsZ x

x0

Z
R
eyz� (dy) dz =

Z
R

Z x

x0

eyzdz� (dy) =

Z
R

eyx � eyx0
y

� (dy) :

Observe that both integrals above are well de�ned as it was shown in the proof
of part i). Using (86) gives

h (x; t) =

Z
R

eyx�
1
2y

2t � eyx0
y

� (dy) + h (x0; 0) :

Without loss of generality we choose x0 = 0 and we easily conclude.
Next, we establish that if h is of full range, for each t � 0; it must be that

� (f0g) > 0, or, otherwise, either � 2 B+0 (R) ; or � 2 B++ (R) with
R +1
0+

1
y� (dy) =

+1; or � 2 B+� (R) with
R 0�
�1

1
y� (dy) = �1: Note that (82) must hold, for each

t � 0; as h is continuous.
Let us assume that � 2 B++ (R) and

R +1
0+

1
y� (dy) < +1: Then, (83) would

give

lim
x!�1

h (x; t) = lim
x!�1

Z +1

0+

eyx�
1
2y

2t � 1
y

� (dy) = �
Z +1

0+

1

y
� (dy) > �1;
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contradicting (82). All other cases follow along similar arguments and their
proof is, thus, omitted.

The following auxiliary result will be used in the sequel. Because we will
examine the various cases of the range of h separately, we state the result
without making speci�c reference to the domain of the spatial inverse, h(�1):

Lemma 27 A strictly increasing function, say h; satis�es (19) if and only if
its spatial inverse, h(�1); satis�es

@

@t
h(�1) (x; t) +

1

2

@2

@x2h
(�1) (x; t)�

@
@xh

(�1) (x; t)
�2 = 0: (87)

We continue with the proofs of Propositions 10, 14 and 15.

Proof of Proposition 10: i) First, we establish that the integrals in (42)
are well de�ned. Using (84) and Tonelli�s theorem we haveZ t

0

e�h
(�1)(x;s)+ s

2hx

�
h(�1) (x; s) ; s

�
ds =

Z t

0

Z
R
e(y�1)h

(�1)(x;s)+ s
2�

1
2y

2s� (dy) ds

� e t2
Z
R

Z t

0

e(y�1)h
(�1)(x;s)ds� (dy)

= e
t
2

Z
y�1

Z t

0

e(y�1)h
(�1)(x;s)ds� (dy) + e

t
2

Z
y<1

Z t

0

e(y�1)h
(�1)(x;s)ds� (dy)

� te t2
Z
y�1

e(y�1)max0�s�t h
(�1)(x;s)� (dy)

+te
t
2

Z
y<1

e(y�1)min0�s�t h
(�1)(x;s)� (dy) :

Using Tonelli�s theorem once more, we have that the second integral in (42)
satis�es Z x

0

e�h
(�1)(z;0)dz =

Z h(�1)(x;0)

h(�1)(0;0)

e�z
0
hx (z

0; 0) dz0

=

Z h(�1)(x;0)

h(�1)(0;0)

Z
R
e(y�1)z

0
� (dy) dz0 =

Z
R

e(y�1)h
(�1)(x;0) � e(y�1)h(�1)(0;0)

y � 1 � (dy) ;

and its �niteness follows from arguments similar to the ones used in the proof
of Proposition 9.
Di¤erentiating (42) and using that h solves (19) yield

ux (x; t) =
1

2

Z t

0

 
1�

hxx
�
h(�1) (x; s) ; s

�
hx
�
h(�1) (x; s) ; s

� ! e�h(�1)(x;s)+ s
2 ds+ e�h

(�1)(x;0)
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=
1

2

Z t

0

 
1 + 2

ht
�
h(�1) (x; s) ; s

�
hx
�
h(�1) (x; s) ; s

�! e�h(�1)(x;s)+ s
2 ds+ e�h

(�1)(x;0)

=

Z t

0

�
1

2
� @

@s
h(�1) (x; s)

�
e�h

(�1)(x;s)+ s
2 ds+ e�h

(�1)(x;0)

and, therefore,
ux (x; t) = e

�h(�1)(x;t)+ t
2 : (88)

Further di¤erentiation yields

u2x (x; t)

uxx (x; t)
= �e

�h(�1)(x;t)+ t
2

@
@xh

(�1) (x; t)
:

On the other hand, (42) implies

ut (x; t) = �
1

2
e�h

(�1)(x;t)+ t
2hx

�
h(�1) (x; t) ; t

�
= �1

2

e�h
(�1)(x;t)+ t

2

@
@xh

(�1) (x; t)
:

Combining the above two equalities, we deduce that u satis�es (14).
To establish (41) and (43), we �rst observe that the assumption of full range

yields, for each t � 0; limx!�1 h
(�1) (x; t) = �1. Both assertions, then, follow

from (88).
ii) Let u be an increasing and strictly concave function, de�ned for (x; t) 2

R � [0;+1) and satisfying (14), (41) and (43). Using that ux is invertible,
with (ux)

(�1)
: (0;+1)� [0;+1)! R; we de�ne, for (x; t) 2 R� [0;+1) ; the

function h by

h (x; t) = (ux)
(�1)

�
e�x+

t
2 ; t
�
: (89)

Note that h is invertible in the space variable since

hx (x; t) = �
e�x+

t
2

uxx (h (x; t) ; t)
> 0:

Di¤erentiating (14) yields

uxt = ux �
1

2

u2xuxxx
u2xx

: (90)

In turn,

uxt (x; t) =

�
� @
@t
h(�1) (x; t) +

1

2

�
ux (x; t) ;

uxx (x; t) = �
�
@

@x
h(�1) (x; t)

�
ux (x; t) (91)

and

uxxx (x; t) =

 
� @2

@x2
h(�1) (x; t) +

�
@

@x
h(�1) (x; t)

�2!
ux (x; t) :
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Combining the above, we obtain that h(�1) satis�es

@

@t
h(�1) (x; t) +

1

2

@2

@x2h
(�1) (x; t)�

@
@xh

(�1) (x; t)
�2 = 0;

and using Lemma 27 we deduce that its spatial inverse, h; solves (19). On the
other hand, (89) and (41) yield that h (0; 0) = 0. Finally, (89) and the Inada
conditions yield

lim
x!�1

h (x; t) = �1 and lim
x!+1

h (x; t) = +1:

Therefore, h solves (19), is strictly increasing and of full range, for each
t � 0: Using part ii) of Proposition 9 we obtain (39) for some � 2 B+ (R) with
the appropriate properties.
It remains to show that u is given by (42). Using (14), (89) and the form of

uxx (x; t) ; we, in turn, obtain

ut (x; t) = �
1

2
e�h

(�1)(x;t)+ t
2hx

�
h(�1) (x; t) ; t

�
:

Integrating and using (41) yields

u (x; t) =

Z t

0

ut (x; s) ds+

Z x

0

ux (z; 0) dz;

and (42) follows from direct integration. Note that the above two integrals are
well de�ned as it follows from arguments used in the proof of part i). We easily
conclude.

The next result will be used in the proofs that follow.

Lemma 28 Let h be such that Range(h) =(0;+1) (resp. Range(h) =(�1; 0):
Then, for each x; h(�1) (x; t) is increasing (resp. decreasing) in t:

Proof. We only look at the case Range(h) =(0;+1): Using (50) and di¤erenti-
ating the identity h

�
h(�1) (x; t) ; t

�
= x with respect to time yields the claimed

monotonicity of h(�1) (x; t) :

Proof of Proposition 14: i) We �rst establish that u in (51) is well de�ned
for x > 0; t � 0: From (49) and the assumptions on the measure �, we easily
deduce that

hx (x; t) =

Z +1

1+
eyx�

1
2y

2t� (dy) : (92)

Therefore, Z t

0

e�h
(�1)(x;s)+ s

2hx

�
h(�1) (x; s) ; s

�
ds
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=

Z t

0

Z +1

1+
e(y�1)h

(�1)(x;s)+ s
2�

1
2y

2s� (dy) ds

� te�h
(�1)(x;0)+ t

2

Z +1

1+
eyh

(�1)(x;t)� (dy) ;

where we used Lemma 27. The �niteness of the integral then follows from the
assumptions on the measure �:
The �niteness of the second integral in (51) also follows. Indeed, �rst observe

that (49) yields

lim
x!�1

h (x; t) = 0 and lim
x!+1

h (x; t) = +1: (93)

Using the above, (92) and Tonelli�s theorem, we obtainZ x

0

e�h
(�1)(z;0)dz =

Z h(�1)(x;0)

�1
e�z

0
hx (z

0; 0) dz0

=

Z h(�1)(x;0)

�1

Z +1

1+
e(y�1)z

0
� (dy) dz0 =

Z +1

1+

Z h(�1)(x;0)

�1
e(y�1)z

0
dz0� (dy)

=

Z +1

1+

1

y � 1

�
e(y�1)h

(�1)(x;0) � lim
z0!�1

e(y�1)z
0
�
� (dy) :

Using that limz0!�1 e
(y�1)z0 = 0 for y > 1 and that

R +1
1+

�(dy)
y�1 < +1 we

deduce that Z x

0

e�h
(�1)(z;0)dz =

Z +1

1+

1

y � 1e
(y�1)h(�1)(x;0)� (dy) : (94)

For " > 0; we then haveZ x

0

e�h
(�1)(z;0)dz =

Z 1+"

1+

1

y � 1e
(y�1)h(�1)(x;0)� (dy)

+

Z +1

1+"

1

y � 1e
(y�1)h(�1)(x;0)� (dy)

� max
�
1; e"h

(�1)(x;0)
�Z 1+"

1+

� (dy)

y � 1 +
e�h

(�1)(x;0)

"

Z +1

1+"

eyh
(�1)(x;0)� (dy) :

Using the assumptions on the measure � we easily conclude:
The fact that u solves (14) and has the claimed monotonicity and concavity

properties follows from arguments similar to the ones used in the proof of part
i) in Proposition 10.
Next, we establish (52). We �rst show that

lim
x!0

Z t

0

e�h
(�1)(x;s)+ s

2hx

�
h(�1) (x; s) ; s

�
ds = 0: (95)
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Indeed, note that the above integrand is monotone in x: This follows easily from
its representation,

e�h
(�1)(x;t)+ t

2hx

�
h(�1) (x; t) ; t

�
=

Z +1

1+
e(y�1)h

(�1)(x;t)� 1
2y

2t+ t
2 � (dy) ;

combined with the monotonicity of h(�1): Using the monotone convergence the-
orem and (93), we obtain (95).
On the other hand, (94) yields

lim
x!0

Z x

0

e�h
(�1)(z;0)dz = lim

x!0

Z +1

1+

1

y � 1e
(y�1)h(�1)(x;0)� (dy) :

Using the monotone convergence theorem, (93) (for t = 0) and that
R +1
1+

�(dy)
y�1 <

+1 we conclude.
ii) Using arguments similar to the ones in the proof of part ii) in Proposition

10, we deduce that the function h given, for (x; t) 2 R� [0;+1) ; by

h (x; t) = (ux)
(�1)

�
e�x+

t
2 ; t
�

(96)

is well de�ned and solves (19). Moreover, the assumptions on u imply that
h (x; t) � 0 and hx (x; t) � 0: Therefore, from Proposition 10, we have that
there exists � 2 B+ (R) satisfying (48) and such that representation (49) holds.
The Inada conditions (53) then yield that the normalization constant must be
chosen as C =

R +1
0+

1
y� (dy).

Using (52) and working along similar arguments used in the proof of Propo-
sition 10, we deduce the representation (51).
It remains to establish that � satis�es � ((0; 1]) = 0 and

R +1
1+

�(dy)
y�1 < +1:

We argue by contradiction. To this end, we �rst note that because of (52), we
have, for x > 0;

u (x; t) =

Z x

0

ux (z; t) dz =

Z h(�1)(x;t)

�1

Z +1

0

e(y�1)z
0+ t

2 (1�y
2)� (dy) dz0;

where we used (89) and (93). We, then, observe that � cannot include a Dirac
measure at y = 1 as this would yield

u (x; t) �
Z h(�1)(x;t)

�1
dz0 = +1;

contradicting the �niteness of u (x; t) : Therefore, we must have

u (x; t) =

Z h(�1)(x;t)

�1

Z 1�

0+
e(y�1)z

0+ t
2 (1�y

2)� (dy) dz0

+

Z h(�1)(x;t)

�1

Z +1

1+
e(y�1)z

0+ t
2 (1�y

2)� (dy) dz0;
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and, in turn, for x > 0;Z h(�1)(x;t)

�1

Z 1�

0+
e(y�1)z

0+ t
2 (1�y

2)� (dy) dz0 < +1 (97)

and Z h(�1)(x;t)

�1

Z +1

1+
e(y�1)z

0+ t
2 (1�y

2)� (dy) dz0 < +1: (98)

However, using Tonelli�s theorem, we deduce,Z h(�1)(x;t)

�1

Z 1�

0+
e(y�1)z

0+ t
2 (1�y

2)� (dy) dz0

=
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�1
e(y�1)z
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=
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1
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e(y�1)h

(�1)(x;t) � lim
z0!�1

e(y�1)z
0
�
e
t
2 (1�y

2)� (dy) :

and we easily get a contradiction to (97) if � ((0; 1)) 6= 0.
Similarly, for all x > 0; we must haveZ h(�1)(x;t)

�1

Z +1

1+
e(y�1)z

0+ t
2 (1�y

2)� (dy) dz0
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=
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1

y � 1e
(y�1)h(�1)(x;t)+ t

2 (1�y
2)� (dy) < +1:

By assumption, for each t � 0; Range(h(�1)) = (�1;+1) : Therefore, for t = 0;
there exists x0(0) such that h(�1) (x0 (0) ; 0) = 0: We easily conclude.

Proof of Proposition 15: We only prove some of the main points, for the
rest of the proof follows along similar arguments as in the previous proof. To
this end, we �rst show that the function given in (54) is well de�ned. Indeed,Z t

0

e�h
(�1)(x;s)+ s

2hx

�
h(�1) (x; s) ; s

�
ds

=

Z t
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2y
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� te�h
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2

Z +1

0+
eyh

(�1)(x;t)� (dy) ;

where we used Lemma 27. The �niteness of the integral follows from the as-
sumptions on the measure �:
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Moreover, for x > x0 (the case x < x0 follows similarly),Z x

x0

e�h
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=
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(�1)(x0;0)

����� � (dy)
+e�h

(�1)(x;0)

Z +1

2

eyh
(�1)(x;0)� (dy) + e�h

(�1)(x0;0)

Z +1

2

eyh
(�1)(x0;0)� (dy) :

On the other hand,

1

y � 1

�
e(y�1)h

(�1)(x;0) � e(y�1)h
(�1)(x0;0)

�

=
1

y � 1

 
+1X
n=1

 
(y � 1)n

�
h(�1) (x; 0)

�n
n!

�
(y � 1)n

�
h(�1) (x0; 0)

�n
n!

!!

=
+1X
n=1

 
(y � 1)n�1

�
h(�1) (x; 0)

�n
n!

�
(y � 1)n�1

�
h(�1) (x0; 0)

�n
n!

!
:

For 0 � y � 2; ���� 1

y � 1

�
e(y�1)h

(�1)(x;0) � e(y�1)h
(�1)(x0;0)

�����
�

+1X
n=1

 
jy � 1jn�1

��h(�1) (x; 0)��n
n!

+
jy � 1jn�1

��h(�1) (x0; 0)��n
n!

!

� ejh
(�1)(x;0)j + ejh

(�1)(x;0)j � 2:
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Combining the above yieldsZ +1

0+

���� 1

y � 1

�
e(y�1)h

(�1)(x;0) � e(y�1)h
(�1)(x0;0)

����� � (dy)
�
�
ejh

(�1)(x;0)j + ejh
(�1)(x;0)j � 2

�
� ([0; 2])

+e�h
(�1)(x;0)

Z +1

2

eyh
(�1)(x;0)� (dy) + e�h

(�1)(x0;0)

Z +1

2

eyh
(�1)(x0;0)� (dy)

and we easily conclude.
Next we show that under the assumptions on the measure �; (55) holds.
First we assume that � ((0; 1]) > 0: Observe that for x su¢ ciently small,Z x

x0

e�h
(�1)(z;0)dz = �

Z +1

0+

Z h(�1)(x0;0)

h(�1)(x;0)

e(y�1)z
0
dz0� (dy)

= �
 Z 1

0+

Z h(�1)(x0;0)

h(�1)(x;0)

e(y�1)z
0
dz0� (dy) +

Z +1

1+

Z h(�1)(x0;0)

h(�1)(x;0)

e(y�1)z
0
dz0� (dy)

!

� �
Z 1

0+

1

y � 1

�
e(y�1)h

(�1)(x0;0) � e(y�1)h
(�1)(x;0)

�
� (dy) :

Passing to the limit and using the monotone convergence theorem yields

lim
x!0

Z 1

0+

1

y � 1

�
e(y�1)h

(�1)(x0;0) � e(y�1)h
(�1)(x;0)

�
� (dy) = +1:

Next we look at the case, � ((0; 1]) = 0 and
R +1
1+

�(dy)
y�1 = +1:We then haveZ x

x0

e�h
(�1)(z;0)dz = �

Z +1

1+

Z h(�1)(x0;0)

h(�1)(x;0)

e(y�1)z
0
dz0� (dy)

= �
Z +1

1+

1

y � 1

�
e(y�1)h

(�1)(x0;0) � e(y�1)h
(�1)(x;0)

�
� (dy) :

Using the monotone convergence theorem and that

lim
x!0

�
e(y�1)h

(�1)(x0;0) � e(y�1)h
(�1)(x;0)

�
= e(y�1)h

(�1)(x0;0)

yields

lim
x!0

Z x

x0

e�h
(�1)(z;0)dz = �

Z +1

1+

1

y � 1

�
e(y�1)h

(�1)(x0;0)
�
� (dy) :

The elementary inequality e(y�1)h
(�1)(x0;0) � 1 + (y � 1)h(�1) (x0; 0) in turn

implies

�
Z +1

1+

1

y � 1

�
e(y�1)h

(�1)(x0;0)
�
� (dy)
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� �
Z +1

1+

1

y � 1

�
1 + (y � 1)h(�1) (x0; 0)

�
� (dy)

= �h(�1) (x0; 0)
Z +1

1+

1

y � 1� (dy)� h
(�1) (x0; 0) � ((1;+1)) ;

and we easily conclude.
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