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Abstract. Optimal portfolio construction is one of the most fundamental problems in financial mathe-
matics. The foundations of investment theory are discussed together with modeling issues and various
methods for the analysis of the associated stochastic optimization problems. Among others, the clas-
sical expected utility and its robust extension are presented as well as the recently developed approach
of forward investment performance. The mathematical tools come from stochastic optimization for
controlled diffusions, duality and stochastic partial differential equations. Connections between the
academic research and the investment practice are also discussed and, in particular, the challenges of
reconciling normative and descriptive approaches.
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1. Introduction

Financial mathematics is a burgeoning area of research on the crossroads of stochastic pro-
cesses, stochastic analysis, optimization, partial differential equations, finance, economet-
rics, statistics and financial economics. There are two main directions in the field related,
respectively, to the so-called sell and buy sides of financial markets. The former deals with
derivative valuation, hedging and risk management while the latter with investments and
fund management.

Derivatives are financial contracts written on primary financial assets. Their develop-
ment started in the late 1970s with the revolutionary idea of Black, Merton and Scholes
of pricing via “perfect replication” of the derivatives’ payoffs. Subsequently, the universal
theory of arbitrage-free valuation, developed by Kreps, and Harrison and Pliska, was built
on a surprising fit between stochastic calculus and quantitative needs. It revolutionized the
derivatives industry, but its impact did not stop there. Because the theory provided a model-
free approach to price and manage risks, the option pricing methodology has been applied
in an array of applications, among others, corporate and non-corporate agreements, pension
funds, government loan guarantees and insurance plans. In a different direction, applica-
tions of the theory resulted in a substantial growth of the fields of real options and decision
analysis. Complex issues related, for example, to operational efficiency, financial flexibility,
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contracting, and initiation and execution of R&D projects were revisited and analyzed us-
ing derivative valuation arguments. For the last three decades, the theoretical developments,
technological advances, modeling innovations and creation of new derivatives products have
been developing at a remarkable rate. The recent financial crisis cast a lot of blame upon
derivatives and quantitative methods and, more generally, upon financial mathematics. De-
spite the heated debate on what went really wrong, the theory of derivatives remains one of
the best examples of a perfect match among mathematical innovation, technological sophis-
tication and direct real world applicability.

In the complementary side of finance practice, investments deal with capital allocation
under market uncertainty. The objective is not to eliminate the inherent market risks - as
it is the case with derivatives - but to exploit optimally the market opportunities while un-
dertaking such risks. The overall goal is to assess the trade-off between risks and payoffs.
For this, one needs to have, from the one hand, models that predict satisfactorily future asset
prices and, from the other, mechanisms that measure in a practically meaningful way the
performance of investment strategies. There are great challenges in both these directions.
Estimating the drift of stock prices is a notoriously difficult problem. Moreover, building
appropriate investment criteria that reflect the investors’ attitude is extremely complex, for
these criteria need to capture an array of human sentiments like risk aversion, loss aver-
sion, ambiguity, prudence, impatience, etc.. There is extensive academic work, based on the
foundational concept of expected utility, that examines such issues. However, there is still
a considerable gap between academic developments and investment practice, and between
normative and descriptive investment theories. In many ways, we have not yet experienced
the unprecedented progress that took place in the 1980s and 1990s when academia and the
derivatives industry challenged and worked by each other, leading to outstanding scientific
progress in financial mathematics and quantitative finance.

The aim of this paper is to describe the main academic developments in portfolio man-
agement, discuss modeling issues, present various methods and expose some of the current
challenges that the investment research faces.

2. Model certainty and investment management

Models of optimal investment management give rise to stochastic optimization problems
with expected payoffs. There are three main ingredients in their specification: the model for
the stochastic market environment, the investment horizon and the optimality criterion.

The market consists of assets whose prices are modelled as stochastic processes in an
underlying probability space. The associated measure is known as the real, or historical,
measure P. Popular paradigms of prices are diffusion processes (2.2), (2.3), Itô processes
(2.11) and, more generally, semimartingales (sections 3.1 and 3.2). When the price model is
known we say that there is no model uncertainty.

The trading horizon is the time during which trading takes place, typically taken to have
deterministic finite length. Depending on the application, the horizon can be infinitesimal
(high frequency trading), short (hedge funds), medium (mutual funds) or long (pension
funds). Models of infinite horizon have been also considered, especially when intermedi-
ate consumption is incorporated or when the criterion is asymptotic, like optimal long-term
growth, risk-sensitive payoff and others.

The optimality criterion is built upon the utility function, a concept measuring risk and
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uncertainty that dates back to D. Bernoulli (1738). He was the first to argue that utility should
not be proportional to wealth but, rather, have decreasing marginal returns, thus, alluding for
the first time to its concavity property. Bernoulli’s pioneering ideas were rejected at that
time and it took close to two centuries (with the exception of the work of Gossen) to be
recognized. In 1936, Alt and few years later von Neumann and Morgenstern proposed the
axiomatic foundation of expected utility and argued that the behavior of a rational investor
must coincide with that of an individual who values random payoffs using an expected utility
criterion. This normative work was further developed by Friedman and Savage, Pratt and
Arrow. In the latter works, the quantification of individual aversion to risk - via the so
called risk aversion coefficient - was proposed and few years later, Markowitz developed
the influential “mean-variance” portfolio theory. In 1969, Merton built a continuous-time
portfolio management model of expected utility for log-normal stock prices, and since then
the academic literature in this area has seen substantial growth. We refer the reader to the
review article [70] for further details and references.

The expected utility criterion enables us to quantify and rank the outcomes of investments
policies π by mapping the wealth Xπ

T they generate to its expected utility,

Xπ
T → EP (U (Xπ

T )) , (2.1)

where P is the aforementioned historical measure and U a deterministic function that is
smooth, strictly increasing and strictly concave, and satisfies appropriate asymptotic prop-
erties. The objective is then to maximize EP (U (Xπ

T )) over all admissible portfolios. The
portfolios are the amounts (or proportions of current wealth) that are dynamically allocated
to the different accounts. They are stochastic processes on their own and might satisfy (con-
trol) constraints, as it is discussed below.

There are two main directions in studying optimal portfolio problems. Under Marko-
vian assumptions for the asset price processes, the value function is analyzed via PDE
and stochastic control arguments applied to the associated Hamilton-Jacobi-Bellman (HJB)
equation. We discuss this direction in detail next. For more general market settings, the pow-
erful theory of duality is used. This approach yields elegant results for the value function and
the optimal wealth. The optimal portfolios can be then characterized via martingale repre-
sentation results for the optimal wealth process (see, among others, [27, 28, 30, 31, 55, 56]).
We discuss the duality approach in sections 3.1 and 3.2 herein.

2.1. A diffusion market model and its classical (backward) expected utility criterion.
We consider the popular paradigm in which trading takes place between a riskless asset
(bond) and a risky one (stock). The stock price is modelled as a diffusion process whose
coefficients depend on a correlated stochastic factor. Stochastic factors have been used in
a number of academic papers to model the time-varying predictability of stock returns, the
volatility of stocks as well as stochastic interest rates (for an extended bibliography, see the
review article [67]).

From the technical point of view, a stochastic factor model is the simplest and most
direct extension of the celebrated Merton model in which stock dynamics are taken to be
log-normal (see [40]). However, as it is discussed herein, relatively little is known about
the regularity of the value function, and the form and properties of the optimal policies once
the log-normality assumption is relaxed and correlation between the stock and the factor is
introduced. This is despite the Markovian nature of the problem at hand, the advances in the
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theories of fully nonlinear PDE and stochastic optimization of controlled diffusion processes,
as well as the available computational tools.

Specifically, complete results on the validity of the Dynamic Programming Principle,
smoothness of the value function, existence and verification of optimal feedback controls,
representation of the value function and numerical approximations are still lacking. The
only cases that have been extensively analyzed are the ones of homothetic utilities (exponen-
tial, power and logarithmic). In these cases, convenient scaling properties reduce the HJB
equation to a quasilinear one (even linear, see (2.9)). The analysis, then, simplifies consider-
ably both from the analytic as well as the probabilistic points of view (see, for example, [52]
and [66]).

The lack of rigorous results for the regularity and other properties of the value function,
when the utility function is general, limits our understanding of the structure of the optimal
policies. Informally speaking, the first-order conditions in the HJB equation yield that the
optimal feedback portfolio consists of two components (see (2.7)). The first is the so-called
myopic portfolio and has the same functional form as the one in the classical Merton prob-
lem. The second component, usually referred to as the excess hedging demand, is generated
by the stochastic factor. Conceptually, very little is understood about this term. In addition,
the sum of the two components may become zero which implies that it is optimal for a risk
averse investor not to invest in a risky asset with positive risk premium. A satisfactory expla-
nation for this counter intuitive phenomenon - related to the so-called market participation
puzzle - is also lacking.

We continue with the description of the market model. The stock price St, t ≥ 0, is
modelled as a diffusion process solving

dSt = µ (Yt)Stdt+ σ (Yt)StdW
1
t , (2.2)

with S0 > 0. The stochastic factor Yt, t ≥ 0, satisfies

dYt = b (Yt) dt+ d (Yt)
(
ρdW 1

t +
√

1− ρ2dW 2
t

)
, (2.3)

with Y0 = y, y ∈ R. The process Wt =
(
W 1

t ,W
2
t

)
, t ≥ 0, is a standard 2−dim Brownian

motion, defined on a filtered probability space (Ω,F ,P) . The underlying filtration is Ft =
σ (Ws : 0 ≤ s ≤ t) , and it is assumed that ρ ∈ (−1, 1) . The market coefficients f = µ,σ, b
and d satisfy global Lipschitz and linear growth conditions and the non-degeneracy condition
σ (y) ≥ l > 0, y ∈ R. The riskless asset offers constant interest rate r > 0.

Starting with an initial endowment x, at time t ∈ [0, T ) , the investor invests at fu-
ture times s ∈ (t, T ] in the riskless and risky assets. The present value of the amounts
allocated in the two accounts are denoted, respectively, by π0

s and πs. The investor’s (dis-
counted) wealth is, then, given by Xπ

s = π0
s + πs. It follows that it satisfies dXπ

s =

σ (Ys)πs
(
λ (Ys) ds+dW 1

s

)
, where λ (Ys) =

µ(Ys)−r
σ(Ys)

.

A portfolio, πs, is admissible if it is self-financing,Fs-adapted,EP
(∫ T

t σ
2 (Ys)π2sds

)
<∞

and the associated discounted wealth satisfies the state constraint Xπ
s ≥ 0, P−a.s. We denote

the set of admissible strategies by A.
Frequently, portfolio constraints are also present which further complicate the analysis.

Notable cases are the so-called drawdown constraints, for which Xπ
t ≥ αmax0≤s≤tXπ

s

with α ∈ (0, 1) , leverage constraints, when |πt| ≤ g (Xπ
t ) for an admissible function g, and

stochastic target constraints, for which Xπ
T ≥ ZT for a random level ZT .
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The objective, known as the value function (or indirect utility), is formulated as

V (x, y, t;T ) = sup
A

EP (U (Xπ
T )| Ft,X

π
t = x, Yt = y) , (2.4)

for (x, y, t) ∈ R+×R× [0, T ]. The utility function U : R+ → R is C4 (R+) , strictly increas-
ing and strictly concave, and satisfies certain asymptotic properties (see, among others, [55]
and [56]). As solution of a stochastic optimization problem, the value function is expected
to satisfy the Dynamic Programming Principle (DPP), namely,

V (x, y, t) = sup
A

EP (V (Xπ
s , Ys, s)| Ft,X

π
t = x, Yt = y) , (2.5)

for s ∈ [t, T ] . This is a fundamental result in optimal control and has been proved for a
wide class of optimization problems. For a detailed discussion on the validity (and strongest
forms) of the DPP in problems with controlled diffusions, we refer the reader to [18] (see,
also [6, 8, 14, 33, 35, 65]). Key issues are the measurability and continuity of the value
function process as well as the compactness of the set of admissible controls. A weak ver-
sion of the DPP was proposed in [9] where conditions related to measurable selection and
boundness of controls are relaxed. Related results for the case of bounded payoffs can be
found in [3] and, more recently, new results appeared in [71].

Besides its technical challenges, the DPP exhibits two important properties of the value
function process. Specifically, the process V (Xπ

s , Ys, s) , s ∈ [t, T ] , is a supermartingale
for an arbitrary admissible investment strategy and becomes a martingale at an optimum
(provided certain integrability conditions hold). Moreover, observe that the DPP yields a
backward in time algorithm for the computation of the maximal expected utility, starting at
expiration with U and using the martingality property to compute the solution conditionally
for earlier times. For this, we occasionally refer to the classical problem as the backward
one.

The Markovian assumptions on the stock price and stochastic factor dynamics allow us
to study the value function via the associated HJB equation, stated in (2.6) below. Funda-
mental results in the theory of controlled diffusions yield that if the value function is smooth
enough then it satisfies the HJB equation. Moreover, optimal policies may be constructed
in a feedback form from the first-order conditions in the HJB equation, provided that the
candidate feedback process is admissible and the wealth SDE has a strong solution when the
candidate control is used. The latter usually requires further regularity on the value function.
In the reverse direction, a smooth solution of the HJB equation that satisfies the appropri-
ate terminal and boundary (or growth) conditions may be identified with the value function,
provided the solution is unique in the appropriate sense. These results are usually known
as the “verification theorem” and we refer the reader to [6, 8, 14, 33, 35, 65] for a general
exposition on the subject.

In maximal expected utility problems, it is rarely the case that the arguments in either
direction of the verification theorem can be established. Indeed, it is difficult to show a
priori regularity of the value function, with the main difficulties coming from the lack of
global Lipschitz regularity of the coefficients of the controlled process with respect to the
controls and from the non-compactness of the set of admissible policies. It is, also, difficult
to establish existence, uniqueness and regularity of the solutions to the HJB equation. This
is caused primarily by the presence of the control policy in the volatility of the controlled
wealth process which makes the classical assumptions of global Lipschitz conditions of the
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equation with regards to the non linearities to fail. Additional difficulties come from state
constraints and the non-compactness of the set of admissible portfolios.

Regularity results for the value function (2.4) for general utility functions have not been
obtained to date except, as mentioned earlier, for the special cases of homothetic preferences.
The most general result in this direction, and in a much more general market model, was
obtained using duality methods in [32] where it is shown that the value function is twice
differentiable in the spatial argument but without establishing the continuity of the derivative.
Because of lack of general rigorous results, we proceed with an informal discussion about
the optimal feedback policies. For the model at hand, the associated HJB equation is

Vt +max
π

(
1

2
σ2 (y)π2Vxx + π (µ (y)Vx + ρσ (y)d (y)Vxy)

)
(2.6)

+
1

2
d2 (y)Vyy + b (y)Vy = 0,

with V (x, y, T )=U (x) , (x, y, t) ∈ R+×R× [0, T ] . The verification results would yield that
under appropriate regularity and growth conditions, the feedback policy π∗s = π∗ (X∗s , Ys, s) ,
s ∈ (t, T ] , with

π∗ (x, y, t) = −λ (y)
σ (y)

Vx (x, y, t)

Vxx (x, y, t)
− ρd (y)

σ (y)

Vxy (x, y, t)

Vxx (x, y, t)
, (2.7)

and Xπ∗

s solving dXπ∗

s = σ (Ys)π
(
Xπ∗

s , Ys, s
) (
λ (Ys)ds+ dW 1

s

)
, is admissible and opti-

mal.
Some answers to the questions related to the characterization of the solutions to the

HJB equation may be given if one relaxes the requirement to have classical solutions. An
appropriate class of weak solutions turns out to be the so called viscosity solutions ([11, 35,
36, 61]). Results related to the value function being the unique viscosity solution of (2.6)
are rather limited. Recently, it was shown in [50] that the partial Vx (x, y, t) is the unique
viscosity solution of the marginal HJB equation. Other results, applicable for non-compact
controls but for bounded payoffs, can be found in [3].

A key property of viscosity solutions is their robustness (see [36]). If the HJB has a
unique viscosity solution (in the appropriate class), robustness is used to establish conver-
gence of numerical schemes for the value function and the optimal feedback laws. Such
numerical studies have been carried out successfully for a number of applications. However,
for the model at hand, no such studies are available. Numerical results using Monte Carlo
techniques have been obtained in [12] for a model more general than the one herein. More
recently, the authors in [50] proposed a Trotter-Kato approximation scheme for the value
function and an algorithm on how to construct ε−optimal portfolio policies.

Important questions arise on the dependence, sensitivity and robustness of the optimal
feedback portfolio, especially of the excess hedging demand term, in terms of the market
parameters, the wealth, the level of the stochastic factor and the risk preferences. Such
questions are central in financial economics and have been studied, primarily in simpler
models in which intermediate consumption is also incorporated. Recent results for more
general models can be found, for example, in [34]. For diffusion models with a perfectly
correlated stochastic factor, qualitative results can be found, among others, in [29] and [62]
and for log-normal models in [7, 25, 42, 64]. However, a qualitative study for general utility
functions and/or arbitrary factor dynamics has not been carried out to date. Another open
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question, which is more closely related to applications, is how one could infer the investor’s
risk preferences from her investment targets. This is a difficult inverse problem and has been
partially addressed in [41] and [45].

Example 2.1. A commonly used utility function is the homothetic U (x) = xγ

γ , x ≥ 0,

γ ∈ (0, 1) . In this case, the value function is given by (see [66])

V (x, y, t) =
xγ

γ
(F (y, t))δ (2.8)

where δ = 1−γ
1−γ+ρ2γ and F solves the linear equation

Ft +
1

2
d2 (y)Fyy +

(
b (y) + ρ

γ

1− γλ (y)a (y)
)
Fy +

1

2

γ

(1− γ) δλ
2 (y)F = 0, (2.9)

with F (y, T ) = 1. The Feynman-Kac formula then yields the probabilistic representation

V (x, y, t) =
xγ

γ

(
EP̄
(
e
∫ T
t

1
2

γ
(1−γ)δλ

2(Ȳs)ds
∣∣∣ Ȳt = y

))δ
(2.10)

where Ȳt, t ∈ [0, T ] , solves dȲt = (b
(
Ȳt

)
+ ρ γ

1−γλ
(
Ȳt

)
a
(
Ȳt

)
)dt+ d

(
Ȳt

)
dW P̄

t , with W P̄

being a standard Brownian motion under a measure P̄.

2.2. An Itô market model and its forward performance criterion. Besides the difficul-
ties discussed earlier, there are other issues that limit the development of a flexible enough
optimal investment theory in complex market environments. One of them is the “static”
choice of the utility function at the specific investment horizon. Indeed, once the utility
function is a priori specified, no revision of risk preferences is possible at any intermediate
trading time. In addition, once the horizon is chosen, no investment performance criteria
can be formulated for horizons longer than the initial one. As a result, extending the in-
vestment horizon (due to new incoming investment opportunities, change of risk attitude,
unpredictable price shocks, etc.) is not possible.

Addressing these limitations has been the subject of a number of studies and various
approaches have been proposed. With regards to the horizon length, the most popular al-
ternative has been the formulation of the investment problem in [0,∞) and either incorpo-
rating intermediate consumption or optimizing the investor’s long-term optimal behavior.
Investment modes with random horizon have been also considered, and the revision of risk
preferences has been partially addressed by recursive utilities (see, for example, [13] and
[59]).

An alternative approach which addresses both shortcomings of the expected utility ap-
proach has been proposed recently by the author and Musiela (see, [43–45]). The associated
criterion, the so called forward performance process, is developed in terms of a family of
utility fields defined on [0,∞) and indexed by the wealth argument. Its key properties are
the (local) martingality at an optimum and (local) supermartingality away from it. These
are in accordance with the analogous properties of the classical value function process, we
discussed earlier, which stem out from the Dynamic Programming Principle (cf. (2.5)). In-
tuitively, the average value of an optimal strategy at any future date, conditional on today’s
information, preserves the performance of this strategy up until today. Any strategy that fails
to maintain the average performance over time is, then, sub-optimal. We refer the reader to
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[44] and [45] for further discussion on this new concept and its connection with the classical
expected utility theory.

Next, we introduce the definition of the forward performance process and present old and
more recent results. The market environment consists of one riskless security and k stocks.
For i = 1, ..., k, the stock price Si

t , t > 0, is an Itô process solving

dSi
t = Si

t

(
µi
tdt+ σi

t · dW
j
t

)
(2.11)

with Si
0 > 0. The process Wt =

(
W 1

t , ...,W
k
t

)
is a standard d−dim Brownian motion,

defined on a filtered probability space (Ω,F ,P) with Ft = σ (Ws : 0 ≤ s ≤ t) . The coeffi-
cients µi

t and σi
t, i = 1, ..., k, are Ft−adapted processes with values in R and Rd, respec-

tively. For brevity, we denote by σt the volatility matrix, i.e., the d×k random matrix
(
σji
t

)
,

whose ith column represents the volatility σi
t of the ith risky asset. The riskless asset has

the price process B satisfying dBt = rtBtdt with B0 = 1, and a nonnegative Ft−adapted
interest rate process rt. Also, we denote by µt the k×1 vector with coordinates µi

t. The pro-
cesses µt,σt and rt satisfy the appropriate integrability conditions and it is further assumed
that (µt − rt1)∈Lin

(
σT
t

)
.

The market price of risk is given by the vector λt =
(
σT
t

)+
(µt − rt1) , where

(
σT
t

)+ is
the Moore-Penrose pseudo-inverse of σT

t . It is assumed that, for all t>0, EP
∫ t
0 |λs|2 ds<∞.

Starting at t = 0 with an initial endowment x ∈ D, D ⊆ [−∞,∞] , the investor invests
dynamically among the assets. The (discounted) value of the amounts invested are denoted
by π0

t and πi
t , i = 1, ..., k, respectively. The (discounted) wealth process is, then, given by

Xπ
t =

∑k
i=0 π

i
t, and satisfies

dXπ
t =

k∑

i=1

πi
tσ

i
t · (λtdt+ dWt) = σtπt · (λtdt+ dWt) , (2.12)

where the (column) vector, πt =
(
πi
t; i = 1, ..., k

)
. The admissibility set, A, consists of

self-financing Ft−adapted processes πt such that EP
∫ t
0 |σsπs|2 ds < ∞, and Xπ

t ∈ D, for
t ≥ 0.

The initial datum is taken to be a strictly concave and strictly increasing function of
wealth, u0 : D→ R with u0 ∈ C4 (D). The specification of admissible initial conditions
deserves special attention and is discussed later (see (2.20)).

Next, we present the definition of the forward performance process. The one below
is a relaxed version of the original definition, given in [44], where stronger integrability
conditions were needed.

Definition 2.2. An Ft−adapted process U (x, t) is a local forward performance process if
for t ≥ 0 and x ∈ D:

i) the mapping x→ U (x, t) is strictly concave and strictly increasing,

ii) for each π ∈ A, the process U (Xπ
t , t) is a local supermartingale, and

iii) there exists π∗ ∈ A such that the process U
(
Xπ∗

t , t
)

is a local martingale.

Variations of the above definition have appeared, among others, in [15] and [49]. In [69],
the alternative terminology “self-generating”was introduced, for the forward performance
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satisfies, for all 0 ≤ t ≤ s,

U (x, t) = ess sup
A

EP (U (Xπ
s , s)| Ft, X

π
t = x) . (2.13)

Note that in the classical (backward) case (0 ≤ t ≤ s ≤ T ) the above property is a di-
rect consequence of the DPP. In the forward framework, however, it defines the forward
performance process. Clearly, if for the backward problem with finite horizon T one uses
as terminal utility UT (x) = U (x, T ), the backward and the forward problems coincide on
[0, T ] .

The axiomatic construction of forward performance is an open problem, and results have
been derived only for the exponential case (see [69]). More recently, the authors in [49]
proposed a class of forward performances processes that are deterministic functions of un-
derlying stochastic factors (see, for example, (2.24) herein).

2.2.1. Stochastic PDE for the forward performance process. In [46] a stochastic PDE
was derived as a sufficient condition for a process to be a forward performance. In many
aspects, the forward SPDE is the analogue of the HJB equation that appears in the classical
theory of stochastic optimization.

Proposition 2.3.

i) Let U (x, t) , (x, t) ∈ D× [0,∞) , be an Ft−adapted process such that the mapping
x→ U (x, t) is strictly concave, strictly increasing and smooth enough so that the Itô-
Ventzell formula can be applied to U (Xπ

t , t) , for any strategy π ∈ A. Let us, also,
assume that the process U (x, t) satisfies

dU (x, t) =
1

2

∣∣Ux (x, t)λt + σtσ
+
t ax (x, t)

∣∣2

Uxx (x, t)
dt+ a (x, t) · dWt, (2.14)

where the volatility a (x, t) is an Ft−adapted, d−dimensional and continuously differ-
entiable in the spatial argument process. Then, U (Xπ

t , t) is a local supermartingale
for every admissible portfolio strategy π.

ii) Assume that the stochastic differential equation

dXt = −
Ux (Xt, t)λt + σtσ

+
t ax (Xt, t)

Uxx (Xt, t)
· (λtdt+ dWt)

has a solution Xt, with X0 = x, and Xt ∈ D, t ≥ 0, and that the strategy π∗t , t ≥ 0,
defined by

π∗t = −σ+
t
Ux (Xt, t)λt + ax (Xt, t)

Uxx (Xt, t)

is admissible. Then, Xt corresponds to the wealth generated by this investment strat-
egy, that is Xt = Xπ∗

t , t > 0. The process U
(
Xπ∗

t , t
)

is a local martingale and,
hence, U (x, t) is a local forward performance value process. The process π∗t is opti-
mal.

An important ingredient of the forward SPDE is the forward volatility process a (x, t) .
This is a novel model input that is up to the investor to choose, in contrast to the classical
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value function process whose volatility process is uniquely determined from its Itô decompo-
sition. In general, the forward volatility may depend explicitly on t, x, U and its derivatives,
as it is, for instance, shown in the examples below. More general dependencies and admissi-
ble volatility representations have been proposed in [15].

The initial condition u0(x) is an additional model input. In contrast to the classical
framework where the class of admissible (terminal) utilities is rather large, the family of
admissible forward initial data can be rather restricted.

The analysis of the forward performance SPDE (2.14) is a formidable task. The reasons
are threefold. Firstly, it is not only degenerate and fully nonlinear but is, also, formulated
forward in time, which might lead to “ill-posed” behavior. Secondly, one needs to specify
the appropriate class of admissible volatility processes, namely, volatility inputs that gener-
ate strictly concave and strictly increasing solutions of (2.14). The volatility specification is
quite difficult both from the modelling and the technical points of view. Thirdly, as men-
tioned earlier, one also needs to specify the appropriate class of initial conditions u0 (x) . As
it has been shown in [45] and discussed in the sequel, even the simple case of zero volatility
poses a number of challenges.

Addressing these issues is an ongoing research effort of several authors; see, among
others, in [4, 15, 16, 46, 49] and [51].

2.2.2. The time-monotone case and its variants. A fundamental class of forward perfor-
mance processes are the ones that correspond to non-volatile criteria, a (x, t) ≡ 0, t ≥ 0.
The forward performance SPDE (2.14) simplifies to

dU (x, t) =
1

2
|λt|2

U2
x (x, t)

Uxx (x, t)
dt, (2.15)

and, thus, its solutions are processes of finite variation. In particular, they are decreasing in
time, as it follows from the strict concavity requirement. The analysis of these processes was
carried out in [45], and we highlight the main results next.

There are three functions that play pivotal role in the construction of the forward perfor-
mance process, as well as of the optimal wealth and optimal portfolio processes. The first
function is u : D× [0,∞)→ R, with u ∈ C4,1 (D× [0,∞)) , solving the HJB type equation

ut =
1

2

u2
x

uxx
, (2.16)

and satisfying an admissible initial condition, U (x, 0) = u0 (x) (see (2.20)).
The second function is the so-called local absolute risk tolerance r : D× [0,∞)→ R+,

defined by r (x, t) = − ux(x,t)
uxx(x,t)

. It solves an autonomous fast-diffusion type equation,

rt +
1
2r

2rxx = 0, with r (x, 0) = − u′
0(x)

u
′′
0 (x,t)

.

The third is an increasing space-time harmonic function, h : R × [0,∞) → D, defined
via a Legendre-Fenchel type transformation

ux (h (x, t) , t) = e−x+
1
2 t. (2.17)

It solves the (backward) heat equation

ht +
1

2
hxx = 0, (2.18)
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with initial condition h (x, 0) =
(
u

′

0

)(−1)
(e−x) .

Using the classical results of Widder (see [63]) for the representation of positive solu-
tions1 of (2.18), it follows that h (x, t) must be given in the integral form

h (x, t) =

∫

S

eyx−
1
2y

2t − 1

y
ν (dy) , (2.19)

where ν is a positive, finite, Borel measure with support S ∈ [−∞,∞] . Detailed analysis on
the interplay among the support S, the range of h, the structure and the asymptotic properties
of u can be found in [45]. It was also shown therein that there is a one-to-one correspondence
between such solutions of (2.18) to strictly increasing and strictly concave solutions of (2.16)
(see, Propositions 9, 13 and 14).

One then sees that the measure ν becomes the defining element in the entire construction,
for it determines the function h and, in turn, u and r. How this measure could be extracted
from various distributional investment targets is an interesting question and has been dis-
cussed in [41] and [45].

We also see that the definition (cf. (2.17)) of the auxiliary function h and its structural
representation (2.19) dictate that the initial utility u0 (x) , x ∈ D, is given by

(u′0)
(−1)

(x) =

∫

S

e−y ln x − 1

y
ν (dy) . (2.20)

In other words, only utilities whose inverse marginals have the above form can serve as initial
conditions. Characterizing the set of admissible initial data u0 (x) for general volatile per-
formance criteria and, moreover, provide an intuitively meaningful financial interpretation
for them is an interesting open question.

We summarize the general results next. As (2.21) and (2.22) below show, one obtains
rather explicit stochastic representations of the optimal wealth and portfolio policies, despite
the ill-posedness of the underlying problem, the complexity of the price dynamics, and the
path-dependence nature of all quantities involved.

Proposition 2.4. Let u : D × [0,∞) → R be a strictly increasing and strictly concave
solution of (2.16), satisfying an admissible initial condition u (x, 0) = u0 (x) , and r (x, t)
be its local absolute risk tolerance function. Let also h : R× [0,∞) → D be the associated
harmonic function (cf. (2.17)). Define the market-input processes At and Mt, t ≥ 0, as

Mt =

∫ t

0
λs · dWs and At = 〈M〉t =

∫ t

0
|λs|2 ds.

Then, the process U (x, t) = u (x,At) , t ≥ 0, is a forward performance. Moreover, the
optimal portfolio process is given by

π∗,xt = r
(
Xπ∗

t , At

)
σ+
t λt = hx

(
h(−1) (x, 0) +At +Mt, At

)
σ+λ. (2.21)

The optimal wealth process Xπ∗

t solves dXπ∗

t = σtσ
+
t λtr

(
Xπ∗

t , At

)
· (λtdt+ dWt) with

Xπ∗

0 = x, and is given by

Xπ∗

t = h
(
h(−1) (x, 0) +At +Mt, At

)
. (2.22)

1Widder’s results are not applied to h (x, t) directly, for it might not be positive, but to its space derivative
hx (x, t) .
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Representations (2.21) and (2.22) enable us to study the optimal processes in more de-
tail. Among others, one can draw analogies between option prices and their sensitivities
(gamma, delta and other “greeks”) and study analogous quantities for the optimal invest-
ments. Moreover, one can study the distribution of hitting times of the optimal wealth,
calculate its moments, running maximum, Value at Risk, expected shortfall and other invest-
ment performance markers.

Example 2.5.

i) Let D = R and ν = δ0, where δ0 is a Dirac measure at 0. Then, h (x, t) = x and
u (x, t) = 1 − e−x+

t
2 . The forward performance process is, for t ≥ 0, U (x, t) =

1− e−x+
At
2 (see [43] and [69]).

ii) Let D = R+ and ν = δγ , γ > 1. Then h (x, t) = 1
γ e
γx− 1

2γ
2t. Since ν ((0, 1]) = 0,

it turns out that u (x, t) = kx
γ−1
γ e−

γ−1
2 t, k = 1

γ−1γ
γ−1
γ . The forward performance

process is, for t ≥ 0,

U (x, t) = kx
γ−1
γ e−

γ−1
2 At . (2.23)

There exist two interesting variants of the time-monotone forward performance process,
which correspond to non-zero volatility processes. To this end, consider the auxiliary pro-
cesses Yt, Zt, t ≥ 0, solving

dYt = Ytδt · (λtdt+ dWt) and dZt = Ztϕt · dWt,

with Y0 = Z0 = 1 and the coefficients δt and ϕt being Ft−adapted and bounded (by a
deterministic constant) processes. We further assume that δt, ϕt ∈ Lin (σt) .

• The benchmark case: a (x, t) = −xUx (x, t) δt. Then, U (x, t) = u
(

x
Yt
, A(δ)

t

)
with

A(δ)
t =

∫ t
0 |λs − δs|2 ds is a forward performance process. The factor Yt normalizes

the wealth argument and, thus, can be thought as a benchmark (or a numeraire) in
relation to which one might wish to measure the performance of investment strategies.

• The market-view case: a(x, t) = U (x, t)ϕt. Then, U (x, t) = u
(
x,A(ϕ)

t

)
Zt with

A(ϕ)
t =

∫ t
0 |λs + ϕs|2 ds is a forward performance process. The factor Zt can be

thought as a device offering flexibility to the forward solutions in terms of the asset
returns. This might be needed if the investor has different views about the future market
movements or faces trading constraints. In such cases, the returns need to be modified
which essentially points to a change of measure, away from the historical one. This is
naturally done through an exponential martingale.

2.2.3. The stochastic factor case and its forward volatility process. We now revert to
the stochastic factor example with dynamics (2.2) and (2.3), studied earlier under the clas-
sical (backward) formulation, and we examine its forward analogue. To this end, consider a
process U (x, t) , t ≥ 0, given by

U (x, t) = v (x, Yt, t) , (2.24)

for a deterministic function v : R+×R× [0,∞). Then, the SPDE (2.14) takes the form

dU (x, t) =
1

2

(λ (Yt) vx (x, Yt, t) + ρd (Yt) vxy (x, Yt, t))
2

vxx (x, Yt, t)
dt
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+ρd (Yt) vy (x, Yt, t) dW
1
t +

√
1− ρ2d (Yt) vy (x, Yt, t) dW

2
t ,

with the forward volatility given by a (x, t) = (ρ,
√
1− ρ2)d (Yt) vy (x, Yt, t) . One then

sees that if v satisfies (2.6) but now with an admissible initial (and not terminal) condition,
say v (x, y, 0) = u0 (x) , the process given in (2.24) is a forward performance. Solving
(2.6) with an initial condition is an open problem because it not only inherits the difficulties
discussed in the previous section but, now, one needs to deal with the ill-posedness of the
HJB equation.

The homothetic case u0 (x) = xγ

γ , γ ∈ (0, 1) , has been extensively studied in [51].
Therein, it is shown that the forward performance process is given by an analogous to (2.8)
formula, namely,

U (x, t) =
1

γ
xγ (f (Yt, t))

δ (2.25)

provided that f (y, t) satisfies the linear equation (2.9) with initial (and not terminal) condi-
tion f (x, 0) = 1. This problem is more general than (2.18) due to the form of its coefficients,
and, thus, more involved arguments needed to be developed. The multi-dimensional ana-
logue of (2.25) was recently analyzed in [49]. Therein, f (y, t) solves a multi-dimensional
ill-posed linear problem with state-dependent coefficients. For such problems, there is no
standard existence theory. The authors addressed this by developing a generalized version
of the classical Widder’s theorem.

Forward versus backward homothetic utilities. It is worth commenting on the different fea-
tures of the three homothetic performance processes (2.10), (2.23) and (2.25). Tthe tradi-
tional value function (2.10) requires, for each s ∈ [t, T ) forecasting of the market price
of risk in the remaining trading horizon [s, T ) . In contrast, both (2.23) and (2.25) are con-
structed path-by-path, given the information for the market price of risk up to today, in [0, s] .
The process (2.23) is decreasing in time, while (2.25) is not.

3. Model uncertainty and investment management

In the previous section, a prevailing assumption was that the historical measure P is a priori
known. This, however, has been challenged by a number of scholars and gradually led to the
development of selection criteria under model uncertainty, otherwise known as ambiguity
or Knightian uncertainty. Pathbreaking work was done by Gilboa and Schmeidler in [22]
and [58] who built an axiomatic approach for preferences not only towards risk - as it was
done by von Neumann and Morgenstern for (2.1) - but also towards model ambiguity. They
argued that such preferences can be numerically represented by a “coherent” robust utility
functional of the form

Xπ
T → inf

Q∈Q
EQ (U (Xπ

T )) , (3.1)

where U is a classical utility function and Q a family of probability measures. These mea-
sures can be thought as corresponding to different “prior” market models and the above
infimum serves as the “worst-case scenario” in model misspecification.

A standard criticism for the above criterion, however, is that it allows for very limited,
if at all, differentiation of models with respect to their plausibility. As discussed in [57],
if, for instance, the family of prior models is generated from a confidence set in statistical
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estimation, models with higher plausibility must receive a higher weight than models in the
boundary of the confidence set. Furthermore, one should be able to incorporate information
from certain stress test models and observed discrepancies with outcomes of models of pos-
sible priors. Such shortcomings of criterion (3.1) stem primarily from the axiom of certainty
independence in [22]. Maccheroni et al. [37] relaxed this axiom and proposed a numerical
representation of the form

Xπ
T → inf

Q∈Q
(EQ (U (Xπ

T )) + γ (Q)) , (3.2)

where U is a classical utility function and the functional γ (Q) serves as a penalization
weight to each Q-market model.

The specification and representation of robust preferences and their penalty functionals
have recently attracted considerable attention. It turns out that there is a deep connection be-
tween them, monetary utility functionals and risk measures. The latter, denoted byϕ (X) and
ρ (X) , respectively, are mappings on financial positions X , represented as random variables
on a given probability space (Ω,F ,P) with X ∈ L∞. They are related as ϕ (X) = −ρ (X) .

Coherent risk measures were first introduced in [1] and were later extended to their con-
vex analogues by [19, 21, 23]. Risk measures constitute one of the most active areas in finan-
cial mathematics with a substantial volume of results involving several areas in mathematics
spanning from capacity theory and Choquet integration to BSDE, nonlinear expectations and
stochastic differential games.

The (minimal) penalty function associated with a convex risk measure and its associated
concave monetary utility functional, is defined, for probability measures Q, P, by

γ (Q) = sup
X∈L∞

(EQ (−X)− ρ (X)) = sup
X∈L∞

(ϕ (X)− EQ (X)) . (3.3)

Extending criterion (3.1) to (3.2) is in direct analogy to generalizing the coherent risk
measures to their convex counterparts. There is a substantial body of work on representation
results for (3.3) which is, however, beyond the scope of this article.

Recent generalizations to (3.2) include the case

Xπ
T −→ inf

Q'P
G (Q,EQ (U (Xπ

T ))) , (3.4)

where G is the dual function in the robust representation of a quasi-concave utility func-
tional.

In the sequel, we provide representative results on portfolio selection under the classical
robust criterion (3.2) and its recently developed robust forward analogue.

3.1. Classical robust portfolio selection. The problem of portfolio selection in a finite
horizon [0, T ] with the coherent robust utility (3.1) was studied by [53], [60] and others. Its
generalization, corresponding to the convex analogue (3.2), was analyzed, among others, in
[57] and we present below some of the results therein.

For an extensive overview of robust preferences and robust portfolio choice we refer the
reader to the review paper [20].

The market model in [57] is similar to the standard semimartingale model in [30] and
[31]. There is one riskless and d risky assets available for trading in [0, T ] , T < ∞. The
discounted price processes are modelled by a d−dim semimartingale St =

(
S1
t , ..., S

d
t

)
,
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t ∈ [0, T ] , on a filtered probability space
(
Ω,F , (Ft)0≤t≤T ,P

)
. For t ∈ [0, T ] , the control

policies αt =
(
α1
t , ...,α

d
t

)
are self-financing, predictable and S−integrable processes. The

associated discounted wealth process, Xα
t , is then given by Xα

t = x+
∫ t
0 αs ·dSs, and needs

to satisfy Xα
t ≥ 0, t ∈ [0, T ] . This formulation is slightly different than the ones in sections

2.1 and 2.2 in that the controls αt now denote the number of shares (and not the discounted
amounts) held at time t in the stock accounts.

For x > 0, X (x) stands for the set of all discounted wealth processes satisfying X0 ≤ x
and Xt ≥ 0, t ∈ (0, T ] . The classical (absence of arbitrage) model assumption is that
M -= ∅, where M denotes the measures equivalent to P under which each Xt ∈ X (1) ,
t ∈ (0, T ] , is a local martingale (see [30]).

The value function of the robust portfolio selection problem is then defined, for x ≥ 0,
as

v (x) = sup
X∈X (x)

inf
Q∈Q

(EQ (U (XT )) + γ (Q)) , (3.5)

where γ is a minimal penalty function as in (3.3) and Q = {Q, P| γ (Q) <∞} .
Because of the semimartingale assumption for the stock prices, classical stochastic opti-

mization arguments do not apply and the duality approach comes in full force. As mentioned
in the previous section, this approach has been extensively applied to portfolio choice prob-
lems and provides general characterization results of the value function and optimal policies
through the dual problem, which is in general easier to analyze. There is a rich body of work
in this area and we refer the reader, among others, to the classical references [28, 30, 31].

In the presence of model ambiguity, there is an extra advantage in using the duality
approach because the dual problem simply involves the minimization of a convex functional
while the primal one requires to find a saddle point of a functional which is concave in one
argument and convex in the other.

We now describe the main notions and results in [57]. We stress, however, that for
the ease of presentation we abstract from a number of detailed modeling assumptions and
technical conditions.

We recall that the convex conjugate of the utility function U is defined, for y > 0, as
Ũ(y)=supx>0 (U(x)− xy) . Then, for every measure Q, uQ (x)=supX∈X (x) EQ (U(XT ))
is a traditional value function as in (2.4). It was established in [30] that, for Q ∼ P with fi-
nite primal value function uQ (x) , the bidual relationships uQ (x) = infy>0 (ũQ (y) + xy)
and ũQ (y) = supx>0 (uQ (x)− xy) hold, where the dual value function ũQ (y) is given by
ũQ (y) = infY ∈YQ(y) EQ

(
Ũ (YT )

)
, for Q ∈ Q. The space YQ (y) is the set of all positive

Q−supermartingales such that Y0 = y and the product XY is a Q−supermartingale for all
X ∈ X (1) .

In analogy, one then defines in [57] the dual function of the robust portfolio problem by

ũ (y) = inf
Q∈Q

(ũQ (y) + γ (Q)) = inf
Q∈Q

inf
Y ∈YQ(y)

(
EQ

(
Ũ (YT )

)
+ γ (Q)

)
.

Then, for y > 0 such that ũ (y) < ∞, a pair (Q, Y ) is a solution to the dual convex
robust problem if Q ∈ Q, Y ∈ YQ (y) and ũ (y) = EQ(Ũ (YT )) + γ (Q) . Let also
Qe = {Q ∈ Q|Q ∼ P}.

Theorems 2.4 and 2.6 in [57] provide characterization results for the primal and dual
robust value functions, as well as for the optimal policies. In the next two propositions, we
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highlight some of their main results.

Proposition 3.1. Assume that for some x > 0 and Q0 ∈ Qe, uQ0 (x) < ∞ and that
ũ (y) < ∞ implies that, for some Q1 ∈ Qe, ũQ1 (y) < ∞. Then, the robust value function
u (x) is concave and finite, and satisfies

u (x) = sup
X∈X (x)

inf
Q∈Q

(EQ (U (XT )) + γ (Q)) = inf
Q∈Q

sup
X∈X (x)

(EQ (U (XT )) + γ (Q)) .

Moreover, the primal and the dual robust value functions u and ũ satisfy

u (x) = inf
y>0

(ũ (y) + xy) and ũ (y) = sup
x>0

(u (x)− xy) .

If ũ (y) <∞, then the dual problem admits a solution, say (Q∗, Y ∗) that is maximal, in that
any other solution (Q, Y ) satisfies Q, Q∗ and YT = Y ∗T , Q−a.s.

Note that the optimal measure Q∗ might not be equivalent to P (see, for instance, ex-
ample 3.2 in [57]). In such cases, one can show that the Q∗-market may admit arbitrage
opportunities.

The existence of optimal policies requires the additional assumption that for all y > 0
and each Q ∈ Qe the dual robust value function satisfies ũQ (y) <∞.

Proposition 3.2. For any x > 0, there exists an optimal strategy X∗ ∈ X (x) for the robust
portfolio selection problem. If y > 0 is such that ũ′ (y) = −x and (Q∗, Y ∗) is a solution
of the dual problem, then X∗T = I (Y ∗T ) , Q

∗-a.s. for I (x) = −Ũ ′ (x) , and (Q∗, Y ∗) is a
saddle point for the primal robust problem,

u (x) = inf
Q∈Q

(EQ (U (X∗T )) + γ (Q)) = EQ∗ (U (X∗T )) + γ (Q∗) = uQ∗ (x) + γ (Q∗) .

Furthermore, the product X∗t Y ∗t Z∗t is a martingale under P, where Z∗t , t ∈ [0, T ] , is the
density process of Q∗ with respect to P.

Example 3.3. Examples of penalty functionals

• Coherent penalties: γ takes the values 0 or∞. Then, (3.2) reduces to (3.1).
• Entropic penalties: γ (Q) = H (Q|P), where the entropy function H is defined, for
Q, P, as

H (Q|P) =
∫

dQ

dP ln

(
dQ

dP

)
dP = sup

Y ∈L∞

(
EQ (Y )− lnEP

(
eY
))

. (3.6)

In this case, infQ∈Q (EQ (U (XT )) + γ (Q)) = lnEP
(
e−U(XT )

)
and the robust port-

folio problem (3.5) reduces to the standard one of maximizing EP
(
e−U(XT )

)
.

• Dynamically consistent penalties: γt (Q) = EQ

(∫ T
t h (ηs) ds

∣∣∣Ft

)
, t ∈ [0, T ) ,

where the filtration (Ft)t∈[0,T ] is generated by a d−dim Brownian motion. Then, for

every measure Q,P, there exists a d-dim predictable process ηt with
∫ T
0 |ηt|2 dt<∞,

Q-a.s. and dQ
dP = E

(∫
0 ηt · dWt

)
T

where E (M)t = exp (Mt − 〈M〉t) for a contin-
uous semimartingale Mt. The function h satisfies appropriate regularity and growth
conditions (see example 3.4 in [57]). The specific choice h (x) = 1

2 |x|
2 corresponds

to (3.6).
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• Shortfall risk penalties: γ (Q) = infλ>0

(
λx+ λEP

(
f∗
(
1
λdQ/dP

)))
, for Q , P,

and where f : R→ R is convex and increasing and x is in the interior of f (R),
and f∗ denotes its Legendre-Fenchel transform. The associated risk measure is given
by ρ (Y ) = inf {m ∈ R|EP (f (−Y −m)) ≤ x} , Y ∈ L∞, and is the well known
shortfall risk measure introduced by Föllmer and Schied. Its dynamic version is
weakly dynamically consistent but fails to be dynamically consistent.

• Penalties associated with statistical distance functions: γ (Q) = EP (g (dQ/dP)) , for
Q, P and suitable functions g.

3.2. Forward robust portfolio selection. We consider the model as in [69] with d + 1
securities whose prices, (S0;S) = (S0

t , S
1
t , ..., S

d
t ), t ≥ 0, with S0 = 1 (the numeraire)

and St, t ≥ 0, is a d-dim càdlàg locally bounded semimartingale on a complete filtered
probability space (Ω,F , (Ft)t∈[0,∞),P). The wealth process is given by Xα

t = x+
∫ t
0 αs ·

dSs, t ≥ 0. The set A of admissible policies consists of weight portfolios αt that are
predictable and, for each T > 0 and t ∈ [0, T ] , are S-integrable and Xα

t > −c, c > 0. We
denote the set of probability measures that are equivalent to P by Q. For further details and
all technical assumptions, see [69] and [26].

Definition 3.4.

i) A random field is a mapping U : Ω × R × [0,∞) → R which is measurable with
respect to the product of the optional σ-algebras on Ω× [0,∞) and B(R).

ii) A utility field is a random field such that, for t ≥ 0 and ω ∈ Ω, the mapping x →
U(ω, x, t) is P-a.s. a strictly concave and strictly increasing C1(R) function, and sat-
isfies the Inada conditions limx→−∞

∂
∂xU(ω, x, t) =∞ and limx→∞

∂
∂xU(ω, x, t) =

0. Moreover, for each x ∈ R and ω ∈ Ω, the mapping t → U(ω, x, t) is càdlàg on
[0,∞), and for each x ∈ R and T ∈ [0,∞), U(·, x, T ) ∈ L1(P).

For simplicity, the ω−notation is suppressed in U(x, t). Next, the concept of an admis-
sible penalty function is introduced.

Definition 3.5.

i) Let T > 0 and t ∈ [0, T ] , and QT = {Q ∈ Q : Q|FT ∼ P|FT }. Then, a mapping
γt,T : Ω×QT → R+∪{∞}, is a penalty function if γt,T is Ft-adapted, Q→γt,T (Q)
is convex a.s., for Q ∈ QT , and for κ∈L∞+ (Ft), Q → EQ (κγt,T (Q)) is weakly
lower semi-continuous on QT .

ii) For a given utility random field U(x, t), γt,T is an admissible penalty function if,
for each T > 0 and x ∈ R, EQ (U(x, T )) < ∞ for all Q ∈ Qt,T , with Qt,T =
{Q ∈ QT : γt,T (Q) <∞, a.s.} .

Using the above notions, the following definition of the robust forward performance
process was proposed in [26]. Because of the presence of the penalty term in (3.7) below,
it is more convenient to formulate this concept in terms of the self-generation property (cf.
(2.13)).

Definition 3.6. Let, for t ≥ 0, U (x, t) be a utility field and, for T > 0 and t ∈ [0, T ] , γt,T
be an admissible family of penalty functions. Define the associated value field as a family of
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mappings u(·; t, T ) : L∞ → L0(Ft;R ∪ {∞}), given by

u(ξ; t, T ) = ess sup
π∈Abd

ess inf
Q∈Qt,T

(
EQ

(
U(ξ +

∫ T

t
αs · dSs, T )

∣∣∣∣∣Ft

)
+ γt,T (Q)

)
,

(3.7)
with ξ ∈ L∞ (Ft) and Abd being the set of admissible policies in A that yield bounded
wealth processes. Then, the pair (U, γt,T ) is a forward robust criterion if, for T > 0 and
t ∈ [0, T ], U(ξ, t) is self-generating, that is U(ξ, t) = u(ξ; t, T ), a.s..

Preliminary results for the dual characterization of forward robust preferences were re-
cently derived in [26]. The dual of the utility field U (x, t) is defined, for (y, t) ∈ R+ ×
[0,∞) , as Ũ (y, t) = supx∈R (U (x, t)− xy) . One, then, defines the dual value field, for
T > 0 and t ∈ [0, T ] , as the mapping ũ (·, t, T ) : L0

+

(
Ft) −→ L0(Ft,R∪ {∞}

)
given by

ũ(η; t, T ) = ess inf
Q∈Qt,T

ess inf
Z∈Za

T

(
EQ

(
Ũ
(
ηZt,T /Zt,T

Q, T
)∣∣∣Ft

)
+ γt,T (Q)

)
. (3.8)

Herein, Zt,T = ZT /Zt ( resp. ZQ
t,T = ZQ

T /ZQ
t ), where Zs (resp. ZQ

s ), s = t, T, is the well
known density process for the absolutely continuous local martingale measures (resp. Q)
(for further details, see [69]).

In turn, the pair
(
Ũ , γt,T

)
, for an admissible family of penalty functions γt,T , is said to

be self-generating if Ũ(η, t) = ũ(η; t, T ), for all η ∈ L0
+(Ft). Under additional assump-

tions, it was shown in [26] that the primal and the dual value fields satisfy, for all T > 0
and t ∈ [0, T ], the bidual relationships u(ξ; t, T ) = essinfη∈L0

+(Ft) (ũ(η; t, T ) + ξη) and
ũ(η; t, T ) = ess supξ∈L∞(Ft) (u(ξ; t, T )− ξη) , for ξ ∈ L∞(Ft) and η ∈ L0

+(Ft). It was
also shown that the primal criterion (U, γt,T ) is self-generating, and thus a forward robust
criterion, if and only if its dual counterpart

(
Ũ , γt,T

)
is self-generating.

There are several open questions for the characterization and construction of the robust
forward performance process. For example, there are certain assumptions on Qt,T in Defi-
nition 3.5 (see Assumption 4.5 in [26]) which might be difficut to remove. Another issue is
whether the penalty functions need to be themselves dynamically consistent, in that whether
they need to satisfy γt,T (Q) = γt,s(Q) + EQ (γs,T (Q)| Ft) , for T > 0 and t ∈ [0, T ] . As
Definition 3.5 stands, this property is not needed as long as the pair (U (x, t) , γt,T ) is self-
generating. However, examples (either for the primal or the dual forward robust criterion)
for non dynamically consistent penalty functions have not been constructed to date. We re-
mind the reader that classical robust utilities are well defined even if the associated penalties
are not time-consistent, with notable example being the penalty associated with the shortfall
risk measure. It is not clear, however, if in the forward setting such cases are indeed viable.

Because of the model ambiguity and the semimartingale nature of the asset prices, it is
not immediate how to obtain the robust analogue of the forward performance SPDE (2.14).
Some cases have been analyzed in [26]. Among others, it is shown that when asset prices
follow Itô processes and the forward robust criterion is time-monotone, then its dual Ũ (x, t)
solves a fully non-linear ill-posed PDE with random coefficients.

The time-monotone case with logarithmic initial datum, U (x, 0) = lnx, and time-
consistent quadratic penalties can be explicitly solved. The optimal policy turns out to be a
fractional Kelly strategy, which is widely used in investment practice. The fund manager in-
vests in the growth optimal (Kelly) portfolio corresponding to her best estimate of the market
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price of risk. However, she is not fully invested but, instead, allocates in stock a fraction α∗t
of her optimal wealth that depends on her “trust” in this estimate. Her “trust” is modelled by
a process δt that appears in the quadratic penalty. As δt ↑ ∞ (infinite trust in the estimation),
α∗t converges to the classical Kelly strategy associated with the most likely model while if
δt ↓ 0 (no trust in the estimation), α∗t converges to zero and deleveraging becomes optimal.

4. Concluding remarks

Despite the numerous advances on the theoretical development and analysis of portfolio
management models and their associated stochastic optimization problems, there is rela-
tively little intersection between investment practice and academic research. As mentioned
in the introduction, the two main reasons for this are the fundamental difficulties in esti-
mating the parameters for the price processes and the lack of practically relevant investment
performance criteria.

While estimating the volatility of stock prices is a problem extensively analyzed (see, for
example, [2] and [47]), estimating their drift is notoriously difficult (see, among others, [17]
and [39]). Note that drift estimation is not an issue in derivative valuation, for pricing and
hedging do not require knowledge of the historical measure but, rather, of the martingale
one(s). As a result, there is no need to estimate the drift of the underlying assets. Recently,
a line of research initiated by S. Ross ([54]) on the so called Recovery Theorem investigates
if the historical measure can be recovered from its martingale counterpart(s) (see also [10]).

The lack of a realistic investment performance criterion poses equally challenging ques-
tions. There are two issues here: the form of the criterion per se, and its dynamic and
time-consistent nature. A standard criticism from practitioners is that utility functions are
elusive and inapplicable concepts. Such observations date back to 1968 in the old note of
F. Black ([5]). Indeed, in portfolio practice, managers and investors have investment targets
(expected return, volatility limits, etc.) and companies have constraints on their reserves and
risk limits, and it is quite difficult, if possible at all, to map these inputs to a classical utility
function. The only criterion that bridges part of this gap is the celebrated mean-variance
one, developed by H. Markowitz ([38]), which corresponds to a quadratic utility with coef-
ficients reflecting the desired variance and associated optimal mean. However, this widely
used criterion is essentially a single-period one. In a multi-period setting, it becomes time-
inconsistent, in contrast to criteria used in derivative pricing which are by nature dynamically
consistent. It is not known to date how to construct genuinely dynamic and time-consistent
mean-variance or other practically relevant investment criteria. Some attempts towards this
direction can be found in the recent works [48] and [68].

Acknowledgements. The author would like to thank B. Angoshtari and S. Kallblad for their
comments and suggestions.
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