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Abstract. The new notion of maturity-independent risk measures is introduced and

contrasted with the existing risk measurement concepts. It is shown, by means of two

examples, one set on a finite probability space and the other in a diffusion framework,

that, surprisingly, some of the widely utilized risk measures cannot be used to build

maturity-independent counterparts. We construct a large class of maturity-independent

risk measures and give representative examples in both continuous- and discrete-time

financial models.

1. Introduction

The abstract notion of a risk measure appeared first in [1] and [2]. The simple axioms set

forth in [2] opened a venue for a rich field of research that shows no signs of fatigue. The

main reason for such success is the fundamental need for quantification and measurement

of risk. While the initial impetus came from the requirements of the financial and insur-

ance industries, applications in a wide range of situations, together with a mathematical

tractability and elegance of this theory, have promoted risk measurement to an indepen-

dent field of interest and research. The early cornerstones include (but are not limited to)

[11, 12 and 14]; see, also, [13] for more information.

The first notions of risk measures were all static, meaning that the time of measurement,

as well as the time of resolution (maturity, expiry) of the risk were fixed. Soon afterwards,

however, dynamic and conditional risk measures started to appear (see [3, 5–7, 10, 30 and

31], as well the book [13]).

Despite all the recent work in this wide area, there is still a number of theoretical, as

well as practical, questions left unanswered. The one we focus on in the present paper deals

with the problem one faces when the maturity (horizon, expiration date, etc.) associated
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with a particular risky position is not fixed. We take the view that the mechanism used to

measure the risk content of a certain random variable should not depend on any a priory

choice of the measurement horizon. This is, for example, the case in complete financial

markets. Indeed, consider for simplicity the Samuelson (Black-Scholes) market model with

zero interest rate and the procedure one would follow to price a contingent claim therein.

The fundamental theorem of asset pricing tells us to simply compute the expectation of

the discounted claim under the unique martingale measure. There is no explicit mention of

the maturity date of the contingent claim in this algorithm, or, for that matter, any other

prespecified horizon. Letting the claim’s payoff stay unexercised for any amount of time

after its expiry would not change its arbitrage-free price in any way.

It is exactly this property that, in our opinion, has not received sufficient attention

in the literature. As one of the fundamental properties clearly exhibited under market

completeness, it should be shared by any workable risk measurement and pricing procedure

in arbitrary incomplete markets.

The incorporation of the maturity-independence property described above into the ex-

isting framework of risk measurement has been guided by the principle of minimal impact:

we strove to keep new axioms as similar as possible to the existing ones for convex risk

measures, and to implement only minimally needed changes. This led us to the realization

that it is the domain of the risk measure that inadvertently dictates the use of a specific

time horizon, and if we replace it by a more general domain, the maturity-independence

would follow. Thus, our axioms are identical to the axioms of a replication-invariant convex

risk measure, except for the choice of the domain which is not a subspace of a function

space on FT , for some fixed time horizon T .

In addition to the novel axiom pertinent to maturity independence, a link to the notion

of forward performance processes, recently proposed by M. Musiela and the first author

(see [25–29]) is established. Indeed, focusing on the exponential case, it is shown that every

forward performance process can be used to create an example of a maturity-independent

risk measure. On one hand, this connection provides a useful and simple tool for (a

non-trivial task of) constructing maturity-independent risk measures. On the other hand,

we hope that it would give a firm decision-theoretic foundation to the theory of forward

performances.

We start off by introducing the financial model, trading and no-arbitrage conditions,

and recalling some well-known facts about risk measures. In section 3, we introduce the

notion of a maturity-independent risk measure, argue for its feasibility and relevance, and

give first examples. We also show, via two simple examples, that a näıve approach to

the construction of maturity-independent risk measures can fail. Section 4 opens with

the notion of a performance random field and goes on to describe the important class of

forward performance processes. These objects are, in turn, used to produce a class of

maturity-independent risk measures which we call forward entropic risk measures. Finally,
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several special cases of these measures are mentioned and interpreted in section 5, and an

independent example, set in a binomial-type incomplete financial model, is presented.

2. Generalities on the financial market model and risk measures

2.1. Market Set-up, No-Arbitrage Conditions and Admissible Portfolios.

2.1.1. The Model. Let (Ω,F , F, P) be a probability space, with the filtration F = (Ft)t∈[0,∞)

satisfying the usual assumptions. The evolution of the prices of risky assets is modeled by

a k-dimensional locally bounded F-semimartingale S = (S1
t , . . . , Sk

t )t∈[0,∞). The existence

of a liquid risk-free asset S0 is also postulated. As usual, we quote all asset-prices in the

units of S0. Operationally, this amounts to the simplifying assumption S0
t = 1, t ≥ 0,

which will hold throughout.

Remark 2.1. We would like to point out that the theory presented in this paper would

require little or no conceptual adjustment if the normalization S0 ≡ 1 were not introduced

and a general predictable numéraire S0 satisfying the usual regularity conditions were used.

The reason we do not pursue such a generalization is that the notation would unnecessarily

suffer and the important aspects of the theory would, consequently, be obscured.

2.1.2. Portfolio processes. A k-dimensional F-predictable process π = (π1
t , . . . , π

k
t )t∈[0,∞)

is called a portfolio (process) if it is S-integrable in the sense of (vector) stochastic

integration (see §4d in [19]). A portfolio π is called admissible if there exists a constant

a > 0 (possibly depending on π, but not on the state of the world) such that the gains

process Xπ = (Xπ
t )t∈[0,∞), defined as

Xπ
t =

∫ t
0 πs dSs =

k
∑

i=1

∫ t

0
πi

s dSi
s, t ≥ 0,

is bounded from below by −a, i.e., Xπ
t ≥ −a, for all t ≥ 0, a.s. The set of all portfolio

processes π whose gains processes Xπ are admissible is denoted by A. For technical reasons,

which will be clear shortly, we introduce the set Abd of all portfolio processes π whose gains

process Xπ is uniformly bounded from above, as well as from below, i.e., Abd = A∩(−A) =

{π ∈ A : −π ∈ A}.

2.1.3. No Free Lunch with Vanishing Risk. The natural assumption of no arbitrage is

routinely replaced in the literature by the slightly stronger, but still economically feasible,

assumption of no free lunch with vanishing risk (NFLVR). It was shown in the seminal paper

[9] that, when postulated on finite time-intervals [0, t], t ∈ (0,∞), NFLVR is equivalent to

the following statement: for each t ≥ 0, there exists a probability measure Q(t), defined on

Ft, with the following properties:

(1) Q(t) ∼ P|Ft , where P|Ft is the restriction of the probability measure P to Ft, and

(2) the stock-price process S is a Q(t)-local martingale, when restricted to the interval

[0, t].
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It will be a standing assumption that the condition of NFLVR, and, thus, the equivalent

statement above, is satisfied by (St)t∈[0,∞) on finite intervals [0, t], t ∈ (0,∞). Therefore,

for t ≥ 0, the set of all measures Q(t) with the above properties is non-empty. We will

denote this set by Me
t .

2.1.4. Closed market models. It is immediate that, for 0 ≤ s < t, we have the following

relation

Me
s =

{

Q(t)|Fs : Q(t) ∈ Me
t

}

.

The restriction map turns the family (Me
t )t∈[0,∞) into an inversely directed system. In gen-

eral, such a system will not have an inverse limit in the family of probability measures equiv-

alent to P, i.e., there will exist no set Me
∞ with the property that Me

t = {Q|Ft : Q ∈ Me
∞},

for all t. In other words, even though the market may admit no arbitrage (NFLVR) on

any finite interval [0, t], arbitrage opportunities might arise if we allow the trading horizon

to be arbitrarily long. In order to differentiate those cases, we introduce the notion of a

closed market model:

Definition 2.2. A market model (St)t∈[0,∞) is said to be closed if there exists a set Me
∞ of

probability measures Q ∼ P such that, for every t ≥ 0, Q(t) ∈ Me
t if and only if Q(t) = Q|Ft

for some Q ∈ Me
∞.

Remark 2.3. Most market models used in practice are not closed. The simplest exam-

ple is Samuelson’s model, where the filtration is generated by a single Brownian motion

(Wt)t∈[0,∞), and the price of the risky asset satisfies dSt = St(µ dt + σ dWt), for some

constants µ ∈ R, σ > 0. For t ≥ 0, the only element in Me
t corresponds to a Girsanov

transformation. However, as t → ∞, this transformation becomes “more and more singu-

lar” with respect to P|Ft , and no Q as in Definition 2.2 can be found (see [21], Remark on

p. 193).

2.2. Convex risk measures.

2.2.1. Axioms of convex risk measures. One of the main reasons for the wide use and

general acceptance of the theory of risk measures lies in its axiomatic nature. Only the most

fundamental traits of an economic agent, such as risk aversion, are encoded parsimoniously

into the axioms of risk measures. The resulting theory is nevertheless rich and relevant to

the financial practice. The pioneering notion of a coherent risk measure (see [2]) has, soon

after its conception, been replaced by a very similar, but more flexible, notion of a convex

risk measure (introduced in [11, 14, 16 and 17]):
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Definition 2.4. A functional ρ mapping L∞(Ω,F , P) into R is called a convex risk

measure if, for all f, g ∈ L∞, we have

(1) ρ(f) ≤ 0 if f ≥ 0, a.s.; (anti-positivity)

(2) ρ(f − m) = ρ(f) + m, m ∈ R; (cash-translativity)

(3) ρ(λf + (1 − λ)g) ≤ λρ(f) + (1 − λ)ρ(g), λ ∈ [0, 1]. (convexity)

2.2.2. Replication invariance. The idea that two risky positions which differ only by a

quantity replicable in the market at no cost, should have the same risk content has appeared

very soon after the notion of a risk measure has been applied to the study of financial

markets. In order to expand on this tenet, let us, temporarily, pick an arbitrary time

T > 0, and suppose that we are dealing with a finite-horizon financial market (St)t∈[0,T ],

where all finite-horizon analogues of the assumptions and definitions above hold. In such

a situation, the investors will trade in the market in order to reduce the overall risk of the

terminal position, as measured by the risk measure ρ defined on L∞(FT ). In other words,

the combination of the financial market and the risk measure ρ will give rise to a new risk

measure, denoted herein by ρ(·;T ), given by

ρ(f ;T ) = inf
π∈Abd

ρ
(

f +
∫ T
0 πs dSs

)

.

We will use the T -notation to stress the dependence of this risk measure on the specific

maturity date. In addition to the Axioms (1)-(3) from Definition 2.4, the functional ρ(·;T )

satisfies the following property:

(4) ρ(f ;T ) = ρ(f +
∫ T
0 πs dSs;T ) for all f ∈ L∞(FT ), π ∈ Abd. (replication invariance)

Definition 2.5. A mapping ρ(·;T ) : L∞(Ω,FT , P|FT
) → R is called a replication-

invariant convex risk measure if it satisfies axioms (1)-(3) of Definition 2.4 and (4)

above.

The notion of replication invariance was introduced in [11], and further developed and

generalized in [15]. An accessible discussion of coherent and convex risk measures, as well

as the notion of replication invariance, can be found in chapter 4 of [13].

Remark 2.6.

(1) When the market model is complete, the restrictions imposed by adding the replica-

tion invariance axiom will necessarily force any replication-invariant risk measure to

coincide with the replication price functional (the “Black-Scholes price”). It is only

in the setting of incomplete markets that the interplay between risk measurement

and trading in the market produces a non-trivial theory.

(2) It may seem somewhat counterintuitive at the first glance that a replication-invariant

risk measure should assign the same risk content to the constant S0 as to the ran-

dom variable ST (where (St)t∈[0,T ] is a price process of a traded risky asset). The
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resolution can be found in the fact that the risk contained in ST is virtual since

it can be hedged away completely in the financial market. Replication-invariant

measures are, however, typically not law-invariant, i.e., there are random variables

with the same P-distribution as ST whose risk content is possibly much larger.

The following examples of (maturity-specific) replication-invariant convex risk measures

are very well known (see [13]). We use them as test cases for the notion of maturity inde-

pendence introduced in Definition 3.1, below. One can easily show that all of them satisfy

axioms (1)-(4).

Example 2.7.

(1) Super-hedging. For f ∈ L∞(FT ), let ρ̂(f ;T ) be the super-hedging price of f ,

i.e.,

ρ̂(f ;T ) = inf
{

m ∈ R : ∃π ∈ Abd,
∫ T
0 πs dSs ≥ m + f, a.s.

}

.

The risk measure ρ̂(·;T ) is extremal in the sense that, for each replication-invariant

convex risk measure ρ(·;T ), we have ρ̂(f ;T ) ≥ ρ(f ;T ), for all f ∈ L∞(FT ).

(2) Entropic risk measures. For f ∈ L∞(FT ), the entropic risk measure ρ(f ;T ),

with risk aversion coefficient γ > 0, is defined as the unique solution ρ ∈ R to the

indifference-pricing equation

sup
π∈Abd

E

[

− exp
(

−γ
(

x + ρ + f +
∫ T
0 πs dSs

))]

=

sup
π∈Abd

E

[

− exp
(

−γ(x +
∫ T
0 πs dSs)

)]

, x ∈ R.
(2.1)

The value ρ(−f ;T ) at the negative −f of f is also known as the exponential

indifference price ν(f ;T ) of f . The measure ρ(·;T ) admits a simple dual repre-

sentation

ρ(f ;T ) = sup
Q∈Me

T

(

EQ[−f ] − 1
γ H(Q|P;T )

)

, (2.2)

where the relative entropy H(Q|P;T ) of Q ∈ Me
T with respect to P is given

by

H(Q|P;T ) = EQ

[

ln

(

dQ

d(P|FT
)

)]

∈ [0,∞].

(3) General replication-invariant risk measures. Under appropriate topological

regularity conditions replication-invariant convex risk measure ρ(·;T ) : L∞(FT ) →

R admits the following dual representation

ρ(f ;T ) = sup
Q∈Me

T

(

EQ[−f ] − α(Q)
)

, (2.3)

for some convex penalty function α : Me
T → [0,∞]. See Theorem 17, p. 445 in [11]

for the proof in the discrete-time case. The proof in our setting is similar.
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3. Maturity-independent risk measures

3.1. The need for maturity independence. The classical notion of a convex risk mea-

sure, as well as its replication-invariant specialization, is inextricably linked to a specific

maturity date with respect to which risk measurement is taking place while ignoring all

other time instances. On the other hand, a fundamental property of financial markets is

that they facilitate transfers of wealth among different time points as well as between dif-

ferent states of the world. The notion of replication invariance, introduced above, abstracts

the latter property and ties it to the decision-theoretic notion of a convex risk measure.

The former property, however, has not yet been incorporated into the risk measurement

framework in the same manner in the existing literature. One of the goals herein is to do

exactly this. We, then, pose and address the following question:

“Is there a class of risk measures that are not constructed in reference to a

specific time instance and can be, thus, used to measure the risk content of

claims of all (arbitrary) maturities?”

Equivalently, we wish to avoid the case when two versions of the same risk measure (differing

only on the choice of the maturity date) give different risk values to the same contingent

claim1.

Before we proceed with formal definitions, let us recall some of the fundamental prop-

erties of the arbitrage-free pricing (“Black-Scholes”) functional, ρBS , in the context of a

complete financial market. For a “regular-enough” contingent claim f , the value ρBS(f)

is defined as the capital needed at inscription to replicate it perfectly. The functional ρBS

satisfies the axioms of convex risk measures and is replication-invariant. Moreover, it is

per se unaffected by the expiration date of the generic claim f .

When markets are incomplete, a much more interesting set of phenomena occurs, as there

is no canonical (“Black-Scholes”) pricing mechanism. We shall see that, interestingly, some

traditional and widely used risk measures are not maturity-independent. In other words,

under these measures, indifference prices of the same contingent claim, but calculated in

terms of two distinct maturities will, in general, differ.

1 One could object to the above reasoning by pointing out that different maturities should give rise to

different risk assessments due to the effect of time impatience. In response, we take a view that the market

is efficient in the sense that all time impatience is already incorporated in the investment possibilities

present in it. More specifically, we remind the reader that the assumption that S
0
≡ 1 effectively means

that all contingent claims are quoted in terms of time-0 currency. As pointed out in Remark 2.1, one can

easily extend the theory presented here to the more general case where the time-value of money is modeled

explicitly. We feel, however, that such a generalization would only obscure the central issue herein and

render the present paper less accessible.
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3.2. Definition of maturity independence. Let L denote the set of all bounded random

variables with finite maturities, i.e.,

L = ∪t≥0L
∞(Ft).

The set L will serve as a natural domain for the class of risk measures we propose in the

sequel. Note that L contains all Ft-measurable bounded contingent claims, for all times

t ≥ 0, but it avoids the (potentially pathological) cases of random variables in L∞(Fτ ),

where τ is a finite, but possibly unbounded, stopping time.

We are now ready to define the class of maturity-independent risk measures. With a

slight abuse of notation, we still use the symbol ρ. In contrast to their maturity-dependent

counterparts ρ(·;T ), however, all maturity-specific notation has vanished.

Definition 3.1. A functional ρ : L → R is called a maturity-independent convex risk

measure if it has the following properties for all f, g ∈ L, and λ ∈ [0, 1]:

(1) ρ(f) ≤ 0, ∀ f ≥ 0, (anti-positivity)

(2) ρ(λf + (1 − λ)g) ≤ λρ(f) + (1 − λ)ρ(g), (convexity)

(3) ρ(f − m) = ρ(f) + m, ∀m ∈ R, and (cash-translativity)

(4) for all t ≥ 0, and π ∈ Abd, ρ(f +
∫ t
0 πs dSs) = ρ(f).

(replication and maturity independence)

We note that the properties which differentiate the maturity-independent risk measures

from the existing notions are the choice of the domain L on the one hand, and the validity

of axiom (4) for all maturities t ≥ 0 on the other.

3.3. Motivational examples. We start off our investigation of maturity-independent risk

measures by giving three examples - one of an extremal such risk measure, one of a class

of maturity-independent risk measures for closed markets, and one in which the maturity

independence property fails.

3.3.1. Super-hedging prices. The simplest example of a maturity-independent risk measure

is the super-hedging price function ρ̂ : L → R given by

ρ̂(f) = inf
{

m ∈ R : ∃π ∈ Abd, m +
∫∞

0 πs dSs ≥ f, a.s.
}

.

It is easy to see that it satisfies all axioms in Definition 3.1. As in the maturity-dependent

case, ρ̂ has the extremal property ρ̂(f) ≥ ρ(f), for any f ∈ L and any maturity-independent

risk measure ρ.

3.3.2. The case of closed markets. The dual characterization (2.3) of replication-invariant

risk measures for finite maturities can be used to construct maturity-independent risk

measures when the market model is closed (see Definition 2.2 and paragraph 2.1.4 for

notation and terminology). Indeed, let α : Me
∞ → [0,∞] be a proper function (i.e.,
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satisfying α(Q) < ∞, for at least one Q ∈ Me
∞.) It is not difficult to check that the

functional ρ : L → R, defined by

ρ(f) = sup
Q∈Me

∞

(

EQ[−f ] − α(Q)
)

,

is a maturity-independent risk measure. We have already seen that many market models

used in practice are not closed. The natural construction used above will clearly not be

applicable in those cases and, thus, an entirely different approach will be needed.

3.3.3. Risk measures lacking maturity independence. It is tempting to assume that a matu-

rity-independent risk measure ρ can always be constructed by identifying a maturity date

t associated with a contingent claim f , and setting ρ(f) = ρ(f ; t), for some replication-

invariant risk measure ρ(·; t). As shown in the following two examples, this construction

will not always be possible even if we restrict our attention to the well-explored class of

entropic risk measures. Both examples are based on the entropic risk measure (see Exam-

ple 2.7 (2)). Note that the first example can easily be fitted in the framework described in

section 2 by extending its paths to be constant on intervals [0, 1), [1, 2) and [2,∞).

a) A non-compliance example on a finite probability

space. We present a simple two-period example in which en-

tropic risk measurement gives different results for the same,

time-1-measurable contingent claim f , when considered at

time 1 and time 2. The market structure is described by the

simple tree in Figure 1, where the (physical) probability of

each of the branches leaving the initial node is 1
3 , and the

conditional probabilities of the two contingencies (leading to

S4 and S5) after the node S3 are equal to 1
3 and 2

3 , respec-

tively. One can implement the described situation on a 4-

element probability space Ω = {ω1, ω2, ω3, ω4}, as in Figure

1, with P[ω1] = P[ω2] = 1/3, P[ω3] = 1/9 and P[ω4] = 2/9.

S0

S1 S1

ω1

S2 S2

ω2

S3

S4

ω3

S5

ω4

Figure 1. The market tree

There are two financial instruments: a riskless bond S0 ≡ 1, and a stock S = S1 whose

price is denoted by S0, . . . , S5 for various nodes of the information tree, such that the

following relations hold:

S0 = S2, S2 = 1
2

(

S1 + S3

)

, S1 6= S3, S3 = 1
2

(

S4 + S5

)

, S4 6= S5.

This implies, in particular, that the market is arbitrage-free, and, due to its incompleteness,

the set of equivalent martingale measures is larger that just a singleton. Next, we consider

a family {fa}a>0 of contingent claims defined by

fa(ω) =







0, ω = ω1, ω2,

a, ω = ω3, ω4.



MATURITY-INDEPENDENT RISK MEASURES 10

We are going to compare ρ(fa; 1) and ρ(fa; 2) where ρ(fa; t), t = 1, 2, is the value of the

entropic risk measure (as defined in (2.1) above) of the contingent claim fa, seen as time-t

random variable (note that fa is F1-measurable, for all a).

Let us first focus on ρ(f ; 2). The set of all martingale measures is given by M =
{

Qν : ν ∈ (−1
6 , 1

3 )
}

, where

Qν(ω) =















1
3 − ν, ω = ω1,

1
3 + 2ν, ω = ω2,

1
2

(

1
3 − ν

)

, ω = ω3, ω4.

By a finite-dimensional analogue of (2.2), we have

ρ(fa; 2) = sup
ν∈(−1/6,1/3)

(

EQν

[−fa] − h2(ν)
)

= sup
ν∈(−1/6,1/3)

(

− a(1/3 − ν) − h2(ν)
)

, (3.1)

where, as one can easily check, the relative-entropy function h2 is given by

h2(ν) = h̄2(ν) − inf
µ

h̄2(µ),

where

h̄2(ν) = Qν [ω1]
P[ω1]

ln
(

Qν [ω1]
P[ω1]

)

+ Qν [ω2]
P[ω2]

ln
(

Qν [ω2]
P[ω2]

)

+ Qν [ω3]
P[ω3]

ln
(

Qν [ω3]
P[ω3]

)

+ Qν [ω4]
P[ω4]

ln
(

Qν [ω4]
P[ω4]

)

.

Similarly,

ρ(fa; 1) = sup
ν∈(−1/6,1/3)

(

EQν

[−fa] − h1(ν)
)

= sup
ν∈(−1/6,1/3)

(

− a(1/3 − ν) − h1(ν)
)

, (3.2)

where the function h1 is given by h1(ν) = h̄1(ν) − infν h̄1(ν), with

h̄1 (ν) = Qν[ω1] ln
(

Qν [ω1]
P[ω1]

)

+ Qν [ω2] ln
(

Qν [ω2]
P[ω2]

)

+ (Qν [ω3] + Qν [ω4]) ln
(

Qν [ω3]+Qν [ω4]
P[ω3]+P[ω4]

)

.

The expressions (3.1) and (3.2) can be seen as the Legendre-Fenchel transforms of the

translated entropy functions h2(1/3 − ν) and h1(1/3 − ν). Therefore, by the bijectivity

of these transforms and the convexity of the functions h1 and h2, the equality ρ(fa; 1) =

ρ(fa; 2), for all a > 0, would imply that h1 = h2. It is now a matter of a straightforward

computation to show that that is, in fact, not the case. Thus, the two values do not

coincide, i.e., for at least one a > 0,

ρ(fa; 1) 6= ρ(fa; 2).

b) A non-compliance example in a diffusion market model.

We consider a financial market as in section 2, with k = 1 (one risky asset) and an

augmentation of the filtration generated by two independent driving Brownian motions

(W 1
t )t∈[0,∞) and (W 2

t )t∈[0,∞). It will be enough to consider a stock price process with

stochastic volatility of the form

dSs = Ss(µ ds + σ(Bs) dWs), (3.3)
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s ≥ 0, where Bt = ρW 1
t +

√

1 − ρ2W 2
t is a Brownian motion correlated with W 1, with

the correlation coefficient ρ ∈ (0, 1). It will be convenient to introduce the market price

of risk λ(y) = µ/σ(y), assuming throughout that λ : R → (0,∞) is a strictly increasing

C1-function with range of the form (ε,M) for some constants 0 < ε < M < ∞. In addition

to its usefulness in the sequel, this assumption will guarantee that the condition NFLVR

holds on each finite time interval [0, t]. To facilitate the dyamic-programming approach,

we assume that trading starts at time t, after which two maturities T, T̄ , with T < T̄ , are

chosen.

Let CT = −BT model the payoff of a contingent claim which is, clearly, nonreplicable.

The value of the time-t entropic (γ = 1) risk measure ρt(CT ;T ) equals the indifference

price νt(−CT ;T ) of the claim BT measured on the trading horizon [t, T ]. According to [32],

ρt(CT ;T ) admits a representation in terms of a solution to a partial differential equation.

More precisely, taking into account the fact that neither the payoff CT nor the dynamics

of the volatility depend on the stock price, we have ρt(CT ;T ) = p(t,−Bt), a.s., where the

function p : [0, T ] × R → R is a classical solution of the quasilinear equation
{

pt + Lfp + 1
2(1 − ρ2)p2

y = 0

p(T, y) = y,
(3.4)

where Lfp = 1
2pyy +

(

fy/f − ρλ(y)
)

py. The function f : [0, T ] × R → R is the unique

solution to the linear problem
{

ft + Af = 0

f(T, y) = 1,
(3.5)

where Af = 1
2fyy − ρλ(y)fy −

1
2(1− ρ2)λ2(y)f . Standard arguments show that f is of class

C1,3 and admits a representation in the manner of Feynman and Kac as

f(t, y) = E[e
R T
t

(1−ρ2)
2

λ2(Ys) ds|Yt = y], (t, y) ∈ [0, T ] × R, (3.6)

where {Ys}s∈[t,∞) is the unique strong solution to dYs = dBs − ρλ(Ys) ds, Yt = y. In

particular, there exists a constant C > 1 such that 1 ≤ f(t, y) ≤ C, for (t, y) ∈ [0, T ] × R.

Similarly, the indifference price νt(−CT ; T̄ ) (which equals the value ρt(CT ; T̄ ) of the

maturity-T̄ entropic risk measure ρt(·; T̄ ) applied to the same contingent claim, only on

the longer horizon [0, T̄ ], T̄ > T ) can be represented via p̄(t, y), where p̄ solves
{

p̄t + Lf̄ p̄ + 1
2(1 − ρ2)p̄2

y = 0

p̄(T, y) = y.
(3.7)

Herein, Lf̄ is given as in (3.5) with f replaced by the function f̄ which solves
{

f̄t + Af̄ = 0,

f̄(T̄ , y) = 1.
(3.8)
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Just like f , the function f̄ admits a representation analogous to (3.6) and a uniform bound

1 ≤ f̄(t, y) ≤ C̄, for (t, y) ∈ [0, T ] × R.

The goal of this example is to show that the indifference prices ν(BT ;T ) and ν(BT ; T̄ ),

or, equivalently, the entropic risk measures ρt(CT ;T ) and ρt(CT ; T̄ ), do not always coincide,

i.e., that p(t, y) and p̄(t, y) differ for at least one choice of (t, y) ∈ [0, T )×R. We start with

an auxiliary result, namely,

fy(T, y)

f(T, y)
6=

f̄y(T, y)

f̄(T, y)
, for each y ∈ R. (3.9)

In order to establish (3.9), we note that the function g : [0, T ]×R → R, defined by g = fy,

is a classical solution to
{

gt + Bg = 0

g(T, y) = 0,
(3.10)

where

Bg = 1
2gyy − ρλ(y)gy − A(y)g − B(t, y),

with A(y) = ρλ′(y) + 1
2(1 − ρ2)λ2(y) and B(t, y) = (1 − ρ2)λ(y)λ′(y)f(t, y).

Thanks to the assumptions placed on ρ and λ, and the positivity of f , we have

A(y) > 0 and B(t, y) > 0, for all (t, y) ∈ [0, T ] × R. (3.11)

The function ḡ = f̄y is defined in an analogous fashion (only on the larger domain

[0, T̄ ] × R) and a similar set of properties can be derived. Since fy(T, y) = 0 for all y ∈ R,

it will be enough to show that f̄y(T, y) > 0 for all y ∈ R. This follows immediately from

the strict inequalities in (3.11) and the Feynman-Kac representation

ḡ(T, y) = f̄y(T, y) = E[

∫ T̄

T
B(t, Yt)e

R T̄

t
A(Ys) ds dt|YT = y], y ∈ R. (3.12)

Having established (3.9), we conclude that, thanks to the smoothness of the functions

f and f̄ , the operators Lf and Lf̄ differ in the ∂
∂y -coefficient in some open neighbourhood

N of the line {T}×R in [0, T ]×R. Assuming that p̄ and p coincide in N , subtracting the

equations (3.4) and (3.7) yields
(

fy

f
(t, y) −

f̄y

f̄
(t, y)

)

p̄y(t, y) = 0, for (t, y) ∈ N . (3.13)

Equation (3.9) now implies that p̄y = 0 on N , which is clearly in contradiction with the

terminal condition p̄(T, y) = y, y ∈ R. Therefore, there exists (t, y) ∈ N \ {T} × R ⊆

[0, T ) × R such that p(t, y) 6= p̄(t, y).
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4. Forward Entropic Risk Measures (FERM)

In the previous section, we saw three examples of risk measures and their dependence

on the specific choice of the maturity date. In particular, we pointed out that the super-

hedging risk measure in 3.3.1, as well as the ones constructed in 3.3.2, for the class of closed

markets, are maturity-independent. However, both these classes are rather restrictive.

Indeed, the one associated with super-hedging is extremely conservative, while the other

requires the rather stringent assumption of market closedness.

In this section, we introduce a new family of convex risk measures that have the ma-

turity independence property and, at the same time, are applicable to a wide range of

settings. Their construction is based on the idea mentioned in the introductory paragraph

of Subsection 3.3.3, but avoids the pitfalls responsible for the failure of examples a) and b)

following it.

The risk measures we are going to introduce are closely related to indifference prices. The

novelty of the approach is that the underlying risk preference functionals are not tied down

to a specific maturity, as it has been the case in the standard expected utility formulation.

Rather, they can be seen as specified at initiation and subsequently “generated” across all

times. This approach was proposed by the first author and M. Musiela (see [25–29]) and

is briefly reviewed below.

4.1. Forward exponential performances. The notion of a forward performance process

has arisen from the search for ways to measure the performance of investment strategies

across all times in [0,∞). In order to produce a nontrivial such object, we look for a random

field U = Ut(ω, x) defined for all times t ≥ 0 and parametrized by a wealth argument x

such that the mapping x 7→ Ut(ω, x) admits the classical properties of utility functions.

More precisely, we have the following definition:

Definition 4.1. A mapping U : [0,∞) × Ω × R → R is called a performance random

field if

(1) for each (t, ω) ∈ [0,∞)×Ω, the mapping x 7→ Ut(x, ω) defines a utility function: it

is strictly concave, strictly increasing, continuously differentiable and satisfies the

Inada conditions limx→∞ U ′(x) = 0 and limx→−∞ U ′(x) = +∞,

(2) U·(·, ·) is measurable with respect to the product of the progressive σ-algebra on

Ω × [0,∞) and the Borel σ-algebra on R, and

(3) E |Ut(x)| < ∞, for all (t, x) ∈ [0,∞) × R.

Remark 4.2.

(1) The last requirement in Definition 4.1 implies, in particular, that E |Ut(ξ)| < ∞,

for all random variables ξ ∈ L∞.

(2) It is possible to construct a parallel theory where the performance functions Ut(ω, ·)

are defined on the positive semi-axis (0,∞). We choose the domain R for the wealth
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argument x because it leads to a slightly simpler analysis, and because the examples

to follow will be based on the exponential function.

On an arbitrary trading horizon, say [s, t], 0 ≤ s < t < ∞, the investor whose pref-

erences are described by the random field U seeks to maximize the expected investment

performance:

Vs(x) = esssup
π∈Abd

E[Ut(X
x,π
t )|Fs], 0 ≤ s ≤ t. (4.1)

Herein, Xx,π denotes the investor’s wealth process, x ∈ R the investor’s initial wealth

at time s, and π a generic investment strategy belonging to Abd (the set of admissible

policies introduced in Subsection 2.1.2.) To concentrate on the new notions, we abstract

throughout from control and state constraints, as well as the most general specification of

admissibility requirements.

It has been argued in [29] that the class of performance random fields with the additional

property

Vt(x) = Ut(x), a.s. ∀ t ∈ [0,∞), x ∈ R, (4.2)

possesses several desirable properties and gives rise to an analytically tractable theory.

Definition 4.3. A random field U satisfying (4.2), where V is defined by (4.1), is called

self-generating.

Remark 4.4. We remind the reader that a classical example of a self-generating performance

random field (albeit only on the finite horizon [0, T ]) is the traditional value function,

defined as

Ut(x) = esssup
π∈Abd

E[UT (Xx,π
T )|Ft], t ∈ [0, T ], x ∈ R,

where T is a prespecified maturity beyond which no investment activity is measured, and

UT (·, ·) : Ω × R → R is a classical (state-dependent) utility function (see, for example,

[20, 22, 23 and 33]). When the horizon is infinite, such a construction will not produce any

results. Indeed, there is no appropriate time for the final datum to be given.

What (4.1) and (4.2) tell us is that (under additional regularity conditions) the sought-

after criterion (performance random field) U must have the property that the stochastic

process Ut(X
x,π
t ) is a supermartingale for an arbitrary control π ∈ Abd and becomes “closer

and closer” to a martingale as the controls get “better and better”. In the case when the

class of control problems (4.1) actually admits an optimizer π∗ ∈ Abd (or in some larger,

appropriately chosen, class), the composition Ut(X
x,π∗

t ) becomes a martingale.

In the traditional framework, as already mentioned in Remark 4.4, the datum (terminal

utility) is assigned at some fixed future time T . Alternatively, in the case of an infinite

time horizon, it is more natural to think of the datum u0 : R → R as being assigned at time

t = 0, and a self-generating performance random field Ut chosen so that U0(x) = u0(x). It
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is because of this interpretation that the self-generating performance random fields may,

also, be referred to as forward performances.

The notion of forward performance processes was first developed for binomial models in

[25] and [26] and later generalized to diffusion models with a stochastic factor ([27]) and,

more recently, to models of Itô asset price dynamics (see, among others, [27] and [29], as

well as [4]). A related stochastic optimization problem that allows for semimartingale price

processes and random horizons can be found in [8]. A similar notion of utilities without

horizon preference was developed in [18]; therein, asset prices are taken to be lognormal,

leading to deterministic forward solutions.

While traditional performance random fields on finite horizons are straightforward to

construct and characterize, producing a “forward” performance random field on [0,∞) from

a given initial datum u0 is considerably more difficult. Several examples of such a construc-

tion, all based on the exponential initial datum, are given in the following subsection. These

random fields are the most important building blocks for the class of maturity-independent

risk measures presented in subsection 4.2, below.

Definition 4.5. A performance random field U is called a forward exponential per-

formance if

a) it is self-generating, and

b) there exists a constant γ > 0, such that

U0(x) = −e−γx, x ∈ R. (4.3)

The construction presented below can be found in [28]. The assumptions and definitions

from section 2 will be used in the sequel without explicit mention. For the statement of

Theorem 4.8 (and, also, for some of the later sections), we introduce an additional set of

assumptions on the structure of (St)t∈[0,∞). Before we do, we remind the reader that the

Moore-Penrose pseudo-inverse of a real m×n matrix M is the unique real n×m matrix A+

such that AA+A = A and A+AA+ = A+, and the matrices AA+ and A+A are symmetric.

Assumption 4.6. The filtration F is the usual augmentation of the filtration generated

by a d-dimensional Brownian motion (Wt)t∈[0,∞) = (W 1
t , . . . ,W d

t )t∈[0,∞) and (St)t∈[0,∞) =

(S1
t , . . . , Sk

t )t∈[0,∞) is an Itô-process of the form

dSi
t = Si

t

(

µi
t dt +

d
∑

j=1

σji
t dW j

t

)

, (4.4)

for t ≥ 0, i = 1, . . . , k and j = 1, . . . , d, where the processes (µi
t)t∈[0,∞) and (σji

t )t∈[0,∞),

are F-progressively measurable and bounded uniformly by a deterministic constant on each

segment [0, t], t > 0.

Moreover, the matrix σ admits a progressively measurable and bounded Moore-Penrose

pseudo-inverse σ+. Consequently, the d-dimensional bounded and progressively-measurable
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process (λt)t∈[0,∞), given by

λj
t =

k
∑

i=1

(σ+)jit µi
t, t ≥ 0, a.s., (4.5)

satisfies
d
∑

j=1

σji
t λj

t = µi
t, i = 1, . . . , k, t ≥ 0, a.s. (4.6)

Remark 4.7. It is one of the main properties of the Moore-Penrose inverse that λt is the

smallest (in Euclidean norm) solution of the linear system σtλt = µt. It would, therefore,

be enough to ask in Assumption 4.6 that some progressively measurable solution to (4.6)

be bounded, uniformly on each segment [0, t].

Theorem 4.8 (Theorem 4 in [28]). Under conditions and notation of Assumption 4.6, let

(δt)t∈[0,∞) and (φt)t∈[0,∞) be k-dimensional F-progressive processes such that σtσ
+
t δt = δt,

for all t ≥ 0, a.s. Define two continuous (one-dimensional) processes (Yt)t∈[0,∞), (Zt)t∈[0,∞)

by

dYt = Ytδt(λtdt + dWt), Y0 = 1/γ, (4.7)

and

dZt = ZtφtdWt, Z0 = 1, (4.8)

where we assume that δ and φ are regular enough for the integrals in (4.7) and (4.8) to be

defined. Moreover, we assume that Z is a positive martingale, and that, when restricted to

any finite interval [0, t], Y is uniformly bounded from above and away from zero.

With the process (At)t∈[0,∞) be defined as

At =

∫ t

0

∥

∥σsσ
+
s (λs + φs) − δs

∥

∥

2
ds, (4.9)

the random field U , given by

Ut(x;ω) = −Zt exp

(

−
x

Yt
+

At

2

)

, (4.10)

is a forward exponential performance. In particular, for 0 ≤ s ≤ t and ξ ∈ L∞(Fs), we

have

Us(ξ) = esssup
π∈Abd

E

[

Ut

(

ξ +

∫ t

s
πudSu

)
∣

∣

∣

∣

Fs

]

, a.s. (4.11)

Remark 4.9. In (4.10) above, one can give a natural financial interpretation to the processes

Y (which normalizes the wealth argument) and Z (which appears as a multiplicative factor).

One might think of Y as a benchmark (or a numéraire) in relation to which we wish to

measure the performance of our investment strategies. The values of the process Z, on the

other hand, can be thought of as Radon-Nikodym derivatives of the investor’s subjective

probability measure with respect to the measure P.
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4.2. Forward entropic risk measures. We are now ready to introduce the forward

entropic risk measures (FERM). We start with an auxiliary object, denoted by ρ(C; t).

Definition 4.10. Let U be the forward exponential performance defined in (4.10), and let

t ≥ 0 be arbitrary, but fixed. For a contingent claim written at time s = 0 and yielding a

payoff C ∈ L∞(Ft), we define ρ(C; t) ∈ R as the unique solution of

sup
π∈Abd

E

[

Ut

(

x +

∫ t

0
πsdSs

)]

= sup
π∈Abd

E

[

Ut

(

x + ρ(C; t) + C +

∫ t

0
πsdSs

)]

, ∀x ∈ R.

(4.12)

The mapping ρ(·; t) : L∞(Ft) → R is called the t-normalized forward entropic mea-

sure.

One can, readily, check that the equation (4.12) indeed admits a unique solution (inde-

pendent of the initial wealth x), so that the t-normalized forward entropic measures are

well defined. The reader can convince him-/herself of the validity of the following result:

Proposition 4.11. The t-normalized forward entropic risk measures are replication-inva-

riant convex risk measures on L∞(Ft), for each t ≥ 0.

The fundamental property in which forward entropic risk measures differ from a generic

replication-invariant risk measure (see examples in Subsection 3.3.2) is the following:

Proposition 4.12. For 0 ≤ s < t < ∞, and C(s) ∈ L∞(Fs), consider the s- and t-

normalized forward entropic measures ρ(C(s); s) and ρ(C(s); t) applied to the contingent

claim C(s). Then,

ρ(C(s); s) = ρ(C(s); t). (4.13)

More generally, for C(r) ∈ L∞(Fr), where 0 ≤ r < s < t < ∞, we have

ρ(C(r); s) = ρ(C(r); t). (4.14)

Proof. We are only going to establish (4.13) since (4.14) follows from similar arguments.

To this end, note that a self-financing policy π ∈ Abd if and only if π1[0,t] ∈ Abd and

π1(t,∞) ∈ Abd. Using Definition 4.10 at x = 0, we obtain

U0(0) = sup
π∈Abd

E[Ut(ρ(C(s); t) + C(s) +

∫ t

0
πu dSu)]

= sup
π,π′∈Abd

E

[

E[Ut(ρ(C(s); t) + C(s) +

∫ s

0
πu dSu +

∫ t

s
π′

u dSu)|Fs]

]

= sup
π∈Abd

E

[

esssup
π′∈Abd

E[Ut(ρ(C(s); t) + C(s) +

∫ s

0
πu dSu +

∫ t

s
π′

u dSu)|Fs]

]

= sup
π∈Abd

E

[

Us(ρ(C(s); t) + C(s) +

∫ s

0
πu dSu)

]

,
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where we used the semigroup property (4.11) of U and the fact that the random variable

ρ(C(s); t) + C(s) +
∫ s
0 πu dSu is an element of L∞(Fs), for all π ∈ Abd. We compare

the obtained expression with the defining equation (4.12) to conclude that ρ(C(s); t) =

ρ(C(s); s). �

We are now ready to define the forward entropic risk measures:

Definition 4.13. For C ∈ L, define the earliest maturity tC ∈ [0,∞) of C as

tC = inf {t ≥ 0 : C ∈ Ft} . (4.15)

The forward entropic risk measure ν : L → R is defined as

ρ(C) = ρ(C; tC), (4.16)

where ρ(C; tC) is the value of the tC-normalized forward entropic risk measure, defined in

(4.12), applied to the contingent claim C.

The focal point of the present section is the following theorem:

Theorem 4.14. The mapping ρ : L → R is a maturity-independent risk measure.

Proof. We need to verify the axioms (1)-(4) of Definition 3.1. Axioms (1) and (3) follow

directly from elementary properties of the t-normalized forward risk measures. To show

axiom (2) we take λ ∈ (0, 1) and C1, C2 ∈ L. Then, since λC1 + (1 − λ)C2 ∈ Fmax(tC1
,tC2

),

we have max(tC1 , tC2) ≥ tλC1+(1−λ)C2
. Therefore,

ρ(λC1 + (1 − λ)C2) = ρ(λC1 + (1 − λ)C2; tλC1+(1−λ)C2
)

= ρ(λC1 + (1 − λ)C2;max(tC1 , tC2)),

where we used (4.13). Using property (4.13) and the fact that the t-forward entropic risk

measures are convex risk measures, we get

ρ(λC1 + (1 − λ)C2; ) ≤ λρ(C1;max(tC1 , tC2)) + (1 − λ)ρ(C2;max(tC1 , tC2))

= λρ(C1; tC1) + (1 − λ)ρ(C2; tC2)

= λρ(C1) + (1 − λ)ρ(C2).

It remains to check the replication and maturity independence axiom (4). To this end,

we let ξ =
∫∞

0 πudSu for some portfolio process π ∈ Abd. We need to show that

ρ(C + ξ) = ρ(C),

for any C ∈ L. Observe that max(tC , tξ) ≥ tC+ξ and, therefore, by (4.13) and (4.16), we

have

ρ(C + ξ) = ρ(C + ξ; tC+ξ) = ρ(C + ξ;max(tC , tξ)).

On the other hand, Proposition 4.11, the form of ξ and (4.13) yield

ρ(C + ξ;max(tC , tξ)) = ρ(C;max(tC , tξ)) = ρ(C; tC) = ρ(C),
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establishing axiom (4). �

Next, we provide an explicit representation of the forward entropic risk measures.

Theorem 4.15. Let Y,Z, A and Ut(·) be as in Theorem 4.8. For C ∈ L, its forward

entropic risk measure is given by

ρ(C) = inf
π∈Abd

( 1

γ
ln E[−Ut(C +

∫ t

0
πs dSs)]

)

, for any t ≥ tC , (4.17)

where tC is defined in (4.15).

Proof. Equation (4.12) (with x = −ρ(C; t) and t ≥ tC) and the property (4.11) of the

random field U , yield that

− exp(γρ(C)) = sup
π∈Abd

E[Ut(C +

∫ t

0
πs dSs)], for any t ≥ tC . (4.18)

By (4.11), the right-hand side of (4.18) is independent of t for t ≥ tC . �

4.3. Relationship with dynamic risk measures. Before we present concrete examples

of maturity-independent risk measures in section 5, let us briefly discuss their relationship

with the dynamic risk measures (see the introduction for references). A family of mappings

ρs(·; t) : L∞(Ft) → L∞(Fs), where 0 ≤ s ≤ t ≤ T , with T ∈ [0,∞], is said to be a dynamic

(time-consistent) risk measure if each ρs(·; t) satisfies the analogues of the axioms of

convex risk measures and the semi-group property

ρs(−ρt(f ;u); t) = ρs(f ;u), 0 ≤ s ≤ t ≤ u ≤ T,

holds. Using a version of Definition 4.13 and Theorem 4.14, the reader can readily check

that each replication-invariant dynamic risk measure defined on the whole positive semi-

axis [0,∞) (i.e., when T = ∞) gives rise to a maturity-independent risk measure. Under

certain conditions, the reverse construction can be carried out as well (details will be

presented in [34]).

The philosophies of the two approaches are quite different, though. Perhaps the best way

to illustrate this point is through the analogy with the expected utility theory. Dynamic

risk measures correspond to the traditional utility framework where a system of decisions

relating various maturity dates is interlaced together through a consistency criterion. The

maturity-independent risk measures take the opposite point of view and correspond to

forward performances. While the dynamic risk measures are natural in the case T < ∞,

the maturity-independent risk measures fit well with infinite or un-prespecified maturities.

5. Examples

In this section, we provide two representative classes of forward entropic risk measures.

For the first one, we adopt the setting and notation of Assumption 4.6 and single out

some of the special cases obtained when specific choices for the processes Z and Y (of
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Definition 4.8) are used in conjunction with Definition 4.13 of the forward entropic risk

measures. Then, we illustrate the versatility of the general notion of maturity-independent

risk measures by constructing an example in an incomplete binomial-type model which can

be seen as a special case of the locally-bounded semimartingale setup of section 2. Some

background and technical details pertaining to this example can be found in [24].

5.1. Itô-process-driven markets. This example is set in a financial market described in

Assumption 4.6 2, with k = 1 (one risky asset) and d = 2 (two driving Brownian motions).

Without loss of generality, we assume that σ12
t ≡ 0, and σt = σ11

t > 0, i.e., that the second

Brownian motion does not drive the tradeable asset. In this case, we have λt = (λ1
t , λ

2
t ),

where λ1
t = µt/σt and λ2

t = 0. Therefore, the stock-price process satisfies

dSt = St(µt dt + σt dW 1
t ),

on an augmented filtration generated by a 2-dimensional Brownian motion (W 1,W 2). The

processes Z, Y,A from Theorem 4.8 can be written as

dYt = Ytδt(λ
1
t dt + dW 1

t ), Y0 = 1/γ > 0, dZt = ZtφtdW 1
t , Z0 = 1, (5.1)

and

At =

∫ t

0
(λ1

s + φs − δs)
2ds, A0 = 0, (5.2)

subject to a choice of two processes φ and δ, under the regularity conditions stated in

Theorem 4.8.

a) φ ≡ δ ≡ 0. In this case, Zt ≡ 1, Yt ≡ 1/γ, At ≡
∫ t
0 (λ1

s)
2 ds and the random field U of

(4.10) becomes

Ut(x) = − exp(−γx +
At

2
).

Using the indifference-pricing equation (4.12) and the self-generation property (4.11) of Ut,

we deduce that for C ∈ L, the value ρ(C) satisfies

− exp(γρ(C)) = sup
π∈Abd

E

[

− exp

(

−γ(C +

∫ t

0
πs dSs) +

At

2

)]

, for any t ≥ tC .

On the other hand, the classical (exponential) indifference price, ν(C − At

2γ ; t), of the con-

tingent claim C − At

2γ , maturing at time t, satisfies

sup
π∈Abd

E[− exp(−γ(ν(C − At

2γ ; t) +

∫ t

0
πs dSs))] =

= sup
π∈Abd

E[− exp(−γ(C − At

2γ +

∫ t

0
πs dSs))].

With Ht = ln supπ∈Abd
E[− exp(−γ

∫ t
0 πs dSu)] (which will be recognized by the reader

familiar with exponential utility maximization as the aggregate relative entropy), we now
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have

ρ(C) = −ν(C − At

2γ ; t) − 1
γ Ht, for any t ≥ tC . (5.3)

b) δ ≡ 0. Then Yt ≡ 1/γ, At ≡
∫ t
0 (λ1

s + φs)
2 ds, and the random field U of (4.10) takes

the form

Ut(x) = −Zt exp(−γx +
At

2
).

The risk measure ρ(C) can be represented as in (5.3) above, with one important difference.

Specifically, the (physical) probability measure P has to be replaced by the probability P̃

whose Radon-Nikodym derivative w.r.t. P is given by Zt on Ft, for any t ≥ 0.

We leave the discussion of further examples in this setting - in particular for the case

δ 6= 0 - for the upcoming work of one of the authors [34].

5.2. The binomial case. Let (Ω,F , P) be a probability space on which two sequences

{ξt}t∈N and {ηt}t∈N of random variables are defined. The stochastic processes {St}t∈N0

and {Yt}t∈N0 are defined, in turn, as follows:

St =

t
∏

k=1

ξk, Yt =

t
∏

k=1

ηk, t ∈ N, S0 = Y0 = 1.

The process S models the evolution of a (traded) risky asset, and Y is a (non-traded)

factor. We assume, for simplicity, that the agents are allowed to invest in a zero-interest

riskless bond S0 ≡ 1. The following two filtrations are naturally defined on (Ω,F , P):

FS
t = σ(S0, S1, . . . , St) = σ(ξ1, . . . , ξt), t ∈ N0, and

Ft = σ(S0, Y0, S1, Y1, . . . , St, Yt) = σ(ξ1, . . . , ξt, η1, . . . , ηt), t ∈ N0

We assume that for each t ∈ N, there exist ξu
t , ξd

t , ηu
t , ηd

t ∈ R with 0 < ξd
t < 1 < ξu

t and

0 < ηd
t < ηu

t such that P[ξt = ξu
t |Ft−1] = 1 − P[ξt = ξd

t |Ft−1] > 0, a.s., and P[ηt = ηu
t ] =

1 − P[ηt = ηd
t ].

The agent starts with initial wealth x ∈ R, and trades in the market by holding αt+1

shares of the asset S in the interval (t, t + 1], t ∈ N0, financing his/her purchases by

borrowing (or lending to) the risk-free bond S0. Therefore, the wealth process {Xt}t∈N0 is

given by

Xt = x +

t−1
∑

k=0

αk+1(Sk+1 − Sk), t ∈ N,

with X0 = x. It can be shown that, for each t ∈ N, there exists a unique minimal martingale

measure Q(t) on Ft (see [24] for details).

Define the Ft-predictable (Ft−1-adapted) process {ht}t∈N given by

ht = qt ln

(

qt

P [At |Ft−1 ]

)

+ (1 − qt) ln

(

1 − qt

1 − P [At |Ft−1 ]

)

, t ∈ N0,
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with

At = {ω : ξt (ω) = ξu
t } and qt =

1 − ξd
t

ξu
t − ξd

t

= Q(t) [At|Ft−1] .

In [24] (see, also, [25]) it is shown that the random field U : Ω×N0 ×R → R defined by

Ut(x) = − exp

(

−x +

t
∑

k=1

hk

)

,

is a forward exponential performance. We, also, consider the inverse U−1 of U given by

U−1
t (y) = − ln (−y) −

t
∑

k=1

hk,

for y ∈ (−∞, 0) and {ht}t∈N0 as above.

For t ∈ N0, we define the (single-period) iterative forward price functional E(t,t+1) :

L∞(Ft+1) → L∞(Ft), given by

E(t,t+1)(C) = EQ(t+1)

[

− U−1
t+1

(

EQ(t+1)[Ut+1(−C)|Ft ∨ FS
t+1]

)∣

∣

∣
Ft

]

,

for any C ∈ L∞(Ft+1). Similarly, for t < t′ and C ∈ L∞(Ft′) we define the (multi-step)

forward pricing functional E(t,t′) : L∞(Ft′) → L∞(Ft) by

E(t,t′)(C) = E(t,t+1)
(

E(t+1,t+2)
(

. . . (E(t′−1,t′)(C))
)

)

.

Proposition 5.1. Let ρ (· ; t) : L∞ (Ft) → R be defined by

ρ (C; t) = E(0,t)(C).

Then, the mapping ρ : L = ∪t∈N0L
∞(Ft) → R, defined by

ρ(C) = ρ(C; tC)

for tC = inf {t ≥ 0 : C ∈ Ft} is a maturity-independent convex risk measure.

The statement of the Proposition follows from an argument analogous to the one in the

proof of Proposition 4.12. For a detailed exposition of all steps, see [24].

6. Summary and future research

The goals of the present paper are two-fold:

(1) to bring forth and illustrate the concept of maturity-independent risk measures,

and

(2) to provide a class of such measures.

Two examples - one defined on a finite probability space and the other in an Itô-process

setting - are given. Their analysis shows that, while plausible and simple from decision-

theoretic point of view, the notion of maturity independence is non trivial and reveals an

interesting structure .
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One of the major sources of appeal of the theory of maturity-independent risk measures

is, in our opinion, the fact that it opens a venue for a wide variety of research opportunities

both from the mathematical, as well as the financial points of view. One of these direc-

tions, which we intend to pursue in forthcoming work (see [34]), follows the link between

maturity independence and forward performance processes in the direction opposite to the

one explored here: while forward entropic risk measures provide a wide class of examples

of maturity-independent risk measures, it is natural to ask whether there are any others.

In other words, we would like to give a full characterization of maturity-independent risk

measures arising from performance random fields. Such a characterization would not only

complete the outlined theory from the mathematical point of view; it would also provide a

firm decision-theoretic foundation for the sister theory of forward performance processes.
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[33] G. Žitković, “Utility maximization with a stochastic clock and an unbounded ran-

dom endowment”, Ann. Appl. Probab., vol. 15, no. 1B, pp. 748–777, 2005.
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