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Abstract We study forward investment performance processes with non-zero for-
ward volatility. We focus on the class of homothetic preferences in a single stochas-
tic factor model. The forward performance process is represented in a closed-form
via a deterministic function of the wealth and the stochastic factor. This function
is, in turn, given as a distortion transformation of the solution to a linear ill-posed
problem. We analyze the solutions of this problem in detail. We, also, provide two
examples for specific dynamics of the stochastic factor, specifically, log-mean re-
verting and Heston-type dynamics.
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1 Introduction

This paper is a contribution to the recently developed approach of forward invest-
ment performance measurement (see [8] and [9]). This approach allows for dynamic
update of the investor’s performance criterion and offers an alternative to the clas-
sical maximal expected utility objective which is defined only at a single instant.
The underlying object is a stochastic process, the so called forward investment per-
formance process, which is defined for all times. Its key properties are the super-
martingality at admissible self-financing policies and martingality at an optimum.
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Constructing such a process is a formidable task, for the underlying stochastic opti-
mization problem is formulated “forward in time” and might be ill-posed.

In [10], a stochastic partial differential equation was introduced which the for-
ward performance process is expected to satisfy. In many aspects, this SPDE is the
stochastic analogue of the deterministic Hamilton–Jacobi–Bellman equation for the
classical (backward) case. There are several elements which make the study of the
SPDE and the derivation of analogous verification results hard. Indeed, one has to
specify the appropriate class of initial conditions and, also, address the ill-posedness
and the possible degeneracy of the equation.

Besides these issues, one also has to specify the correct family of forward per-
formance volatility processes. These processes are chosen by the investor and con-
stitute one of the novel elements of the forward investment theory. They are exoge-
nous inputs for the volatility term of the SPDE. Note that their classical analogue is
uniquely determined due to the static nature of the utility criterion (see Remark 3
herein).

To date, existence and uniqueness of solutions to the forward SPDE have not
been established and the related verification results are still lacking. General results
have been produced only for the case of zero volatility (see [9]). Under this rather
strong assumption, the performance process is monotone in time (decreasing) and
can be represented as a compilation of a deterministic function and the market input
(see (16)). This form, however, is not any more valid when the investor allows for
volatility in his criterion.

Herein, we do not study general questions but only analyze a family of forward
processes and construct specific examples. Moreover, we concentrate on the class
of homothetic criteria. We are motivated to look at this family because it offers the
closest analogue of the classical value function under power utilities.

The market consists of one riskless asset and a stock whose dynamics are affected
by a stochastic factor, denoted by Yt . The latter is imperfectly correlated with the
stock which makes the market incomplete. Such a model arises frequently when one
assumes predictability of returns and/or stochastic volatility.

The homotheticity assumption suggests a separable form for the candidate pro-
cesses with one of the components depending exclusively on the stochastic factor.
In turn, the assumptions on the model dynamics suggest that the latter component is
a process, denoted by V (Yt , t), that can be represented as a function of the stochas-
tic factor and time. Constructing the function V (y, t) is the main goal of this paper
together with, as mentioned earlier, the specification of the correct initial condition
and the appropriate class of volatility processes.

A distortion transformation on V (y, t) yields a linear equation with a potential
term. The forward in time nature of the underlying stochastic optimization problem
makes this linear equation ill-posed. Specifying its nonnegative solutions is, to our
knowledge, an open problem. Indeed, the only known case for which necessary and
sufficient conditions for nonnegative solutions of such problems have been estab-
lished is when the potential term is absent. This is the celebrated Widder’s theorem.
Herein, we study the more general case and provide results in this direction. A spe-
cial case of these results yields one part (sufficiency) of Widder’s theorem.
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Once the form of the function V (y, t) is specified, we are able to construct an
admissible volatility process. This process is, also, taken to be homothetic in the
wealth argument. A solution to the forward performance SPDE is then readily ob-
tained.

Finally, we provide two concrete examples. In the first example, the stochastic
volatility is taken to be a mean reverting process satisfying linear SDE, while in
the second it satisfies Heston-type dynamics. In both cases, we calculate explicitly
the appropriate initial condition and the volatility process as well as the associated
forward performance process. We, also, study the robustness of the latter when its
volatility vanishes and we compare it with its zero-volatility counterpart.

The paper is organized as follows. In Sect. 2, we describe the model and recall
the investment performance criterion. In Sect. 3, we focus on homothetic perfor-
mance processes and provide some preliminary informal results for the form of can-
didate processes. In Sect. 4, we study the underlying linear equation. We conclude
in Sect. 5 where we present the two examples.

2 The Stochastic Factor Model and Investment Performance
Measurement

The market consists of a risky and a riskless asset. The risky asset is a stock whose
price St , t ≥ 0, is modeled as a diffusion process solving

dSt = μ(Yt )Stdt + σ(Yt )StdW 1
t , (1)

with S0 > 0. The stochastic factor Yt , t ≥ 0, satisfies

dYt = b(Yt )dt + d(Yt )
(
ρdW 1

t +
√

1 − ρ2dW 2
t

)
, (2)

with Y0 = y, y ∈ R. The process Wt = (W 1
t ,W 2

t ), t ≥ 0, is a standard 2-dimensional
Brownian motion, defined on a filtered probability space (Ω,F ,P). The underlying
filtration is Ft = σ(Ws : 0 ≤ s ≤ t). It is assumed that the correlation coefficient
ρ ∈ (−1,1).

The coefficients μ,σ,b and d satisfy the appropriate continuity and Lipschitz
conditions such that the above system of equations has a unique strong solution. It
is, also, assumed that σ(y) > 0, y ∈ R.

The riskless asset, the savings account, offers constant interest rate r > 0.
We introduce the process, frequently called the market price of risk,

λ(Yt ) = μ(Yt ) − r

σ (Yt )
. (3)

Starting with an initial endowment x, the investor invests at future times in the
riskless and risky assets. The present value of the amounts allocated in the two ac-
counts are denoted, respectively, by π0

t and πt . The present value of her investment
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is, then, given by Xπ
t = π0

t +πt , t > 0. We will refer to Xπ
t as the discounted wealth.

Using (1) we easily deduce that it satisfies

dXπ
t = σ(Yt )πt

(
λ(Yt )dt + dW 1

t

)
. (4)

The investment strategies will play the role of control processes and are taken
to satisfy the standard assumption of being self-financing. Such a portfolio, πt , is
deemed admissible if, for t > 0, πt ∈ Ft , EP(

∫ t

0 σ 2(Ys)π
2
s ds) < +∞ and the asso-

ciated discounted wealth satisfies the state constraint Xπ
t ≥ 0, t ≥ 0. We will denote

the set of admissible strategies by A .
Stochastic factors have been used in portfolio choice to model asset predictability

and stochastic volatility. A detailed survey of asset allocation models with a single
stochastic factor can be found in [16] and we refer the reader therein for a complete
bibliography.

2.1 Forward Investment Performance Process

The performance of implemented investment strategies is typically measured in
terms of optimizing an expected criterion of the generated wealth. In the academic
literature, this criterion is predominantly given by the investor’s utility function (see,
for example, the seminal papers [6] and [7]). One, then, chooses an investment hori-
zon, say T , and a utility function at this time, UT (x), and maximizes, over all admis-
sible self-financing strategies, the expected utility of terminal wealth. Such problems
have been widely studied under rather general assumptions on market coefficients
and constitute one of the cornerstones in modern mathematical portfolio manage-
ment theory.

There is, however, a limitation in this setting. Indeed, the performance criterion
is not dynamic in the sense that, from one hand, it cannot be revised at any previ-
ous investment time, t < T , and, from the other, it cannot be extended at any time
t > T . One could say that the terminal utility criterion corresponds to a static ob-
jective. This does not mean that the associated value function is time independent,
an obviously wrong conclusion. Rather, we state that it is the criterion per se that is
static, for it is (pre)specified for only one time instant, T .

Recently, one of the authors and M. Musiela introduced an alternative approach
which bypasses these shortcomings. The associated criterion is developed in terms
of a family of stochastic processes defined on [0,+∞) and indexed by the wealth
argument. It is called the forward investment performance process. Its key properties
are its martingality at an optimum and its supermartingality away from it. These are
in accordance with the analogous properties of the value function process which
stem out from the Dynamic Programming Principle. However, in contrast to the
existing framework, the risk preferences are specified for today and not at a (possibly
remote) future time. As we will see in the upcoming analysis, one of the fundamental
questions in this approach is the correct specification of the initial conditions in
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order for the relevant stochastic optimization problem to be well posed (see, for
example, Propositions 6 and 8 herein and [9]).

For completeness, we provide the definition of the forward investment process
below but we refer the reader to [8] and [9] for details. We recall that Ft , t ≥ 0,
is the filtration generated by Wt = (W 1

t ,W 2
t ), t ≥ 0, and A the set of admissible

policies.

Definition 1 An Ft -progressively measurable process U(x, t) is a forward invest-
ment performance if for t ≥ 0 and x ≥ 0:

(i) the mapping x → U(x, t) is concave and increasing,
(ii) for each portfolio process π ∈ A , EP(U(Xπ

t , t))+ < ∞, and

EP

(
U

(
Xπ

s , s
)|Ft

) ≤ U
(
Xπ

t , t
)
, s ≥ t, (5)

(iii) there exists a portfolio process π∗ ∈ A , for which

EP

(
U

(
Xπ∗

s , s
)|Ft

) = U
(
Xπ∗

t , t
)
, s ≥ t. (6)

While the above definition might appear like a pedantic rephrase of the Dy-
namic Programming Principle it is actually not. Indeed, it gives rise to a forward
in time stochastic optimization problem which belongs to the family of the so called
“ill-posed” problems. Such problems are notoriously difficult with regards to their
well-posedeness, stability and finiteness of solutions. Herein, we do not address this
question but, rather, construct specific examples. Specifying forward processes that
satisfy the above definition is an open problem and is currently under investigation
by the authors and others (see, for example, [1, 3, 10], and [17]).

2.2 The Forward Performance SPDE

Recently, it was shown in [10] and [16] that a sufficient condition for a (sufficiently
smooth) process U(x, t) to be a forward performance is that it satisfies a stochastic
partial differential equation (see (7) below). For the single stochastic factor model
we examine herein, Proposition 2 in [16] takes the following form.

Proposition 1 (i) Let U(x, t) be an Ft -progressively measurable process such that
the mapping x → U(x, t) is strictly increasing and concave. Let, also, U(x, t) be a
solution to the stochastic partial differential equation

dU(x, t) = 1

2

(λ(Yt )Ux(x, t) + a1
x(x, t))2

Uxx(x, t)
dt + (

a(x, t) · dWt

)
, (7)

where a(x, t) = (a1(x, t), a2(x, t)) is an Ft -progressively measurable process.
Then U(x, t) is a forward investment performance process.
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(ii) Consider the process π∗
t , t ≥ 0, given by

π∗
t = −λ(Yt )Ux(X

∗
t , t) + a1

x(X
∗
t , t)

σ (Yt )Uxx(X
∗
t , t)

, (8)

where X∗
t , t ≥ 0, solves

dX∗
t = σ(Yt )π

∗
t

(
λ(Yt )dt + dW 1

t

)
, (9)

with X∗
0 = x, x ≥ 0. If π∗

t ∈ A and (9) has a strong solution, then π∗
t and X∗

t are
optimal.

As it is shown in [10], the same stochastic partial differential equation emerges
in the classical formulation of the optimal portfolio choice problem. Indeed, fix an
investment horizon, say T , and recall the traditional value function process, denoted
by V (x, t;T ) and defined as

V (x, t;T ) = sup
AT

EP

(
U(XT )|Ft ,Xt = x

)
,

with AT being the direct analogue of A in [0, T ]. Let us now assume that there
exists a smooth enough function, say v(x, y, t) such that the representation

V (x, t;T ) = v(x,Yt , t) (10)

holds. We note that the existence and regularity of such a function has not been
established to date, expect for special utilities.

The associated Hamilton-Jacobi-Bellman (HJB) equation is then given (infor-
mally) by

vt + max
π

(
1

2
σ 2(x)π2vxx + π

(
μ(y)vx + ρα(y)σ (y)vxy

))

+ 1

2
d2(y)vyy + b(y)vy, (11)

with v(x, y,T ) = U(x).
Using the representation (10) and expanding the process v(x,Yt , t) yield,

dv(x,Yt , t) =
(

vt (x,Yt , t) + 1

2
d2(Yt )vyy(x,Yt , t) + b(Yt )vy(x,Yt , t)

)
dt

+ ρd(Yt )vy(x,Yt , t)dW 1
t +

√
1 − ρ2d(Yt )vy(x,Yt , t)dW 2

t .

Using that v(x, y, t) satisfies (11) and rearranging terms, we deduce that
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dv(x,Yt , t) = 1

2

(λ(Yt )vx(x,Yt , t) + ρd(Yt )vxy(x,Yt , t))
2

vxx(x,Yt , t)
dt

+ ρd(Yt )vy(x,Yt , t)dW 1
t +

√
1 − ρ2d(Yt )vy(x,Yt , t)dW 2

t .

From (10) we, then, deduce that the value function process, which now plays the
role of the (backward) investment performance, satisfies the same SPDE as in (7).
Specifically, for 0 ≤ t < T , the process V (x, t;T ) satisfies the equation

dV (x, t;T ) = 1

2

(λ(Yt )Vx(x, t;T ) + a1
x(x, t;T ))2

Vxx(x, t;T )
dt + (

a(x, t;T ) · dWt

)

with terminal condition V (x,T ;T ) = U(x) and the components of volatility pro-
cess given by

a1(x, t;T ) = ρd(Yt )vy(x,Yt , t) and a2(x, t;T ) =
√

1 − ρ2d(Yt )vy(x,Yt , t).

(12)
Its is worth noticing that the terminal data suggest that limt→T ai(x, t;T ) = 0.

Remark 1 It is important to notice three fundamental differences between the clas-
sical (backward) and the forward cases. Firstly, in the backward optimal investment
model, we are given a terminal condition while in the forward an initial one. Sec-
ondly, in the former case, the performance process satisfies V (x,T ) ∈ F0 while
in the latter, U(x, t) ∈ Ft . Finally, in the backward case, there is no flexibility in
choosing the volatility coefficients, for they are uniquely obtained from the Itô de-
composition of the value function process while in the forward case, the volatility
process is up to the investor to choose. How the investor should make this choice is
one of the main challenges in the new approach.

2.3 The Zero Volatility Case

An important class of forward performance processes are the ones that correspond
to the choice of zero volatility, a(x, t) ≡ 0, t ≥ 0. We easily see, using the con-
cavity of the forward process and (7), that these processes are decreasing in time.
Despite the strong assumption on the volatility, these processes yield a rich family
of performance criteria which compile in an intuitively pleasing way the dynamic
risk profile of the investor and the information coming from the evolution of the
investment opportunity set, as (16) below indicates. They also provide an important
benchmark when volatility is not zero, as it is discussed in Propositions 7 and 9
herein. They are extensively studied in [8] and [9], and we refer the reader therein
for the proofs of the results that follow. Herein, we only state the main result and
discuss some insights about the admissibility of the candidate initial conditions. Be-
cause all involved functions are smooth, we will not refer to their specific regularity
(see [9]).
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Theorem 1 Let u0 : R+→ R be strictly increasing and concave and such that the
function h0 :R → R

+ defined by

u′
0

(
h0(x)

) = e−x (13)

can be represented as the Laplace transform of a finite positive Borel measure, de-
noted by ν, namely,

h0(x) =
∫ ∞

0
exyν(dy), (14)

such that h0(x) < ∞, for all x ∈ R. Let, also, u : R+ × (0,∞) → R be a strictly
concave and increasing in the spatial argument function satisfying

ut = 1

2

u2
x

uxx

, (15)

and u(x,0) = u0(x). Then, with λ(Yt ), t ≥ 0, as in (3), the process

U(x, t) = u

(
x,

∫ t

0
λ2(Ys)ds

)
(16)

is a forward investment performance.

Relations (13) and (14) demonstrate the admissibility condition for a candidate
initial condition, u0(x). Specifically, the inverse of its first derivative must be repre-
sented via a Laplace transform as in (14).

In [9] (see, also [1]) the following is shown. Let h :R×[0,∞)→ R
+ be given by

the “dynamic” analogue of (17), namely,

h(x, t) =
∫ ∞

0
exy− 1

2 y2t ν(dy). (17)

Then, the solution u(x, t) of (15) satisfies

ux

(
h(x, t), t

) = e−x+ t
2 , (18)

while h(x, t) solves the backward heat equation

ht + 1

2
hxx = 0.

The reader is invited to compare (13) and its “dynamic” analogue (18) as well as the
role of the measure ν as the essential defining element in generating solutions for
positive times. Generalizations of some of these results is one of the main contribu-
tions herein (see Sect. 4).
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3 Homothetic Forward Investment Performance Processes

We concentrate on forward investment performance processes which are homothetic
in the spatial variable. We are motivated to do so for two reasons. Firstly, these
processes are the natural analogues of the popular power utilities. Secondly, as the
analysis will indicate, the homogeneity assumption allows for significant tractability
and closed form solutions.

To this end, we are looking for initial conditions and volatility processes which
produce well defined solutions, U(x, t), to (7) that have the property

U(kx, t) = kγ U(x, t), (19)

for all t ≥ 0 and k ∈ R
+, with 0 < γ < 1. We easily deduce that the forward pro-

cesses must be of the multiplicative form

U(x, t) = xγ

γ
Kt , (20)

where the multiplicative process Kt , t ≥ 0, is to be determined1 but does not depend
on the spatial variable x. In the sequel, we will further restrict the class of solutions
by looking at factors that depend functionally on time and the current state of the
stochastic factor (see (24)).

Note that (20) tells us that the only admissible initial conditions are of the form

u0(x) = xγ

γ
K0. (21)

3.1 The Zero-Volatility Homothetic Case

We recall the homothetic time-monotone performance process. We will revert to
this case later in the analysis when we investigate their robustness of the forward
process for vanishing volatilities (see Propositions 7 and 9).

Proposition 2 Assume that a(x, t) ≡ 0, t ≥ 0, in (7) and let the initial condition be
as in (21). Then, the forward performance process is given by

U(x, t) = xγ

γ
K0 exp

(∫ t

0

1

2

γ

γ − 1
λ2(Ys)ds

)
, (22)

for x ≥ 0 and Yt , t ≥ 0, solving (2).

1For convenience, we introduce the factor 1/γ . Moreover, we do not consider the case γ < 0,
which can be analyzed with similar, albeit more tedious computationally arguments.
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Proof The claim follows from (16) and the fact that the function

u(x, t) = xγ

γ
e

1
2

γ
γ−1 t

K0, x ≥ 0,

solves the nonlinear equation (15) with initial condition u(x,0) = xγ

γ
K0. �

3.2 Non-zero Volatility Homothetic Case

We now focus our attention to the case of non-zero volatility coefficients, which is
the main topic herein. As mentioned earlier, the underlying problem is to specify
an initial condition, u0(x), a (non-zero) volatility process, a(x, t), and a process
U(x, t), such that the latter solves (7) with U(x,0) = u0(x). Moreover, we will be
looking at processes with the Markovian structure

U(x, t) = xγ

γ
K(Yt , t), (23)

which corresponds to the factor in (20) to be of the functional form

Kt = K(Yt , t), (24)

for an appropriately chosen function K : R×[0,∞) → R
+. Such processes consti-

tute the simplest extension of their zero volatility counterparts.
We start with an informal analysis. To this end, let us make the distortion trans-

formation2

K(y, t) = (
v(y, t)

)δ (25)

with the power δ given by

δ = 1 − γ

1 − γ + ρ2γ
. (26)

Combining (23) and (25) , and plugging in (7) yields that the process in (23),
indeed, satisfies (7), provided that, from one hand, the function v :R×[0,∞) →R

+
solves the linear problem

vt + 1

2
d2(y)vyy +

(
b(y) + ρ

γ

1 − γ
λ(y)d(y)

)
vy + 1

2δ

γ

1 − γ
λ2(y)v = 0, (27)

with initial condition

v(y,0) = (
K(y,0)

)1/δ
, (28)

2Solutions of similar structure were produced for the traditional value function in [15].
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and, from the other, the volatility process is set to be a(x, t) = (a1(x, t), a2(x, t))

with

a1(x, t) = ρδ
xγ

γ
d(Yt )vy(Yt , t)

(
v(Yt , t)

)δ−1 (29)

and

a2(x, t) =
√

1 − ρ2δ
xγ

γ
d(Yt )vy(Yt , t)

(
vy(Yt , t)

)δ−1
. (30)

The calculations are routine but tedious and are, thus, omitted.
What the above shows is that, in order to construct a solution to (7), it suffices to

construct a well defined solution to the initial problem (27) and for the appropriate
initial condition (28). This is the subject of investigation in the next section.

4 Non-negative Solutions to an Ill-Posed Heat Equation with a
Potential

We consider the backward linear Cauchy problem

Ht + 1

2
a2

1(x)Hxx + a2(x)Hx + a3(x)H = 0, (31)

for (t, x) ∈ (0,+∞) ×R, and initial condition H(x,0) = H0(x).
The coefficients, a1, a2 and a3 satisfy the following conditions: a1(x) > 0 and is

twice continuously differentiable, a2(x) is continuously differentiable, and a3(x) is
continuous.

We are interested in characterizing the set of non-negative solutions, H(x, t), to
the above equation as well as the set of initial conditions, H0(x), for which (31) has
a well-defined solution.

The first step in the analysis of solutions of (31) is to put the equation in the
so-called canonical form. To this end, consider the change of variables (see, for
example, Sect. 4.3 of [14]) Z :R → R, given by

Z(x) = √
2
∫ x

ζ

dz

a1(z)
, (32)

for some fixed ζ ∈ R. In turn, introduce the function F : R×[0,∞) → R
+ defined

as

F(z, t) = H
(
X(z), t

)
e

1
2

∫ z
ζ b(z′)dz′

(33)

where

b(z) = √
2
a2(X(z))

a1(X(z))
− 1√

2
a′

1

(
X(z)

)
, (34)

with X : R →R given by X(z) = Z−1(z).
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In the new variables, Eq. (31) takes the canonical form

Ft + Fzz + q(z)F = 0,

where q :R→R is a continuous function given by

q(z) = −1

4
b2(z) − 1

2
b′(z) + a3

(
X(z)

)
, (35)

with b(z) as in (34).
The aim is, then, to specify the class of admissible initial conditions, F0 :

R→R
+, and the associated nonnegative solutions F : R×[0,+∞)→R

+, for the
initial value problem

(IV)

{
F t + Fzz + q(z)F = 0,

F (z,0) = F 0(z).
(36)

A common approach in analyzing the set of solutions to linear time-homogeneous
parabolic pdes is to consider the associated Sturm-Liouville problem.

In the context of the problems of financial mathematics, the use of Sturm-
Liouville theory is, for example, demonstrated in [2] and [11].

Denoting by f (z, .) the Laplace transform of F(z, .), we obtain

fzz(z, λ) + (
λ + q(z)

)
f (z,λ) = f0(z). (37)

We remind the reader that the calculations that follow are, for the moment, formal.
The homogeneous version of (37) is (with a slight abuse of notation),

fzz(z, λ) + (
λ + q(z)

)
f (z,λ) = 0. (38)

The following result shows how to generate solutions to (36) using (38). This
result is, in many aspects, similar to Widder’s theorem (see [18]) which holds for
the case q(z) ≡ 0 and provides necessary and sufficient conditions for constructing
positive solutions to (36). We recall this theorem and provide some comments in the
sequel (see Sect. 4.1).

We note that, to our knowledge, an extension to Widder’s theorem for non-zero
potentials, as the case we study herein, is still lacking. The result below offers only
a sufficient condition for constructing positive solutions to (36) but not a necessary
one. A further study in this direction can be found in [12].

Proposition 3 Let us assume that {ψ(.,p,λ)}(p,λ)∈P×Λ is a family of solutions to
the homogeneous equation (38), parameterized by (p,λ), where Λ ⊂ R is a Borel
set and P is an abstract measurable space. Let us, also, assume that, for each
z ∈ R, the function ψ(z, ., .) is a nonnegative measurable function on P × Λ and
that ξ is a measure on P × Λ, such that

sup
(z,t)∈K

(∫

P×Λ

(
1 + λ2)etλψ(z,p,λ)ξ(dp,dλ)

)
< ∞, (39)
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for any compact set K ⊂ R× [0,∞).
Let F0 : R→R

+ be defined by

F0(z) =
∫

P×Λ

ψ(z,p,λ)ξ(dp,dλ). (40)

Then, Eq. (36), equipped with the above initial condition has a nonnegative solution,
F(z, t), given by

F(z, t) =
∫

P×Λ

ψ(z,p,λ)etλξ(dp,dλ). (41)

Proof It can be verified by direct computation that the function F(z, t) satisfies (36).
Therefore, we only need to show that F and its derivatives exist and are continu-
ous, and that we can interchange the differentiation and integration in (41). These
statements will follow from repeated applications of Fubini’s theorem.

To this end, we first observe that F(z, t) is well defined, for the corresponding
integral converges absolutely due to the integrability assumption (39).

Using (38), we have, for z ∈R, that

∫ z

0

∫ z′

0

∫

P×Λ

∣∣ψxx(x,p,λ)
∣∣etλξ(dp,dλ)dxdz′

=
∫ z

0

∫ z′

0

∫

P×Λ

∣∣λ + q(x)
∣∣∣∣ψ(x,p,λ)

∣∣etλξ(dp,dλ)dxdz′ < ∞,

as it follows from (39) and the continuity of the potential coefficient q(z). Thus, we
can interchange the order of integration to obtain

∫ z

0

∫ z′

0

∫

P×Λ

ψxx(x,p,λ)etλξ(dp,dλ)dx

=
∫

P×Λ

(
ψ(z,p,λ) − ψ(0,p,λ) − zψz(0,p,λ)

)
etλξ(dp,dλ).

Notice that the integral in the right hand side above is absolutely convergent, because
such is the integral in the left hand side. In addition, because of (39), the integral∫
P×Λ

(ψ(z,p,λ) − ψ(0,p,λ))etλξ(dp,dλ) also converges absolutely. Therefore,
the function etλψz(0,p,λ) is absolutely integrable with respect to ξ(dp,dλ). We,
easily, deduce that, for some constant c1,

∫ z

0

∫ z′

0

∫

P×Λ

ψxx(x,p,λ)etλξ(dp,dλ)dxdz′ = F(z, t) − F(0, t) − c1z,

for all (z, t) ∈R×[0,∞).
Let φ(z, t) be given by

φ(z, t) =
∫ z

0

∫ z′

0

∫

P×Λ

ψxx(x,p,λ)etλξ(dp,dλ)dxdz′.
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Then,

φ(z, t) = F(z, t) − F(0, t) − c1z

and, by construction, it is continuously differentiable in z, with absolutely continu-
ous derivative. Therefore, the same holds for F(z, t), and, for almost all z ∈ R, we
have

Fz(z, t) = c1 + φz(z, t)

and

Fzz(z, t) = φzz(z, t) =
∫

P×Λ

ψzz(z,p,λ)etλξ(dp,dλ).

Following similar arguments, we can show that, for any fixed z ∈ R, the function
F(z, .) is absolutely continuous on [0,∞), and, in turn,

Ft(z, t) =
∫

P×Λ

λψ(z,p,λ)etλξ(dp,dλ),

for (almost all) t ≥ 0.
It remains to show that the partial derivatives are continuous in (z, t) ∈

R×[0,∞). We start with Ft(z, t). Let (z, t), (z′, t ′) ∈R×[0,∞). Then,
∣∣∣∣

∫

P×Λ

λ
(
ψ(z,p,λ)etλ − ψ

(
z′,p,λ

)
et ′λ)ξ(dp,dλ)

∣∣∣∣

≤
∫

P×Λ

|λ|etλψ(z,p,λ)
∣∣1 − eλ(t ′−t)

∣∣ξ(dp,dλ)

+
∫

P×Λ

|λ|et ′λ∣∣ψ(z,p,λ) − ψ
(
z′,p,λ

)∣∣ξ(dp,dλ). (42)

We estimate the above integrals separately. We first observe that, for some constant
c2, the first integral satisfies

∫

P×Λ

|λ|etλψ(z,p,λ)
∣
∣1 − eλ(t ′−t)

∣
∣ξ(dp,dλ)

≤ c2
∣∣t − t ′

∣∣
∫

P×Λ

λ2etλψ(z,p,λ)ξ(dp,dλ).

The expression in the right hand side above converges to zero as t ′ → t , since the
integral therein is finite, due to (39). For the second integral in (42) we have

|λ|et ′λ∣∣ψ(z,p,λ) − ψ
(
z′,p,λ

)∣∣

= |λ|et ′λ
∣∣∣∣

∫ z′

z

∫ x′

0
ψxx(x,p,λ)dxdx′ + (

z′ − z
)
ψz(0,p,λ)

∣∣∣∣.
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We readily deduce that the left hand side above is absolutely integrable with respect
to ξ , uniformly over t ′ changing on a compact set in [0,∞). Therefore, the right
hand side has the same property. On the other hand, (39) yields that

∫

P×Λ

∫ z′

z

∫ x′

0
|λ|et ′λ∣∣ψxx(x,p,λ)

∣∣dxdx′ξ(dp,dλ)

=
∫

P×Λ

∫ z′

z

∫ x′

0
|λ|et ′λ∣∣λ + q(x)

∣∣ψ(x,p,λ)dxdx′ξ(dp,dλ)

is bounded, uniformly on t ′ changing on a compact set. Therefore, the function
λet ′λψz(0,p,λ) is absolutely integrable with respect to ξ(dp,dλ), uniformly over
t ′ varying on a compact set. We, then, deduce that

∫

P×Λ

|λ|et ′λ∣∣ψ(z,p,λ) − ψ
(
z′,p,λ

)∣∣ξ(dp,dλ)

≤ c3

∫

P×Λ

∫ z′

z

∫ x′

0

(
1 + λ2)et ′λψ(x,p,λ)dxdx′ξ(dp,dλ)

+ ∣∣z′ − z
∣∣
∫

P×Λ

|λ|et ′λ∣∣ψz(0,p,λ)
∣∣ξ(dp,dλ)

≤ c3
∣∣z − z′∣∣(|z| + |z′|) sup

x∈[z,z′]

∫

P×Λ

(
1 + λ2)et ′λψ(x,p,λ)ξ(dp,dλ)

+ ∣∣z′ − z
∣∣
∫

P×Λ

|λ|et ′λ∣∣ψz(0,p,λ)
∣∣ξ(dp,dλ).

The above integrals are bounded uniformly over t ′ changing on a compact set, and,
therefore, the above right hand side converges to zero, as (z′, t ′) → (z, t).

Working along similar arguments, we obtain the continuity in (z, t) of the func-
tion

∫
P×Λ

ψ(z,p,λ)etλξ(dp,dλ). We easily conclude. �

The above result shows how one can construct solutions to Eq. (36) directly from
the appropriate initial condition. It is not, however, always clear how to actually
construct a nonnegative solution to (38). This is what we explore next.

For the rest of the analysis, we focus on the class of coefficients q(z) which are
bounded from above. We remind the reader that the term q(z) represents the nega-
tive of a potential term, as the latter appears in the literature. A natural assumption
for potentials is that they are bounded from below: notice, for example, that the as-
sumption of nonnegativity of the “killing rate” in [4] is another way of saying that
the corresponding potential is nonnegative.

Proposition 4 Let us assume that there exists λ̄ ∈ R, such that the potential term
in (36) satisfies q(z) ≤ λ̄, z ∈ R, and denote D = (−∞,−λ̄). Then, the following
statements hold:
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(i) Assume that there exists L1 ∈R, such that
∫ ∞

0

∣∣q(z) − L1
∣∣dz < ∞.

Then, for any λ ∈ D , there exists a unique solution of (38), denoted by ψ(1)(., λ),
which is square integrable over (0,∞) and satisfies ψ(1)(0, λ) = 1. Moreover, for
each z ∈R, the function ψ(1)(z, .) is nonnegative and continuous on D .

Let, also, μ1 be a Borel measure on D , satisfying

sup
(t,z)∈K

(∫

R

(
1 + λ2)etλψ(1)(z, λ)μ1(dλ)

)
< ∞,

for any compact set K ⊂ [0,∞) ×R , and define the function F
(1)
0 :R →R

+ by

F
(1)
0 (z) =

∫

R

ψ(1)(z, λ)μ1(dλ). (43)

Then, Eq. (36) has a nonnegative classical solution, say F (1)(z, t), given by

F (1)(z, t) =
∫

R

ψ(1)(z, λ)etλμ1(dλ), (44)

satisfying F (1)(z,0) = F
(1)
0 (z).

(ii) Assume that there exists L2 ∈R, such that

∫ 0

−∞
∣∣q(z) − L2

∣∣dy < ∞. (45)

Then, for any λ ∈ D , there exists a unique solution of (38), denoted by ψ(2)(., λ),
which is square integrable over (−∞,0) and satisfies ψ(2)(0, λ) = 1. Moreover, for
each z ∈R, the function ψ(2)(z, .) is nonnegative and continuous on D .

Let, also, μ2 be a Borel measure on D , satisfying

sup
(t,z)∈K

(∫

R

(
1 + λ2)etλψ(2)(z, λ)μ2(dλ)

)
< ∞,

for any compact set K ⊂ [0,∞) ×R, and define the function F
(2)
0 : R →R

+ given
by

F
(2)
0 (z) =

∫

R

ψ(2)(z, λ)μ2(dλ). (46)

Then, Eq. (36) has a nonnegative classical solution, say F (2)(z, t), given by

F (2)(z, t) =
∫

R

ψ(2)(z, λ)etλμ2(dλ), (47)
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satisfying F (2)(z,0) = F
(2)
0 (z).

(iii) Let the above assumptions hold in both (i) and (ii). Then, problem (36),
equipped with the initial condition F0(z) = F

(1)
0 (z) + F

(2)
0 (z), with F

(1)
0 (z) and

F
(2)
0 (z) given, respectively, by (43) and (46), has a nonnegative classical solution,

say F(z, t), given by

F(z, t) = F (1)(z, t) + F (2)(z, t),

with F (1)(z, t) and F (2)(z, t) as in (44) and (47), respectively.

Proof We only establish part (i), for part (ii) follows along the same arguments
using a change of variables “z �→ −z” and part (iii) follows trivially from parts (i)
and (ii).

We start with some elementary transformations which will facilitate the upcom-
ing analysis. To this end, fix δ > 0, and consider all (possibly complex) numbers
λ, satisfying Re (λ) < −δ − λ̄. Let ε ∈ (0, 1

2δ(1 − e−2
√

δ)) and N ≥ 0 satisfying∫ ∞
N

|q(z) − L1|dy < ε, and introduce the change of variables

λ̃ = λ + L1 and q̃(z) = q(z + N) − L1.

It, then, follows that a function f (z,λ), is a solution to (38), if and only if the
function g(z, λ̃), defined by

g(z, λ̃) = f (z + N, λ̃ − L1)

satisfies the homogeneous problem

gzz(z, λ̃) + (
λ̃ + q̃(z)

)
g(z, λ̃) = 0. (48)

Let Hδ be the set

Hδ = {
z ∈C |Re (z) < −δ − λ̄ + L1

}
.

It is clear that L1 ≤ λ̄ and, therefore, −δ − λ̄ + L1 < 0.
We proceed as follows. We first establish that for any λ̃ ∈ Hδ , there exists a square

integrable solution, say χ(z, λ̃), to the above equation (48), for z ∈ [0,∞). Then, we
show that this solution can be extended to the entire set R and that it is the unique
(up to a multiplicative factor) such solution that is square integrable. We conclude
showing that χ(z, λ̃) does not change its sign.

To this end, let λ̃ ∈ Hδ and consider the following integral equation for functions
of z ∈ [0,+∞),

χ(z, λ̃) = eiz

√
λ̃ − 1

2i
√

λ̃

∫ z

0
ei(z−x)

√
λ̃q̃(x)χ(x, λ̃)dx

− 1

2i
√

λ̃

∫ ∞

z

ei(x−z)

√
λ̃q̃(x)χ(x, λ̃)dx. (49)



492 S. Nadtochiy and T. Zariphopoulou

Herein, we choose a version of the “square root” which generates a continuous
mapping from C \ [0,∞) to the upper half plane.

It is, then, easy to see that if the above equation has a solution χ(., λ̃), then, it is
twice continuously differentiable and solves (48).

On the other hand, it is shown in Sect. 6.2 (p. 119) of [14] that the iterative
scheme

χ1(z, λ̃) = eiz

√
λ̃

and

χn+1(z, λ̃) = eiz

√
λ̃ − 1

2i
√

λ̃

∫ z

0
ei(z−x)

√
λ̃q̃(x)χn(x, λ̃)dx

− 1

2i
√

λ̃

∫ ∞

z

ei(x−z)

√
λ̃q̃(x)χn(x, λ̃)dx, for n ≥ 1,

converges to the solution of (49), χ(., λ̃).
In particular, it is shown in formulas (6.2.5) and (6.2.6) therein that the approxi-

mating terms satisfy

∣
∣χn+1(z, λ̃) − χn(z, λ̃)

∣
∣ ≤

(
ε

2δ

)n∣
∣eiz

√
λ̃
∣
∣,

and, hence, the convergence is uniform in λ̃ changing on any compact set in Hδ .
This, in turn, yields that the function χ(z, .) is holomorphic in Hδ , for any z ∈
[0,∞). Moreover, the following estimate holds

∣∣χ(z, λ̃)
∣∣ ≤ |eiz

√
λ̃|

1 − ε/(2δ)
.

We easily deduce that χ(., λ̃) solves (48) and that it is square integrable on
[0,+∞).

Next, we extend χ(., λ̃) to the entire set R. To this end, notice that any solution
of (48) can be uniquely represented as a linear combination of two solutions, say,
ϕ(z, λ̃) and θ(z, λ̃), satisfying

ϕ(0, λ̃) = 0 and ϕz(0, λ̃) = −1,

and

θ(0, λ̃) = 1 and θz(0, λ̃) = 0.

Therefore, one obtains the representation

χ(z, λ̃) = K1(λ̃)θ(z, λ̃) + K2(λ̃)ϕ(z, λ̃),
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for some functions K1 and K2. On the other hand, differentiating (49) and applying
the dominated convergence theorem yield that χz(z, .) is continuous in Hδ , for any
z ∈ [0,∞). Notice, also, that

K1(λ̃) = χ(0, λ̃) and K2(λ̃) = −χz(0, λ̃),

and, hence, the functions K1 and K2 are continuous in Hδ . It also follows—see
for example Theorem 1.5 in Sect. 1.5 of [14]—that ϕ(z, .) and θ(z, .) are entire
functions (holomorphic in C), for any z ∈ R. Combining the above, we conclude
that χ(z, .) is continuous in Hδ .

Next, we establish that χ(z, λ̃) is the unique (up to a multiplicative factor) square
integrable solution to (48). We argue by contradiction. To this end, assume that, for
some λ̃ ∈ Hδ , there exists a solution to (48), which is square integrable over (0,∞)

and linearly independent of χ(., λ̃). Then, this solution, together with χ(., λ̃), will
span the space of all solutions to (48). Hence, every solution is square integrable
over (0,+∞). However, from Eq. (5.3.1) in Sect. 5.3 of [14], we obtain the follow-
ing representation of ϕ,

ϕ(z, λ̃) = e−iz

√
λ̃

2i
√

λ̃

(
−1 + e2iz

√
λ̃ −

∫ z

0
ei(z−x)

√
λ̃eiz

√
λ̃ϕ(x, λ̃)q̃(x)dx

+
∫ z

0
eix

√
λ̃ϕ(x, λ̃)q̃(x)dx

)
.

Using the above representation and Lemma 5.2 in Sect. 5.2 of [14], we obtain the
estimate (given in the last equation on page 98 in Sect. 5.3 therein),

∣∣ϕ(z, λ̃)
∣∣ ≤ 1

δ
exp

(
ε

δ

)∣∣e−iz

√
λ̃
∣∣.

Using the above estimate we obtain, for z ≥ 1, that
∣∣∣∣e

2iz

√
λ̃ −

∫ z

0
ei(z−x)

√
λ̃eiz

√
λ̃ϕ(x, λ̃)q̃(x)dx +

∫ z

0
eix

√
λ̃ϕ(x, λ̃)q̃(x)dx

∣∣∣∣

≤ e−2
√

δ + 2
ε

δ
exp

(
ε

δ

)
< 1,

where the last inequality follows from the choice of ε as in the beginning of the
proof.

Thus, from the above representation of ϕ, we conclude that, for all z ≥ 1,

∣∣ϕ(z, λ̃)
∣∣ ≥ c1

2i
√

λ̃

∣∣e−iz

√
λ̃
∣∣.

However, sending z → ∞, we have limz→∞ |e−iz

√
λ̃| = ∞, which contradicts the

square integrability of ϕ(z, λ̃) over (0,∞), and we easily conclude that χ(., λ̃) is
the unique solution to (48) that is square integrable (up to a multiplicative constant).
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Next, we show that χ(., λ̃) does not change the sign. Indeed, notice that because
λ̃ + q̃(z) < 0, for all λ̃ ∈ Hδ and z ∈ R, any solution to (48) is concave on the
intervals on which it is negative, and it is convex on the intervals on which it is
positive.

Fix, now, some λ̃ ∈ Hδ and assume that there is z0 ∈ R, such that χ(z0, λ̃) = 0.
We know that, if χz(z0, λ̃) = 0, then, due to the uniqueness of a solution to the
Eq. (48) with a given pair of initial conditions, the function χ(., λ̃) has to be iden-
tically zero. This, however, is not possible since the function identically equal to
zero does not satisfy (49). Therefore, without loss of generality, we assume that
χz(z0, λ̃) < 0. Then, there exist ε′ > 0 and z′ > z0, such that χ(z′, λ̃) = −ε′ < 0
and χ(., λ̃) < −ε′, in some right neighborhood of z′. This, in turn, implies that
χ(z, λ̃) < −ε′ for all z > z′, since, otherwise the concavity of the function χ(., λ̃)

in the interval [z′, inf(z > z′ |χ(z, λ̃) = −ε′)] will be violated. On the other hand, if
χ(z, λ̃) < −ε′, for all z > z′, we then obtain a contradiction to the square integra-
bility of χ(., λ̃), for z ∈ (0,∞). Similarly, we arrive to a contradiction if we assume
that χz(z0, λ̃) > 0.

Combining the above we deduce that the function χ(., λ̃) does not change its
sign on R. Therefore, the function ψ(1)(z, λ), defined as

ψ(1)(z, λ) = χ(λ + L1, z − N)

χ(λ + L1,−N)
,

is well defined for all λ ∈ (−∞,−δ − λ̄) and z ∈ R. Moreover, it is uniquely char-
acterized as a solution to (48), which is square integrable over (0,+∞) and satisfies
ψ(1)(0, λ) = 1. We have, also, shown that ψ(1)(z, λ) > 0 and, moreover, it is con-
tinuous as a function of λ, changing on (−∞,−δ − λ̄), for any z ∈ R. Notice that,
since δ > 0 is arbitrary, the above properties extend to all λ ∈ (−∞,−λ̄).

Finally, we apply Proposition 3 to conclude that (44) is well defined and it is a
solution to (36) with the initial condition (43). �

4.1 The Backward Heat Equation

When a1 ≡ 1
2 , a2 ≡ 0, and a3 ≡ 0, the Eq. (31) reduces to the well-known back-

ward heat equation, presented earlier in Sect. 2.3 and rewritten below to ease the
presentation (we also denote the solution by F to preserve the above notation). As
mentioned earlier, its non-negative solutions are completely characterized by the
celebrated Widder’s theorem given, for completeness, below. Its proof can be found
in Chap. XI in [18].

Theorem 2 (Widder’s) Consider the heat equation

Ft + 1

2
Fxx = 0 (50)
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for (x, t) ∈R×(0,∞). A function F :R×(0,∞) → R
+ is a solution to the above if

and only if it can be represented as

F(x, t) =
∫

R

ezx− 1
2 z2t ν(dz) (51)

where ν is a positive finite Borel measure.

As the above theorem shows, the only functions that can serve as initial condi-
tions to (50) are given by a bilateral Laplace transform of the underlying measure ν,
namely,

F(x,0) =
∫

R

exzν(dz), (52)

given that the above integral converges for any x ∈R. We next show how the results
proved herein can be used to obtain one direction of the above theorem. Specifically,
we show how formula (51) can be obtained3 by using the construction approach
provided in Proposition 4.

Proposition 5 Let F : R×[0,∞) →R
+ be given by

F(x, t) =
∫

R

exy− 1
2 y2t ν(dy),

where ν is a positive Borel measure, such that the above integral is finite for t = 0
and all x ∈ R. Then, F is a nonnegative solution of (50), satisfying initial condition
(52).

Proof Rewrite equation (50) for G(x, t) = F(x,2t). Then, we obtain Eq. (36) with
q ≡ 0. Applying Proposition 4 with L1 = L2 = λ̄ = 0, we conclude that the corre-
sponding solutions ψ(1) and ψ(2) are given, respectively, by

ψ(1)(x, λ) = e−ix
√

λ and ψ(2)(x, λ) = eix
√

λ.

Then, Eq. (36) has a nonnegative solution, say G(x, t), for any initial condition of
the form

G0(x) =
∫ 0

−∞
e−ix

√
λμ1(dλ) +

∫ 0

−∞
eix

√
λμ2(dλ),

where μ1 and μ2 are Borel measures on (−∞,0), satisfying the integrability con-
ditions in parts (i) and (ii) of Proposition 4, respectively.

3Of course, one can easily verify that (51) indeed solves (50). The aim is, however, to develop a
general approach for equations of the general form (36).
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Notice that we, then, have

G(x, t) =
∫ 0

−∞
e−ix

√
λ+tλμ1(dλ) +

∫ 0

−∞
eix

√
λ+tλμ2(dλ)

=
∫ +∞

0
exs−ts2

μ̃1(ds) +
∫ +∞

0
e−xs−ts2

μ̃2(ds)

=
∫

R

exs−ts2(
μ̃1(ds)1R+(s) + μ̃2

(
d(−s)

)
1R−(s)

)
,

where

μ̃1 = μ1 ◦ m−1 and μ̃2 = μ2 ◦ m−1,

with m(s) = √−s.
It is easy to see that μ1 and μ2 satisfy the corresponding integrability conditions

if and only if the above integral is finite for t = 0 and all x ∈R.
Reverting to the original variables, we obtain F(x, t) = G(x, t/2), and note that

we have proved the statement of the proposition for all measures ν, which satisfy
the appropriate integrability conditions and have no mass at zero. Finally, we notice
that if ν is a Dirac delta-function at zero, then the resulting function F is identically
equal to one, and, therefore, solves (50). Using the linearity of (50), we conclude
the proof. �

5 Examples

In this section we present two examples of processes satisfying the forward SPDE
(7). For this, we apply the methodology developed in the previous section and the
form of the candidate solutions. We do not, however, derive or study the associated
optimal policy and optimal wealth processes. Such questions will be presented in a
future paper in which a more general class of solutions will be considered (see [13]).

5.1 Mean Reverting Stochastic Volatility

We assume that the coefficients in (1) and (2) take, respectively, the form

μ(y) = μ and σ(y) = (μ − r)e−y (53)

and

b(y) = c1e
y + c2 and d(y) = d, (54)

for y ∈R, and c1, c2, d , μ and r constants with d > 0 and c1 < 0. An extra assump-
tion on the ratio |c1|/d will be imposed in the sequel. For the other constants, we
assume, without loss of generality, that μ > r > 0 and c2 ≥ 0.
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Under (53) and (54), Eqs. (1) and (2) become

dSt = Stμdt + St (μ − r)e−Yt dW 1
t (55)

and

dYt = (
c1e

Yt + c2
)
dt + d

(
ρdW 1

t +
√

1 − ρ2dW 2
t

)
, (56)

with S0 > 0 and Y0 ∈ R. The above choice of the stochastic factor corresponds to a
stock volatility

Nt = (μ − r)e−Yt (57)

which satisfies

dNt =
(

|c1|(μ − r) +
(

d2

2
− c2

)
Nt

)
dt − dNtdWt , (58)

and, hence, if c2 is large enough, exhibits mean reverting behavior. One can easily
show that the above equation, and, consequently, the system consisting of (55) and
(56), has a unique strong solution.

Next, we use the change of variables introduced at the beginning of Sect. 4, in
order to derive a canonical form of Eq. (27). Recall that in this case, we have

a1(y) = 1

2
d2, a2(y) = ey

(
c1 + ρd

γ

1 − γ

)
+ c2, a3(y) = 1

2δ

γ

1 − γ
e2y.

To this end, rescaling time, from t to d2t/2, and applying the change of variables
described at the beginning of Sect. 4, we get that the function g : R×[0,∞) → R

+
defined by

g(y, t) = v

(
y,

2

d2
t

)
exp

(
C2 + c2

d2
y − C2e

y

)
,

with v introduced in Sect. 3.2 and the constants C1 and C2 as

C1 = 1

d2

(
c2

1

d2
+ ρ

2c1

d

γ

1 − γ
− γ

1 − γ

)
and C2 = 1

d

( |c1|
d

− ρ
γ

1 − γ

)
, (59)

needs to satisfy the linear equation

gt + gyy + q(y)g = 0, (60)

with initial condition

g(y,0) = exp

(
C2 + c2

d2
y − C2e

y

)(
K(y)

)1/δ
, (61)

where the distortion power δ is as in (26) and the potential term is given by

q(y) = −C1e
2y + C2

(
1 + 2c2

d2

)
ey − c2

2

d4
. (62)
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It is further assumed that |c1|/d is large enough, so that both constants
C1,C2 > 0.

We recall that, according to Proposition 3, one needs to represent the above initial
condition as an integral over λ’s of the nonnegative solutions to the corresponding
Sturm-Liouville equation

ψyy(y,λ) + (
λ + q(y)

)
ψ(λ,y) = 0, (63)

with q(y) given in (62). We, also, remind the reader that, herein, we are not looking
for the entire class of solutions, but we seek to construct merely one solution. To
this end, we first observe that the function

ϕ(y) = exp

(
C2 + c2

d2
y − √

C1e
y

)
,

satisfies (63) with λ = 0. Applying Proposition 3 with P being a singleton and
Λ = {0}, we easily obtain that the same function is a solution for t > 0, i.e. the
function g :R×[0,∞) →R

+ given by

g(y, t) = exp

(
C2 + c2

d2
y − √

C1e
y

)

solves (60).
Therefore, if we choose the factor K(y) to be

K(y) = exp
(
δ(C2 − √

C1)e
y
)
,

we deduce that g(y,0) = ϕ(y). Hence,

v(y, t) = exp
(
(C2 − √

C1)e
y
)
,

and we easily conclude.
We summarize the above findings below.

Proposition 6 Assume that the stock and the stochastic factor solve (55) and (56).
Also, assume that the aforementioned assumptions on the involved coefficients hold
and that the distortion power δ is as in (26).

Define the process a(x, t) by

a(x, t) =
(

xγ

γ
ρZt ,

xγ

γ

√
1 − ρ2Zt

)
(64)

where

Zt = dδ(C2 − √
C1) exp

(
Yt + δ(C2 − √

C1)
(
eYt − eY0

))
(65)

and the constants C1 and C2 are as in (59).
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Moreover, let the initial condition u0 : R+→ R
+ be

u0(x) = xγ

γ
.

Then, the process U(x, t) given by

U(x, t) = xγ

γ
exp

(
δ(C2 − √

C1)
(
eYt − eY0

))
(66)

solves the forward performance SPDE (7) with the above performance volatility
process a(x, t) and initial condition U(x,0) = u0(x).

Next, we study the behavior of the forward investment performance process as
the forward volatility vanishes. This occurs when the coefficient d → 0.

Proposition 7 Let U(d)(x, t) be the forward investment performance process given
in (66). Then, for each t > 0,

(i) the performance volatility process a(x, t) (cf. (64)) satisfies a.s. for all x ≥ 0,

lim
d→0

a(x, t) = 0, (67)

and
(ii) the forward investment performance process satisfies a.s. for all x ≥ 0,

lim
d→0

U(d)(x, t) = xγ

γ
exp

(
− γ

2c1(1 − γ )

(
eY

(0)
t − eY0

))
, (68)

where Y
(0)
t is the solution to the deterministic problem

dY
(0)
t = (

c1e
Y

(0)
t + c2

)
dt

with Y
(0)
0 = Y0.

Proof We first observe, using (59), that

δ(C2 − √
C1) = γ

1 − γ

(
−c1 − ρ

dγ

1 − γ
+

√

c2
1 + 2ρ

c1dγ

(1 − γ )
− γ d2

1 − γ

)−1

and, in turn,

lim
d→0

δ(C2 − √
C1) = − γ

2c1(1 − γ )
> 0.

Next, we recall that the process N
(d)
t , t ≥ 0, defined in (57) solves the affine SDE

(58), with N
(d)
0 = (μ − r)e−Y0 . On the other hand, the solution of this equation
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can be represented explicitly (see, for example, Sect. 5.6 in [5]). From this explicit
representation, it is easy to deduce that almost surely, for all t > 0,

lim
d→0

N
(d)
t = N

(0)
t = (μ − r)e−Y

(0)
t .

We easily obtain that limd→0 Zt = 0, and using (64) and passing to the limit we
obtain (67). Assertion (68) follows easily. �

5.2 Heston-Type Stochastic Volatility

We choose the model coefficients

μ(y) = μ and σ(y) = (μ − r)
√

y

and

b(y) = c1y + c2 and d(y) = d
√

y,

for y ∈ R
+. It is assumed that c1, c2, d , μ and r are constants, such that r ≥ 0 and

c2, d > 0. In addition, without loss of generality, we assume that μ > r . In order to
prevent the process Yt , t ≥ 0, from hitting zero, we also assume that d2 < 2c2. An
additional assumption on c2/d will be made in the sequel.

Under the above assumptions, the stock and the stochastic factor processes (cf.
(1) and (2)) satisfy

dSt = Stμdt + St (μ − r)
√

YtdW 1
t (69)

and

dYt = (c1Yy + c2)dt + d
√

Yt

(
ρdW 1

t +
√

1 − ρ2dW 2
t

)
, (70)

with S0, Y0 > 0. It is well known that the above system has a unique strong solution.
According to the methodology developed in Sect. 4, we perform the following

change of variables in order to bring Eq. (27) in its canonical form. Specifically, in
the notation of Sect. 4, we obtain

Z(y) = 2
√

2

d

√
y and X(z) = Z−1(z) = d2

8
z2, (71)

and introduce the function g :R+ × (0,∞) → R
+ given by

g(t, y) = 1√
y

exp

(
c1

d2

(
y2 d2

8
− 1

)
+ C2 log

(
y2 d2

8

))
v

(
σ 2

8
y2, t

)
, (72)

where v is as in (27), and the constants C1 and C2 are given by

C1 =
(

c2
2

2d2
+ c2ργ

d(1 − γ )
+ 3d2

32
− c2

2
− γ

2(1 − γ )
(1 + dρ)

)
8

d2
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and

C2 = c2

d2
+ ργ

d(1 − γ )
.

We, also, conclude that g has to solve

gt + gyy + q(y)g = 0 (73)

with initial condition

g(y,0) = 1√
y

exp

(
c1

d2

(
y2 d2

8
− 1

)
+ C2 log

(
y2 d2

8

))(
K

(
d2

8
y2

))1/δ

, (74)

where the coefficient q(y) is given by

q(y) = − c2
1

16
y2 − C1

1

y2
− c1C2,

We assume that c2/d is large enough, so that C1 > −1/4.
Elementary calculations yield that the functions ψ(i) :R+ → R

+, i = 1,2, given
by

ψ(1)(y) = ey2c1/8y1/2+√
C1+1/4 and ψ(2)(y) = ey2c1/8y1/2−√

C1+1/4

satisfy the corresponding Sturm–Liouville equation,

∂

∂y2
ψ(λ,y) + (

λ + q(y)
)
ψ(λ,y) = 0, (75)

with respective values λ1 and λ2 given by

λ1 = c1c2

d2
+ c1ργ

d(1 − γ )
− c1(1 + √

C1 + 1/4)

2

and

λ2 = c1c2

d2
+ c1ργ

d(1 − γ )
− c1(1 − √

C1 + 1/4)

2
.

Next, we choose the factor K : (0,∞) → (0,∞) as

K(y) =
(

2
√

2

d

)δ

yδ( 1
2 −C2) exp

(
c1δ

d2

)

×
(

k1

(
2
√

2

d

)√
C1+1/4

y
√

C1+1/4/2

+ k2

(
2
√

2

d

)−√
C1+1/4

y−√
C1+1/4/2

)δ

, (76)
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for any constants k1, k2 ∈ [0,∞). Then, the solution to the linear equation (73) is
given by

g(y, t) = √
yey2c1/8(k1y

√
C1+1/4eλ1t + k2y

−√
C1+1/4eλ2t

)
.

Consequently, we deduce that v is given by

v(y, t) = 2
√

2

d
exp

(
c1

d2

)
y1/2−C2

×
(

k1

(
2
√

2

d

)√
C1+1/4

y
√

C1+1/4/2eλ1t

+ k2

(
2
√

2

d

)−√
C1+1/4

y−√
C1+1/4/2eλ2t

)
. (77)

Summarizing the above, we have the following result.

Proposition 8 Assume that the stock and the stochastic factor solve (69) and (70).
Also, assume that the aforementioned assumptions on the involved coefficients hold
and that the distortion power δ is as in (26).

Define the process a(x, t) by

a(x, t) =
(

xγ

γ
ρZt ,

xγ

γ

√
1 − ρ2Zt

)
(78)

where

Zt = dδ
√

Yt

vy(Yt , t)

v(Y0,0)

(
v(Yt , t)

v(Y0,0)

)δ−1

(79)

with v : (0,+∞)×[0,+∞) → R
+ given by (77) above.

Moreover, consider the initial condition u0 : R+→ R
+ given by

u0(x) = xγ

γ
.

Then, the process

Ut(x) = xγ

γ

(
v(Yt , t)

v(Y0,0)

)δ

, (80)

satisfies the SPDE (7) with the above performance volatility process a(x, t) and
initial condition U(x,0) = u0(x).

Next, we study the behavior of the forward investment performance process in
(80) as its volatility process a(x, t) vanishes. For this, we will send the parameter
d → 0. Notice, however, that in the present case, if none of k1 or k2 is equal to zero,
the particular choice of their values will affect the forward performance process.
Therefore, for the sake of simplicity we assume that k2 = 0.
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Proposition 9 Let U(d)(x, t) be the forward investment performance process given
in (80), with k2 = 0. Then, for each t > 0,

(i) the performance volatility process a(x, t) (cf. (78)) satisfies a.s for all x ≥ 0,

lim
d→0

a(x, t) = 0,

(ii) the forward performance process satisfies a.s. for all x ≥ 0

lim
d→0

U(d)(x, t) = xγ

γ

(
Y

(0)
t

Y0
e−c1t

)δ(1− 1
2c2

(
ργ

1−γ
)2+ 1

2c2
γ

1−γ
)

,

where Y
(0)
t is the solution to the deterministic problem

dY
(0)
t = (

c1Y
(0)
t + c2

)
dt,

with Y
(0)
0 = Y0.

Proof First, we make use of the assumption c2 > 0 to obtain that for small enough
d > 0 the following calculations are valid:

A(d) = 1

2

√
C1 + 1/4 − C2

= C2

(√√√√1 − (
ργ

1−γ
)2 + d2

4 − c2 − γ
1−γ

ρd

d2C2
2

− 1

)

= − (
ργ

1−γ
)2 + d2

4 − c2 − γ (1+ρd)
1−γ

(c2 + γ
1−γ

ρd)

√

1 − (
ργ

1−γ
)2+ d2

4 −c2− γ
1−γ

ρd

(
c2
d

+ ργ
1−γ

)2

.

We, then, easily deduce that

lim
d→0

A(d) = 1

2
− 1

2c2

(
ργ

1 − γ

)2

+ 1

2c2

γ

1 − γ
.

Finally, we note that because c1 > 0, we have

lim
d→0

λ1(d) = −c1 + c1

2c2

(
ργ

1 − γ

)2

− c1

2c2

γ

1 − γ
,

and therefore,

lim
v(d)(y, t)

v(d)(Y0,0)
=

(
y

Y0
e−c1t

)1− 1
2c2

(
ργ

1−γ
)2+ 1

2c2
γ

1−γ

.
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Using standard results for the CIR process, we deduce that there exists a modifica-
tion of the family of processes {(Y (d)

t )t≥0}, solving (70) for each d > 0, such that
a.s for any t ≥ 0,

lim
d→0

Y
(d)
t = Y

(0)
t =

(
c2

c1
+ Y0

)
ec1t − c2

c1
.

We easily conclude. �
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