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Abstract

We introduce a stochastic partial di¤erential equation which describes
the evolution of the investment performance process in portfolio choice
models. The equation is derived for two formulations of the investment
problem, namely, the traditional one (based on maximal expected utility
of terminal wealth) and the recently developed forward formulation. The
novel element in the forward case is the volatility process which is up to
the investor to choose. We provide various examples for both cases and
discuss the di¤erences and similarities between the di¤erent forms of the
equation as well as the associated solutions and optimal processes.

1 Introduction

We introduce a stochastic partial di¤erential equation (SPDE) arising in optimal
portfolio selection problems which describes the evolution of the value function
process. The SPDE is expected to hold under mild conditions on the asset price
dynamics and in general incomplete markets.
The aim herein is not to study questions on the existence, uniqueness and

regularity of the solution of the investment performance SPDE. These questions
are very challenging due to the possible degeneracy and full nonlinearity of the
equation as well as other di¢ culties stemming from the market incompleteness.
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They require extensive study and e¤ort and are being currently investigated
by the authors and others. We stress that similar questions have not yet been
established even for the simplest possible extension of the classical Merton model
in incomplete markets, namely, a single factor model with Markovian dynamics
(see [45]).
Abstracting from technical considerations, we provide various representative

examples with explicit solutions to the SPDE for two di¤erent formulations
of the optimal investment problem. The �rst problem is the classical one in
which one maximizes the expected utility of terminal wealth. This problem has
been extensively analyzed either in its primal formulation via the associated
Hamilton-Jacobi-Bellman (HJB) equation in Markovian models or in its dual
formulation. However, once one departs from the complete market setting very
little, if anything, can be said about the properties of the maximal expected
utility, especially with regards to its regularity, the optimal policies and related
veri�cation results.
The investment performance SPDE o¤ers an alternative way to examine the

evolution of this process beyond the class of Markovian models. One might
think of it as the non-Markovian analogue of the HJB equation. Besides pro-
viding information for the maximal expected investment performance, it also
provides the optimal investment strategy in a generalized stochastic feedback
form. Analyzing the SPDE could perhaps lead to a better understanding of the
nature and properties of the value function as well as the optimal wealth and
optimal investment processes.
The second problem for which we provide the associated SPDE arises in an

alternative approach for portfolio choice that is based on the so-called forward
investment performance criterion. In this approach, developed by the authors
during the last years, the investor does not choose her risk preferences at a single
point in time but has the �exibility to revise them dynamically. Recall that in
the classical problem once the trading horizon is chosen the investor not only
can he not revise his preferences but he cannot extend his utility beyond the
initially chosen horizon either. For the new problem, the SPDE plays a very
important role, for it exposes in a very transparent way how this �exibility is
being modeled. Indeed, this is done via the volatility component of the forward
performance process. This input is up to the investor to choose. It represents
his uncertainty about the upcoming changes - from one trading period to the
next - of the shape of his current risk preferences.
As expected, the SPDEs in the traditional and the forward formulations

have similar structure (see (12) and (28)). However, there are fundamental
di¤erences. In the �rst case, a terminal condition is imposed (see (13)) which
is in most cases deterministic. In other words, the solution is progressively
measurable with regards to the market �ltration in [0; T ) but degenerates to
a deterministic function at the end of the horizon. In contrast, in the second
formulation an initial condition is imposed and the solution does not degenerate
at any future time. Moreover, as we will discuss later on, in the classical utility
problem the investor�s volatility is uniquely determined while in the forward
case it is not.
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A common characteristic of the traditional and forward SPDEs is the form
of the drift. Their drifts are uniquely determined once the volatility and the
market inputs are speci�ed. One could say that there is similarity between
the investment performance SPDEs and the ones appearing in term structure
models.
The paper is organized as follows. In section 2 we describe the investment

model. In section 3 we recall the classical maximal expected utility problem
and derive the associated SPDE. In section 4, we provide examples from mod-
els with Markovian dynamics driven by stochastic factors. We also examine
the power and logarithmic cases. In section 5, we recall the forward portfolio
choice problem and, in analogy to the classical case, we derive the associated
SPDE. We �nish the section by discussing the connection between the forward
investment problem and the traditional expected utility maximization one. In
section 6 we provide several examples. We start with the zero volatility case.
We then examine two families of non-zero volatility models. The �rst family in-
corporates non-zero performance volatilities that model di¤erent market views
and investment in terms of a benchmark (or di¤erent numeraire choice) while
the second family corresponds to the forward analogue of the stochastic factor
Markovian model.

2 The investment model

The market environment consists of one riskless and k risky securities. The risky
securities are stocks and their prices are modelled as Ito processes. Namely, for
i = 1; :::; k; the price Sit ; t � 0; of the ith risky asset satis�es

dSit = S
i
t

0@�itdt+ dX
j=1

�jit dW
j
t

1A ; (1)

with Si0 > 0; for i = 1; :::; k: The process Wt =
�
W 1
t ; :::;W

d
t

�
; t � 0; is a

standard d�dimensional Brownian motion, de�ned on a �ltered probability
space (
;F ;P) : For simplicity, it is assumed that the underlying �ltration,
Ft, coincides with the one generated by the Brownian motion, that is Ft =
� (Ws : 0 � s � t) :
The coe¢ cients �it and �

i
t =

�
�1it ; :::; �

di
t

�
; i = 1; :::; k; t � 0; are Ft-

progressively measurable processes with values in R and Rd, respectively. For
brevity, we use �t to denote the volatility matrix, i.e. the d � k random ma-

trix
�
�jit

�
; whose ith column represents the volatility �it of the i

th risky asset.

Alternatively, we write (1) as

dSit = S
i
t

�
�itdt+ �

i
t � dWt

�
:

The riskless asset, the savings account, has the price process Bt; t � 0; satisfying

dBt = rtBtdt (2)
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with B0 = 1; and for a nonnegative, Ft�progressively measurable interest rate
process rt: Also, we denote by �t the k � 1 vector with the coordinates �it and
by 1 the k�dimensional vector with every component equal to one. The market
coe¢ cients, �t; �t and rt; are taken to be bounded (by a deterministic constant).
We assume that the volatility vectors are such that

�t � rt1 2 Lin
�
�Tt
�
;

where Lin
�
�Tt
�
denotes the linear space generated by the columns of �Tt . This

implies that �Tt
�
�Tt
�+
(�t � rt1) = �t � rt1 and, therefore, the vector

�t =
�
�Tt
�+
(�t � rt1) (3)

is a solution to the equation �Tt x = �t � rt1: The matrix
�
�Tt
�+
is the Moore-

Penrose pseudo-inverse of the matrix �Tt . It easily follows that

�t�
+
t �t = �t (4)

and, hence, �t 2 Lin (�t) :We assume throughout that the process �t is bounded
by a deterministic constant c > 0; i.e., for all t � 0; j�tj � c:
Starting at t = 0 with an initial endowment x 2 R+, the investor invests at

any time t > 0 in the risky and riskless assets. The present value of the amounts
invested are denoted, respectively, by �0t and �

i
t , i = 1; :::; k.

The present value of her aggregate investment is, then, given by X�
t =Pk

i=0 �
i
t; t > 0: We will refer to X

� as the discounted wealth generated by the
(discounted) strategy

�
�0t ; �

1
t ; :::; �

k
t

�
. The investment strategies will play the

role of control processes. Their admissibility set is de�ned as

A = f� : �t is self-�nancing and Ft � progressively measurable (5)

with E
�Z t

0

j�s�sj2 ds <1
�
and X�

t � 0; t � 0
�
:

Using (1) and (2) we deduce that the discounted wealth satis�es, for t > 0,

X�
t = x+

kX
i=1

Z t

0

�is
�
�is � rs

�
ds+

kX
i=1

Z t

0

�is�
i
s � dWs:

Writing the above in vector notation and using (3) and (4) yields

dX�
t = �t � (�t � rt1) dt+ �t�t � dWt = �t�t � (�tdt+ dWt) ; (6)

where the (column) vector, �t =
�
�it; i = 1; :::; k

�
:
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3 The backward formulation of the portfolio choice
problem and the associated SPDE

The traditional criterion for optimal portfolio choice has been based on maximal
expected utility (see the seminal paper [32]). The key ingredients are the choices
of the trading horizon [0; T ] and the investor�s utility, uT : R+ ! R at terminal
time T: The utility function re�ects the risk attitude of the investor at time T
and is an increasing and concave function of his wealth.
The objective is to maximize the expected utility of terminal wealth over ad-

missible strategies. We will denote the set of such strategies by AT ; a straight-
forward restriction of A on [0; T ] : The maximal expected utility is de�ned as

V (x; t;T ) = sup
AT

EP (uT (X
�
T )j Ft; Xt = x) ; (7)

for (x; t) 2 R+ � [0; T ]. The function uT satis�es the standard Inada condition
(see, for example, [27] and [28]). We introduce the T -notation throughout this
section to highlight the dependence of all quantities on the investment horizon
at which the investor�s risk preferences are chosen.
As solution of a stochastic optimization problem, V (x; t;T ) is expected to

satisfy the Dynamic Programming Principle (DPP), namely,

V (x; t;T ) = sup
AT

EP (V (X
�
s ; s;T )j Ft; Xt = x) ; (8)

for t � s � T: This is a fundamental result in optimal control and has been
proved for a wide class of optimization problems. For a detailed discussion
on the validity (and strongest forms) of the DPP in problems with controlled
di¤usions, we refer the reader to [15] and [43] (see, also, [7], [11] and [30]). Key
issues are the measurability and continuity of the value function process as well
as the compactness of the set of admissible controls. It is worth mentioning that
a proof speci�c to the problem at hand has not been produced to date1 .
Besides its technical challenges, the DPP exhibits two important properties

of the solution. Speci�cally, V (X�
t ; t;T ) ; is a supermartingale for an arbitrary

investment strategy and becomes a martingale at an optimum (provided certain
integrability conditions hold). Observe also that the DPP yields a backward in
time algorithm for the computation of the maximal utility, starting at expiration
with uT and using the martingality property to compute the solution for earlier
times. For this, we refer to this formulation of the optimal portfolio choice
problem as backward.
Regularity results for the process V (x; t;T ) have not been produced to date

except for special cases. To the best of our knowledge, the most general result
for arbitrary utilities can be found in [29].
We continue with the derivation of the SPDE for the value function process.

For the moment, the discussion is informal, for general regularity results are

1Recently, a weak version of the DPP was proposed in [6] where conditions related to
measurable selection and boundness of controls are relaxed.
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lacking. To this end, let us assume that V (x; t;T ) admits the Itô decomposition

dV (x; t;T ) = b (x; t;T ) dt+ a (x; t;T ) � dWt (9)

for some coe¢ cients b (x; t;T ) and a (x; t;T ) which are Ft�progressively mea-
surable processes.
Let us also assume that the mapping x! V (x; t;T ) is strictly concave and

increasing and that V (x; t;T ) is smooth enough so that the Ito-Ventzell formula
can be applied to V (X�

t ; t;T ) for any strategy � 2 AT : We then obtain

dV (X�
t ; t;T ) = b (X

�
t ; t;T ) dt+ a (X

�
t ; t;T ) � dWt

+Vx (X
�
t ; t;T ) dX

�
t +

1

2
Vxx (X

�
t ; t;T ) d hX�it + ax (X

�
t ; t;T ) � d hW;X�it

= (b (X�
t ; t;T ) + �t�t � (Vx (X�

t ; t;T )�t + ax (X
�
t ; t;T ))) dt

+
1

2
Vxx (X

�
t ; t;T ) j�t�tj

2
dt+ (a (X�

t ; t;T ) + Vx (X
�
t ; t;T )�t�t) � dWt

=
�
b (X�

t ; t;T ) + �t�t � �t�+t (Vx (X�
t ; t;T )�t + ax (X

�
t ; t;T ))

+
1

2
Vxx (X

�
t ; t;T ) j�t�tj

2

�
dt+ (a (X�

t ; t) + Vx (X
�
t ; t;T )�t�t) � dWt:

From the DPP we know that the process V (X�
t ; t;T ) is a supermartingale for

arbitrary admissible policies and becomes a martingale at an optimum.
Let us now choose as control policy the process

��t = �
�
t (X

�
t ; t;T )

where the feedback process in the right hand side (denoted by a slight abuse of
notation by ��t (x; t;T )) is given by

��t (x; t;T ) = ��+t
Vx (x; t;T )�t + �t�

+
t ax (x; t;T )

Vxx (x; t;T )
; (10)

where X�
t is the wealth process generated by (6) with �

�
t being used. It is

assumed that ��t 2 AT : It is easy to check that ��t is the point at which the
quadratic expression appearing in the drift above achieves its maximum and,
moreover, that the maximum value at this point is given by

1

2
Vxx (X

�
t ; t;T ) j�t��t j

2
+ �t�

�
t � �t�+t (Vx (X�

t ; t;T )�t + ax (X
�
t ; t))

= �1
2

��Vx (X�
t ; t;T )�t + �t�

+
t ax (X

�
t ; t;T )

��2
Vxx (X�

t ; t;T )
:

We, then, deduce that the drift coe¢ cient b (x; t;T ) must satisfy

b (x; t;T ) =
1

2

��Vx (x; t;T )�t + �t�+t ax (x; t;T )��2
Vxx (x; t;T )

: (11)
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Combining the above leads to the SPDE

dV (x; t;T ) =
1

2

��Vx (x; t;T )�t + �t�+t ax (x; t;T )��2
Vxx (x; t;T )

dt+ a (x; t;T ) � dWt (12)

with
V (x; T ;T ) = uT (x) : (13)

To the best of our knowledge, the above SPDE has not been derived to date.
For deterministic terminal utilities, the volatility a (x; t;T ) is present because of
the stochasticity of the investment opportunity set, as the examples in the next
section show.
The optimal feedback portfolio process ��t consists of two terms, namely,

��;mt = � Vx (x; t;T )
Vxx (x; t;T )

�+t �t and ��;ht = ��+t
ax (x; t;T )

Vxx (x; t;T )
:

The �rst component, ��;mt ; known as the myopic investment strategy, resembles
the investment policy followed by an investor in markets in which the investment
opportunity set remains constant through time. The second term, ��;ht ; is called
the excess hedging demand and represents the additional (positive or negative)
investment generated by the volatility a (x; t;T ) of the performance process V:

4 Examples: Markovian stochastic factor mod-
els

Stochastic factors have been used in portfolio choice to model asset predictability
and stochastic volatility. The predictability of stock returns was �rst discussed
in [13], [14] and [16] (see also [1], [8], [42] and others). The role of stochastic
volatility in investment decisions was �rst studied in [3], [16], [17], [20] (see also
[9], [24], [31] and others). There is a vast literature on such models and we
refer the reader to the review paper [45] for detailed bibliography, exposition of
existing results and open problems.

4.1 Single stochastic factor models

There is only one risky asset whose price St; t � 0; is modelled as a di¤usion
process solving

dSt = � (Yt)Stdt+ � (Yt)StdW
1
t ; (14)

with S0 > 0: The stochastic factor Yt; t � 0; satis�es

dYt = b (Yt) dt+ d (Yt)
�
�dW 1

t +
p
1� �2dW 2

t

�
; (15)

with Y0 = y; y 2 R: It is assumed that � 2 (�1; 1) :
The market coe¢ cients f = �; �; b and d satisfy the standard global Lip-

schitz and linear growth conditions jf (y)� f (�y)j � K jy � �yj and f2 (y) �
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K
�
1 + y2

�
; for y; �y 2 R: Moreover, it is assumed that the non-degeneracy con-

dition � (y) � l > 0; y 2 R; holds.
It is also assumed that the riskless asset (cf. (2)) o¤ers constant interest rate

r > 0:
The coe¢ cients appearing in (12) take the form

�t = (� (Yt) ; 0)
T , �+t =

�
1

� (Yt)
; 0

�
and �t =

�
� (Yt)� r
� (Yt)

; 0

�T
: (16)

We easily see that condition (4) is trivially satis�ed.
The value function is de�ned as

v (x; y; t;T ) = sup
AT

EP (uT (XT )jXt = x; Yt = y) ; (17)

for (x; y; t) 2 R+�R� [0; T ] and AT being the set of admissible strategies.
Regularity results for the value function (17) for general utility functions have

not been obtained to date except for the special cases of homothetic preferences
(see, for example, [26], [33], [40] and [44]). We, thus, proceed with an informal
discussion for the associated HJB equation, the form of the process V and the
optimal policies. To this end, the HJB turns out to be

vt +max
�

�
1

2
�2 (y)�2vxx + � (� (y) vx + �� (y) d (y) vxy)

�
(18)

+
1

2
d2 (y) vyy + b (y) vy = 0;

with v (x; y; T ;T ) = uT (x) ; (x; y; t) 2 R+ � R� [0; T ] :
Its solution yields the process V , namely, for 0 � t � T;

V (x; t;T ) = v (x; Yt; t;T ) : (19)

We next show that V (x; t;T ) above solves the SPDE (12) with volatility vector

a (x; t;T ) = (a1 (x; t;T ) ; a2 (x; t;T ))

with

a1 (x; t;T ) = �d (Yt) vy and a2 (x; t;T ) =
p
1� �2d (Yt) vy; (20)

where the arguments of vy have been suppressed for convenience.
Indeed, using (19), (16), (20) and Itô�s formula yields

dV (x; t;T )

=

�
vt (x; Yt; t;T ) +

1

2
d (Yt)

2
vyy (x; Yt; t;T ) + b (Yt) vy (x; Yt; t;T )

�
dt

+
�
�d (Yt) vy (x; Yt; t;T ) ;

p
1� �2d (Yt) vy (x; Yt; t;T )

�
� dWt
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= �1
2
max
�

�
1

2
�2 (Yt)�

2vxx (x; Yt; t;T )

+� (� (Yt) vx (x; Yt; t;T ) + �� (Yt) d (Yt) vxy (x; Yt; t;T ))) dt

+
�
�d (Yt) vy (x; Yt; t;T ) ;

p
1� �2d (Yt) vy (x; Yt; t;T )

�
� dWt

=
1

2

(� (Yt) vx (x; Yt; t;T ) + �� (Yt) d (Yt) vxy (x; Yt; t;T ))
2

vxx (x; Yt; t;T )
dt

+
�
�d (Yt) vy (x; Yt; t;T ) ;

p
1� �2d (Yt) vy (x; Yt; t;T )

�
� dWt

=
1

2

��Vx (x; t;T )�t + �t�+t ax (x; t)��2
Vxx (x; t;T )

dt+ a (x; t;T ) � dWt:

The optimal feedback portfolio process for t � s � T is obtained from
(10). We easily deduce that it coincides with the feedback policy (evaluated at
Ys) derived from the �rst order conditions in the HJB equation. Indeed, for
t � s � T;

��s (x; s;T ) = ��+s
Vx (x; s;T )�s + �s�

+
s ax (x; s;T )

Vxx (x; s;T )

= �� (Ys)
� (Ys)

vx (x; Ys; s;T )

vxx (x; Ys; s;T )
� � d (Ys)

� (Ys)

vxy (x; Ys; s;T )

vxx (x; Ys; s;T )
(21)

= �� (x; Ys; s;T )

where �� : R+ � R� [0; T ] is given by

�� (x; y; s;T ) = argmax
�

�
1

2
�2 (y)�2vxx + � (� (y) vx + �� (y) d (y) vxy)

�
:

Next, we present two cases for which the above results are rigorous. Speci�-
cally, we provide examples for the most frequently used utilities, the power and
the logarithmic ones. These utilities have convenient homogeneity properties
which, in combination with the linearity of the wealth dynamics in the control
policies, enable us to reduce the HJB equation to a quasilinear one. Under a
"distortion" transformation (see, for example, [44]) the latter can be linearized
and solutions in closed form can be produced using the Feynman-Kac formula.
The smoothness of the value function and, in turn, the veri�cation of the optimal
feedback policies follows (see, among others, [24], [25], [26], [31] and [44]).
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4.1.1 The CRRA case: uT (x) = 1

x


 ; 0 < 
 < 1; 
 6= 0:

The value function v (cf. (17)) is multiplicatively separable and given, for
(x; y; t) 2 R+ � R� [0; T ] ; by

v (x; y; t;T ) =
1



x
f (y; t;T )

�
; � =

1� 

1� 
 + �2
 ; (22)

where f : R� [0; T ]! R+ solves the linear parabolic equation

ft +
1

2
d2 (y) fyy +

�
b (y) + �




1� 
 � (y) d (y)
�
fy (23)

+



2 (1� 
)
�2 (y)

�
f = 0;

with f (x; y; T ;T ) = 1: The value function process V (x; t;T ) is given by

V (x; t;T ) =
1



x
f (Yt; t;T )

�
;

with f solving (23) and � as in (22). Direct calculations show that it satis�es
the SPDE (12) with volatility components (cf. (20))8><>:

a1 (x; t;T ) = �
�

x


d (Yt) fy (Yt; t;T ) f (Yt; t;T )
��1

a2 (x; t;T ) =
p
1� �2 �
x


d (Yt) fy (Yt; t;T ) f (Yt; t;T )
��1

:

(24)

The optimal feedback portfolio process is given for t � s � T by (10), namely,

��s (x; s;T ) = ��+s
Vx (x; s;T )�s + �s�

+
s ax (x; s;T )

Vxx (x; s;T )

=

�
� (Ys)

� (Ys) (1� 
)
+ �

d (Ys)

� (Ys) (1� 
 + �2
)
fy (Ys; s;T )

f (Ys; s;T )

�
x;

which is in accordance with (21) and (22).

4.1.2 The logarithmic case: uT (x) = lnx; x > 0:

The value function is additively separable, namely,

v (x; y; t;T ) = lnx+ h (y; t;T ) ;

with h : R� [0; T ]! R+ solving

ht +
1

2
d2 (y)hyy + b (y)hy +

1

2
�2 (y)h = 0 (25)

and h (y; T ;T ) = 1: The value function process V (x; t;T ) is, in turn, given by

V (x; t;T ) = lnx+ h (Yt; t;T ) :
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We easily deduce that it satis�es the SPDE (12) with volatility vector

a1 (x; t;T ) = �hy (Yt; t;T ) and a2 (x; t;T ) =
p
1� �2hy (Yt; t;T ) :

Observe that because the volatility process does not depend on wealth, the
excess risky demand is zero, as (10) indicates. Indeed, the optimal portfolio
process is always myopic, given, for t � s � T; by ��s =

�(Ys)
�(Ys)

X�
s with

X�
s = x exp

�Z s

t

1

2
�2 (Yu) du+

Z s

t

� (Yu) dW
1
u

�
:

The logarithmic utility plays a special role in portfolio choice. The optimal
portfolio is known as the "growth optimal portfolio" and has been extensively
studied in general market settings (see, for example, [4] and [23]). The associated
optimal wealth is the so-called "numeraire portfolio". It has also been exten-
sively studied, for it is the numeraire with regards to which all wealth processes
are supermartingales under the historical measure (see, among others, [18] and
[19]).

4.2 Multi-stochastic factor models

Multi-stochastic factor models for homothetic preferences have been analyzed
by various authors. The theory of BSDE has been successfully used to charac-
terize and represent the solutions of the reduced HJB equation (see [12]). The
regularity of its solutions has been studied using PDE arguments in [33] and
[40], for power and exponential utilities, respectively. Finally, explicit solutions
for a three factor model can be found in [31]. Working as in the previous ex-
amples one obtains that the value function process satis�es the SPDE (12) and
that the optimal policies can be expressed in the stochastic feedback form (10).
These calculations are routine but tedious and are omitted for the sake of the
presentation.

5 The forward formulation of the portfolio choice
problem and the associated SPDE

In the classical expected utility models of terminal wealth, discussed in the
previous section, one chooses the investment horizon [0; T ] and then assigns the
utility function uT (x) at the end of it (cf. (7)). Once these choices are made,
the investor�s risk preferences cannot be revised. In addition, no investment
decisions can be assessed for trading times beyond T:
Recently, the authors proposed an alternative approach to optimal portfolio

choice which is based on the so-called forward investment performance criterion
(see, for example, [38]). In this approach the investor does not choose her
risk preferences at a single point in time but has the �exibility to revise them
dynamically for all trading times. Investment strategies are chosen from the
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set A de�ned in (5). A strategy is deemed optimal if it generates a wealth
process whose average performance is maintained over time. In other words,
the average performance of this strategy at any future date, conditional on
today�s information, preserves the performance of this strategy up until today.
Any strategy that fails to maintain the average performance over time is, then,
sub-optimal.
Next, we recall the de�nition of the forward investment performance. This

criterion was �rst introduced in [34] (see also [35]) in the context of an incomplete
binomial model and subsequently studied in [36], [37] and [38]. A rich class of
such processes which are monotone in time was recently completely analyzed in
[39].
We note that the de�nition below is slightly di¤erent than the original one

in that the initial condition is not explicitly included. As the example in section
6.1 shows, not all strictly increasing and concave solutions can serve as initial
conditions, even for the special class of time monotone investment performance
processes (see (40) in Remark 2). Characterizing the set of appropriate initial
conditions is a challenging question and is currently being investigated by the
authors. Another di¤erence is that, herein, we only allow for policies that keep
the wealth nonnegative. Going beyond such strategies raises very interesting
questions on possible arbitrage opportunities which are left for future study.

De�nition 1 An Ft�progressively measurable process U (x; t) is a forward per-
formance if for t � 0 and x 2 R+:
i) the mapping x! U (x; t) is strictly concave and increasing,
ii) for each � 2 A; E (U (X�

t ; t))
+
<1; and

E (Us (X
�
s ) jFt ) � Ut (X�

t ) ; s � t; (26)

iii) there exists �� 2 A; for which

E
�
U
�
X��

s ; s
�
jFt
�
= Ut

�
X��

t ; t
�
; s � t: (27)

It might seem that all this de�nition produces is a criterion that is dy-
namically consistent across time. Indeed, internal consistency is an ubiquitous
requirement and needs to be ensured in any proposed criterion. It is satis�ed,
for example, by the traditional value function process. However, the new crite-
rion allows for much more �exibility as it is manifested by the volatility process
a (x; t) introduced below. The volatility process is the novel element in the new
approach of optimal portfolio choice.

We continue with the derivation of the SPDE associated with the forward
investment performance process. As in section 3 we proceed with informal
arguments and present rigorous results in the upcoming examples. To this end,
we consider a process, say U (x; t) ; that is Ft�progressively measurable and
satis�es condition (i) of the above de�nition. We also assume that the mapping

12



x ! U (x; t) is smooth enough so that the Ito-Ventzell formula can be applied
to U (X�

t ; t) ; for any strategy � 2 A and that E (U (X�
t ; t))

+
< +1; t � 0:

Let us now assume that U (x; t) satis�es the SPDE

dU (x; t) =
1

2

��Ux (x; t)�t + �t�+t ax (x; t)��2
Uxx (x; t)

dt+ a (x; t) � dWt; (28)

where the volatility a (x; t) is an Ft�progressively measurable, d�dimensional
and continuously di¤erentiable in the spatial argument process.
We �st show that under appropriate integrability conditions U (X�

t ; t) is
a supermartingale for every admissible portfolio strategy. Indeed, denote the
above drift coe¢ cient by

b (x; t) =
1

2

��Ux (x; t)�t + �t�+t ax (x; t)��2
Uxx (x; t)

and rewrite (28) as

dU (x; t) = b (x; t) dt+ a (x; t) � dWt:

Consider the wealth process X� (cf. (6)) generated using an admissible strategy
�: Applying the Ito-Ventzell formula to U (X�

t ; t) yields

dU (X�
t ; t) = b (X

�
t ; t) dt+ a (X

�
t ; t) � dWt

+Ux (X
�
t ; t) dX

�
t +

1

2
Uxx (X

�
t ; t) d hX�it + ax (X

�
t ; t) � d hW;X�it

=

�
b (X�

t ; t) + �t�t � (Ux (X�
t ; t)�t + ax (X

�
t ; t)) +

1

2
Uxx (X

�
t ; t) j�t�tj

2

�
dt

+(a (X�
t ; t) + Ux (X

�
t ; t)�t�t) � dWt

=

�
b (X�

t ; t) + �t�t � �t�+t (Ux (X�
t ; t)�t + ax (X

�
t ; t)) +

1

2
Uxx (X

�
t ; t) j�t�tj

2

�
dt

+(a (X�
t ; t) + Ux (X

�
t ; t)�t�t) � dWt

=
1

2
Uxx (X

�
t ; t)

�����t�t + �t�+t Ux (X�
t ; t)�t + ax (X

�
t ; t)

Uxx (X�
t ; t)

����2 dt (29)

+(a (X�
t ; t) + Ux (X

�
t ; t)�t�t) � dWt

and we conclude using the concavity assumption on U (x; t) :
We next assume that the stochastic di¤erential equation

dX�
t = �

Ux (X
�
t ; t)�t + �t�

+
t ax (X

�
t ; t)

Uxx (X�
t ; t)

� (�tdt+ dWt) (30)

has a nonnegative solution X�
t ; t � 0; with X0 = x; x 2 R+ and that the

strategy ��t ; t � 0; de�ned by

��t = ��+t
Ux (X

�
t ; t)�t + ax (X

�
t ; t)

Uxx (X�
t ; t)

(31)

13



is admissible. Notice that X�
t corresponds to the wealth generated by this

investment strategy.
From (29) we then see that U

�
X

�

t ; t
�
is a martingale (under appropriate

integrability conditions).
Using the supermartingality property of U (X�

t ; t) and the martingality prop-
erty of U

�
X

�

t ; t
�
we easily deduce that if U (x; t) solves (28) then it is a forward

investment performance process. Moreover, the processes X�
t and �

�
t , given in

(30) and (31), are optimal.
The analysis of the forward performance SPDE (28) is a formidable task.

The reasons are threefold. Firstly, it is degenerate and fully nonlinear. More-
over, it is formulated forward in time, which might lead to "ill-posed" behavior.
Secondly, one needs to specify the appropriate class of admissible volatility
processes, namely, volatility inputs that yield solutions that satisfy the require-
ments of De�nition 1. This question is challenging both from the modelling as
well as the technical points of view. Thirdly, as it was mentioned earlier, one
also needs to specify the appropriate class of initial conditions.
Addressing these issues is an ongoing research project of the authors and

not the scope of this paper. Herein, we only construct explicit solutions for dif-
ferent choices of the volatility process a (x; t). These choices provide a rich class
of forward performance processes which exhibit several interesting modelling
features.
The initial condition represents the investor�s current performance criterion.

The volatility process a(x; t) represents the uncertainty about the future shape
of this criterion. From the modelling perspective, one can see an analogy to term
structure, where the initial condition is the current forward curve as traded in
the market, while the volatility captures the way the curve moves from one day
to the next. However the analogy stops here. One has to develop di¤erent
methods to recover the initial condition and to specify the volatility a(x; t) for
the investment problem governed by (28).
We stress the fundamental di¤erence between the volatility processes of the

investment performance criteria in the backward and the forward formulation.
In the backward case, the volatility is uniquely determined through the back-
ward construction of the maximal expected utility. The investor does not have
the �exibility to choose this process (see for instance example 4.1.1 and the
volatility components (24)). In contrast, in the forward case, the volatility
process is chosen by the investor; as examples in section 6.2 show.

5.1 Stochastic optimization and forward investment per-
formance process

The intuition behind De�nition 1 comes from the analogous martingale and
supermartingale properties that the traditional maximal expected utility has,
as seen from (8).
However, there are two important observations to make. Firstly, the anal-

ogous equivalence between stochastic optimization and the martingality and
supermartingality of the solution in the forward formulation of the problem has
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not yet been established. Speci�cally, one could de�ne the forward performance
process via the (forward) stochastic optimization problem

U (x; t) = sup
A
E (U (X�

s ; s)j Ft; X�
t = x) ;

for all 0 � t � s and with the appropriate initial condition. Characterizing its
solutions poses a number of challenging questions, some of them being currently
investigated by the authors2 . From a di¤erent perspective, one could seek an
axiomatic construction of a forward performance process. Results in this direc-
tion, as well as on the dual formulation of the problem, can be found in [46] for
the exponential case.
The second observation is on the relation between the forward performance

process and the classical maximal expected utility. One would expect that in
a �nite trading horizon, say [0; T ] ; the following holds. De�ne as utility at
terminal time the random variable uT (x) 2 FT given by

uT (x) = U (x; T ) ;

with U (x; T ) being the value of the forward performance process at T: Solve,
for 0 � t � T; the stochastic optimization problem of state-dependent utility

V (x; t;T ) = sup
AT

E (uT (XT )j Ft; Xt = x) (32)

(see, among others, [10], [21], [22] and [41]). Then, for 0 � t � T; the classical
value function process and the forward investment performance process coincide,

U (x; t) = V (x; t;T ) :

6 Examples

In this section we provide examples of forward investment performance processes
which satisfy the SPDE (28). We �rst look at the case of zero volatility. We then
examine two families with non-zero volatility. The examples in the �rst family
(examples 6.2.1, 6.2.2 and 6.2.3) build on the zero volatility case. The second
family yields the forward analogue of the stochastic factor model presented for
the backward case in example 4.1.
We note that the fact that a process solves the SPDE (28) does not automat-

ically guarantee that it satis�es De�nition 1, for there are additional conditions
to be veri�ed. One can show that the solutions presented in examples 6.2.1,
6.2.2 and 6.2.3 indeed satisfy these conditions; we refer the reader to [39] for all
technical details.

2While preparing this revised version, the authors came across the revised version of [2]
where similar questions are studied for the nonnegative wealth case.
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6.1 The case of zero volatility: a (x; t) � 0
When a (x; t) � 0 the SPDE (28) reduces to

dU (x; t) =
1

2
j�tj2

Ux (x; t)
2

Uxx (x; t)
dt:

In [38] it was shown that its solution is given by the time-monotone process

U (x; t) = u (x;At) ; (33)

where u : R+� [0;+1)! R is increasing and strictly concave in x; and satis�es
the fully nonlinear equation

ut =
1

2

u2x
uxx

: (34)

The process At is given in (39) below. In a more recent paper, see [39], it
was shown that there is a one-to-one correspondence between increasing and
strictly concave solution to (34) and strictly increasing positive solutions h :
R� [0;+1)! R+ to the heat equation

ht +
1

2
hxx = 0: (35)

Speci�cally, we have the representation

h (x; t) =

Z +1

0+

eyx�
1
2y

2t

y
� (dy) (36)

of strictly increasing solutions of (35) and

u (x; t) = �1
2

Z t

0

e�h
(�1)(x;s)+ s

2hx

�
h(�1) (x; s) ; s

�
ds+

Z x

0

e�h
(�1)(z;0)dz (37)

for strictly concave and increasing solutions of (34). The measure � appearing
above is a positive Borel measure that satis�es appropriate integrability condi-
tions. We refer the reader to [39] for a detailed study of this measure and the
interplay between its support and various properties of the functions h and u:
The optimal wealth and portfolio processes are given in closed form, namely,

X�
t = h

�
h(�1) (x; 0) +At +Mt; At

�
and ��t = hx

�
h(�1) (X�

t ; At) ; At

�
�+t �t;

(38)
where the market input processes At and Mt; t � 0; are de�ned as

At =

Z t

0

j�sj2 ds and Mt =

Z t

0

�s � dWs: (39)

Remark 2 Formulae (37) and (36) indicate that not all concave and increasing
functions can serve as initial conditions. Indeed, from (33), (37), (36) and (39),
we see that the initial condition U (x; 0) must be represented as

U (x; 0) =

Z x

0

e�h
(�1)(z;0)dz with h (x; t) =

Z +1

0+

eyx

y
� (dy) : (40)
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Remark 3 One could choose the volatility to be a (x; t) � kt; with the process
kt being Ft�progressively measurable and independent of x, U and its deriva-
tives). This case essentially reduces to the one with zero volatility. Indeed, we
easily conclude that the process

U (x; t) = u (x;At) +

Z t

0

ks � dWs; (41)

with u and At; t � 0; as in (34) and (39) solves (28). The optimal investment
and wealth processes remain the same as in (38) above.

6.1.1 Single stochastic factor models

This is the same model as in section 4.1. Using (33) we see that the forward
performance process is given by

U (x; t) = u

�
x;

Z t

0

�2 (Ys) ds

�
(42)

with u solving (34). Using (38) and (37) one deduces that the optimal portfolio
process is given by

��t = �
ux (X

�
t ; At)

uxx (X�
t ; At)

�+t �t: (43)

The calculations are tedious and can be found in section 4 of [39].
Notice that the optimal portfolio (43) is purely myopic even though the

investment opportunity set is stochastic. This is because the investor�s per-
formance process was chosen to be zero. This is in contrast with the one in
(21). We also observe that the investment performance process U in (42) is of
bounded variation while the one in (19) is not.

6.2 Cases of non-zero volatility

We start with three cases of non-zero volatility. Two auxiliary process are
involved, 't and �t; t � 0: They are both independent of wealth and are taken
to be Ft�progressively measurable and bounded by a deterministic constant. In
addition, it is assumed that �t satis�es, similarly to the process �t; the condition
�t�

+
t �t = �t (cf. (4)) and, thus, �t 2 Lin (�t) : Because the third case is the

combination of the �rst two, we provide the complete calculations therein.
We conclude with a fourth case which is the forward analogue of example

4.1.

6.2.1 The market view case: a (x; t) = U (x; t)'t

The forward performance SPDE (28) simpli�es to

dU (x; t) =
1

2

��Ux (x; t) ��t + �t�+t 't���2
Uxx (x; t)

dt+ U (x; t)'t � dWt:
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It turns out (see example 6.2.3 for �t � 0; t � 0) that the process

U (x; t) = u (x;At)Zt;

with u satisfying (34), Zt; t � 0; solving

dZt = Zt't � dWt with Z0 = 1 (44)

and At =
R t
0
j�s + �s�+s 'sj

2
ds satis�es (28).

One may interpret Zt as a device that o¤ers the �exibility to modify our
views on asset returns. For this reason, we call this case the "market-view"
case.
Using (31) we obtain that the optimal allocation vector, ��t ; t � 0; has the

same functional form as (43) but for a di¤erent time-rescaling process, namely,

��t = �
ux (X

�
t ; At)

uxx (X�
t ; At)

�+t (�t + 't) ;

with At; t � 0; as above. It is worth noticing that if the process 't is chosen
to satisfy 't = ��t; solutions become static. Speci�cally, the time-rescaling
process vanishes, At = 0; and, in turn, the forward performance process becomes
constant across times. The optimal investment and wealth processes degenerate
��t = 0 and X

��

t = x; t � 0: In other words, even for non-zero �t, the optimal
policy is to allocate zero wealth in every risky asset and at all times.

6.2.2 The benchmark case: a (x; t) = xUx (x; t) �t

The forward performance SPDE (28) simpli�es to

dU (x; t) =
1

2

jUx (x; t) (�t � �t)� xUxx (x; t) �tj2

Uxx
dt� xUx (x; t) �t � dWt:

One can verify (see example 6.2.3 for 't � 0; t � 0) that the process

U (x; t) = u

�
x

Yt
; At

�
;

with Yt; t � 0; solving

dYt = Yt�t � (�tdt+ dWt) with Y0 = 1 (45)

and At =
R t
0
j�s � �sj2 ds satis�es (28).

One may interpret the auxiliary process Yt as a benchmark (or numeraire)
with respect to which the performance of investment policies is measured.
Next, we de�ne the benchmarked optimal portfolio and wealth processes,

~��t =
��t
Yt

and ~X�
t =

X�
t

Yt
: (46)
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Then, ~��t is given by (cf. (49) for 't � 0);

~��t = ~X�
t �

+
t �t �

ux

�
~X�
t ; At

�
uxx

�
~X�
t ; At

��+t (�t � �t) ;
with At as above with ~X�

t solving

d ~X�
t = �

ux

�
~X�
t ; At

�
uxx

�
~X�
t ; At

� (�t � �t) � ((�t � �t) dt+ dWt) :

6.2.3 The combined market view/benchmark case: a (x; t) = �xUx (x; t) �t+
U (x; t)'t

The forward performance SPDE (28) becomes

dU (x; t) =
1

2

��Ux (x; t) ��t + �t�+t 't � �t�� xUxx (x; t) �t��2
Uxx

dt (47)

+(�xUx (x; t) �t + U (x; t)'t) � dWt:

We introduce the time-rescaling process At =
R t
0
j�s + �s�+s 's � �sj

2
ds:

We de�ne the process

U (x; t) = u

�
x

Yt
; At

�
Zt (48)

with u solving (34) and Yt and Zt as in (45) and (44). We claim that it solves
(47). Indeed, expanding yields

dU (x; t) =

�
du

�
x

Yt
; At

��
Zt + u

�
x

Yt
; At

�
dZt + d

D
u
� x
Y
;A
�
; Z
E
t
:

Moreover,

du

�
x

Yt
; At

�
= ux

�
x

Yt
; At

�
d

�
x

Yt

�
+ut

�
x

Yt
; At

�
dAt+

1

2
uxx

�
x

Yt
; At

�
d
D x
Y

E
t
;

and

d

�
x

Yt

�
= � x

Yt
�t � ((�t � �t) dt+ dWt) :

Consequently,

d
D
u
� x
Y
;A
�
; Z
E
t
= � x

Yt
ux

�
x

Yt
; At

�
Zt�t � 'tdt;

u

�
x

Yt
; At

�
dZt = u

�
x

Yt
; At

�
Zt't � dWt = U (x; t)'t � dWt
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and �
du

�
x

Yt
; At

��
Zt = �

x

Yt
ux

�
x

Yt
; At

�
Zt�t � ((�t � �t) dt+ dWt)

+ut

�
x

Yt
; At

�
Zt
���t + �t�+t 't � �t��2 dt+ 12uxx

�
x

Yt
; At

�
Zt

����� xYt �t
����2 dt:

We then deduce that

dU (x; t) = � x
Yt
ux

�
x

Yt
; At

�
Zt�t � (�t + 't � �t) dt

+ut

�
x

Yt
; At

�
Zt
���t + �t�+t 't � �t��2 dt+ 12uxx

�
x

Yt
; At

�
Zt

����� xYt �t
����2 dt

+

�
� x
Yt
ux

�
x

Yt
; At

�
Zt�t + U (x; t)'t

�
� dWt

= �xUx (x; t) �t �
�
�t + �t�

+
t 't � �t

�
dt

+
1

2

U2x (x; t)

Uxx (x; t)

���t + �t�+t 't � �t��2 dt+ 12x2Uxx (x; t) j�tj2 dt
(�xUx (x; t) �t + U (x; t)'t) � dWt

=
1

2

��Ux (x; t) ��t + �t�+t 't � �t�� xUxx (x; t) �t��2
Uxx (x; t)

dt

+(�xUx (x; t) �t + U (x; t)'t) � dWt;

where we used (34). The optimal benchmarked policies ~��t and ~X�
t are de�ned

as in (46). Using (21) and (48) we deduce, after some routine but tedious
calculations, that

~��t = ~X�
t �

+
t �t �

ux

�
~X�
t ; At

�
uxx

�
~X�
t ; At

��+t (�t + 't � �t) (49)

where ~X�
t solves

d ~X�
t = �

ux

�
~X�
t ; At

�
uxx

�
~X�
t ; At

� ��t + �t�+t 't � �t� � ((�t � �t) dt+ dWt) : (50)
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6.2.4 Single stochastic factor models

This is the forward analogue of example 4.1 Consider a single stock and a
stochastic factor satisfying (14) and (15). Let w : R� [0;+1) ! R satisfying
the (forward) HJB equation

wt +max
�

�
1

2
�2 (y)�2wxx + � (� (y)wx + �� (y) d (y)wxy)

�
(51)

+
1

2
d2 (y)wyy + b (y)wy = 0;

for an appropriate initial condition w (y; 0) : Then, for t � 0; the process

U (x; t) = w (x; Yt; t) (52)

satis�es the SPDE (28) with volatility vector a (x; t) = (a1 (x; t) ; a2 (x; t)) with

a1 (x; t) = �d (Yt)wy (y; t) and a2 (x; t) =
p
1� �2d (Yt)wy (y; t) :

Notice the main di¤erences between forward investment process (52) and (48).
Firstly, they are constructed by deterministic functions, w and u; that solve
di¤erent pdes. Secondly, the investment performance process in (52) does not
involve time-rescaling while the one in (48) does.
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