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We analyse the valuation of American options under the forward performance criterion
introduced by Musiela and Zariphopoulou [Quant. Finance 9 (2008), pp. 161–170]. In
this framework, the performance criterion evolves forward in time without reference to
a specific future time horizon, and may depend on the stochastic market conditions. We
examine two applications: the valuation of American options with stochastic volatility
and the modelling of early exercises of American-style employee stock options. We
work with the assumption that forward indifference prices have sufficient regularity to
be solutions of variational inequalities, and provide a comparative analysis between the
classical and forward indifference valuation approaches. In the case of exponential
forward performance, we derive a duality formula for the forward indifference price.
Furthermore, we study the marginal forward performance price, which is related to the
classical marginal utility price introduced by Davis (Mathematics of Derivatives
Securities, Cambridge University Press, 1997, pp. 227–254). We prove that, under
arbitrary time-monotone forward performance criteria, the marginal forward
indifference price of any claim is always independent of the investor’s wealth and is
represented as the expected discounted pay-off under the minimal martingale measure.
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1. Introduction

Utility maximization theory has been central to quantifying rational investment decisions

and risk-averse valuations of assets at least since the work of von Neumann and

Morgenstern in the 1940s. In the Merton problem of continuous-time portfolio

optimization [28], utility is defined at some fixed time horizon in the future when

investment decisions are assessed in terms of the expected utility of terminal wealth. For

portfolios involving derivatives and associated utility indifference pricing problems,

derivative pay-offs or random endowments may be realized at random times, which

requires the specification of utility at other times, not just at a single terminal time.
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This consideration is particularly important for investment and valuation problems

involving defaultable securities or American options.

One way to address this issue is to consider the definition of utility at the time of a

random cash flow as analogous to specifying what the investor does with the endowment

thereafter. Any answer to the latter question necessarily involves details of the market in

which he might invest, and utilities and markets are inextricably linked. Some examples of

works based on this idea include [24,32] for utility indifference pricing of American

options, and [19,26] for defaultable securities. This approach allows for comparing

utilities of wealth at different times. However, as is common in classical utility

indifference pricing, the investor’s risk preferences at intermediate times and the optimal

investment decisions still directly depend on an a priori chosen investment horizon.

This issue of horizon dependence has been addressed by one of the authors and Musiela

through the construction of the forward performance criterion (see e.g. [29]). In this

approach, the investor’s utility is specified at an initial time, and his risk preferences at

subsequent times evolve forward without reference to any specific ultimate time horizon.

This results in a stochastic utility process, called the forward performance process, whose

evolution depends on the random market conditions. In a related study [18], Henderson and

Hobson analysed the optimal timing of asset sale based on the so-called horizon-unbiased

utility functions which have no preferred horizon for the associated dynamic portfolio

optimization problem. Hence, these approaches necessarily connect risk preferences with

market models. The risk profile of a given investor is no longer considered separately from

his investment opportunities and the market. This is entirely natural: the current economic

crisis has clearly shown increased risk aversion in investors as the market has fallen.

In this paper, we develop an indifference valuation methodology based on the forward

performance criterion. Specifically, we study the valuation of a long position in an

American option in an incomplete diffusion market model. Our main objective is to

analyse the optimal trading and exercise strategies that maximize the option holder’s

forward performance coming from both the dynamic portfolio and the option pay-off upon

exercise. In Section 2, we formulate the combined stochastic control and optimal stopping

problem faced by the option holder. Then, we define the holder’s forward indifference

price for the American option by comparing the optimal expected forward performance

with and without the derivative (see Definition 2). The analysis of the indifference price

will yield a number of useful mathematical characterizations and financial interpretations

for optimal trading and exercise strategies.

In Section 3, we discuss the exponential forward indifference valuation of an American

option in a stochastic volatility model. Using the analytical properties of the exponential

forward performance, we show that the forward indifference price is wealth independent.

By applying a transformation to the associated Hamilton–Jacobi–Bellman (HJB)

variational inequality, we state the variational inequality that the forward indifference price,

if it has sufficient regularity, satisfies. Due to the nonlinearity of these variational

inequalities, the questions of existence, uniqueness, smoothness are open challenging

issues, which we do not address herein. In the case with exponential forward performance,

we derive a duality formula for the forward indifference price. This is useful for the

comparative analysis between the forward and classical exponential indifference prices.

For instance, we show that the forward indifference price representation involves a relative

entropy minimization (up to a stopping time) with respect to the minimal martingale

measure (MMM), as opposed to the minimal entropy martingale measure (MEMM) that

arises in the classical exponential utility indifference price (see, among others, [8,35] for

T. Leung et al.742
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European claims and [25] for American claims). We also present this contrasting difference

in the asymptotic results of indifference prices.

Another application studied in this paper is the modelling of early exercises of employee

stock options (ESOs), which are American-style call options written on the firm’s stock

granted to the employee as a form of compensation. In Section 4, we assume a forward

performance criterion for the employee and investigate the impact of various factors, such as

wealth and risk tolerance, on the employee’s exercise timing. In particular, we find that the

employee tends to exercise the ESO earlier when his wealth approaches zero.

Lastly, in Section 5, we introduce an alternative valuation mechanism for American

options based on the marginal forward performance. In the classical utility framework, as

introduced by Davis [7], the marginal utility price represents the per-unit price that a

risk-averse investor is willing to pay for an infinitesimal position in a contingent claim.

In general, the marginal utility price is closely linked to both the investor’s utility function

and the market set-up, and it only becomes wealth independent under very special

circumstances (see [23] for details). We adapt the classical definition to our forward

performance framework and give a definition of the marginal forward indifference price.

We show that, in contrast to the classical marginal utility price, the marginal forward

indifference price under time-monotone criteria turns out to be independent of both the

holder’s wealth and the forward performance criterion, and is equivalent to pricing linearly

under the MMM. Section 6 concludes the paper and discusses extensions for future

research.

2. Forward investment performance measurement and indifference valuation

We fix a filtered probability space (V,F,P), with a filtration ðF tÞt$0 that satisfies the usual

conditions of right continuity and completeness. In addition, all stochastic processes

considered in this paper are continuous-path processes. The financial market consists of

two liquidly traded assets, namely, a riskless money market account and a stock.

The money market account has the price process B that satisfies

dBt ¼ rtBt dt ð1Þ

with B0 ¼ 1, where ðrtÞt$0 is a non-negative Ft-adapted interest rate process. We shall use

B as the numeraire throughout.

The discounted stock price S is modelled as a continuous Itô process satisfying

dSt ¼ Sts t lt dt þ dWtð Þ ð2Þ

with S0 . 0, where ðWtÞt$0 is an Ft-adapted standard Brownian motion. The Sharpe ratio

ðltÞt$0 is a bounded Ft-adapted process, and the volatility coefficient ðs tÞt$0 is strictly

positive bounded Ft-adapted process. Moreover, we assume that a strong solution exists

for the stochastic differential equation (SDE) (2).

Starting with initial endowment x [ R, the investor dynamically rebalances his

portfolio allocations between the stock and the money market account. Under the

self-financing trading condition, the discounted wealth satisfies

dXp
t ¼ pts t lt dt þ dWtð Þ; ð3Þ

where ðptÞt$0 represents the discounted cash amount invested in stock. The set of

admissible strategies Z consists of all self-financing Ft-adapted processes ðptÞt$0 such that

E
Ð s

0
s 2

t p
2
t dt

� �
, 1 for each s . 0. For 0 # t # s, we denote by Zt,s the set of admissible

strategies over the period [t,s ].

Stochastics: An International Journal of Probability and Stochastic Processes 743
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In the standard Merton portfolio optimization problem, risk preferences are modelled

by a deterministic utility function Ûð�Þ defined at some fixed terminal time T. Starting

with Ft-measurable wealth Xt at time t # T, the Merton value process is given by

MtðXtÞ ¼ ess sup
p[Zt;T

E Û Xp
T

� �
jF t

� �
: ð4Þ

When the dynamic programming principle holds, the Merton problem can be written as

MtðXtÞ ¼ ess sup
p[Zt;s

E Ms Xp
s

� �
jF t

� �
; 0 # t # s # T : ð5Þ

Some well-known examples when (5) holds include (i) markets with Markovian dynamics

where the optimal portfolio allocation can be found by solving a HJB equation; (ii) when

the utility is of exponential type, in which case (5) holds under quite general

semimartingale models (see [25,27]) and (iii) when the expected utility is replaced by a

dynamic time-consistent concave utility functional, defined, for instance, from a backward

stochastic differential equation in Itô markets (see [6,22]). The dynamic programming

principle (5) is taken as the defining characteristic of the forward performance criterion.

In the forward performance framework, the investor’s utility function u0(x) is defined

at the initial time 0, and his performance criterion evolves forward in time. We adapt the

definition of the forward performance process given by Musiela and Zariphopoulou [29]:

Definition 1. An Ft-adapted process ðUtðxÞÞt$0 is a forward performance process if:

1. it satisfies the initial datum U0ðxÞ ¼ u0ðxÞ, x [ R, where u0 : R 7! R is an

increasing and strictly concave function of x;

2. for each t $ 0, the mapping x 7! UtðxÞ is increasing and strictly concave in x [ R

and

3. for 0 # t # s , 1, we have

UtðXtÞ ¼ ess sup
p[Zt;s

E UsðX
p
s ÞjF t

� �
ð6Þ

for any Ft-measurable initial wealth Xt.

In related studies, condition 3 is also referred to as the horizon-unbiased condition

in [18] and the self-generating condition in [38].

As with the classical utility maximization problem, the existence and characterization

of the optimal strategy in (6) are challenging questions and depend on the market structure

and utility function used. Related research for forward performance processes includes

[9,31,38] (for exponential preferences). In this paper, however, our analysis will focus on

a class of explicit forward performance processes (see Theorem 3), whose optimal

strategies have been completely characterized in the recent papers [4] and [30]. Our

objective is to apply forward performance to the indifference pricing of American options

and investigate some properties of the forward indifference prices.

2.1. Forward indifference price

We introduce the forward indifference valuation from the perspective of the holder of an

American option. The option pay-off is modelled by an Ft-adapted bounded process

denoted by ðgtÞ0#t#T , with a finite expiration date T. The collection of admissible exercise

T. Leung et al.744
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times is the set of stopping times with respect to F 0;T ¼ ðF tÞ0#t#T that take values in

[0,T ]. For 0 # t # s # T, we denote by Tt,s the set of stopping times taking values in [t,s ].

The option holder chooses his dynamic trading strategy p and exercise time t, in order

to maximize his expected forward performance from both investing in the market and

receiving the option pay-off. This leads to a combined stochastic control and optimal

stopping problem. Specifically, we define

VtðXtÞ ¼ ess sup
t[T t;T

ess sup
p[Zt;t

E Ut Xp
t þ gt

� �
jF t

� �
; t [ ½0; T�; ð7Þ

which is the holder’s value process based on a forward performance starting at time t with

wealth Xt.

In the classical case with a terminal utility function Û, the holder’s optimal investment

problem is to solve

ess sup
t[T t;T

ess sup
p[Zt;t

E Mt Xp
t þ gt

� �
jF t

� �
;

where M is the solution to the Merton problem defined in (4). In this formulation, M plays

the role of intermediate utility at stopping times t # T and, therefore, specifies that option

proceeds received at any exercise time t are reinvested following the Merton optimal

strategy up till time T. By contrast, the forward performance process U specifies utilities at

all times, without reference to any specific horizon.

The holder’s forward indifference price pt for the American option g is defined as the

discounted cash amount such that the option holder is indifferent between two positions:

optimal investment with an American option position, and optimal investment without the

American option but instead with extra initial wealth pt.

Definition 2. The holder’s forward indifference price process ðptÞ0#t#T for the American

option is defined by the equation

VtðXtÞ ¼ UtðXt þ ptÞ; t [ ½0; T�; ð8Þ

where Vt and Ut are given in (7) and (6), respectively.

The forward indifference price is useful for characterizing the option holder’s optimal

exercise time t*. Under appropriate integrability conditions ([21], Theorem D.12), the

optimal stopping time is the first time the value process reaches the reward process. From

(7) and (8), we have

t*
t ¼ inf t # s # T : VsðXsÞ ¼ UsðXs þ gsÞf g

¼ inf t # s # T : UsðXs þ psÞ ¼ UsðXs þ gsÞf g

¼ inf t # s # T : ps ¼ gsf g:

ð9Þ

The representation (9) implies that the option holder will exercise the American option as

soon as the forward indifference price reaches (from above) the option pay-off. It allows us

to analyse the holder’s optimal exercise policy through his forward indifference price.

In Sections 3 and 4, we will focus our study on two specific financial applications:

(i) the valuation of an American option written on a stock S with stochastic volatility under

Stochastics: An International Journal of Probability and Stochastic Processes 745
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forward performance criterion of exponential type [to be defined in (23)] and (ii) modelling

early exercises of ESOs for criteria beyond the exponential forward performance.

2.2. Forward performance of generalized constant absolute risk aversion/constant
relative risk aversion type

Henceforth, we will focus our attention on a special class of forward performance

processes introduced by Musiela and Zariphopoulou [29], namely, the time-monotone

forward performance processes. These processes are represented by the compilation of a

deterministic function u(x,t) which models the investor’s dynamic risk preferences, and a

stochastic time-change ðAtÞt$0 that solely depends on the market. Recent studies [4] and

[30] addressed various properties and alternative characterizations of this family of

forward performances.

Theorem 3. Define the stochastic process ([29], Theorem 4])

At ¼

ðt
0

l2
s ds; t $ 0: ð10Þ

Let u : R £ Rþ 7! R be C3,1, strictly concave, and increasing in its spatial argument.

Assume that it satisfies the nonlinear partial differential equation

ut ¼
1

2

u2
x

uxx
ð11Þ

with initial condition uðx; 0Þ ¼ u0ðxÞ; where u0 [ C3ðRÞ. Then, the process UtðxÞ,

defined by

UtðxÞ ¼ u x;At

� �
; t $ 0; ð12Þ

is a forward performance process. Moreover, the trading strategy p* given by

p*
t ¼ 2

lt

s t

ux X*
t ;At

� �
uxx X*

t ;At

� � ; t $ 0; ð13Þ

where X * ¼ X p *
is the associated wealth process following (3), is optimal.

By its definition in (10), A is an increasing stochastic process that depends on the

Sharpe ratio of the traded asset S. Also, it is commonly called the mean-variance trade-off

process (see [34] and references therein). In constructing the forward performance process

in (12), A acts as a stochastic time change to the deterministic preference function u(x,t).

We stress that because Equation (11) is ill-posed, one needs to specify the class of

initial conditions that yields a well-defined solution for all times. This is not a trivial matter

and was investigated in detail in [30]. A related problem, which was also studied there, is

to determine for which initial conditions the policies specified by (12) are admissible.

Because the related arguments for both the aforementioned questions are quite lengthy, we

provide the key results in the Appendix. The time-monotone forward performance criteria

used in Sections 3 and 4 belong to the admissible class.

A quantity that plays a crucial role in the description of the optimal wealth and

portfolio processes ðX *;p*Þ is the so-called local risk tolerance function

R : R £ Rþ 7! Rþ, defined by

Rðx; tÞ ¼ 2
uxðx; tÞ

uxxðx; tÞ
ð14Þ

T. Leung et al.746
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with u solving (11). Using (13) and (14), the dynamics of the optimal wealth X * can be

expressed as

dX*
t ¼ R X*

t ;At

� �
lt lt dt þ dWtð Þ: ð15Þ

Furthermore, by applying differentiation to (14), one can show that R is the solution of

an equation of fast diffusion type, namely

Rt þ
1

2
R2Rxx ¼ 0: ð16Þ

The above autonomous equation for Rðx; tÞ suggests that one could first model the local

risk tolerance directly, and in turn recover the dynamic risk preference function uðx; tÞ
from (14). This provides an alternative way to construct forward performance criteria.

This idea was further developed in [37] which proposed the following two-parameter

family of risk tolerance functions:

Rðx; t;a;bÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax2 þ be2at

p
; x [ R; t $ 0;a;b . 0: ð17Þ

We illustrate an example of this risk tolerance in Figure 1.

There are several reasons to work with this family of risk tolerance. First, it yields, in

the limits as a or b goes to zero, the risk tolerance functions that resemble those related to

the three most popular cases, specifically, the exponential, power and logarithmic. We

summarize from [37] the limiting cases leading to risk tolerance functions and the

corresponding utilities as follows:

lim
a!0

Rðx; t;a;bÞ¼
ffiffiffi
b

p
; uðx; tÞ¼2e

2 xffiffi
b

p þ t
2; x[R ðexponentialÞ; ð18Þ

lim
b!0

Rðx; t;a;bÞ ¼
ffiffiffi
a

p
x; uðx; tÞ ¼

xd

d
e2

d
2ð12dÞ

t; x $ 0; a – 1 ðpowerÞ; ð19Þ

lim
b!0

Rðx; t; 1;bÞ ¼ x; uðx; tÞ ¼ log x2
t

2
; x . 0 ðlogarithmicÞ; ð20Þ

where d :¼ ð
ffiffiffi
a

p
2 1Þ=

ffiffiffi
a

p
.

Figure 1. The risk tolerance function Rðx; t;a;bÞ in (17) with a ¼ 4, and b ¼ 0.25. For any fixed
wealth x, Rðx;�;a;bÞ decreases with time, while for any fixed time t, Rð�; t;a;bÞ increases as
wealth decreases or increases away from zero.

Stochastics: An International Journal of Probability and Stochastic Processes 747
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According to (19) and (20), in the limit b # 0, Rðx; t;a;bÞ is defined only over a

positive/strictly positive wealth domain. In Figure 2, we illustrate the limit in (18) where

the risk tolerance function converges to the constant
ffiffiffi
b

p
as a # 0. In Section 3, we will

work with the exponential forward performance which corresponds to constant risk

tolerance in (18). In view of the limits in (18) and (19), we may call
ffiffiffi
a

p
the power risk

tolerance and
ffiffiffi
b

p
the exponential risk tolerance. Hence, the risk tolerance Rðx; t;a;bÞ for

a,b . 0 can be viewed as a combination/interpolation of the power and exponential

extremes.

For the general case with a,b . 0, Zariphopoulou and Zhou [37] compute, via

integration of (14), the dynamic risk preference function uðx; t;a;bÞ associated with

Rðx; t;a;bÞ in (17):

Proposition 4. The dynamic risk preference function uðx; t;a;bÞ associated with

Rðx; t;a;bÞ in (17) for a;b . 0 is given by ([37], Proposition 3.2)

uðx; t;a;bÞ ¼m
k1þð1=kÞ

a21
eðð12kÞ=2Þt

ðb=kÞe2atþð1þkÞx kxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax2 þbe2at

p� �
kxþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax2 þbe2at

p� �1þð1=kÞ
þn; a– 1;

ð21Þ

uðx; t; 1;bÞ ¼
m

2
log xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 2 þ be2t

p� �
2

e2t

b
x x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ be2t

p� �
2

t

2

� 	
þ n; a ¼ 1;

where k ¼
ffiffiffi
a

p
, and m . 0; n [ R are integration constants.

As mentioned earlier, in the context of the domain of the local risk tolerance, the

function uðx; t;a;bÞ is also well defined for all x [ R, except in the limit case b # 0. This

property is particularly useful in indifference valuation, for it eliminates the non-negativity

constraints on the investor’s wealth (with and without the claim at hand).

1 0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

Wealth (x)

R
(x

,t;
α,

β)

Risk tolerance function

α=4

α=1

α=0

α=0.5

Figure 2. As a decreases from 4 to 0, with b ¼ 0.25 and t ¼ 1, the risk tolerance function
Rðx; t;a;bÞ converges to the constant level

ffiffiffi
b

p
¼ 0:5, as predicted by the limit in (18).

T. Leung et al.748
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3. American options under stochastic volatility

In this section, we study the forward indifference valuation of an American option in a

stochastic volatility model. We work with the exponential forward performance, which, as

mentioned in the previous section, corresponds to the parameter choice a ¼ 0.

A comparative analysis with the classical exponential utility indifference pricing is

provided in Section 3.3.

The discounted stock price S is modelled as a diffusion process satisfying

dSt ¼ Sts ðYtÞ lðYtÞ dt þ dWtð Þ: ð22Þ

The Sharpe ratio l(Yt) and volatility coefficient s(Yt) are driven by a non-traded stochastic

factor process ðYtÞt$0 which evolves according to

dYt ¼ bðYtÞ dt þ cðYtÞ r dWt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 r2

p
dŴt

� �
: ð23Þ

The processes W and Ŵ are two independent Brownian motions defined on

ðV;F ; ðF tÞt$0;PÞ, where Ft is taken to be the augmented s-algebra generated by

ððWu; ŴuÞ; 0 # u # tÞ. The coefficient r [ (21,1) accounts for the correlation between S

and Y. The volatility function s(�) and the diffusion coefficient c(�) are smooth, positive

and bounded. The Sharpe ratio l(�) is bounded continuous, and b(�) is Lipschitz

continuous on R. Similar conditions can be found in [36] and, as therein, our model

excludes the Heston model whose volatility function is not bounded. For indifference

pricing under the Heston model, we refer to [15].

The American option yields pay-off gðSt; Yt; tÞ at any exercise time t [ [0,T ], where

gð�;�;�Þ is a smooth and bounded function. The holder of the American option

dynamically trades between the stock and money market account, and his discounted

trading wealth follows:

dXp
t ¼ pts ðYtÞðlðYtÞ dt þ dWtÞ; ð24Þ

where ðptÞt$0 is the discounted cash amount invested in stock (cf. (19)).

3.1. Exponential forward indifference price

We model the American option holder’s risk preferences by the exponential forward

performance process. This corresponds to the limiting case in (18) where the risk tolerance

becomes a constant
ffiffiffi
b

p
(see also Figure 2). As seen in (18), the function u(x,t) is given by

uðx; tÞ ¼ 2e2gxþðt=2Þ; ð25Þ

where g :¼ 1=
ffiffiffi
b

p
can be considered as the investor’s local risk aversion parameter.

In turn, applying Theorem 3, we obtain the exponential forward performance process

Ue
t ðxÞ ¼ 2e

2gxþðð1=2Þ
Ð t

0
lðYsÞ

2 dsÞ
; t $ 0: ð26Þ

As defined in (7), the option holder’s value process based on the exponential forward

performance is given by

Ve
t ðXtÞ ¼ ess sup

t[T t;T

ess sup
p[Zt;t

E 2e2gðXp
t þgðSt;Yt;tÞÞe

ð1=2Þ
Ð t

0
lðYsÞ

2 ds
jF t

n o

¼ e
ð1=2Þ
Ð t

0
lðYsÞ

2 ds
ess sup
t[T t;T

ess sup
p[Zt;t

E 2e2gðXp
t þgðSt;Yt;tÞÞe

ð1=2Þ
Ð t

t
lðYsÞ

2 ds
jF t

n o
: ð27Þ
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We observe that the second term in (27) is the value of a combined stochastic control and

optimal stopping problem. Working under the Markovian stochastic volatility market (22)

and (23), we look for a candidate optimal Ft-adapted Markovian strategy by studying the

associated HJB variational inequality.

To facilitate notation, we introduce the following differential operators and

Hamiltonian:

LSYv ¼
1

2
s ð yÞ2s2vss þ rcð yÞs ðyÞsvsy þ

1

2
cð yÞ2vyy þ lð yÞs ðyÞsvs þ bð yÞvy;

L0
SYv ¼

1

2
s ð yÞ2s2vss þ rcðyÞs ð yÞsvsy þ

1

2
cðyÞ2vyy þ ðbðyÞ2 rcðyÞlðyÞÞvy;

ð28Þ

and

Hðvxx; vxy; vxs; vxÞ ¼ max
p

p2s ðyÞ2

2
vxx þ p rs ðyÞcðyÞvxy þ s ðyÞ2svxs þ lðyÞs ðyÞvx

� �� 	
:

Note that LSY and L0
SY are, respectively, the infinitesimal generators of the Markov process

ðSt; YtÞt$0 under the historical measure P and the MMM Q0. The latter measure is defined

in (35).

Next, we consider the HJB variational inequality:

Vt þ LSYV þH Vxx;Vxy;Vxs;Vx

� �
þ lðyÞ2

2
V # 0;

Vðx; s; y; tÞ $ 2e2gðxþgðs;y;tÞÞ;

Vt þ LSYV þHðVxx;Vxy;Vxs;VxÞ þ
lðyÞ2

2
V

� �
� 2e2gðxþgðs;y;tÞÞ 2 Vðx; s; y; tÞ
� �

¼ 0;

Vðx; s; y; TÞ ¼ 2e2gðxþgðs;y;TÞÞ;

8>>>>>><
>>>>>>:

ð29Þ

for ðx; s; y; tÞ [ R £ Rþ £ R £ ½0; T�. Given a solution Vðx; s; y; tÞ to (29) that is C2;2;2;1,

except across a lower dimensional optimal exercise boundary, one can show by standard

verification arguments (see, for example, Theorem 4.2 of [33]) that V is the value function

for the combined optimal control/stopping problem in (27). Therefore, we can write

Ve
t ðXtÞ ¼ e

ð1=2Þ
Ð t

0
lðYsÞ

2 ds
VðXt; St; Yt; tÞ: ð30Þ

As is common in classical indifference pricing of American options, the existence of a

solution (in an appropriate regularity class) to the HJB equation or variational inequality is

a non-trivial and technical issue. In the classical exponential utility indifference pricing for

American options, Oberman and Zariphopoulou [32] show the existence of a unique

viscosity solution of the HJB variational inequality for the value function. In fact, our

variational inequality (29) differs from that in [32] only by the term ððlðyÞ2Þ=2ÞV . For our

analysis in this section, we assume the existence of a unique solution Vðx; s; y; tÞ to the

variational inequality (29) with the regularity needed for the verification arguments.

Assumption 5. We assume that there exists a unique smooth solution Vðx; s; y; tÞ to the

variational inequality (29) so that (30) holds.
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Applying (26) and (30) to Definition 2, the option holder’s exponential forward

indifference price function pðx; s; y; tÞ is given by

pðx; s; y; tÞ ¼ 2
1

g
logð2Vðx; s; y; tÞÞ2 x: ð31Þ

Substituting (31) into the variational inequality (29), we derive the variational equality for

pðx; s; y; tÞ. It turns out that the indifference price is independent of the wealth argument x

and solves the free boundary problem

pt þ L0
SYp2

1
2
gð1 2 r2ÞcðyÞ2p2

y # 0;

pðs; y; tÞ $ gðs; y; tÞ;

pt þ L0
SYp2

1
2
gð1 2 r2ÞcðyÞ2p2

y

� �
� gðs; y; tÞ2 pðs; y; tÞ
� �

¼ 0;

pðs; y; TÞ ¼ gðs; y; TÞ;

8>>>>>><
>>>>>>:

ð32Þ

for ðs; y; tÞ [ Rþ £ R £ ½0; T�.
By the first-order condition in (29) and the formula (31), the optimal hedging strategy

ð ~p*
t Þ0#t#T can be expressed in terms of the partial derivatives of the forward indifference

price, namely

~p*
t ¼

lðYtÞ

gs ðYtÞ
þ

St

g
psðSt;Yt; tÞ þ

rcðYtÞ

gs ðYtÞ
pyðSt; Yt; tÞ:

The first term in this expression is the optimal strategy in (13) when there is no claim.

The second and third parts of the strategy ~p*
t account for the sensitivity of the indifference

price with respect to the traded and non-traded assets S and Y, respectively.

The optimal exercise time is the first time that the indifference price reaches the option

pay-off:

t*
t ¼ inf t # u # T : pðSu; Yu; uÞ ¼ gðSu; Yu; uÞf g: ð33Þ

In practice, one can numerically solve the variational inequality (32) to obtain the optimal

exercise boundary which represents the critical levels of S and Y at which the option should

be exercised. We remark that the indifference price, the optimal hedging and exercising

strategies are all wealth independent. The same phenomenon occurs in the classical

indifference valuation with exponential utility.

3.2. Dual representation

The option holder’s forward performance maximization in (27) can be considered as the

primal optimization problem, and it yields the first expression for the forward indifference

price in (31). In this subsection, our objective is to derive a dual representation for the

forward indifference price, which turns out to be related to pricing the American option

with entropic penalty. This result will allow us to express the price in a way analogous to

the classical exponential indifference price. We carry out this comparison in Section 3.3.

First, we denote by M(P) the set of equivalent local martingale measures with respect

to P on FT. As is well known (see, for example, [11]), these measures are characterized by

their respective density process with respect to P, which is given by the stochastic
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exponential

Zf
t ¼

dQf

dP
jF t

¼ exp 2
1

2

ðt
0

lðYsÞ
2 þ f2

s ds2

ðt
0

lðYsÞ dWs 2

ðt
0

fs dŴs

� 	
; ð34Þ

where ðftÞ0#t#T is a Ft-progressively measurable process satisfying
Ð T

0
f2
s ds , 1, P-a.s.,

and E{Z
f
T} ¼ 1.

By Girsanov’s Theorem, it follows that the two processes W
f
t ¼ Wt þ

Ð t
0
lðYsÞ ds and

Ŵ
f

t ¼ Ŵt þ
Ð t

0
fs ds are independent Qf-Brownian motions. The process f is commonly

referred to as the volatility risk premium for the second Brownian motion Ŵ. When f ¼ 0,

the resulting measure Q0 is the well-known MMM, whose Radon–Nikodym derivative is

dQ0

dP
¼ exp 2

1

2

ðT
0

lðYsÞ
2 ds2

ðT
0

lðYsÞ dWs

� 	
; ð35Þ

see [10].

Next, we define the conditional relative entropy of Qf with respect to P over the

interval [t,t ], with t [ T t;T , as

Ht
t ðQ

fjPÞ :¼ EQ
f

log
Zf
t

Z
f
t





F t

( )
: ð36Þ

Direct computation from (34) shows that this relative entropy is, in fact, a quadratic

penalization on the risk premia l and f. In other words,

Ht
t ðQ

fjPÞ ¼
1

2
EQ

f

ðt
t

lðYsÞ
2 þ f2

s dsjF t

� �
: ð37Þ

We denote the set of equivalent local martingale measures with finite relative entropy

(with respect to P) as

Mf :¼ Qf [ MðPÞ : HT
0 ðQ

fjPÞ , 1
� �

:

The probability measure that yields the minimum relative entropy with respect to P is

called the MEMM and is defined by

QE :¼ arg min
Q f[MðPÞ

HT
t ðQ

fjPÞ: ð38Þ

Key results on the MEMM in a general semimartingale market framework can be found in

[12,13]. This measure also arises in hedging and indifference valuation under exponential

utility; see [8,35], among others.

Remark 6. If the Sharpe ratio is constant, i.e. lðyÞ ¼ l, then the conditional relative

entropy simplifies to

HT
t ðQ

fjPÞ ¼
l2

2
ðT 2 tÞ þ EQ

f

ðT
t

f2
s dsjF t

� �
:

T. Leung et al.752

D
ow

nl
oa

de
d 

by
 [

C
ol

um
bi

a 
U

ni
ve

rs
ity

] 
at

 0
8:

23
 1

0 
A

pr
il 

20
13

 



As a result, setting f ¼ 0 minimizes HT
t ðQ

fjPÞ. This is a well-known example in which

the MEMM QE coincides with the MMM Q0.

We may also express any measure Qf in terms of Q 0 via the Radon–Nikodym

derivative, namely

dQf

dQ 0
¼

dQf

dP


dQ0

dP
¼ exp 2

1

2

ðT
0

f2
s ds2

ðT
0

fs dŴ
0

s

� 	
: ð39Þ

We denote the density process of Qf with respect to Q0 by Z
f;0
t ¼ EQ

0

{ðdQfÞ=ðdQ0ÞjF t}:
Treating Q0 as the prior risk-neutral measure, we can define the conditional relative

entropy Ht
t ðQ

fjQ0Þ of Qf with respect to Q0 over the interval [t,t ] as

Ht
t ðQ

fjQ0Þ ¼ EQ
f

log
Zf;0
t

Z
f;0
t

jF t

( )
¼

1

2
EQ

f

ðt
t

f2
s dsjF t

� �
: ð40Þ

With these notations, we are now ready to state the duality formula for the exponential

forward indifference price.

Proposition 7. The American option holder’s exponential forward indifference price

pðs; y; tÞ is the solution of the combined stochastic control and optimal stopping problem:

pðSt; Yt; tÞ ¼ ess sup
t[T t;T

ess inf
Q f[Mf

EQ
f

gðSt; Yt; tÞjF tf g þ
1

g
Ht

t ðQ
fjQ0Þ

� 	
: ð41Þ

Before giving the proof in the next subsection, let us first discuss the intuitive

interpretation of the forward indifference price according to the duality formula (41).

In essence, the holder tries to value the American option over a set of equivalent local

martingale measures, and his selection criterion for the optimal pricing measure is based

on relative entropic penalization (scaled by risk aversion g). Indeed, the second term in

(41) is the relative entropy of a candidate measure Qf with respect to the MMM Q 0 up to

the exercise time. Therefore, the holder assigns the corresponding optimal risk premium

f* according to (42). Due to the entropic penalty, we observe from (41) that the

exponential forward indifference pricing rule is nonlinear in terms of the number of

options held.

There are two ways to establish Proposition 7. The first approach is to apply the

variational inequalities in Section 3.1. One can check that the variational inequality (32)

for the indifference price pðs; y; tÞ in (31) is identical to the one for the stochastic

control/stopping problem on the RHS of (41). Using this approach, the associated optimal

control f* must satisfy

f*
t ¼ 2gcðYtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 r2

p
pyðSt; Yt; tÞ; 0 # t # T ; ð42Þ

subject to integrability condition so that Qf *
[ Mf . This approach requires a number of

regularity conditions for the nonlinear variational inequalities (32) and (41) and for the

candidate optimal control f*.

Hence, in the next subsection, we will prove Proposition 7 via an alternative approach

which does not involve the variational inequalities. The key idea is to derive the dual

representation for the forward value function in (30) using an analogous duality formula
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from the classical exponential indifference pricing for American options [25]; see

Theorem 8 below. Before we present the proof, we first need to recall and discuss the

classical exponential utility indifference price.

3.3. Comparison with the classical exponential utility indifference price

In this section, we first summarize the duality results from the classical exponential utility

indifference pricing, and then apply them to derive the forward indifference formula (41).

Moreover, we also provide a comparative analysis between the classical and forward

indifference valuation approaches.

We start with a brief review of the classical indifference pricing with exponential

utility under stochastic volatility models. We refer the reader to, for example, [3,15,36] for

European-style derivatives, as well as [25,32] for American options.

In the classical setting, the investor’s risk preferences at time T are modelled by the

exponential utility function 2e2gx, with risk aversion parameter g . 0. In the stochastic

volatility model described in (22) and (23), the value function of the Merton problem

(cf. (4)) is

MðXt; Yt; tÞ ¼ sup
p[Zt;T

E 2e2gXp
T jF t

� �
ð43Þ

with ðXp
t Þt$0 given by (24).

As is well known, see for example, [8,35], the Merton value function admits a dual

representation in terms of relative entropy minimization, namely

MðXt; Yt; tÞ ¼ 2exp 2gXt 2 HT
t ðQ

EjPÞ
� �

; ð44Þ

where HT
t ðQ

EjPÞ is the conditional relative entropy of QE with respect to P over [t,T ].

If the American option g is held, then the investor seeks the optimal trading strategy

and exercise time to maximize the expected utility of wealth from both his dynamic

portfolio and the option’s pay-off at exercise. Upon exercise of the option, the investor will

reinvest the contract proceeds, if any, to his trading portfolio, and continue to trade up to

time T. As a consequence, the holder faces the optimization problem

V̂ðXt; St; Yt; tÞ ¼ ess sup
t[T t;T

ess sup
p[Zt;t

E M Xp
t þ gðSt; Yt; tÞ; Yt; t

� �
jF t

� �
ð45Þ

¼ ess sup
t[T t;T

ess sup
p[Zt;t

E 2e2gðXp
t þgðSt;Yt;tÞÞe2HT

t ðQ
EjPÞjF t

n o
; ð46Þ

where M is defined in (43). The classical indifference price p̂ of the American option is

then determined from the equation

Mðx; y; tÞ ¼ V̂ðx2 p̂ðx; s; y; tÞ; s; y; tÞ: ð47Þ

Under a general semimartingale framework, Leung and Sircar [25] have derived a

duality formula for the optimization problem (45) and the exponential indifference price p̂.

Herein, we summarize the results as written for our stochastic volatility market setting. We

use the shorthand notation EQ
f

t {�} ; EQ
f

{�jF t}.
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Theorem 8 ([25], Propositions 2.4 and 2.8). The classical value function in (45) for

holding the American option g is given by

V̂ðXt;St;Yt; tÞ

¼2e2gXtexp 2ess sup
t[T t;T

ess inf
Q f[Mf

EQ
f

t ggðSt;Yt;tÞf g þHt
t ðQ

fjPÞ þ EQ
f

t HT
t ðQ

EjPÞ
� �� � !

:

ð48Þ

The classical exponential indifference price is given by

p̂ðSt; Yt; tÞ ¼ ess sup
t[T t;T

ess inf
Q f[Mf

EQ
f

t gðSt; Yt; tÞf g þ
1

g
Ht

t ðQ
fjQEÞ

� 	
: ð49Þ

Now, we apply Theorem 8 to establish Proposition 7, namely, the duality formula (41)

for the forward exponential indifference price.

Proof of Proposition 7. We begin by writing the function VðXt; St; Yt; tÞ in (30) as

VðXt; St; Yt; tÞ ¼ ess sup
t[T t;T

ess sup
p[Zt;t

E 2e
2gðXp

t þgðSt;Yt;tÞ2ð1=ð2gÞÞ
Ð t

t
lðYsÞ

2 dsÞ
jF t

n o

¼ ess sup
t[T t;T

ess sup
p[Zt;t

E 2e2gðXp
t þ~gðSt;Yt;tÞÞe2HT

t ðQ
E jPÞjF t

n o
;

where

~gðSt; Yt; tÞ ¼ gðSt; Yt; tÞ2
1

2g

ðt
t

lðYsÞ
2 ds2

1

g
HT

t ðQ
EjPÞ:

In other words, the optimization problem VðXt; St; Yt; tÞ has the same form as

V̂ðXt; St; Yt; tÞ in (48), but with a new option pay-off ~gðSt; Yt; tÞ, instead of gðSt; Yt; tÞ,
at any exercise time t [ T t;T .

Therefore, substituting the pay-off ~g for g in Theorem 8 yields

VðXt; St; Yt; tÞ

¼ 2e2gXtexp 2ess sup
t[T t;T

ess inf
Q f[Mf

EQ
f

t g~gðSt; Yt; tÞf g þ Ht
t ðQ

fjPÞ þ EQ
f

t HT
t ðQ

EjPÞ
� �� � !

¼ 2e2gXtexp 2ess sup
t[T t;T

ess inf
Q f[Mf

EQ
f

t ggðSt; Yt; tÞ2
1

2

ðt
t

lðYsÞ
2 ds

� �
þ Ht

t ðQ
fjPÞ

� 	 !

¼ 2e2gXtexp 2ess sup
t[T t;T

ess inf
Q f[Mf

EQ
f

t ggðSt; Yt; tÞf g þ Ht
t ðQ

fjQ0Þ
� � !

;

ð50Þ

where the last equality follows from (36) and (40). This is an alternative representation for

V in (30). Finally, applying the duality formula (31) to (50) yields the forward exponential

indifference price formula (41). A
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The classical and forward exponential indifference prices in Theorem 8 and

Proposition 7 bear a striking similarity, except that the relative entropy term in (49) is

computed with respect to QE, but in (41) it is computed with respect to Q0. To highlight

this, we shall compare the variational inequality of the forward indifference price in (32)

with its classical analogue.

As is well known, the classical Merton function M admits a separation of variables due

to the choice of exponential utility.

Proposition 9. The value function Mðx; y; tÞ is given by

Mðx; y; tÞ ¼ 2e2gx f ðy; tÞð1=ð12r 2ÞÞ; ð51Þ

where r is the correlation coefficient in (23), and f solves

f t þ L0
Y f ¼

1

2
ð1 2 r2ÞlðyÞ2 f ; ð52Þ

for ðx; tÞ [ R £ ½0; TÞ, with f ðy; TÞ ¼ 1, for y [ R. The operator L0
Y is the infinitesimal

generator of Y under the MMM Q 0, and is given by

L0
Y f ¼

1

2
cð yÞ2 f yy þ bð yÞ2 rcð yÞlð yÞ

� �
f y:

Details can be found, for example, in Theorem 2.2 of [36].

Using (51) and (47), we obtain the formula

V̂ðx; s; y; tÞ ¼ 2e2gðxþp̂ðx;s;y;tÞÞf ðy; tÞð1=ð12r 2ÞÞ: ð53Þ

To derive the variational inequality for the indifference price, one can use the

variational inequality for V and then apply the transformation (53). Again, the choice of

exponential utility yields wealth-independent indifference prices, i.e.

p̂ðx; s; y; tÞ ¼ p̂ðs; y; tÞ. We obtain

p̂t þ LE
SY p̂2

1
2
gð1 2 r2ÞcðyÞ2p̂2

y # 0;

p̂ðs; y; tÞ $ gðs; y; tÞ;

p̂t þ LE
SY p̂2

1
2
gð1 2 r2ÞcðyÞ2p̂2

y

� �
� gðs; y; tÞ2 p̂ðs; y; tÞ
� �

¼ 0;

p̂ðs; y; TÞ ¼ gðs; y; TÞ;

8>>>>>><
>>>>>>:

ð54Þ

for ðs; y; tÞ [ Rþ £ Rþ £ ½0; T�. Here, LE
SY is the infinitesimal generator of (S,Y) under the

MEMM QE, namely

LE
SYw ¼ L0

SYwþ lðy; tÞcðyÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 r2

p
wy; ð55Þ

where L0
SY is given in (28) and

lðy; tÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 2 r2
p cðyÞ

f yðy; tÞ

f ðy; tÞ
: ð56Þ

T. Leung et al.756

D
ow

nl
oa

de
d 

by
 [

C
ol

um
bi

a 
U

ni
ve

rs
ity

] 
at

 0
8:

23
 1

0 
A

pr
il 

20
13

 



As shown in ([36], Section 2), the function l(y,t) is smooth and bounded, and is the risk

premium corresponding to the MEMM QE, namely

dQE

dP
¼ exp 2

1

2

ðT
0

lðYsÞ
2 þ lðYs; sÞ

2
� �

ds2

ðT
0

lðYsÞ dWs þ

ðT
0

lðYs; sÞ dŴs

� 	
: ð57Þ

Therefore, the operator LE
SY is the infinitesimal generator of (S,Y) under QE.

It is important to notice that the fundamental difference between the variational

inequalities (32) and (54) lies in the operators L0
SY in (28) and LE

SY in (55). Indeed, these

two variational inequalities reflect, respectively, the special roles of the MMM in the

forward indifference setting and the MEMM in the classical model.

Note that the classical indifference price p̂ in (54) involves the MEMM operator LE
SY

which in turn depends on f(t,y). Therefore, the computation of p̂ requires first solving the

partial differential equation (PDE) (52) followed by solving the variational inequality (54).

However, in the forward indifference valuation, the indifference price can be obtained by

solving only one variational inequality (32). Hence, under the forward exponential

performance, the forward indifference formulation allows for more efficient computation

than in the classical framework.

Remark 10. If the claim is written on Y only, say with pay-off function g(y,t), then the

indifference price does not depend on S. Applying a logarithmic transformation to the

variational inequality (32), the nonlinear variational inequality can be linearized. Then,

under Assumption 5, the forward indifference price admits the probabilistic

representation:

pðy; tÞ ¼ 2
1

gð1 2 r2Þ
log inf

t[T t;T

EQ
0

e2gð12r 2ÞgðYt;tÞjYt ¼ y
n o

: ð58Þ

In contrast, the classical exponential utility indifference price of an American option with

the same pay-off function gðy; tÞ can be found in [32] and is given by

p̂ðy; tÞ ¼ 2
1

gð1 2 r2Þ
log inf

t[T t;T

EQ
E

e2gð12r 2ÞgðYt;tÞjYt ¼ y
n o

ð59Þ

with QE given in (57). Again, we see that the measure Q0 in the forward performance

framework plays a similar role as QE in the classical setting.

Remark 11. If the Sharpe ratio l is constant, then the measures Q0 and QE coincide by

Remark 6. In fact, direct substitution shows that the function f ðtÞ :¼ e2ð12r 2Þðl 2=2ÞðT2tÞ

solves the PDE (52). This implies that lðy; tÞ ¼ 0 and QE ¼ Q 0. As a result, the classical

and forward indifference prices in (58) and (59) above, where the claim is written on Y

only, are in fact identical.

3.4. Risk aversion and volume asymptotics

Proposition 7 provides a convenient representation for analysing the exponential forward

indifference price’s sensitivity with respect to risk aversion and the number of options

held. Next, we further elaborate on these dependencies.
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First, let us consider a risk-averse investor with local risk aversion g who holds a . 0

units of American options, and suppose that all a units are constrained to be exercised

simultaneously. In this case, the holder’s indifference price pðs; y; t;g; aÞ is again given by

(41) but with the pay-off gðSt; Yt; tÞ replaced by agðSt; Yt; tÞ. The optimal exercise time

t*ða; gÞ is the first time that the forward indifference price reaches the pay-off from

exercising all a units:

t*ða;gÞ ¼ inf t # u # T : pðSu; Yu; u; g; aÞ ¼ agðSu; Yu; uÞf g: ð60Þ

Proposition 12. Fix a . 0 and t [ ½0; T�. If g2 $ g1 . 0, then

pðs; y; t; g2; aÞ # pðs; y; t;g1; aÞ

and

t*ða; g2Þ # t*ða; g1Þ; almost surely:

Proof. For g2 $ g1 . 0, it follows from (41) that pðs; y; t; g2; aÞ # pðs; y; t; g1; aÞ.
Therefore, as g increases, pðs; y; t; g; aÞ decreases, while the pay-off agðs; y; tÞ does not

depend on g. By (60), this leads to a shorter exercise time (almost surely). A

Furthermore, we deduce formally the risk-aversion limits of the indifference price. For

the technical details, we refer the reader to Leung and Sircar [25] who have shown these

asymptotic results for the traditional exponential indifference price of American options in

a general semimartingale framework, and their proofs can be easily adapted here.

First, as g increases to infinity, the penalty term in the indifference price representation

(41) vanishes. Consequently, we deduce the following limit:

lim
g!1

pðs;y; t;g;aÞ ¼ a� sup
t[T t;T

inf
Q f[Mf

EQ
f

gðSt;Yt;tÞjSt ¼ s;Yt ¼ yf g ¼: a�c
_
ðs;y; tÞ: ð61Þ

This limiting price cðs; y; tÞ is commonly referred to as the sub-hedging price of the

American options (see, for example, [20]). Interestingly, the classical indifference price

also converges to the same limit as g ! 1 (see [25], Proposition 2.17).

On the other hand, as the holder’s risk aversion g decreases to zero, one can deduce

from (41) that it is optimal not to deviate from the prior measure Q0 (i.e. f ¼ 0), yielding

zero entropic penalty. This leads to valuing the American options under the MMM Q0,

namely

lim
g!0

pðs; y; t; g; aÞ ¼ a� sup
t[T t;T

EQ
0

gðSt; Yt; tÞjSt ¼ s; Yt ¼ yf g: ð62Þ

In contrast, the classical indifference price converges to the risk-neutral price of the

American options under the MEMM QE instead of Q0.

Finally, the forward indifference price satisfies the volume-scaling property:

pðs; y; t; g; aÞ

a
¼ pðs; y; t; ag; 1Þ:

T. Leung et al.758
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As the number of options held increases, the average indifference price pðs; y; t; g; aÞ=a
will decrease, and by (60) the options will be exercised earlier. The classical indifference

price for American options also possesses the same volume-scaling property and exercise

phenomenon.

Moreover, the risk-aversion limits in (61) and (62) lead to the large volume limit:

lim
a!1

pðs; y; t; g; aÞ

a
¼ c

_
ðs; y; tÞ;

which is the sub-hedging price, and the small volume limit:

lim
a!0

pðs; y; t; g; aÞ

a
¼ sup

t[T t;T

EQ
0

gðSt; Yt; tÞjSt ¼ s; Yt ¼ yf g:

To summarize, in all these limiting cases, both the classical and forward indifference

pricing rules become linear with respect to quantity. In the large risk-aversion and large

volume limits, the classical and forward indifference prices will both converge to the sub-

hedging price. However, in the zero risk-aversion and zero volume limits, the classical and

forward indifference prices, respectively, converge to the risk-neutral prices under the

MEMM QE and the MMM Q0. As pointed out in Remark 6, when the Sharpe ratio l is

constant, the MEMM and MMM coincide, so the corresponding zero risk-aversion and

zero volume limits of the classical and forward indifference prices are in fact the same.

4. Modelling early exercises of ESOs

Now, we consider the problem of exercising ESOs under a time-monotone forward

performance criterion with the risk tolerance function Rðx; t;a;bÞ in (17). These options

are American calls granted by a company to its employees as a form of compensation.

A typical ESO contract prohibits the employee from selling the option and from hedging

by short selling the firm’s stock. The sale and hedging restrictions may induce the

employee to exercise the ESO early and invest the option proceeds elsewhere. Modelling

the employee’s exercise timing is crucial to the accurate valuation of ESOs.

Empirical studies (see, for example, [5]) show that employees tend to exercise their

ESOs very early. Recent studies, including [16] and [24], apply classical indifference

pricing to ESO valuation. In those papers, the employee was assumed to have a classical

exponential utility specified at the expiration date T of the options. Here, we assume a

forward performance criterion for the employee, which is not anchored to a specific future

time, and then numerically solve for the optimal exercise strategies under different

scenarios.

We assume that the employee trades dynamically in a liquid correlated market index

and a riskless money market account in order to partially hedge against his ESO position.

Alternative hedging strategies for ESOs have also been proposed. For instance, Leung and

Sircar [25] considered combining static hedges with market-traded European or American

puts with the dynamic investment in the market index.

We focus our study on the case of a single ESO. Typically, ESOs have a vesting period

during which they cannot be exercised early. The incorporation of a vesting period

amounts to lifting the employee’s pre-vesting exercise boundary to infinity to prevent

exercise, but leaving the post-vesting policy unchanged. The case with multiple ESOs can

be studied as a straightforward extension to our model though the numerical computations

will be more complex and time-consuming; see [14] for the case of multiple perpetual
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ESOs with exponential utility. Our main objective is to examine the non-trivial effects of

forward investment performance criterion on the employee’s optimal exercise timing.

4.1. The employee’s optimal forward performance with an ESO

We assume that the money market account yields a constant interest rate r $ 0.

The discounted prices of the market index and the firm’s stock are modelled as correlated

log-normal processes, namely

dSt ¼ Sts ðl dt þ dWtÞ ðtradedÞ; ð63Þ

dYt ¼ bYt dt þ cYt r dWt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 r2

p
dŴt

� �
ðnon-tradedÞ; ð64Þ

where l;s ; b; c are constant parameters. The ESO studied here has a discounted capped

American pay-off given by

gðYt; tÞ ¼ ðYt 2 K e2rtÞþ ^ L0; for t [ T 0;T ;

where T is the expiration date and L0 is a large upper bound to be used in our numerical

method (see Section 4.2).

This market set-up is nested in the Itô diffusion market described in Section 2. Here,

the Sharpe ratio l of the index S is now a constant, and the option pay-off is independent of

S. The employee trades dynamically in the index S and the money market account, so his

discounted wealth process satisfies

dXp
t ¼ pts l dt þ dWtð Þ: ð65Þ

We proceed with the employee’s forward performance criterion UtðxÞ. First, we adopt

the risk tolerance function in (17), namely, Rðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax2 þ be2at

p
, and the

corresponding dynamic risk preference function uðx; tÞ given in Proposition 4. Then, we

apply Theorem 3 to obtain the employee’s forward performance UtðxÞ ¼ uðx; l2 tÞ. In turn,

the employee’s maximal forward performance in the presence of the ESO is given by

Vðx; y; tÞ ¼ sup
t[T t;T

sup
p[Zt;t

E u Xp
t þ gðYt; tÞ; l

2t
� �

jXt ¼ x; Yt ¼ y
� �

: ð66Þ

In contrast to the stochastic volatility problem in Section 3, the option pay-off depends on

Y only, and the state variable S disappears from the value function V.

To solve for the employee’s value function, we look for a solution to the following

HJB variational inequality:

Vt þ LYV 2
rcyVxyþlVxð Þ

2

2Vxx
# 0;

Vðx; y; tÞ $ u xþ gðy; tÞ; l2t
� �

;

Vt þ LYV 2
rcyVxyþlVxð Þ

2

2Vxx

� 	
� uðxþ gðy; tÞ; l2tÞ2 Vðx; y; tÞ
� �

¼ 0;

Vðx; y; TÞ ¼ u xþ gðy;TÞ; l2T
� �

;

8>>>>>>>>><
>>>>>>>>>:

ð67Þ

for ðx; y; tÞ [ R £ Rþ £ ½0; T�, with LYV ¼ ð1=2ÞcðyÞ2Vyy þ bðyÞVy:

T. Leung et al.760
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We remark that the variational inequality (67) is highly nonlinear, and it can be

simplified only for very special local utility functions. In the exponential forward

performance case, this can be viewed as a special case under the stochastic volatility model

discussed in Section 3. In the perpetual case with exponential utility, Henderson [17] derives

an explicit solution for the value function. Recent ESO valuation models, including

[14,16,24], are also designed with the classical exponential utility. As for the general case,

we do not attempt to address the related existence, uniqueness and regularity questions.

4.2. Numerical solutions

We apply a fully explicit finite-difference scheme to numerically solve (67) for the

employee’s optimal exercising strategy. First, we restrict the domain R £ Rþ £ ½0; T� to a

finite domain D ¼ {ðx; y; tÞ : 2L1 # x # L2; 0 # y # L0; 0 # t # T}, where Lk,

k ¼ 0; 1; 2, are chosen to be sufficiently large to preserve the accuracy of the numerical

solutions.

Next, a number of boundary conditions are imposed. Along y ¼ 0, the firm’s stock

price, and thus the ESO, become worthless. Therefore, we set Vðx; 0; tÞ ¼ uðx; l2 tÞ. When

Y hits the high-level L0, we assume that the ESO will be exercised there, implying the

condition

Vðx; L0; tÞ ¼ u xþ gðL0; tÞ; l
2 t

� �
:

Along x ¼ 2L1 and x ¼ L2, we adopt the Dirichlet boundary conditions

V 2L1; y; t
� �

¼ u 2L1 þ gðy; tÞ; l2t
� �

and V L2; y; t
� �

¼ u L2 þ gðy; tÞ; l2 t
� �

;

which imply that the employee will exercise the ESO at these boundaries. Over a uniform

grid, we apply an explicit finite-difference approximations and solve for V iteratively

backward in time starting at T.

At each time step, the inequality constraint Vðx; y; tÞ $ uðxþ gðy; tÞ; l2 tÞ is enforced.

By comparing the value function and the obstacle term, we identify the continuation

region C where the ESO is not exercised, and the exercise region E where it is exercised,

namely

C ¼ ðx; y; tÞ [ R £ Rþ £ ½0; T� : Vðx; y; tÞ . uðxþ gðy; tÞ; l2 tÞ
� �

; ð68Þ

E ¼ ðx; y; tÞ [ R £ Rþ £ ½0; T� : Vðx; y; tÞ ¼ uðxþ gðy; tÞ; l2 tÞ
� �

: ð69Þ

From the numerical example in Figure 3, we observe that the value function dominates

the obstacle term. At any time t and wealth x, we locate the optimal stock price level

y*ðx; tÞ that separates the two regions C and E. As a result, the employee will exercise the

ESO as soon as Yt hits the threshold y *ðXt; tÞ:

t* ¼ inf 0 # t # T : Yt ¼ y*ðXt; tÞ
� �

: ð70Þ

In the case of call options, the boundary lies above the strike K. Figure 4 shows an example

of the optimal exercise boundary for the ESO.

4.3. Behaviour of the optimal exercise policy

We illustrate the employee’s optimal exercise boundary in Figure 4. Not surprisingly, the

exercise boundary y*ðx; tÞ decreases with respect to time, which implies that the employee

is willing to exercise the ESO at a lower stock price as it gets closer to expiry.
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From Figure 5, we observe that the exercise boundary is wealth dependent.

The employee tends to delay exercising the ESO when his wealth deviates away from zero.

We can gain some intuition from our choice of risk tolerance function Rðx; t;a;bÞ. As

wealth approaches zero, the employee’s risk tolerance decreases (recall Figure 1) or,

equivalently, risk aversion increases. Higher risk aversion influences the employee to

exercise earlier to secure small gains rather than waiting for future uncertain pay-offs.
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Figure 3. The value function Vðx; y; tÞ dominates the obstacle term uðxþ gðy; tÞ; l 2 tÞ.
The parameters are l ¼ 33%, s ¼ 35%, b ¼ 6%, c ¼ 40%, r ¼ 50%, r ¼ 1%, K ¼ 1, T ¼ 1,
a ¼ 4 and b ¼ 0.25. At t ¼ 0 and x ¼ 0, the critical stock price y *ð0; 0Þ ¼ 1:58 is the point at which
the value function touches the obstacle term (above the strike).

Figure 4. The optimal exercise policy is characterized by the critical stock price y *ðx; tÞ as a
function of wealth x and time t. It decreases as time approaches maturity. In addition, it tends to shift
lower as wealth is near zero.
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Finally, we show in Figure 6 that the exercise boundary tends to shift upward for

higher values of a and b, given the initial wealth x ¼ 0. The effect of b is intuitive because

the risk tolerance function is increasing with respect to b. Therefore, the option holder

with a higher b is effectively less risk averse and may be willing to hold on to the ESO

longer.

5. Marginal forward indifference price of American options

In this section, we introduce the marginal forward indifference price of American options.

A related concept in the classical utility framework is the marginal utility price introduced

by Davis [7], which is useful as an approximation for pricing a small number of claims.

For completeness and the upcoming comparison with the forward analogue, we provide a

brief review of the marginal utility price in the diffusion market.
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Figure 5. The optimal exercise boundary represents the critical stock price level at which the ESO
is exercised, and varies for different wealth level x. Left: the exercise boundary shifts upward as
wealth x increases from 0 to 1.5. Right: the exercise boundary is the lowest when wealth x ¼ 20.2.
As wealth decreases from 21 to 21.5, the exercise boundary rises again above the boundary with
x ¼ 0. The parameters here are the same as in Figure 3.
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Figure 6. With initial wealth x ¼ 0, the optimal exercise boundary varies for different values of b
and a. Left: a higher value of b leads to a higher exercise boundary. Right: a higher value of a shifts
the exercise boundary upward. The parameters here are taken to be same as those in Figure 3, except
for a and b specified in the figures above.
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5.1. The classical marginal utility price

In traditional utility maximization, the investor’s risk aversion is modelled by a

deterministic utility function, say ÛðxÞ, defined at time T. In the Itô diffusion market

introduced in Section 2, the investor trades dynamically between the money market and

stock S, and solves the Merton portfolio optimization problem in (4).

Next, suppose that the investor decides to buy d units of a European claim, each

offering pay-off CT [ F T . The marginal utility price is defined as the per-unit price that

the investor is willing to pay for an infinitesimal position (d < 0) in the claim. This

concept is introduced by Davis [7]. He shows by a formal small d expansion that the

investor’s marginal utility price at time t is given by

ĥt ¼
E Û0 X̂

*

T

� �
CT jF t

n o
M0

tðXtÞ
; t [ ½0; T�; ð71Þ

where X̂
*

T is the optimal terminal wealth for the Merton problem MtðXtÞ defined in (4), and

Û0 and M0
t are the derivatives with respect to the wealth argument. Kramkov and Sirbu [23]

directly adopt (71) as the definition of the marginal utility price for European claims,

which we also adapt to the case of American options.

Definition 13. The marginal utility price process ðhtÞ0#t#T for an American option with

pay-off process ðgtÞ0#t#T is defined as

ht ¼

ess sup
t[T t;T

E M0
t X̂

*

t

� �
gtjF t

n o
M0

tðXtÞ
; ð72Þ

where MtðXtÞ is given in (4).

Among others, one important question is under what conditions will the marginal

utility price be independent of the investor’s wealth. In the classical setting for options

without early exercise, wealth independence of marginal utility prices is very rare. In fact,

Kramkov and Sirbu [23] show that only exponential and power utilities yield wealth-

independent marginal utility prices for any pay-off and in any financial market.

5.2. The marginal forward indifference price formula

Following the definition of the classical marginal indifference price, we introduce the

marginal forward indifference price for our model. Henceforth, we will give the definitions

and results based on the Itô diffusion market settings described in Section 2, where the

discounted stock price S follows (2) and the option holder’s trading wealth Xt follows (3).

Definition 14. Let UtðxÞ ¼ uðx;AtÞ, with At ¼
Ð t

0
l2
s ds, be the investor’s forward

performance process, and assume X * is the optimal wealth process in (15) (cf. Theorem 3).

The marginal forward indifference price process ð~ptÞ0#t#T for an American option with an

Ft-adapted bounded pay-off process ðgtÞ0#t#T is defined as

~pt ¼

ess sup
t[T t;T

E ux X*
t ;At

� �
gtjF t

� �
ux X*

t ;At

� � : ð73Þ

T. Leung et al.764
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At first glance, the marginal forward indifference price in (73) might depend on the

holder’s risk preferences and wealth. However, as the next result shows, under a time-

monotone forward performance the marginal forward indifference price is independent of

both of these inputs, and is simply given as the expected discounted pay-off under the

MMM, regardless of the investor’s forward performance criterion.

Theorem 15. The marginal forward indifference price of an American option with pay-off

process ðgtÞ0#t#T is given by

~pt ¼ ess sup
t[T t;T

EQ
0

gtjF tf g; ð74Þ

where Q0 is the MMM. Consequently, ~pt is independent of both the holder’s wealth and

his forward performance criterion.

Proof. Comparing (73) and (74), we observe that it is sufficient to show that

ux X*
t ;At

� �
ux X*

t ;At

� � ¼ exp 2
1

2

ðt
t

l2
s ds2

ðt
t

ls dWs

� 	
; t [ T t;T : ð75Þ

Indeed, since l is bounded, this leads to the desired measure change from the historical

measure P to the MMM Q 0.

Applying Itô’s formula to uxðX*
t ;AtÞ and using the SDE (15) for X * gives

dux X*
t ;At

� �
¼ l2

t uxt X
*
t ;At

� �
þR X*

t ;At

� �
uxx X*

t ;At

� �
þ
R X*

t ;At

� �2

2
uxxx X*

t ;At

� � !
dt

þltR X*
t ;At

� �
uxx X*

t ;At

� �
dWt: ð76Þ

Next, we show that the drift vanishes. First, it follows from differentiating uðx; tÞ in (11)

that

uxt ¼ ux 2
u2
xuxxx

2u2
xx

:

Using this and the fact that Rðx; tÞ ¼ 2uxðx; tÞ=uxxðx; tÞ to (76), we see that the drift in (76)

becomes zero. As a result, the SDE (76) simplifies to

dux X*
t ;At

� �
¼ ltR X*

t ;At

� �
uxx X*

t ;At

� �
dWt

¼ 2ltux X*
t ;At

� �
dWt:

This implies that the process ðuxðX*
t ;AtÞÞt$0 is given by the stochastic exponential

representation in (75). Hence, by a change of measure, formula (74) follows. A

Theorem 15 illustrates a crucial feature of the forward indifference pricing

mechanism. If we consider that, in a general Itô diffusion market, different investors

adopt different forward performances according to Theorem 3, then their marginal

forward indifference prices for an American claim will necessarily be the same, regardless

of their wealth and choices of forward performance. In particular, this is true for the
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stochastic volatility model in (22) and (23) and the basis risk model in (63) and (64).

In contrast, the classical marginal utility price for a general utility function is typically

wealth and utility dependent ([23], Theorem 7). In the basis risk model as a special case,

Kramkov and Sirbu [23] show that the marginal utility price is also found from pricing

under the MMM, thus coinciding with the forward counterpart, even though they are

derived from very different performance mechanisms.

6. Conclusions and extensions

In summary, we have discussed the forward indifference valuation for American options

in an incomplete model with a stochastic factor. We have applied it to value American

options under stochastic volatility and model the early exercises of ESOs. The option

holder’s optimal hedging and exercising strategies are found from solving the underlying

variational inequalities.

The forward indifference valuation mechanism is profoundly different from the

mechanism in the classical approach. This is best illustrated in Section 3, in which the

exponential forward indifference price is expressed in terms of relative entropy

minimization with respect to the MMM, rather than with respect to the MEMM, as is the

case in the traditional setting. Lastly, we also introduced the marginal forward indifference

price. In contrast to the classical marginal utility price, the marginal forward indifference

price based on any time-monotone forward performance is independent of both the

investor’s wealth and the particular form of time-monotone forward performance, and is

given as the risk-neutral expectation under the MMM.

Several major challenges and interesting problems remain for future investigation. These

include the existence and regularity results for the variational inequalities associated with the

optimal forward performance and the forward indifference price. The nonlinearity of the

variational inequalities also requires the development of efficient numerical schemes.

Moreover, even though we have focused on the valuation of American options, it is important

to examine its impact in the host of other applications where traditional utility valuation has

been used, for example, credit derivatives [19,26], volatility derivatives [15], insurance

products [2] and order book modelling [1]. In all of these, the exponential utility is chosen for

its convenient analytic properties. The forward performance criterion provides a convenient

tool to (i) move away from exponential utility and (ii) remove the horizon dependence.
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Appendix: Admissibility and characterization of time-monotone forward

performances

Musiela and Zariphopoulou [30] have shown that there exists a class of admissible initial

conditions, u0ðxÞ, for which the time-monotone performance is well defined and the

associated optimal portfolio process can be explicitly constructed. In this appendix, we

highlight some of the main results relevant to our study.

The class of admissible initial conditions is given via a positive, finite Borel measure

which is, in turn, linked with a space–time harmonic function [see (78) and (80) below].

As in [30], we define the set of measures BþðRÞ by

Bþ Rð Þ ¼ n [ B Rð Þ : ;B [ B; nðBÞ $ 0 and

ð
R

eyxn dy
� �

, 1; x [ R

� �
: ð77Þ

Proposition 16 ([30], Proposition 3). (i) Let n [ BþðRÞ. Then, the function h defined,

for ðx; tÞ [ R £ ½0;þ1Þ; by

h x; t
� �

¼

ð
R

eyx2ðð1=2Þy 2tÞ 2 1

y
n dy
� �

þ C; ð78Þ

is a strictly increasing solution to the PDE:

ht þ
1

2
hxx ¼ 0: ð79Þ

(ii) Assume that h above is of full range for each t $ 0, and let h ð21Þ :

R £ ½0;þ1Þ! R be its spatial inverse. Then, the function u defined by

u x; t
� �

¼ 2
1

2

ðt
0

e2h ð21Þðx;sÞþðs=2Þhx h ð21Þðx; sÞ; s
� �

dsþ

ðx
0

e2h ð21Þðz;0Þ dz; ð80Þ

for ðx; tÞ [ R £ ½0;þ1Þ; is an increasing and strictly concave solution of the PDE (11).
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The above result yields a class of admissible initial data for a forward performance

process. Precisely, a function u0 : R! R is admissible, if it can be represented as

u0ðxÞ ¼

ðx
0

e2h ð21Þðz;0Þ dz; x [ R; ð81Þ

where h ð21Þ is the spatial inverse of h defined in (78). Moreover, once the measure n in (78)

is defined, the function h yields directly a dynamic preference function u satisfying (11).

The following result, taken from [30], provides the explicit construction of the optimal

portfolio and the optimal wealth process. In establishing this result, they rigorously proved

the admissibility of the optimal portfolio p* under an integrability condition on the

measure n given in (82) below.

Theorem 17 ([30], Theorem 4). (i) Let h be a strictly increasing solution to (79), for

ðx; tÞ [ R £ ½0;þ1Þ, and assume that the associated measure n satisfiesð
R

eyxþðð1=2Þy 2tÞnðdyÞ , þ1: ð82Þ

Let also At be as in (10) and introduce mt, t $ 0, as

mt ¼

ðt
0

ls dWs:

Define the processes X*
t and p*

t by

X*
t ¼ h h ð21Þðx; 0Þ þ At þ mt;At

� �
ð83Þ

and

p*
t ¼ hx h ð21Þ X*

t ;At

� �
;At

� � lt
s t

; ð84Þ

for t $ 0, x [ R with h as above and h ð21Þ standing for its spatial inverse. Then, the

portfolio p*
t is admissible and generates X*

t , i.e.

X*
t ¼ xþ

ðt
0

s sp
*
s ls dsþ dWsð Þ: ð85Þ

(ii) Let u be associated with h increasing and strictly concave solution to (11). Then,

the process uðX*
t ;AtÞ, t $ 0, satisfies the SDE

du X*
t ;At

� �
¼ ux X*

t ;At

� �
s tp

*
t dWt ð86Þ

with X*
t and p*

t as in (83) and (84).

(iii) Let UtðxÞ, t $ 0, x [ R be given by (12) with u0 being an admissible initial

condition. Then, the processes X*
t and p*

t are optimal.

From (14) and (80), it can be shown that the local risk tolerance function is given by

Rðx; tÞ ¼ hx h21ðx; tÞ; t
� �

ð87Þ
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with h as in (78). Since both hðx; tÞ and uðx; tÞ are completely characterized by the measure

n, the same holds for the local risk tolerance function Rðx; tÞ in (87). In Example 12 of

[30], it was shown that the measure linked to the parametric risk tolerance function

Rðx; t;a;bÞ in (17) is given by

nðdyÞ ¼

ffiffiffi
b

p

2
d ffiffiffiap þ d2

ffiffiffi
a

p
� �

;

with d^
ffiffiffi
a

p are Dirac measures at ^
ffiffiffi
a

p
. Hence, it is clear that this measure satisfies the

integrability condition (82) in Theorem 17. Finally, in view of (78), the associated space–

time harmonic function is given by

hðx; tÞ ¼

ffiffiffi
b

a

r
e2ðð1=2ÞatÞsin h

ffiffiffi
a

p
x

� �
:

Using this, the optimal portfolio and wealth processes are in turn explicitly constructed as

in (84) and (85).
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